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Differential sum rule for the relaxation rate in dirty superconductors
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We consider the differential sum rule for the effective scattering rate 1/t(v) and optical conductivitys1(v)
in a dirty BCS superconductor, for arbitrary ratio of the superconducting gapD and the normal state constant
damping rate 1/t. We show that ift is independent ofT, the area under 1/t(v) does not change between the
normal and the superconducting states, i.e., there exists an exact differential sum rule for the scattering rate.
Foranyvalue of the dimensionless parameterDt, the sum rule is exhausted at frequencies controlled byD. We
show that in the dirty limit the convergence of the differential sum rule for the scattering rate is much faster
then the convergence of thef-sum rule, but slower then the convergence of the differential sum rule for
conductivity.
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Optical constants of solids follow a variety of sum rule1

The origins of the sum rules can be traced back to fundam
tal conservation laws and are intimately connected to
causality of the electromagnetic response leading
Kramers-Kronig relationships between the real and ima
nary parts of the optical constants. The analysis of the s
rules is a powerful tool to study the distribution of the spe
tral weight in correlated electron systems.

The dynamics of conducting carriers is usually describ
in terms of the effective scattering rate 1/t(v) and the effec-
tive massm* (v)2

t21~v!5
vpl

2

4p
ReF 1

s~v!G , m*

mb
52

vpl
2

4p

1

v
ImF 1

s~v!G , ~1!

where s(v)5s1(v)1 is2(v) is the complex optical con
ductivity, vpl

2 54pne2/mb is the plasma frequency, andmb is
the band mass.2 Under special circumstances~e.g., when the
Eliashberg theory is valid!, the spectra of 1/t(v) andm* can
be linked to the real and imaginary parts of the electronic
energy.

The conductivity, that characterizes the absorbing po
of a solid, obeys thef-sum rule*0

`dvs1(v)5vpl
2 /8. This

sum rule reflects the conservation of the number of partic
and physically implies that at a given particle density, t
total absorbing power does not depend on the details of
interactions, and is determined only by the total number
particles in the system.1 It is particularly relevant for a su
perconductor where the conductivity acquires ad-functional
piece proportional to the superfluid densityns , and the sum
rule transforms into*10

` dvs1(v)5vpl
2 /8(12ns /n). As

ns /n can be measured independently, the sum rule is a v
able tool to study the transformation of the spectral wei
associated with the superconductivity.

The issue raised in series of recent works3–6 is whether
there exists any similar sum rule for the relaxation rate.
the first glance, the answer is negative as the integral o
1/t(v) diverges and hence has no physical meaning. T
can be readily illustrated with a simple Drude mod
0163-1829/2003/68~2!/024504~6!/$20.00 68 0245
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where s(v)5(vpl
2 /4p)/(1/t2 iv), i.e., t(v)5t, and

*0
`dvt21(v) is infinite. This implies that there is no sum

rule for 1/t(v) that could be traced to a conservation la
However, one still can argue that the frequency integral
the scattering rate has some physical meaning. Basovet al.3

argued, in connection with the cuprates, that for experim
tally relevant frequencies 1/t(v) is numerically close to an
effective scattering rate 1/tSR ~defined below! that is related
to the dielectric function and obeys a physically motivat
sum rule. In this situation, one can argue that there sho
exist an approximate sum rule if the frequency integral o
1/t(v) is taken in finite limits. This approach was tho
oughly analyzed by Marsiglioet al.4

In this paper, we analyze whether there exists anexact
sum rule for the full frequency integral of the differenc
between 1/t(v) at two different temperatures in the norm
state, and, what is actually more relevant, between 1/t(v) in
the normal and superconducting states. For a Drude m
the frequency integral over the difference of 1/t(v) at dif-
ferentT in the normal state is either infinite or vanishes d
pending on whether or not 1/t depends onT. We argue that
zero and infinity are the only two options for the differenti
integral in any model, and that ift(v) is T independent, the
differential sum rule for the relaxation rate isexactbetween
the normal state and a BCS superconductor.

We also analyze what controls the rate of convergence
the sum rules for conductivity and 1/t. This issue is relevan
for experimental applications as when sum rules are app
to the analysis of the experimental data, one always enco
ters a problem that actual data is available over limited f
quency intervals. It is therefore imperative to know rapid
sum rules converge to estimate the accuracy of
experiment-based sum rule analysis.

The analysis in the clean limitDt@1, whereD is the
superconducting gap, andt is independent onT was per-
formed earlier,5 as a by-product of the modeling for th
cuprates. In this limit,D is the largest energy scale in th
problem, and the differential sum rule between the norm
state and a BCS superconductor is exact and is exhaust
©2003 The American Physical Society04-1
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frequencies of orderD. Here we consider arbitraryDt. We
show that even in the dirty limitDt!1, the differential sum
rule is exact and is furthermore still exhausted at frequen
of orderD. This result is not intuitively obvious as the con
ductivity sum rule in the dirty limit is exhausted only atv
;1/t@D. We also found that the functional form o
1/tsc(v) only weakly depends onDt at v.2D. Here and
below we use subscripts ‘‘sc’’ and ‘‘n’’ for superconducting
and normal states, respectively

The fact that the differential sum rule for 1/t is exhausted
at v}D in the dirty limit may be relevant for the interpreta
tion of the data from some high-Tc materials. The frequency
below which fermionic excitations become incoherent m
arise from the energy scalev;1/t. The convergence of the
differential sum rule atO(D) and the near independence
tsc(v) on Dt implies that as long as the system possess
sharp superconducting gap the differential sum rule for 1/t is
not affected by the increased fermionic incoherence. Ind
in high-Tc superconductors, 1/t is temperature dependen
The issue of whether or not the differential sum rule is ex
between the normal and superconducting states could
only be experimentally addressed if measurements coul
done in both states at the sameT. This is obviously impos-
sible. What can be clearly observed, at least in YBCO, is
redistribution of the spectral weight between the normal a
superconducting states. If this redistribution is over scale
O(D) then the frequency integral can be restricted to a f
timesD. The approximate sum rule can then be analyzed
the hope that theT dependence of the relaxation rate is
minor effect compared to the huge change in 1t(v) which
takes place between the normal and superconducting st
Note in this regard that since 1/t is expressed via both
Res(v) and Ims(v), the analysis of the differential sum
rule for 1/t, even though it is only approximate, still yield
information about the spectral weight distribution in a sup
conductor, which is complimentary to the information fro
the f-sum rule that involves only Res(v)

The issue whether or not 1/t differential sum rule is sat-
isfied in dirty BCS superconductors was a subject of rec
controversy. Basovet al.3 argued that in both clean and dirt
limits, 1/tsc(v) vanish below 2D, but overshoots the norma
state 1/t at larger frequencies. In that paper, the profile
1/tsc(v) was visually related to that of the fermionic dens
of states, for which the sum rule is exact and reflects
conservation of the number of particles. Homeset al.6 cor-
rectly observed that the relaxation rate and conductivity
expressed via a current-current correlator, and therefore s
with the joint density of states of two fermions about whic
they conjectured, no rigorous statements can be made. T
computed the frequency integral of 1/tsc(v)21/tn(v) nu-
merically for a BCS superconductortn(v)5t with tD
51/2 and found that even atv as high as 15D, it is still
about 25% of its maximum value atv52D. They con-
cluded, based on this numeric, that the value of sum
integral depends on the choice for cutoff frequency, and
if the integral is truncated atv5O(D), a finite value is
expected. Below we demonstrate explicitly that the differe
tial sum rule is in fact exhausted at the energy scale c
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trolled by D, however, a rather slow convergence found
Ref. 6 is real and is due to a weak (lnv)/v2 decay of
1/tsc(v) at large frequencies.

We begin with the general argument that zero and infin
are the only two options for*0

`dv/t(v). This conjecture
can be verified by applying the Kubo formula that relat
s(v) with the full retarded current-current correlato
P(v): s(v)5(vpl

2 /4p)P(v)/(2 iv1d). Substituting this
relation into 1/t(v) we find that 1/t(v)5Im S(v)/v where
S(v)52v2/P(v). Both ImP(v) andS(v) are odd func-
tions of frequency. SinceP(v) is analytic in the upper half-
plane of complexv and does not have zeros~that can be
checked explicitly, see below!, S(v) is also an analytic func-
tion in the upper half-plane. The analyticity implies that,
Kramers-Kronig relations

E
0

` 1

t~v!
5E

0

`S~v!

v
dv5

p

2
ReS~0!1C, ~2!

whereC50 if the integral converges, andC5` if it does
not. It is easy to show that ReS(0) vanishes both in the
normal and in the superconducting state. In the normal st
ReP(v)}v2, Im P(v)}v at the lowest frequencies, henc
S(v)}v2 and S(0)50. In the superconducting stat
ReP(0) is finite, while ImP(0)50, henceS(v) again
scales asv2, and againS(0)50. Hence*dv/t(v)5C, i.e.,
it is either zero or infinite. For nondifferential sum rule,C
5` as at large frequencies,P(v) tends to 1, henceS(v)
'v2, and the integral in Eq.~2! diverges. This confirms tha
there is no physically motivated sum rule for 1/t(v).

There are two ways to improve the situation. First, o
can introduce an effectiveSeff(v) that converges at high fre
quencies and is close toS(v) at experimentally relevant fre
quencies. Then one can hope to obtain an experimen
meaningful approximate sum rule. For the scattering rate,
natural choice, suggested by Basovet al.,3 is to introduce an
effective scattering rate

1

teff
5

vpl
2

v
ImF12

1

e~v!G , ~3!

wheree(v)5114p is(v)/v is the dielectric function. For
this scattering rate,Seff(v)512v/@v14p is(v)# is an
analytic function, and at high frequencies it vanishes
Seff(v)5O(1/v2). The Kramers-Kronig relations are the
applicable, and

E
0

` dv

teff~v!
5

pvpl
2

2
ReF12

1

e~v!G
v50

5
p

2
vpl

2 . ~4!

For a Drude metal,

1

teff~v!
5

1

t

vpl
4

~v22vpl
2 !21v2/t2

. ~5!

At frequenciesv!vpl , the correction term in the denom
nator can be neglected, and 1/teff(v)'1/t. As the plasma
frequency can well be larger than the fermionic bandwid
4-2
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DIFFERENTIAL SUM RULE FOR THE RELAXATION . . . PHYSICAL REVIEW B68, 024504 ~2003!
the actual integration of experimentally measured 1/t(v)
may not extend tov;vpl , i.e., in the measured rang
1/teff(v) and 1/t(v) are nearly the same. Still, however, th
does not imply that there is an ‘‘approximate’’ sum rule f
1/t as *dv/t(v) and *dv/teff(v) both diverge when the
integration is restricted tov!vpl . Only when the frequency
integration extends tov.vpl , *0

vdx/teff(x) converges to the
sum rule value. In other words, typical frequencies
*0

`1/teff(v) are of ordervpl , and at these frequencies 1t
and 1/teff are very different.

As we pointed out above, in this paper we use anot
approach and analyze the difference between 1/t(v) in the
normal and superconducting states. The leading diverg
term in S(v);v2 at high frequencies is the same for bo
states. It therefore cancels out inSsc(v)2Sn(v). If the sub-
leading terms scale as negative powers of frequency at l
v, Ssc(v)2Sn(v) converges and then the sum rule becom
exact. We emphasize that contrary toSeff(v), the difference
of Ssc(v)2Sn(v), if converges, begins falling off at fre
quencies that are still much smaller than the fermionic ba
width andvpl . In other words, the differential sum rule fo
the scattering rate is exact in a continuous model.

We now check whether the differential sum rule for 1/t is
satisfied in a BCS superconductor~we argue that it is exact!
and also examine the energy scale at which this sum ru
exhausted. In order to explore the issue of convergence
will analyze the differential frequency sums for both 1/t(v)
ands1(v) defined as

I t~v!5E
0

v

dV@tsc
21~V!2tn

21#, ~6!

I s~v!5E
0

v

dV@s1,sc~V!2s1,n~V!#, ~7!

where tn5t and, as we pointed out above, the notatio
‘‘sc’’ and ‘‘ n’’ refer to superconducting and normal state
respectively.

The expression for the current-current polarization ope
tor in a dirty BCS superconductor has the form

Psc~v!5E
0

`

dV
1

~AV1
2 2D21AV2

2 2D21 i /t!

3
AV1

2 2D2AV2
2 2D22D22V1V2

AV1
2 2D2AV2

2 2D2
, ~8!

whereV65V6v/2. In the normal state, this reduces to
conventional Drude formPn(v)5v/(v1 i /t). In the super-
conducting state, one can show quite generally that ImP(v)
vanishes below 2D. At high frequencies,P(v) gradually
approachesP(`)51.

We first verify whetherSsc(v)2Sn(v) vanishes atv
5`. As typical internal frequencies in Eq.~8! are of the
same order as externalv, at v@D, one can expand the
02450
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integrand in Eq.~8! in D/v. The expansion can be straigh
forwardly carried out for arbitraryDt, and the result is tha
at high frequencies

RePsc~v!5RePn~v!S 12
1

11~vt!2

2D2ln
v

D

v2
D ,

Im Psc~v!5Im Pn~v!S 11
~vt!221

~vt!211

2D2ln
v

D

v2
D , ~9!

where RePn(v)5(vt)2/@11(vt)2#, Im Pn(v)
52vt/@11(vt)2#. Substituting these results intoS(v)
5v2/P(v) we find that for largev@1/t

Re@Ssc~v!2Sn~v!#}v22 Im@Ssc~v!2Sn~v!#}v21.
~10!

We see that both real and imaginary parts ofSsc(v)
2Sn(v) vanish at infinite frequency. This implies tha
Kramers-Kronig transformation is applicable, and hence
differential sum rule is exact for a dirty BCS superconduct

We now address the issue of the energy scale over w
the sum rule is exhausted. We consider clean and dirty lim
separately. In the clean limit, the frequency integral in E
~8! was evaluated in Ref. 5. To first order in 1/Dt we have
for v.2D

RePsc~v!'1, ImPsc~v!'2
1

tv
ESA12

4D2

v2 D ,

~11!

where E(x)5*0
p/2dfA12x2sin2f is the complete Elliptic

integral of the second kind~note that definitions ofE differ
in different handbooks!. In the two limits E(0)5p/2 and
E(1)51. The result for RePsc(v)'1 is valid outside a tiny
O(1/Dt) range near 2D where RePsc(v) diverges logarith-
mically. SubstitutingPsc(v) from Eq. ~11! into 1/tsc(v) we
obtain forv.2D

1

tsc~v!
5

1

t
ESA12

4D2

v2 D , s1~v!5
vpl

2

4p

1

v2

1

tsc~v!

~12!

and 1/t(v)5s(v)50 for v,2D. We plot these functions
in Fig. 1. For the differential sum rule we then obtain f
v,2D

I t~v!52
v

t
, I s~v!5

vpl
2 1

4p2Dt F2Dt cot21vt2
p2

8 G
~13!

and forv.2D

I t~v!5
2D

t E
0

v/2D

dxF211ReESA12
1

x2D G , ~14!
4-3
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I s~v!5
vpl

2 1

4p2Dt F2D

v
2

p2

8
1E

2D/v

1

dxE~A12x2!G .
~15!

We explicitly verified thatI t(`)50, i.e., the differential sum
rule is indeed satisfied.

We also see from Eq.~14! that at finitev, I t(v) depends
only on v/D. This implies that in the clean limit, the differ
ential sum rule is exhausted at frequenciesO(D). An impor-
tant issue, however, is how rapidlyI (v) converges to zero a
v@D. In Fig. 1~b! we plot I t(v) and I s(v) evaluated nu-
merically from Eq.~14! and normalized to their values at th
maximum atv52D. We see thatI t(v) converges much
more slowly thanI s(v). In particular, atv515D, uI t(v)u is
still about 25% of its maximum value in accord with Ref.
On the contrary,I s(v) is vanishingly small atv515D. This
result fully agrees with Ref. 6. For the samev, I s(v) prac-
tically vanishes.

A weaker convergence ofI t(v) can be understood ana
lytically. Indeed, at high frequencies, the elliptic function c
be expanded in 1/v2. This yields 1/tsc(v)5(1/t)(1
12(D/v)2@ ln(2v/D)20.5#. Integrating this expression ove
frequency, we obtain that atv@D

I t~v!52
2D

t

D

v
@1/21 ln~2v/D!#. ~16!

The conductivity integral meanwhile converges to zero a

I s~v!52
vpl

2

4p

1

12Dt S 2D

v D 3

@1/61 ln~2v/D!#. ~17!

FIG. 1. ~Color online! ~a! The frequency dependence of th
relaxation ratet/tsc(v) and the conductivitys(v) in the clean
limit. ~b! The behavior ofI t(v) and I s(v) normalized to their
maximum values.
02450
Comparing Eqs.~16! and ~17!, we see thatI s(v) has an
extra (2D/v)2 that accounts for much faster convergence
I s(v) than of I t(v).

We next proceed to the dirty limitDt!1. As we said in
the introduction, the key issue here is whether the sum ru
still exhausted at frequenciesO(D), or one needs to exten
the integration to frequencies of order 1/t, where thef-sum
rule for the conductivity is exhausted. At the first glance,
the dirty limit, the frequency integration has to be extend
to larger frequencies than in the clean limit, as one can ea
show that atDt!1, the jump of 1/tsc(v) at 2D is small, of
order Dt, and therefore 1/tsc(v) in a superconductor doe
not overshoot the normal state 1/t immediately above 2D.
However, as we now demonstrate, typical frequencies for
differential sum rule still scale withD.

The first indication that the physics is still confined
frequenciesO(D) comes from the analysis of the form o
1/tsc(v) at v;t21@D. Using Eqs.~9! for P(v) and sub-
stituting them into 1/tsc(v), we obtain

1

tsc~v!
5

1

t S 11
2D2

v2
ln

2v

D

11~vt!4

~11vt!4D . ~18!

We see that at frequencies comparable to 1/t, 1/tsc(v) ex-
ceeds 1/t, i.e., the overshoot occurs at a lower frequen
Further, integrating 1/tsc(v) from O(1/t) to infinity we find
that the contribution toI t(v) from these frequencies is o
orderD2u ln(Dt)u. Meanwhile, the loss ofI t in the supercon-
ducting state between 0 and 2D is 2D/t that in the dirty limit
is much larger thanD2u ln(Dt)u. This implies that even in the
dirty limit the dominant contribution to the sum rule com
from frequencies well below 1/t. At these frequencies, th
current-current polarization operator can be evaluated
actly to leading order inDt as one can pull 1/t out of de-
nominator of the integral in the right-hand side of Eq.~8!.
The remaining integral is evaluated easily, and from sub
tuting the result into 1/tsc(v) we obtain forv.2D

1

tsc~v!
5

1

t

v

Av224D2
ReFE21S v

Av224D2D G ,

s1~v!5
vpl

2

4p
tA12

4D2

v2
ReFES v

Av224D2D G , ~19!

and 1/tsc(v)5s1(v)50 for v,2D. We plot these func-
tions in Fig. 2. The behavior of 1/tsc(v) near 2D and at high
frequencies can be well understood analytically. Near 2D,
expandingE(x) for large value of the argument, we imme
diately obtain that 1/tsc(v) evolves continuously@up to cor-
rections O(Dt)], and very near 2D behaves as 1/tsc(v)
5(1/t)@v224D2#/v2. Still, it overshoots 1/t at v;2.68D
and develops a maximum atv53.48D. At larger frequen-
cies, 1/tsc(v) approaches 1/t as 1/tsc(v)5(1/t)@1
12(D/v)2ln(2v/D)#, i.e., exactly the same way as in th
clean limit. Analyzing the frequency integrals inI t(v) and
I s(v) we immediately make sure that they converge atv
comparable to 2D.
4-4
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For the differential expressionsI t(v) and I s(v), we ob-
tain after simple manipulations

I t~v!52
v

t
, I s~v!5

vpl
2

8
pDtF12

4v

p22D
G ~20!

for v,2D, and

I t~v!5
2D

t E
0

v/2D

dxF211
x

Ax221
ReE21S x

Ax221
D G ,

I s~v!5
vpl

2

8
pDtF12

4

p2

v

2D

1
4

p2E1

v/2D

dxA12
1

x2
ReES x

Ax221
D G

~21!

for 2D,v!1/t.
In Fig. 2~b! we plot these functions and compare the ra

of convergence ofI t(v) andI s(v) in the dirty limit. We see
that, as in the clean limit,I s(v) converges better. We ana
lyzed the high frequency parts analytically and found tha
better convergence ofI s(v) in the dirty limit is due to the
presence of the extra logarithmical term in the high f
quency expansion ofI t(v). We also see that the rate o
convergence is almost the same in both clean and dirty
its. We recall that this result is not obvious as in the di
limit, 1/tsc(v) ands1(v) gradually increases above at 2D,
while in the clean limit, they both jump at 2D and immedi-
ately overshoot the normal state values of 1/t and s1, re-
spectively.

FIG. 2. ~Color online! Same as in Fig. 1 but in the dirty limi
Dt!1. The conductivitys(v) decreases at frequencies comp
rable to 1/t ~not shown!.
02450
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Comparing further the behavior ofI t(v) and I s(v) in
clean and dirty limits@Figs. 1~b! and 2~b!#, we observe that
I t(v) does not change much between the two limits, wh
I s(v) has a different sign at intermediate frequencies in
two limits. Indeed, in the clean limitI s(v) changes sign and
becomes negative atv516D/p2,2D, while in the dirty
limit I s(v) remains positive at intermediate frequenci
2D,v!1/t. In particular, we found that atv52D, I s(v)
changes sign atDt'1.52 ~it becomes positive at smalle
Dt). Still, one can easily make sure that at the highesv
@1/t, I s(v) is negative forarbitrary Dt, i.e., in the dirty
limit, I s(v) should change sign and become negative ab
somev;g ~not shown in Fig. 2!. To verify where this hap-
pens we computed analyticallyI s(v) at v;1/t. The evalu-
ation of I s(v) in this range is tedious but straightforwar
We obtained with logarithmical accuracy

I s~v!5
vpl

2

2p2
~Dt!2u ln DtuZ~vt!, ~22!

where

Z~x!5@cot21~x!13 tan21~1/x!#2
2

x

2x211

x211
. ~23!

Evaluating Z(x) numerically we find that it does indee
change sign atvt;0.66, and is negative for largerv. This
implies that at the highest frequencies,I s(v) approaches
zero from below.

Finally, is also instructive to verify explicitly that the dif
ferential sum rule for 1/t is satisfied. Integrating in Eq.~21!
over all frequencies by parts usingdE(k)/dk5@E(k)
2K(k)#/k2 ~Ref. 7!, whereK(k) is the elliptic integral of
the first kind, we can rewriteI t(`) as

I t~`!52
2D

t
ImE

0

` zK~z!

E2~z!
dz. ~24!

We could not evaluate this integral analytically, but nume
cal integration yieldsI t(`)50 with a very high accuracy.

To conclude, in this paper we analyzed the different
sum rule for the scattering rate and optical conductivity in
dirty BCS superconductor. We demonstrated that this s
rule is exact if the normal statet is independent on tempera
ture. For arbitraryDt, the sum rule is exhausted at freque
cies controlled byD, but the convergence is rather weak d
to logarithmical terms. We showed that in the dirty limit th
convergence of the differential sum rule for the scatter
rate is much faster then the convergence of thef-sum rule for
the conductivity, but slower than for the differential sum ru
for conductivity. The latter has the fastest convergence
both clean and dirty limits.
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