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Differential sum rule for the relaxation rate in dirty superconductors
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We consider the differential sum rule for the effective scattering rat@w)/and optical conductivityr; ()
in a dirty BCS superconductor, for arbitrary ratio of the superconductingdgapd the normal state constant
damping rate . We show that ifr is independent oT, the area under #(w) does not change between the
normal and the superconducting states, i.e., there exists an exact differential sum rule for the scattering rate.
Foranyvalue of the dimensionless parameter, the sum rule is exhausted at frequencies controlled bye
show that in the dirty limit the convergence of the differential sum rule for the scattering rate is much faster
then the convergence of tHesum rule, but slower then the convergence of the differential sum rule for
conductivity.
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Optical constants of solids follow a variety of sum rutes. \where o(w)z(wﬁ,mw)/(l/r—iw), ie., 7(w)=7, and
The origins of the sum rules can be traced back to fundame “dwr Y(w) is infinite. This implies that there is no sum

_ . . Sule for 1/7(w) that could be traced to a conservation law.
causality of the electromagnetic response leading t

. . . . .However, one still can argue that the frequency integral of
Kramers-Kronig relationships between the real and imagi; : . .
X ) the scattering rate has some physical meaning. Basal:
nary parts of the optical constants. The analysis of the sum

rules is a powerful tool to study the distribution of the Spec_argued, In connection W'th the (_:uprates,_ that for experimen-
tral weight in correlated electron systems. tally r_elevant freguenues Hw) is numerically cllose to an
The dynamics of conducting carriers is usually describecffective scattering rate g (defined belowthat is related

in terms of the effective scattering rater() and the effec- to the dielectri(? fur.mtio'n and obeys a physically motivated
tive massm* (w)? sum rule. In this situation, one can argue that there should
exist an approximate sum rule if the frequency integral over
) . ) 1/7(w) is taken in finite limits. This approach was thor-
Tl(w):%R%L m*_ opl 1) oughly analyzed by Marsigliet al?
47 | o(w) ' In this paper, we analyze whether there existseaact
sum rule for the full frequency integral of the difference
where o(w) = 01(w) +ioy(w) is the complex optical con- between 1#(w) at two different temperatures in the normal
ductivity, wy=4mne’/my, is the plasma frequency, anth is  state, and, what is actually more relevant, betweefidy in
the band mas$Under special circumstancés.g., when the  the normal and superconducting states. For a Drude metal,
Eliashberg theory is validthe spectra of I{w) andm* can  the frequency integral over the difference of(k) at dif-
be linked to the real and imaginary parts of the electronic selferentT in the normal state is either infinite or vanishes de-
energy. pending on whether or not 4/depends o. We argue that
The conductivity, that characterizes the absorbing powegero and infinity are the only two options for the differential
of a solid, obeys thd-sum rule [gdwo(w)=w}/8. This  integral in any model, and that if(w) is T independent, the
sum rule reflects the conservation of the number of particleglifferential sum rule for the relaxation rate éxactbetween
and physically implies that at a given particle density, thethe normal state and a BCS superconductor.
total absorbing power does not depend on the details of the We also analyze what controls the rate of convergence of
interactions, and is determined only by the total number othe sum rules for conductivity andA/This issue is relevant
particles in the systerhlt is particularly relevant for a su- for experimental applications as when sum rules are applied
perconductor where the conductivity acquires-tunctional  to the analysis of the experimental data, one always encoun-
piece proportional to the superfluid density, and the sum ters a problem that actual data is available over limited fre-
rule transforms intofﬁodwol(w)=w§|/8(1—ns/n). As  quency intervals. It is therefore imperative to know rapidly
ng/n can be measured independently, the sum rule is a vallsum rules converge to estimate the accuracy of the
able tool to study the transformation of the spectral weighexperiment-based sum rule analysis.
associated with the superconductivity. The analysis in the clean limih 7>1, whereA is the
The issue raised in series of recent wdrlss whether  superconducting gap, and is independent o was per-
there exists any similar sum rule for the relaxation rate. Atformed earlier, as a by-product of the modeling for the
the first glance, the answer is negative as the integral overuprates. In this limitA is the largest energy scale in the
1/7(w) diverges and hence has no physical meaning. Thiproblem, and the differential sum rule between the normal
can be readily illustrated with a simple Drude modelstate and a BCS superconductor is exact and is exhausted at

,mb_ 47 w

og(w)
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frequencies of ordeA. Here we consider arbitrark7. We  trolled by A, however, a rather slow convergence found in
show that even in the dirty limiA 7<1, the differential sum Ref. 6 is real and is due to a weak @)W’ decay of
rule is exact and is furthermore still exhausted at frequencie$/7s{ @) at Iarg_e frequencies. o
of orderA. This result is not intuitively obvious as the con-  We begin with the general argument that zero and infinity
ductivity sum rule in the dirty limit is exhausted only at ~ are the only two options fof dw/7(w). This conjecture
~1/7>A. We also found that the functional form of can be verified by applying the Kubo formula that relates
1/re{w) only weakly depends onr at w>2A. Here and o(w) with the full retarded current-current correlator
below we use subscripts “sc” andn” for superconducting  11(): o(w)=(wj/4m)(w)/(~iw+5). Substituting this
and normal states, respective|y relation into 1#((1)) we find that 1+(w) =Im S(w)/w where
The fact that the differential sum rule forrlis exhausted ~S(@) =~ @*/II(w). Both ImII(w) andS(w) are odd func-
at w=A in the dirty limit may be relevant for the interpreta- tions of frequency. Sincél(w) is analytic in the upper half-
tion of the data from some high; materials. The frequency Plane of complex» and does not have zerdgghat can be
below which fermionic excitations become incoherent maychecked explicitly, see belawS(«) is also an analytic func-
arise from the energy scale~1/r. The convergence of the tion in the upper half-plane. The analyticity implies that, by
: . : Kramers-Kronig relations
differential sum rule aD(A) and the near independence of
7sd @) on A7 implies that as long as the system possesses a
. . . . S *S(w) T
sharp superconducting gap the differential sum rule ferd/ f =| —~dw==ReS(0)+C, 2)
not affected by the increased fermionic incoherence. Indeed o7(@) Jo o 2

in high-T. superconductors, 4/is temperature dependent. whereC=0 if the integral converges, ar@= if it does

The issue of whether or not the differential sum rule is exachor It is easy to show that F&0) vanishes both in the
between the normal and superconducting states could thgfhma| and in the superconducting state. In the normal state,
only be experimentally addressed if measurements could bﬁel‘[(w)ocwz ImI1(w)>o at the lowest frequencies, hence
done in both states at the sameThis is obviously impos- S(w)*xw? and S(0)=0. In the superconducting state

sible. What can be clearly observed, at least in YBCO, is th?zeH(O) is finite, while ImI1(0)=0, henceS(w) again
redistribution of the spectral weight between the normal and ., es a2, and :;lgairS(O):O. Henc’efdw/r(w)zc ie.
superconducting states. If this redistribution is over scales ot s aither ,zero or infinite. For nondifferential sum,ru@,
O(A) then the frequency integral can be restricted to a few_ , oo 4t large frequenciéﬂ(w) tends to 1 hencs(w)’
timesA. The approximate sum rule can then be analyzed i%wz’ and the integral in Eq2) diverges. This confirms that
the hope that thd dependence of the relaxation rate is @there is No physically motivated sum rule forrb).

minor effect compared to the huge change i) which There are two ways to improve the situation. First, one
takes place between the normal and superconducting stateSi, introduce an effectivé

! i . : . () that converges at high fre-
Note in this regard thﬁt smcia ﬂ/|s fe>;]pres.?fed wglboth quencies and is close ®(w) at experimentally relevant fre-
Res(w) and Imo(w), the analysis of the differential sum ¢, ancies. Then one can hope to obtain an experimentally
rule for 1/r, even though it is only approximate, still yields

i X h | weiaht distribution meaningful approximate sum rule. For the scattering rate, the
information abputy e spegtra weig tdlstrlputlon in & SUPery51,ra) choice, suggested by Baghal,? is to introduce an
conductor, which is complimentary to the information from

> effective scattering rate
the f-sum rule that involves only Re(w)

The issue whether or not Atifferential sum rule is sat- 1 2 1
isfied in dirty BCS superconductors was a subject of recent = = —pllm{l— — (3)
controversy. Basoet al2 argued that in both clean and dirty Teff © €(w)

limits, 1/7s{w) vanish below A, but overshoots the normal \here () =1+ 4ri o(w)/w is the dielectric function. For
state 1f at Iarger frequencies. In that paper, 'Fhe. proﬂle.ofthiS scattering rate Sy w)=1— /[ w+4mio(w)] is an
1/7s{ w) was visually related to that of the fermionic density analytic function, and at high frequencies it vanishes as

of states,_for which the sum rule is exact and r%flects th%eﬁ(w)=0(1/w2). The Kramers-Kronig relations are then
conservation of the number of particles. Honetsal’ cor- applicable, and

rectly observed that the relaxation rate and conductivity are
expressed via a current-current correlator, and therefore scale

» 2
with the joint density of states of two fermions about which, f do _ Tl %1_ 1 N | (4)
they conjectured, no rigorous statements can be made. They 0 Te(®) 2 ew) o, 2°°
computed the frequency integral of7ld{ ) — 1/7,(w) nu-
merically for a BCS superconductor,(w)=7 with 7A For a Drude metal,
=1/2 and found that even ab as high as 14, it is still .
about 25% of its maximum value ab=2A. They con- 1 1 wp 5
cluded, based on this numeric, that the value of sum rule Te(®) T (wz—w§|)2+w2/7-2'

integral depends on the choice for cutoff frequency, and that

if the integral is truncated ab=0(A), a finite value is At frequenciesw<wp, the correction term in the denomi-
expected. Below we demonstrate explicitly that the differen-nator can be neglected, andrdf{w)~1/r. As the plasma
tial sum rule is in fact exhausted at the energy scale confrequency can well be larger than the fermionic bandwidth,
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the actual integration of experimentally measured(ad) integrand in Eq(8) in A/w. The expansion can be straight-
may not extend tow~wy, i.e., in the measured range forwardly carried out for arbitranA 7, and the result is that
1l/7¢(w) and 1k (w) are nearly the same. Still, however, this at high frequencies

does not imply that there is an “approximate” sum rule for

1/ as [do/7(w) and [dw/Te4(w) both diverge when the 5 ©
integration is restricted to <w,. Only when the frequency 1 2A an
integration extends te>wy,, [odX/ 7e(X) converges to the Rellg{ w)=Rell,(w)| 1— 5 5 ,

sum rule value. In other words, typical frequencies for I+(e0n® o

Jolrer(w) are of orderwy,, and at these frequenciesr1/

and lf.4 are very different. 2A2In2

As we pointed out above, in this paper we use another (w7)?—1 A
approach and analyze the difference betweetfdd in the ImIlsdw)=ImIl(w)| 1+ 1 o ) (€)
normal and superconducting states. The leading divergent T @
term in S(w)~ w? at high frequencies is the same for both where Rl (w)=(wn)?/[1+(w7)?], ImII, ()
states. It therefore cancels outSg(w) — S,(w). If the sub- =—w7r/[1+(w7)?]. Substituting these results intS(w)

leading terms scale as negative powers of frequency at large w?/T1(w) we find that for largaw>1/7

w, S¢{ w) — S,(w) converges and then the sum rule becomes

exact. We emphasize that contrarySg( ), the difference RE Sed @) —Sp(w)]*w ? IM[Sew)—Sy(w)]xw L.
of Si{w)—S,(w), if converges, begins falling off at fre- (10
guencies that are still much smaller than the fermionic band-

width andw,. In other words, the differential sum rule for We see tha_t both _re_al_ and imaginary parts QfC(_ )
P : ! : —S,(w) vanish at infinite frequency. This implies that
the scattering rate is exact in a continuous model.

We now check whether the differential sum rule for i K_ramers;Kromg tran.sformatlon is e}ppllcable, and hence the
PN o differential sum rule is exact for a dirty BCS superconductor.
satisfied in a BCS superconduciave argue that it is exart

) : . . We now address the issue of the energy scale over which
and also examine the energy scale at which this sum rule i : : L
: e sum rule is exhausted. We consider clean and dirty limits
exhausted. In order to explore the issue of convergence we

: . . Separately. In the clean limit, the frequency integral in Eq.
will analyze the differential frequency sums for bothr(kb) (8)pwas e)\//aluated in Ref. 5. To first (;erer i?/m# wge have q
and o,(w) defined as T

for >2A
N -1 -1 1 4A?
| (w)= fo dQ[ 7 () =7, 7], (6) Rellow)~1, IMIle{w)~— —E( 1- —)
TW w2
(11)
N _ where E(x)zfg’zdgb\/l—xzsiﬁzd) is the complete Elliptic
(@) fo 0oy sf Q)= o1a(D)], @ integral of the second kin¢hote that definitions oE differ

in different handbooKs In the two limits E(0)=#/2 and

where 7,=7 and, as we pointed out above, the notationsE(1)=1. The result for Réls{w)~1 is valid outside a tiny

“sc” and “n” refer to superconducting and normal states, O(1/A7) range near & where Rdls{w) diverges logarith-

respectively. mically. Substitutinglls{ ) from Eq.(11) into 1l/7sd w) we
The expression for the current-current polarization operaobtain forw>2A

tor in a dirty BCS superconductor has the form

11 . 472 L ep 11
. ] o) 7| V) T g )
I w =f dQ 12
sd) 0 (VOZ-A2+0% —A%+ilT) 12
and 1f(w)=oc(w)=0 for «<2A. We plot these functions
VO2 —AZJ02 —A2—A2-Q ., O in Fig. 1. For the differential sum rule we then obtain for

VOL-A%J0% ~A?
. ) w3l T
where(). =Q* /2. In the normal state, this reducesto a | (g)=——, | ()= P= oA 7cot Lor— —
conventional Drude fornbl ,(w) = w/(w+i/7). In the super- ! TS 4m2AT 8
conducting state, one can show quite generally théi (m) (13
vanishes below &. At high frequencies]I(w) gradually  and forw>2A
approachedl(»)=1.
We first verify whetherSg{w)—S,(w) vanishes atw SA fol2A

=00, As typical internal frequencies in E@8) are of the | (w)=— dx
same order as external, at «>A, one can expand the T Jo

2

-1+ ReE( 1- %) 1 (14)
X
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Comparing Egs(16) and (17), we see thal ,(w) has an
L5 o extra (2A/w)? that accounts for much faster convergence of
i i | ,(w) than ofl (w).
We next proceed to the dirty limih7<1. As we said in
L= & the introduction, the key issue here is whether the sum rule is
- 1 still exhausted at frequenci€3(A), or one needs to extend
osk the integration to frequencies of orderrlivhere thef-sum
rule for the conductivity is exhausted. At the first glance, in
i 1 the dirty limit, the frequency integration has to be extended
0 to larger frequencies than in the clean limit, as one can easily
1~ max = show that atA 7<<1, the jump of 1#,{ w) at 2A is small, of
- . IT(O))/HT | - order A7, and therefore ¥, {w) in a superconductor does
0.5 1 (w)/l max. not overshoot the normal staterlimmediately above 2.
i c c - However, as we now demonstrate, typical frequencies for the
ob-F. . e differential sum rule still scale witl.
K ] The first indication that the physics is still confined to
05 e - o frequenciesO(A) comes from the analysis of the form of
1,/ O2A - 17 w) at o~ 7 >A. Using Eqs.(9) for II(w) and sub-
1 \ | , ; stituting them into 1#,{w), we obtain
0 5 10 15
FIG. 1. (Color onling (a) The frequency dependence of the 1 1 2;“ nz_“’ 1+ (wn)* (18)
relaxation rater/ 7s{w) and the conductivityo(w) in the clean Tsd ®) T w2 A (1+w7-)4 '
limit. (b) The behavior ofl (w) and | (w) normalized to their
maximum values. We see that at frequencies comparable tg Ur{w) ex-
ceeds 14, i.e., the overshoot occurs at a lower frequency.
2 2 Further, integrating ¥,{ ) from O(1/7) to infinity we find
wgl [2A 7

lo(w :4772AT

- 4 fl dxE( m)} that the contribution td .(w) from these frequencies is of
w 8 lo orderA?|In(A7)|. Meanwhile, the loss of in the supercon-
(15 ducting state between 0 anc2s 2A/ 7 that in the dirty limit
is much larger tharh?|In(A7)|. This implies that even in the
We explicitly verified that ,() =0, i.e., the differential sum dirty limit the dominant contribution to the sum rule comes
rule is indeed satisfied. from frequencies well below %/ At these frequencies, the
We also see from Ed14) that at finitew, |, (w) depends current-current polarization operator can be evaluated ex-
only on w/A. This implies that in the clean limit, the differ- actly to leading order im\ 7 as one can pull ¥/ out of de-
ential sum rule is exhausted at frequencf). Animpor-  nominator of the integral in the right-hand side of E8§).
tant issue, however, is how rapidlyw) converges to zero at The remaining integral is evaluated easily, and from substi-
w>A. In Fig. 1(b) we plotl (w) andl,(w) evaluated nu- tuting the result into () we obtain forw>2A
merically from Eq.(14) and normalized to their values at the

maximum atw=2A. We see that () conver|ges rr|1uch 1 1 ® e{ 1( © )

more slowly thar ,(w). In particular, atw=15A, || (w)| is =— REE | ——| |,

still about 25% of its maximum value in accord with Ref. 6. Tsdw) 7 \Jw?-4A Vo©—4A

On the contraryl () is vanishingly small ato=15A. This

result fully agrees with Ref. 6. For the same | ,(w) prac- w2 AA2 w

tically vanishes. o(w)= o 1-— R% E —) , (19
A weaker convergence df(w) can be understood ana- 4w w? w?—4A%

lytically. Indeed, at high frequencies, the elliptic function can
be expanded in &?. This yields 1f(w)=(1/7)(1
+2(Alw)?[In(2w/A)—0.5]. Integrating this expression over
frequency, we obtain that ai>A

and lf{(w)=01(w)=0 for ©<2A. We plot these func-
tions in Fig. 2. The behavior of z{{w) near 2A and at high
frequencies can be well understood analytically. NeAr, 2
expandingE(x) for large value of the argument, we imme-
diately obtain that X {w) evolves continuousljup to cor-
A rectionsO(A7)], and very near 2 behaves as tl{w)
l(w)=———[12+In(2w/A)]. 18 _(1/9)[w?—4A?]/w?. Stil, it overshoots I at o~ 2.68)
and develops a maximum at=3.48\. At larger frequen-
The conductivity integral meanwhile converges to zero as C'€S 1#34‘”) approaches ¥/ as lhg(w)=(1/7)[1
+2(A/w)“In(2w/A)], i.e., exactly the same way as in the
clean limit. Analyzing the frequency integrals in(w) and
‘”rZJI 1 [2A)° /64| / | .(w) we immediately make sure that they convergeawat
(@)=~ oA, | o | LHETINGelA)] (A7) comparable to A.
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15 ' T ' T ! Comparing further the behavior ¢f(w) andl (w) in

\ clean and dirty limit§Figs. 1b) and 2Zb)], we observe that
' ~ | (w) does not change much between the two limits, while
1 ,.., .......... bl A I .(w) has a different sign at intermediate frequencies in the
two limits. Indeed, in the clean limlt,(w) changes sign and
- 1 becomes negative ab=16A/7?<2A, while in the dirty
o5k - limit |,(w) remains positive at intermediate frequencies
— = l/1(w) 2A<w<1/r. In particular, we found that ab=2A, | ()
changes sign af\ 7~1.52 (it becomes positive at smaller
0 . ' ' ' ' A7). Still, one can easily make sure that at the highest
>1/r, | ,(w) is negative forarbitrary Ar, i.e., in the dirty
- limit, | ,(w) should change sign and become negative above
somew~ vy (not shown in Fig. 2 To verify where this hap-

max pens we computed analytically(w) at w~1/7. The evalu-

— 'IG(CO)/“G | T ation of I ,(w) in this range is tedious but straightforward.

max i i i i
N Ir((’))/“r | We obtained with logarithmical accuracy

2
. en2A ()= %(Ar)zun A7lZ(wr), (22
0 5 10 15

FIG. 2. (Color onlind Same as in Fig. 1 but in the dirty limit Where
A7r<1. The conductivityo(w) decreases at frequencies compa-
rable to 1f (not shown. 2 2%%2+1
Z(x)=[cot }(x)+3 tan }(1/x)]— = .
X x2+1

For the differential expressions(w) andl (), we ob-

tain after simple manipulations Evaluating Z(x) numerically we find that it does indeed

change sign aiv7~0.66, and is negative for larger. This

2 . . . .
o _ implies that at the highest frequencids(w) approaches
l{w)==—, l(0)=—5mA7 1= 729A (20 ero from below.
Finally, is also instructive to verify explicitly that the dif-
for w<2A, and ferential sum rule for I/ is satisfied. Integrating in Eq21)
over all frequencies by parts usindE(k)/dk=[E(k)
2A [wl2A % —K(k)]/k? (Ref. 7), whereK(k) is the elliptic integral of
| (w)=— dx —1+ ———=ReE | ——]| |, the first kind, we can rewrité () as
T Jo x—1 -1
2 | () 2AI i ZK(Z)d (29
_ “nl 4o TOO:_Tmfo E2(z) -
| ()= 3 7AT 1 2 7A

We could not evaluate this integral analytically, but numeri-
X H cal integration yields () =0 with a very high accuracy.

4 (wl2A 1
+—2f dx 1——2ReE
moJ1 X

for 2A<w<1/7.
In Fig. 2(b) we plot these functions and compare the rate

=1 To conclude, in this paper we analyzed the differential
sum rule for the scattering rate and optical conductivity in a
(21)  dirty BCS superconductor. We demonstrated that this sum
rule is exact if the normal stateis independent on tempera-
ture. For arbitraryA 7, the sum rule is exhausted at frequen-
) R Zies controlled by, but the convergence is rather weak due
of convergence of () andl,(w) in the dirty limit. We see 1, oqarithmical terms. We showed that in the dirty limit the
that, as in the clean limit,,(w) converges better. We ana- .,nyergence of the differential sum rule for the scattering
lyzed the high frequency parts analytically and found that g6 js much faster then the convergence offtsem rule for
better convergence df,(w) in the dirty limit is due to the he conductivity, but slower than for the differential sum rule

presence of the extra logarithmical term in the high fre~to, congyctivity. The latter has the fastest convergence in
quency expansion of (w). We also see that the rate of i clean and dirty limits.

convergence is almost the same in both clean and dirty lim-

its. We recall that this result is not obvious as in the dirty We acknowledge useful discussions with G. Blumberg, C.
limit, 1/7;{ w) ando(w) gradually increases above aA2  Homes, D. van der Marel, F. Marsiglio, M. Strongin, and J.
while in the clean limit, they both jump at®2and immedi-  Tu. The research was supported by NSF DMRCh.), NSF
ately overshoot the normal state values of ahd o;, re- and U.S. DOE(D.N.B), and by DR Project No. 200153 at
spectively. Los Alamos National LaboratorAr. A.).
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