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Abstract. – We report an Eliashberg analysis of the electron dynamics in YBa2Cu3O6.95. The
magnetic resonance at 41 meV couples to charge carriers and defines the characteristic shape
in energy of the scattering rate τ−1(T, ω), which allows us to construct the charge-spin spectral
density I2χ(ω, T ) at temperature T . The T -dependence of the weight under the resonance
peak in I2χ(ω) agrees with experiment as does that of the London penetration depth and
of the microwave conductivity. Also, the T = 0 condensation energy, the fractional oscillator
strength in the condensate, and the ratio of gap-to-critical temperature agree well with the data.

A hallmark of the spin dynamics of several classes of high-Tc superconductors is a magnetic
resonance observed around 40 meV by means of spin-polarized inelastic neutron scattering.
The position in energy of the peak scales with the critical temperature both in YBa2Cu3O6.95

(Y123) and Bi2Sr2CaCu2O8 (Bi2212) superconductors [1]. The analysis of the optical conduc-
tivity shows that the charge carriers are strongly coupled to the magnetic excitations with a
coupling strength sufficient to account for superconducting transition temperatures � 90 K [2].
Thus, neutron scattering data combined with optical conductivity results, signal the promi-
nence of the resonance mode for superconductivity in the cuprates. The analysis of additional
optical data by Schachinger and Carbotte [3] showed that similar magnetic resonances are ex-
pected to be found in many other high-Tc materials with Tc � 90 K and that this phenomenon
is not restricted to bilayer materials. At the moment some of these cannot be investigated
with neutrons due to minuscule crystal size.

Because the spectral weight under the resonance is maximized at T � Tc and vanishes
at T � Tc [4] (at least in optimally doped Bi2212 and Y123), coupling of the conducting
carriers to the magnetic mode ought to influence the temperature dependence of a variety of
c© EDP Sciences
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properties including the London penetration depth and microwave absorption. In this work
we determine the charge-spin spectral density I2χ(ω) at various T from the inversion of the
optical constants. The T -dependence of the spectral weight under the resonance we obtain
matches well the neutron data [4] on the temperature evolution of the magnetic resonance.
We employ Eliashberg formalism to calculate the T -dependence of the penetration depth, of
the microwave conductivity and the fractional optical oscillator strength that condenses in
the superfluid density at T = 0. These results along with calculations of the zero-temperature
condensation energy and the ratio of gap-to-critical temperature agree with experiment. This
establishes the pivotal role played by the magnetic resonance mode in the charge dynamics as
well as in the thermodynamic properties of the cuprates.

In a previous publication [2] we showed that an appropriately defined second derivative [5]
of the optical scattering rate τ−1(ω) as a function of frequency gives an absolute measure of
the spin excitation spectrum weighted by their coupling to the charge carriers. While the
second-derivative technique is not exact and, for instance, does not account for the anisotropy
of the relaxation rate on different segments of the Fermi surface [6], it, nevertheless, allows
one to construct a good first estimate of the frequency dependence of the underlying charge
carrier-spin excitation spectral density. Here we apply this analysis to study the temperature
dependence of the spectral weight under the spin resonance in optimally doped Y123.

Eliashberg theory, on the other hand, is a highly successful extension of the BCS model
for the case of an electron-phonon mechanism [7]. While the theory was formulated for
the electron-phonon case, it can be used as a first approximation for other boson exchange
mechanisms, the main limitation being that vertex corrections may become more important
and therefore the theory less accurate. With the symmetry of the gap (d-wave) explicitly
introduced into the formalism, the only material parameter that enters is the electron-spin
excitation spectral density I2χ(ω).

In fig. 1 (top frame) we present the raw experimental results for the optical scattering
rate spectra τ−1(ω) obtained for twinned samples of optimally doped YBCO single crystals
[8]. Here τ−1(ω) = Ω2

p�e{σ−1(ω)}/4π, where σ(ω) is the infrared conductivity and Ωp is
the plasma frequency. The low-T spectra reveal a threshold structure starting around ω �
60 meV which is a common signature of the electromagnetic response of the CuO2 planes
in a variety of high-Tc superconductors [9]. With increasing T this feature weakens and at
T > Tc the scattering rate assumes a nearly linear ω-dependence which is the counterpart
of the linear resistivity, and is characteristic of the marginal Fermi liquid [10]. The second-
derivative technique [2, 3] shows more clearly the threshold structure and helps to unravel
its microscopic origin. This technique applies to a d-wave superconductor which is described
by a charge carrier-spin excitation spectral density I2χ(ω) within a generalized Eliashberg
formalism [11, 12]. A peak in the spectral density at energy ωsr of the spin resonance, gives
a peak at ω � ∆ + ωsr (where ∆ is the energy gap) in the second derivative of ωτ−1(ω).
A first approximation to the spectral density which applies, however, only to the region of
the resonance peak (beyond it W (ω) has a negative region, not part of the spectral density
which is positive definite) is given by the function W (ω)/2, with ω appropriately shifted by
∆, and [5]

W (ω) =
1
2π

d2

dω2

[
ω

τ(ω)

]
. (1)

The spectra for W (ω) (bottom frame of fig. 1) indeed reveal a peak at � 70 meV at 10 K.
Also, with increasing T , this peak softens by about 20 meV but this shift coincides with the
temperature dependence of the gap, so that the energy of the spin resonance is temperature
independent and the spectral weight confined under the peak is gradually reduced to zero as
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Fig. 1 – Top frame: optical scattering rate τ−1(T, ω) in meV for optimally doped twinned Y123 single
crystals. Bottom frame: function W (ω) vs. ω in the region of the spin resonance.

T approaches Tc, and shows a temperature dependence similar to the strength of the spin
resonance (top frame of fig. 2). These observations suggest that the spin resonance is respon-
sible for the rise in the optical scattering rate. Recent ARPES data [13] show quasiparticle
peaks along the BZ-diagonal (most relevant to in-plane transport) with width that displays a
similar behaviour to the optical rates.

The data shown in the bottom frame of fig. 1 can be used to construct a charge carrier-
spin excitation spectral density according to the following prescription. It is found that the
scattering rate shown at T = 95 K can be fit with the form [14]

I2χ(ω) = G
ω/ωSF

1 + (ω/ωSF)2
, (2)

where the single-spin fluctuation energy ωSF = 20 meV produces a good fit to the ω-dependence
of the T = 95 K data for τ−1(ω) with G adjusted to get the correct magnitude when a cut-off
of 400 meV is applied. In the superconducting state the spectrum of I2χ(ω) given by eq. (2)
is modified only at small ω [2, 3], with the spin resonance at 41 meV added according to the
data given in the lower frame of fig. 1. The area under the main resonance peak in I2χ(ω) is
defined as A(T ) and the normalized area A(T )/A(10 K) is plotted in the top frame of fig. 2
as the solid line. This compares well with the solid circles for the normalized area under the
neutron resonant peak obtained by Dai et al. [4] denoted by 〈m2

res(T )〉/〈m2
resT = 10 K〉. The

agreement is good and shows that the variation in neutron peak intensity with T is reflected
accurately in the transport data.

Once a model spectral density I2χ(ω) is specified, superconducting properties follow from
the solution of the d-wave Eliashberg equations [11,12]. Here we report on two such properties.
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Fig. 2 – Top frame: spectral weight under the spin resonance as a function of temperature (solid
line) obtained from the optical data of fig. 1 (top frame) (5 temperatures only). The solid circles
are the data of Dai et al. [4] obtained by neutron scattering. The dashed curve gives our calculated
∆0(T )/∆0(0). Bottom frame: the normalized London penetration depth squared (λ(0)/λ(T ))2 vs.
reduced temperature t = T/Tc (solid line) compared with the experimental results of Bonn et al. [15].
The dashed line does not include the spin resonance and is for comparison. The dotted curve gives
thermodynamic critical field Hc(T )/Hc(0) vs. t.

In the bottom frame of fig. 2 we show our results for the normalized London penetration depth
[λ(0)/λ(t)]2 as a function of reduced temperature t and compare with experimental results
obtained by Bonn et al. [15] (solid squares). The dashed line was obtained with a spectral
density taken as temperature independent and fixed to its T = Tc value; calculation details
are given in ref. [11]. The agreement with the data is poor but can be significantly improved
if we use the model for I2χ(ω) which includes the spin resonance. The solid line reproduces
the essential features of the experimental data. It is the growth in strength with decreasing
T of the 41 meV peak and the loss of spectral weight at small ω in the superconducting state
that accounts for the bulging upward of the solid curve in the region above t � 0.3.

Another quantity of interest is the temperature dependence of the microwave conductivity
below Tc. A large peak [15] is observed in σ1(ω) for ω = 0.144 meV around 30 K. This peak has
been attributed to the collapse of the inelastic scattering as T is lowered in the superconducting
state. If the important scattering has its origin in correlations effects, as it does in a spin
fluctuation mechanism, it is expected to be strongly affected by the onset of superconductivity,
thus I2χ(ω) should be gapped. This mechanism is already included in our work with the spin
resonance determining the low ω part of the spectral density. Our theoretical results for
σ1(ω = 0.144 meV) as a function of temperature are shown as solid circles in fig. 3 and are
found to be close to previous theoretical results [11]. The arrow shows the point at which the
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Fig. 3 – Temperature dependence of the conductivity σ1(ω) at microwave frequency ω = 0.144meV.
The solid circles are results based on our model spectral density with the solid curve a guide to the
eye. The open triangles include impurities with the dahsed line to guide the eye. The solid squares
represent experimental data by Bonn et al. [15].

theoretical calculations have been made to agree exactly with the measurements of Bonn et
al. [15] (solid squares). As for the T -dependence of σ1(ω = 0.144 meV), the agreement with
experiment is good at the higher temperatures, but the theoretical peak is too narrow. This
discrepancy can be removed by including a small amount of impurity scattering which yields
the open triangles. We note that the temperature dependence of the microwave conductivity
reflects most importantly the reduction to near zero of I2χ(ω) at small ω which accompanies
the formation of the resonance peak rather than the peak directly. Previous work [11] which
included a low-frequency cut-off but no resonance peak was equally able to describe the data
and fell close to the solid and dashed lines of fig. 2.

The plasma frequency Ωp which does not enter our theoretical work can be found by
scaling theoretical infrared conductivity data to experiment [16]. A value of 2.36 eV is found
(see table I) which compares well with experiment.

A further comparison of our model with the infrared data is provided by the analysis of
the fraction of the total normal-state spectral weight which condenses into the superfluid:
ns/n. Indeed, strong electron-boson coupling reduces the spectral weight of the quasiparticle
component of the electronic spectral function A(k, ω) compared to its non-interacting value by
a factor of Z leading at the same time to the appearance of an incoherent component. It is the
latter component which is responsible for the Holstein band in the optical conductivity whereas
the coherent quasiparticle part gives rise to the Drude term at T > Tc and to superfluid density

Table I – Some superconducting properties of the twinned Y123 sample: ∆F (0) is the condensation
energy at T = 0 in meV/Cu-atom, ns/n is the superfluid to total carrier density ratio, Ωp is the
plasma frequency in eV.

Theory Experiment Ref.

∆F (0) 0.287 0.25 [17,18]

ns/n 0.33 0.25 [19]

Ωp 2.36 2.648 [20]

2∆0/kBTc 5.1 5.0 [21]
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at T = 0 in the spectra of σ1(ω) [22]. The values of ns/n and hence (Z − 1) yield an estimate
of the strength of renormalization effects in the interacting system. Tanner et al. [19] obtained
ns/n � 0.25 in crystals of Y123 and Bi2212. This compares well with the value � 0.33 which
corresponds to Z � 3 (at low temperatures) generated in our analysis. The resonance peak
alone accounts for 75% of the renormalization effect.

We have also calculated the condensation energy [7] as a function of temperature. Its value
at T = 0 follows from the normal-state electronic density of states which we take from band
structure theory equal to 2.0 states/eV/Cu-atom (double spin) around the middle of the cal-
culated range of values [23]. This gives a condensation energy ∆F (0) = 0.287 meV/Cu − atom
which agrees well with the value quoted by Norman et al. [17] from the work by Loram et
al. [18]. (See table I.) This is equivalent to a thermodynamic critical field µ0Hc(0) = 1.41 T
with Hc(T ) defined through ∆F (T ) = H2

c (T )/8π. The normalized value Hc(T )/Hc(0) is
shown as the dotted line in the bottom frame of fig. 2 and is seen to follow reasonably, but not
exactly, the T -dependence of the normalized penetration depth. Another quantity that comes
out directly from our calculations is the temperature dependence of the gap. It follows closely
the temperature dependence of the resonance intensity A(T )/A(T = 10 K) as shown (dashed
curve) in the top frame of fig. 2. One further quantity is the ratio of the gap amplitude to the
critical temperature which in BCS theory is 2∆0/kBTc = 4.2. In Eliashberg theory the gap
depends on frequency. In this case an unambiguous definition of what is meant by ∆0 is to
use the position in energy of the peak in the quasiparticle density of states which is how the
gap ∆0 is usually defined experimentally for a d-wave superconductor. We get a theoretical
value of 2∆0/kBTc � 5.1 in good agreement with experiment, as shown in table I.

The analysis presented above argues for the prominence of the spin resonance in the charge
dynamics and thermodynamics of Y123 (and Bi2212) [24]. Results from other experimental
techniques which also probe the charge related properties of the high-Tc superconductors have
also been described in terms of coupling to a collective mode. ARPES results in Bi2212 [25,26]
as well as certain features of tunneling spectra [27] are examples.

The analysis of optical data gives the charge carrier-spin excitation spectral density I2χ(ω)
which determines the superconducting properties of the system within a generalized d-wave
Eliashberg formalism. I2χ(ω) depends significantly on T because of feedback effects expected
in theories of electronic mechanisms [28]. We obtained agreement with experiment for the
T -dependence of the London penetration depth, of the peak in the microwave conductivity,
and of the spectral weight under the 41 meV spin resonance. The size of the zero-temperature
condensation energy is also understood as is the observed value of the fractional oscillator
strength in the condensate and the ratio of gap-to-critical temperature.
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