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Topological insulators are tunable waveguides for hyperbolic polaritons
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We present a theoretical analysis showing that layered topological insulators, for example, Bi2Se3 are optically
hyperbolic materials in the range of terahertz (THz) frequencies. As such, these topological insulators possess
deeply subdiffractional, highly directional collective modes: hyperbolic phonon polaritons. We predict that in thin
crystals the dispersion of these modes is split into discrete subbands and is strongly influenced by electron surface
states. If the surface states are doped, then hybrid collective modes result from coupling of the phonon polaritons
with surface plasmons. The strength of the hybridization can be controlled by an external gate that varies the
chemical potential of the surface states. We also show that the momentum dependence of the plasmon-phonon
coupling leads to a polaritonic analog of the Goos-Hänchen effect. The directionality of the polaritonic rays and
their tunable Goos-Hänchen shift is observable via THz nanoimaging.

DOI: 10.1103/PhysRevB.92.205430 PACS number(s): 73.21.−b, 78.20.−e

I. INTRODUCTION

Bismuth-based topological insulators (TIs) have attracted
much interest for their unusual electron surface states (SSs),
which behave as massless Dirac fermions [1,2]. However,
the bulk optical response of these compounds [3–15] is
also remarkable. The quintuple-layered structure of these
materials causes a strong anisotropy of their phonon modes.
The Eu phonons that involve atomic displacements in a plane
parallel to the basal plane (henceforth, x-y or ⊥ plane) have
lower frequencies than A2u, the c-axis (henceforth, z-axis)
vibrations [5]. For Bi2Se3, the dominant ⊥- and z-axis phonon
frequencies,

ω⊥
1,to = 64 cm−1 = 1.9 THz,

(1)
ωz

1,to = 135 cm−1 = 4.1 THz ,

differ more than twice. As a result, this and similar TIs can
exhibit a giant anisotropy of the dielectric permittivity. There
is a range of ω where the permittivity tensor is indefinite:
the real part of εz(ω) is positive, while that of ε⊥(ω) is
negative. Media with such characteristics are referred to as
hyperbolic [16–18] because the isofrequency surfaces of their
extraordinary rays in the momentum space k = (kx,ky,kz)
are shaped as hyperboloids [Fig. 1(a)]. In the terahertz
(THz) domain, the widest band of frequencies where Bi2Se3

behaves as a hyperbolic medium (HM) is between the
aforementioned dominant frequencies, ω⊥

to,1 < ω < ωz
to,1;

however, other hyperbolic bands also exist in this TI (both at
THz frequencies, see Sec. II, and at visible frequencies, see
Ref. [19]). It is important that the approximate equation for
the extraordinary isofrequency surfaces,

(kx)2 + (ky)2

εz(ω)
+ (kz)2

ε⊥(ω)
= ω2

c2
, (2)

is valid up to |k| of the order of the inverse lattice constant.
Accordingly, rays of momenta |k| greatly exceeding the
free-space photon momentum ω/c can propagate through
hyperbolic materials without evanescent decay. At such k, the
hyperboloids can be further approximated by cones, which
means that the group velocity v = ∂ω/∂k of the rays makes

ε0

d ε⊥, εz

εs
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FIG. 1. (Color online) (a) Hyperboloidal isofrequency surfaces
of HP2s for two frequencies ω1 and ω2 (ω2 > ω1). The asymptote
angle θ with respect to the kx-ky plane is shown; the group velocity
v makes the same angle with respect to the kz axis. (b) Model
geometry: a TI slab of thickness d sandwiched between a substrate
of permittivity εs and a superstrate of permittivity ε0. The two thin
(orange) layers represent the top and the bottom surfaces states.

a fixed angle θ (or −θ ) with respect to the z axis, with

tan θ (ω) = i
[ε⊥(ω)]1/2

[εz(ω)]1/2
, (3)

see Fig. 1(a). We refer to these deeply subdiffractional, highly
directional modes as the hyperbolic phonon polaritons (HPP
or HP2 for short).

Our interest to HP2 of TIs is stimulated by the recent
discovery [20,21] and further exploration of similar collective
modes in other systems such as hexagonal boron nitride [22–
25] (hBN) and hBN covered by graphene [26–28] (hBN/G).
There is a close analogy between these systems. In fact,
except for the difference in the number of Dirac cones
(N = 1 versus N = 4) and the frequency range where the
hyperbolic response occurs (THz versus midinfrared), the
electrodynamics of longitudinal collective modes of Bi2Se3

and hBN/G structures is qualitatively the same. (The analogy
is the most faithful when graphene and hBN are rotationally
misaligned; otherwise, their collective modes are modified by
the moiré superlattice effects [28,29].)

The main goal of this paper is to investigate the interaction
of HP2 with the Dirac plasmons of the topological SS. The
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latter dominate the charge (and current) density response of
the system at frequencies outside the hyperbolic band where
HP2 are absent. Dirac plasmons have been extensively studied
in previous literature [8,13,14,30–44] on both TI and graphene.
The basic properties of the Dirac plasmons can be introduced
on the example of a hypothetical TI material with a frequency-
independent permittivity εz > 0 and the permittivity ε⊥(ω)
dominated by a single phonon mode. Such an idealized
material is hyperbolic in a single frequency interval ωto < ω <

ωlo, where ε⊥(ω) < 0. Its Dirac plasmons exist at ω < ωto and
ω > ωlo where ε⊥(ω) > 0. In the setup shown in Fig. 1(b),
where the TI slab borders media of constant permittivities
ε0 > 0 and εs > 0, there are two plasmon modes. At large
enough in-plane momenta q ≡ [(kx)2 + (ky)2]1/2, these modes
are confined to the opposite interfaces and electromagnetically
decoupled. In the relevant range of momenta q < q∗, the
dispersion of the plasmon bound to the top interface is given by

q(ω) � 4

N

ε0 + ε1

e2|μ| (�ω)2 , �ω � |μ| , (4)

where

ε1(ω) = [ε⊥(ω)]1/2 [εz(ω)]1/2, (5)

is the effective permittivity of the TI and μ is the chemical
potential of the SSs measured from the Dirac point. At
frequencies far below ωto or far above ωlo, function ε1(ω) can
be approximated by a real constant, which yields ω ∝ √

q.
This typical two-dimensional (2D) plasmon dispersion
describes the low-frequency part of the full curve sketched
in Fig. 2(a). The plasmon dispersion for the bottom interface
is obtained by replacing ε0 with εs (unless εs 	 ε0, in which
case the range q > q∗ is relevant where the dispersion is
approximately linear, see Sec. III B).

Equation (4) implies that the nature of the plasmon modes
should change drastically when ω enters the hyperbolic
frequency band where ε1(ω) [Eq. (5)] is imaginary and strongly
ω − dependent. This equation predicts a complex q, which
suggests that the Dirac plasmons become leaky modes that
rapidly decay into the HP2 bulk continuum. However, this is
not quite correct. We will show that nonleaky, i.e., propagating
modes can survive in thin enough TI slabs where the HP2

continuum is broken into discrete subbands of waveguide
modes. The latter hybridize with plasmons to form hyperbolic
plasmon phonon polaritons (HPPP or HP3 for short), the
primary target of our investigation, see Figs. 2(b) and 2(c).
We explore the following properties and manifestations of the
collective charge modes of the TIs: (i) the mode dispersion
in the momentum-frequency space, (ii) the dependence of
such dispersions on the surface doping and the thickness of
the slab, and (iii) the unusual real-space dynamics of the HP3

rays, including a polaritonic analog of the Goos-Hänchen (GH)
effect [45,46].

The remainder of the paper is organized as follows. In
Sec. II, we specify the model and the basic equations. In
Sec. III, we present our results for the dispersion of the
three different types of collective modes (plasmons, HP2s,
and HP3s). In Sec. IV, which is the centerpiece of this work,
we discuss waveguiding and launching of the HP2 modes and
also their tunable GH shifts. We explain how these phenomena
can be probed experimentally using the imaging capabilities
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FIG. 2. (Color online) Schematic illustrations of the collective
mode spectra in idealized model systems. (a) The plasmon dispersion
of Dirac fermions confined to the interface of two bulk media of
constant positive permittivity ε0 and εs . The dispersion crosses over
from ω � v

√
qq∗/2 to ω � vq at a characteristic momentum q∗

[Eq. (26)]. The shaded areas indicate the electron-hole continua where
the plasmons (and any other charged collective modes) are damped.
(b) The dispersion of hybrid HP3 modes for a slab of a hypothetical
TI material that has a single in-plane phonon mode at ωto and constant
εz > 0. Permittivity ε⊥ is negative at ωto < ω < ωlo and positive at
other ω. The dotted boundary corresponds to the dotted line in (a).
Outside the band ωto < ω < ωlo, only plasmonic modes 0 and 1 exist.
In the degenerate case ε0 = εs they correspond to the symmetric (s)
and antisymmetric (a) combinations of the top and bottom interface
plasmons. Inside that band, multiple branches of HP3 are formed due
to hybridization of the plasmons with the HP2 waveguide modes. The
frequencies of all the branches other than 0 and 1 tend to ωlo at large
momenta. (c) Schematic in-plane electric field profiles of the first few
HP3 modes (thick curves). The number of nodes in each profile (the
points where they cross with the vertical lines Ex = 0) is equal to the
modal index.

of the scattering-type scanning near-field optical microscopy
(s-SNOM) [47,48]. In Sec. V, we give concluding remarks
and an outlook for the future. Finally, in Appendix, we discuss
signatures of the phonon-plasmon coupling measurable by the
s-SNOM operating in the spectroscopic mode.

II. MODEL

Our model for the bulk permittivities of the TI is

εα(ω) = εα
∞ +

∑
j=1,2

ωα 2
p,j

ωα 2
to,j − ω2 − iγ α

j ω
, α = ⊥,z . (6)

In the case of Bi2Se3, we choose the parameters based on
available experimental [3,4,7] and theoretical [5] literature
as follows: ε⊥

∞ = 29, εz
∞ = 17.4, ω⊥

to,1 = 64 cm−1, ω⊥
p,1 =
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FIG. 3. (Color online) The real parts of the tangential and axial
permittivities of Bi2Se3. The sign changes of the permittivities are due
to the Eu and A2u phonons. Surface- and bulk-confined collective
modes exist inside the spectral regions where at least one of the
permittivities is negative. They include the type-II hyperbolic region
A (�e ε⊥ < 0,�e εz > 0), the reststrahlen region B (�e ε⊥,�e εz <

0), and the type-I hyperbolic region C (�e ε⊥ > 0,�e εz < 0).

704 cm−1, ω⊥
to,2 = 125 cm−1, ω⊥

p,2 = 55 cm−1, ωz
to,1 =

135 cm−1, ωz
p,1 = 283 cm−1, ωz

to,2 = 154 cm−1, ωz
p,2 =

156 cm−1, and γ α
j = 3.5 cm−1. [Note that ω⊥

to,1 and ωz
to,1

were already listed in Eq. (1).] The real parts of functions
ε⊥(ω) and εz(ω) are plotted in Fig. 3. The regions where
at least one of them is negative are shaded. They include
region A, ω⊥

to,1 < ω < ωz
to,1, where Bi2Se3 is an HM of type

II (�e εz > 0, �e ε⊥ < 0); region C, ωz
to,2 < ω < 163 cm−1

where it is an HM of type I (�e εz < 0, �e ε⊥ > 0), and region
B, ωz

to,1 < ω < 146 cm−1, where it exhibits the Reststrahlen
behavior (�e εz < 0, �e ε⊥ < 0). Since regions B and C are
narrow, in our discussion of HP2 and HP3 modes we focus
on region A. In this discussion, we often refer to hBN as an
example of a simpler material. The type-II hyperbolic band of
hBN is bounded by the frequencies [20,22]

ωto = 1376 cm−1, ωlo = 1614 cm−1. (7)

In this band, ε⊥(ω) of hBN can be modeled similar to Eq. (6)
but using a single Lorentzian oscillator while εz can be
considered ω-independent and positive.

In the case of Bi2Se3, we also have to specify our
assumptions about the electronic response. We consider only
frequencies smaller than the bulk gap 0.3 eV of Bi2Se3 at which
the electronic contribution to the permittivities [included in
Eq. (6) via εα

∞] is purely real. Additionally, we assume that the
valence bulk band is completely filled, the conduction one is
empty, with no free carriers present in the bulk. However, such
carriers populate the gapless SS described by the massless 2D
Dirac equation. The chemical potential μ, which is located
inside the bulk band gap, determines the doping of these
SS. For simplicity, we ignore any virtual or real electronic
transitions between the surface and the bulk states, which
should not change the result qualitatively, except perhaps for
the additional damping from these transitions.

The fundamental current/density response functions of the
SS are the sheet conductivity σ and polarizability P , which

are related in the standard way:

σ (q,ω) = iω

q2
e2P (q,ω) . (8)

Within the random-phase approximation for Dirac fermions,
P (q,ω) can be computed [49,50] analytically:

P (q,ω) = − NkF

2π�v
− iN

16π�v

q2√
q2 − k2

ω

×
[
G

(
kω + 2kF

q

)
− G

(
kω − 2kF

q

)
− iπ

]
,

G(x) = ix
√

1 − x2 − i arccos x . (9)

Here, the branch cut for the square root and logarithm functions
is the negative real semi-axis, kω is defined by kω = (ω +
iγe)/v, phenomenological parameter γe > 0 is the electron
scattering rate, v is the Fermi velocity, and kF = |μ|/(�v) is
the Fermi momentum. Equation (9) is a good approximation
at small μ. At large doping, trigonal warping [51] and other
details of realistic band structure [43] should be included. Since
the above formula is a bit cumbersome, it may be helpful to
mention some properties of σ (q,ω). For example, if γe = +0,
the real part of σ (q,ω) is nonvanishing only inside the two
shaded areas in Fig. 2(a), which together form the so-called
electron-hole continuum [30,39]. (This real part is a measure
of dissipation, i.e., Landau damping.) For a doped system at
small momenta and frequencies, q,kω � kF , the expression
for the conductivity can be reduced to

σ (q,ω) � Ne2

2π�

kF√
q2 − k2

ω

ikω

ikω − √
q2 − k2

ω

. (10)

At q � ω/v, it further simplifies to the Drude formula

σ � Ne2

4π�2

|μ|
γe − iω

, μ �= 0 . (11)

For an undoped system, one finds instead

σ (q,ω) = N

16

e2

�

ikω√
q2 − k2

ω

(12)

� N

16

e2

�
, q � ω

v
. (13)

In order to find the dispersion of the collective modes of
the TI slab, we use two computational methods. One method,
which is advantageous for deriving analytical results, is to look
for the poles of the response function rP (q,ω). This function is
the total P - (also known as the TM-) polarization reflectivity
of the system measured when an external field is incident from
the medium labeled “ε0” in Fig. 1(b). It must be immediately
clarified that rP (q,ω) has no poles at simultaneously real q

and ω if the dissipation parameters γ and γe are nonzero. At
least one of these arguments must be complex. Whenever one
refers to the dispersion relation of a mode, one means the
relation between the real parts of q and ω. The other method,
which is especially convenient for numerical simulations, is
to identify the sought dispersion curves with the maxima of
m rP (q,ω) at real arguments. As long as the imaginary parts
of q and ω (which give information about the propagation
length and lifetime of the mode) are small, both methods give
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the same dispersions. An extra benefit of working with real
q and ω is that the corresponding rP (q,ω) is the input for
further calculations we discuss in Appendix where we model
s-SNOM experiments for the system in hand.

Our procedure for calculating function rP (q,ω) can be
explained as follows. Taking a more general view for a
moment, we regard the entire system including the substrate
and superstrate as a stack of layers j = 0,1, . . . ,M of thickness
dj , tangential permittivity ε⊥

j , and axial permittivity εz
j . (In the

present case, M = 2, the TI slab is layer j = 1 and d1 = d.)
Additionally, we assume that the interface of the layers j and
j + 1 possesses the sheet conductivity σj,j+1. We observe that
the P -polarization reflectivity rj,j+1 of j,j + 1 interface in
isolation is given by the formula (see, e.g., Ref. [27])

rj,j+1 = Qj+1 − Qj + 4π
ω

σj,j+1

Qj+1 + Qj + 4π
ω

σj,j+1
, (14)

Qj = ε⊥
j

kz
j

, kz
j =

√
ε⊥
j

√
ω2

c2
− q2

εz
j

, (15)

where kz
j and q are, respectively, the axial and the tangential

momenta inside layer j . Let rj be the reflectivity of a
subsystem composed of layers j, . . . ,M . By this definition,
rM−1 = rM−1,M . The crucial point is that the desired rP ≡ r0

can be found by the backward recursion

rj = rj,j+1 − (1 − rj,j+1)(1 − rj+1,j )rj+1

rj+1,j rj+1 − exp(−2ikj+1dj+1)
, (16)

where rj+1,j is the right-hand side of Eq. (14) with Qj and
Qj+1 interchanged. For M = 2, one recursion step suffices,
which gives us, after some algebra [27],

rP = r12(r01 + r10 − 1) − r01 exp(−2ik1d1)

r10r12 − exp(−2ik1d1)
. (17)

Hence function rP (q,ω) has poles whenever

r10(q,ω)r12(q,ω) = exp
(−2ikz

1d
)
. (18)

For large in-plane momenta q 	 (ω/c) max |εz
j |1/2, we can

use the approximations kz
1 � q tan θ and

r10 �
ε0 − ε1 − 2q

qtop

ε0 + ε1 − 2q

qtop

, qtop ≡ iω

2πσtop
, (19)

where σtop = σtop(q,ω) is the sheet conductivity of the SS at
the top interface. Let us also define the “phase shifts” φtop and
φbot for inner reflections from the top and bottom interfaces,
respectively: r10 = − exp(2iφtop),r12 = − exp(2iφbot). Note
that in general φtop and φbot are complex numbers. Specifically,

we take

φtop = arctan

[
i
ε0

ε1

(
1 − 2

ε0

q

qtop

)]
, (20)

φbot = arctan

[
i

εs

ε1

(
1 − 2

εs

q

qbot

)]
, (21)

where the standard definition of arctan z is assumed, with the
branch cuts (−i∞, − i),(i,i∞) in the complex-z plane; qbot

is defined analogously to qtop but with the sheet conductivity
σbot of the bottom SS instead of σtop. Equation (18) can now
be transformed to

qn = −2

δ
(nπ + φtop + φbot) , δ ≡ 2d tan θ , (22)

where the integer subscript n labels possible multiple solutions.
Admissible n must satisfy the condition m rP (qn,ω) > 0. Our
numerical results for rP computed from Eq. (17) and analytic
approximations for the solutions of Eq. (22) are presented in
Sec. III.

III. COLLECTIVE MODE DISPERSIONS

The false color maps of function m rP (q,ω) provide
a convenient visualization of the collective mode spectra.
Examples of such maps computed for Bi2Se3 slabs are
presented in the bottom row of Fig. 4. Their counterparts for
graphene-hBN-graphene (G/hBN/G) structures are shown in
the top row to facilitate the interpretation. The bright lines in
Fig. 4 are the dispersion curves of the collective modes. The
apparent widths of those lines give an idea how damped the
modes are. Below we discuss these results in more detail.

A. Hyperbolic waveguide modes

Figures 4(a) and 4(d) depict the m rP maps for, respec-
tively, G/hBN/G and Bi2Se3 slabs, when they are undoped,
μ = 0. No Dirac plasmons exist in such systems, so that
the collective modes are limited to HP2s. In Fig. 4(a), we
see a single family of such modes whereas in 4(d) one can
actually distinguish three of them. Let us start with the former,
simpler case. The key to understanding the nature of these
modes is that inside the hyperbolic band ωto < ω < ωlo the
z-axis momentum kz

1 � q tan θ of the modes is nearly real.
Hence, the HP2s form standing waves inside the slab. The
integer n in Eq. (22) corresponds to the number of nodes
of these waves, see Fig. 2(c). For G/hBN/G, the requisite
condition m rP > 0 is satisfied by all nonegative integers
n due to the fact that m tan θ > 0. This inequality also
ensures that m q > 0. An analytical approximation for the
dispersion curves of an undoped slab is obtained by neglecting
the fractions q/qtop,q/qbot in Eqs. (20) and (21), in which
case Eq. (22) yields q(ω) directly. Within this approximation,
momenta qn at given ω are equidistant:

qn+1 − qn � −2π

δ
= −π

d

1

tan θ (ω)
. (23)

The dispersion of the HP2 waveguide modes is dominated
by the factor 1/ tan θ (ω) in Eqs. (22) and (23), which, if
all damping is neglected, changes from zero to infinity as
ω increases from ωto to ωlo. This is precisely what we see in
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FIG. 4. (Color online) Collective mode dispersions of graphene-hBN-graphene (G/hBN/G) and Bi2Se3 slabs rendered using the false color
maps of m rP . The parameters of the calculation for G/hBN/G are: (a) d = 60 nm,μ = 0, (b) d = 60 nm,μ = 0.29 eV, (c) d = 30 nm,μ =
0.29 eV. The other parameters are v = 1.00 × 108 cm/s,γe = 1.00 THz,ε0 = 1, and εs = 1.5. The parameters of the calculation for Bi2Se3

are (d) d = 120 nm,μ = 0, (e) d = 120 nm,μ = 0.29 eV, (f) d = 60 nm,μ = 0.29 eV. In these three plots, v = 0.623 × 108 cm/s,γe =
1 THz,ε0 = 1, and εs = 10. Equal doping of the top and bottom SS is assumed. The vertical dashed lines indicate a characteristic momentum
probed by the s-SNOM experiments simulated in Fig. 7 below.

Fig. 4(a): all the dispersion curves start at ωto at q = 0 and
increase toward ωlo at large q.

Equation (23) is general and it applies to Bi2Se3 as well. The
three families of collective modes seen in Fig. 4(d), belong to
the spectral regions A, B, and C of Fig. 3. In region A, which
is the widest of the three, we see a set of HP2 modes very
similar to those in Fig. 4(a). They start at ωto,1 = 64 cm−1 at
q = 0 and monotonically increase toward ωto,2 = 135 cm−1 at
large q. In region C, 154 < ω (cm−1) < 163, we again find a
family of HP2 modes but this time with a negative dispersion.
This behavior is typical of type I HM (�e ε⊥ > 0,�e εz < 0).
The shape of the dispersion can be understood noticing that
the real part of 1/ tan θ (ω) is positive, varying from ∞ to 0
(if the phonon damping γ α

j is neglected) while admissible
n are now n � 0. [In hBN, this type I behavior is also
realized [22,24,27] but the corresponding frequency range
is below the axis cutoff in Fig. 4(a).] Lastly, in region B,
135 < ω (cm−1) < 146, function tan θ (ω) is almost purely
imaginary, which implies that the collective modes do not
form standing waves but are exponentially confined to the
interfaces. Also, there are only two such modes, n = 0 and
1. In this respect, these surface-bound HP2 modes are similar
to the Dirac plasmons, see Sec. I above and Sec. III B below.
However, their dispersion is completely different from those
of the plasmons, e.g., the dispersion of the upper (n = 1)
mode has a negative slope, see Fig. 4(d). Similar collective
excitations have been studied in literature devoted to other
systems, e.g., anisotropic superconductors [52], which can

be consulted for details and references. Due to narrowness
of regions B and C, some of the described features may be
difficult to see in Fig. 4(a) and probably challenging to observe
in experiments. For this reasons, we will mostly refrain from
discussing regions B and C further.

One implication of Eq. (23) is that the HP2 dispersion is
widely tunable: the scaling law qn ∝ d−1 provides a practical
way to engineer a desired wavelength of the waveguide modes
simply by tailoring the slab thickness d, as has been previously
demonstrated using hBN slabs [20].

B. Surface plasmons

Examples of the collective mode spectra at finite doping
are shown in Figs. 4(b) and 4(c) for G/hBN/G and Figs. 4(e)
and 4(f) for Bi2Se3. The spectra are dramatically different
inside and outside the hyperbolic frequency bands. A key
to understanding this difference is again the value of the
momentum kz

1 � q tan θ (ω). Outside the hyperbolic bands, it
is almost purely imaginary, and so the collective excitations
are exponentially confined to the surfaces of the slab. These
surface modes are the Dirac plasmons introduced in Sec. I.
Having in mind applications to near-field experiments, we
are particularly interested in momenta q of the order of a
few times 105 cm−1, i.e., the region nearby the dashed lines
q = 0.0025 nm−1 in Fig. 4. If ε1 is real, there are at most two
solutions of Eq. (22), one for n = 0 and the other for n = 1.
However, the distinct n = 1 dispersion curves are visible only
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in Figs. 4(b) and 4(c) for G/hBN/G and none of them is close
enough to the range of q we are interested in. Therefore we
focus on the n = 0 branch.

The shape of the plasmon dispersion curves in TI slabs and
double-layer graphene systems was a subject of many previous
theoretical studies [31,37,40,43,44] whose basic conclusions
are reproduced by the following analysis. To the right of the
dashed lines in Figs. 4(b) and 4(e) and for d ∼ 100 nm,
the dimensionless product 2kz

1d = qδ is typically large by
absolute value and almost purely imaginary. This implies that
the plasmons of the two interfaces are decoupled. Taking into
account that ε0 < εs and qtop = qbot in Fig. 4, one can show
that the dispersion of the n = 0 mode is controlled by the
properties of the top interface. In the first approximation, this
dispersion can be obtained setting φtop → −i∞, which yields

q0 ≈ ε0 + ε1

2
qtop , q0 	 |δ|−1. (24)

For μ = 0, momentum qtop = qtop(q0,ω) is imaginary, cf.
Eqs. (13) and (19). Hence, for real ε1, Eq. (24) has no real
solutions: as already mentioned, undoped SSs do not support
plasmons. Indeed, Figs. 4(a) and 4(d) contain no bright lines
outside the hyperbolic bands. On the other hand, if μ �= 0,
we can use Eq. (11) to transform Eq. (24) to Eq. (4), which
predicts a parabolic dispersion curve ω ∝ √

q if ε1 is constant.
Such parabolas are seen in the upper halves of Figs. 4(b), 4(c),
and 4(e), 4(f) although they appear rectilinear because of the
restricted range of q.

As smaller momenta Eq. (24) no longer holds. The correct
approximation for the n = 0 mode is obtained by setting the
left-hand side of Eq. (22) to zero. This yields φtop = −φbot and

q0 � ε0 + εs

2

1

q−1
top + q−1

bot

� 2

N

ε0 + εs

e2|μ| (�ω)2 . (25)

Thus both the low-q and high-q parts of the n = 0 dispersion
curve are parabolic but with different curvatures. The crossover
between these two parabolas occurs via a rapid increase
of ε⊥(ω), and so, ε1(ω) at frequencies immediately above
the hyperbolic bands. It takes place at ω > 1614 cm−1 for
G/hBN/G and ω > 163 cm−1 for Bi2Se3, which generates the
inflection points seen on the curves in, respectively, Figs. 4(b),
4(c) and 4(e), 4(f).

As indicated schematically in Fig. 2(a), at very large q

the plasmon dispersion should have another inflection point.
Using the more accurate Eq. (10) instead of Eq. (11), we find
the following analytical result for the frequency of the n = 0
mode as a function of q:

ω(q) � v
q + q∗√

1 + (2q∗/q)
, q∗ = 2e2

�v

NkF

ε0 + ε1
. (26)

This equation predicts a crossover from the parabolic to the
linear dispersion ω � vq above q = q∗. However, this occurs
far outside the plot range of Fig. 4.

Returning to Eq. (25), we notice that it does not contain
the bulk permittivities. Hence, it should continue to hold for a
range of ω inside the hyperbolic bands. A physical picture of
this mode [“0(s)” in Fig. 2(c)] is in-phase oscillations of the
charges of both Dirac fermion layers, i.e., the system behaving
as a single 2D layer with the combined oscillator strength.
As ω decreases further into the hyperbolic bands, the length

scale |δ| increases. The strength of the inequality q0|δ| � 1
and so the accuracy of Eq. (25) becomes progressively lower
[in fact, Eq. (27) below gives a better approximation]. At ω =
ωto for G/hBN/G and similarly, at ω = ω⊥

to,1 for Bi2Se3, this
inequality is violated completely, which is consistent with the
termination of these branches at q = 0 in Figs. 4(b) and (e).
Similar analysis can be applied to Figs. 4(c) and 4(f) where
d is twice smaller than in, respectively, Figs. 4(b) and 4(e).
Because of that, the plasmon dispersion in the region q|δ| < 1
is shifted to smaller q. The dispersions in the large-q regions
are virtually unaffected since the stronger surface confinement
of the plasmons makes them insensitive to d.

One qualitative difference between G/hBN/G and Bi2Se3

is the richer phonon spectrum of the latter. This leads to the
avoided crossings of the plasmon branch with the dispersion
lines of the HP2 modes in regions B and C of Bi2Se3, cf.
Figs. 4(b), 4(c) and 4(e), 4(f). The small shifts caused by
those crossings are somewhat masked by the considerable
linewidth of the n = 0 line due to relatively stronger phonon
damping. In turn, higher electronic damping rate γe ∼ ω⊥

to,1
due to disorder scattering in Bi2Se3 effectively eliminates the
plasmon excitations in the lower spectral region ω < ω⊥

to,1, see
Figs. 4(e) and 4(f). Therefore we do not discuss it here.

C. Hybrid modes

From now on we turn to the subject of our primary interest,
the hyperbolic collective modes of a doped TI. In this short
section we address their dispersion law. Comparing Fig. 4(d)
for μ = 0 with Figs. 4(e) and 4(f) for μ > 0, we observe
significant shifts in the dispersion of the n = 0 mode in the
upper half of the hyperbolic band ω⊥

to,1 < ω < ωz
to,1 of Bi2Se3.

Similar shifts are seen in hBN near ωlo, cf. Fig. 4(a) with
Figs. 4(b) and 4(c). These shifts result from hybridization
of HP2 and Dirac plasmons into combined HP3 waveguide
modes. In general, calculation of these shifts requires solving
Eq. (22) numerically. However, near the bottom of the
hyperbolic band where these shifts become small, they can
be also found analytically. Thus, Eq. (25) gets replaced by

q0 � ε0 + εs

ε⊥d + 2q−1
top + 2q−1

bot

, |ε1| 	 ε0,εs , (27)

which shows explicitly that q0 goes to zero as ω approaches
ω⊥

to,1 where ε⊥ sharply increases.
Unlike in Figs. 4(a) and 4(d), in Figs. 4(b), 4(c), 4(e), and

4(f), the higher-order n > 1 modes are more difficult to see
because of their lower relative intensity compared to those of
the plasmon n = 0 (and n = 1) modes. Nevertheless, these
modes remain well defined (underdamped). Near the bottoms
of the respective hyperbolic bands their momenta qn still form
an equidistant sequence except with a spacing

qn+1 − qn � 2π

l − δ
, (28)

which is modified compared to Eq. (23). This result can be
obtained from Eq. (22) by approximating the finite differences
such as φtop(qn+1) − φtop(qn) by means of the derivative.
Parameter l is defined by

l = −2
∂φtop

∂q
− 2

∂φbot

∂q
. (29)
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The physical meaning of this quantity is clarified in the next
section.

IV. GOOS-HÄNCHEN EFFECT

In this section, we consider the problem of the plasmon-
polariton mixing from the point of view of real-space tra-
jectories of the HP2 excitations. The question we consider is
how polariton wave packets propagate inside the slab and, in
particular, how they reflect off its interfaces. As mentioned
in Sec. I, for a given ω, the angle θ between the z axis and
the group velocity v vector of HP2s is nearly independent
of q. Therefore, monochromatic HP2 wave packets propagate
as highly directional rays. Naively, one would then expect
that the polariton rays should zigzag inside the slab returning
to each interface periodically with the repeat distance of
2d |tan θ | = |δ|. Although such geometrical optics picture is
adequate for insulating hyperbolic materials [53], it is not quite
correct for TI with gapless doped SS. The geometrical optics
neglects a lateral shift or displacement of the rays after each
reflection [compare Figs. 5(a) and 5(b)], which is analogous to
the GH effect of light. The GH effect was first discussed in the
context of the total internal reflection of light. As explained
below, it can be understood from two complementary points
of view. In the wave picture, it originates from the momentum
dependence of the reflection phase shift. In the particle picture,
the GH effect is due to the quasi-classical tunneling (excitation
of evanescent waves) along the interface. To define such a
displacement one usually considers a wave packet with a

θ

polariton polariton

plasmon

l

(a) (b)

(c)

split gate

undoped

doped

FIG. 5. (Color online) Polaritonic GH effect in TI slabs. (a)
Schematics of the HP2 ray reflection in the absence of the SS. (b) The
same with the SS. The wavy lines symbolize virtual Dirac plasmons.
The GH shift l is indicated. (c) The electric field distribution inside
and/or at the upper surfaces of two slabs with equal δ = −2.2d but
different doping. The lower (“doped”) and the upper (“undoped”)
parts of the image are computed for λp = a and 0, respectively.
The split gate—a pair of metallic half-planes separated by a distance
2a—launches highly directional HP2 rays that bounce inside the slabs
creating periodic “hot stripes” at their upper surfaces. The period is
larger in the “doped” slab. The two small circles, one in the undoped
and one in doped part, are the representative locations of the HP2

reflections. Their enlarged views are shown in, respectively, (a) and
(b).

smooth envelope (for example, a Gaussian), in which case
the displacement is the shift in the position of its maximum.

While the GH effect [45] was discovered measuring the
reflection of light off an air-metal interface, the displacement
l of the reflected ray is a general wave phenomenon [46] that
arises due to the dependence of the reflection phase shift φ on
the lateral momentum q = (kx,ky). For example, the GH effect
should also occur for surface plasmons [54]. The expression
for l has the form [55]

l = −�e
∂φ

∂q
. (30)

It seems to be another general rule that the momentum
dependence of φ is significant only if the interface supports
electromagnetic modes with either a large propagation length
or a long decay length if such modes are evanescent. In
the original photonic GH effect, this is the case under the
conditions of the total internal reflection. The magnitude |l| of
the GH displacement can be interpreted as the decay length
of the evanescent transmitted wave. Alternatively, a large GH
shift can occur if the interface supports surface plasmons or
polaritons [56–58]. Experimental demonstration of the GH
effect enhanced by surface plasmons of the air-metal interface
has been reported [59].

Comparing Eqs. (29) and (30), we recognize the length
scale l in the former as the sum of the GH shifts due to the
top and the bottom interfaces. Therefore we conclude that the
Dirac plasmons must act as the transient interface modes for
the HP2 rays bouncing inside the TI slab. Using Eqs. (20) and
(30), and taking into account that �e ε1 � m ε1, we find the
GH shift at the top interface to be

ltop = 4

qtop

m ε1(
ε0 − 2q

qtop

)2 + |ε1|2
. (31)

A few comments on this result can be made. First, the GH
shift is positive in our case, which means the displacement is
in the same direction as the in-plane group velocity of the ray.
Second, ltop depends on the permittivity of the environment.
For example, at fixed q, it vanishes if ε0 is very large.
Conversely, for fixed ε0, the GH shift reaches its maximum

lmax = 2

π

λpε0m ε1

(�e ε1)2 + (m ε1)2 , λp ≡ 2π

ε0qtop
, (32)

at q = π/λp. Finally, lmax depends linearly on the characteris-
tic size λp of the Dirac plasmon wavelength and inversely on
the absolute value |ε1| ≈ m ε1 of the effective permittivity of
the hyperbolic medium.

In Fig. 6, we show lmax for Bi2Se3 and G/hBN/G systems as
a function of ω spanning their respective hyperbolic bands. The
relative shift, lmax/λp, is greater in G/hBN/G because |ε1| is
smaller. Yet the absolute lmax at the same μ = 0.3 eV is greater
in Bi2Se3 (where it is ∼ 200 nm) because it is hyperbolic at
lower frequencies and λp is larger at smaller ω.

One possible setup for experimental detection of the GH
effect in TI is shown in Fig. 5(c). It differs from Fig. 1(b) in
the addition of a split gate between the TI slab and the substrate.
If this gate is made of a good conductor with large permittivity,
it would suppress the GH shift at the bottom surface. However,
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FIG. 6. (Color online) Maximum GH shift lmax (in absolute units
and as a fraction of λp) for (a) TI slab and (b) G/hBN/G structure
with the same chemical potential μ = 0.3 eV.

it would serve another useful purpose. Previously, it has been
demonstrated [23] that in the presence of an external oscillating
field, thin metallic disks or stripes can launch HP2 in hBN. The
split gate is to perform the same function here. The HP2s are
preferentially emitted from the regions of highly concentrated
field near the sharp metallic edges. We expect the rays to zigzag
away from their launching points returning to the top surface
with the period l − δ, which is the sum of −δ ≈ |δ| due to
the roundtrip inside the slab and l = ltop due to the GH shift
at the top surface. Since l depends qtop, which is controlled
by doping, the GH effect can be detected by measuring the
positions of the electric field maxima [“hot stripes” in Fig. 5(c)]
as a function of μ in the experiment. Although l is quite
small, the shifts accumulate after multiple reflections, which
can facilitate their detection, as in the original work of Goos
and Hänchen [45].

To model the response of the system shown in Fig. 5(c)
quantitatively, we proceed as follows. We approximate the
half-planes of the split gate by perfect conductors in the z = 0
plane with the edges at x = ±a. Let V (x,0) be the scalar
potential at z = 0 due to the external uniform field and all the
charges induced on the gate. (Here and below the common
factor e−iωt is omitted.) Let Ṽ (kx) be the Fourier transform
of V (x,0). Using the notations for the reflection coefficients
introduced in Sec. II, we express the potential V (x,z) inside
the slab 0 � z � d by the integral

V (x,z) =
∫

dkx

2π
Ṽ (kx)t(kx,z)eikxx, (33)

t(kx,z) = ei|kx |z tan θ − r10(kx)ei|kx | tan θ(2d−z)

1 − r10(kx)r12(kx)ei|kx |δ . (34)

For a consistency check, we can consider the large − x

behavior of this inverse Fourier transform, which should be
dictated by the poles of the integrand. These poles can be

recognized as the HP3 momenta qn [Eq. (22)]. Since qn form
the equidistant sequence [Eq. (28)], their superposition should
indeed create beats of period l − δ, in agreement with our ray
trajectories picture, Fig. 5(b).

Explicit calculation of V (x,0) requires a self-consistent so-
lution of the Maxwell equations for our complicated multilayer
system, which is computationally intensive. Fortunately, very
similar results for V (x,z) are obtained with little effort by
approximating the true V (x,0) with the “bare” potential that
would exist in the TI is removed, that is, if d = λp = 0. At
distances less than c/ω from the gap in the gate, this bare
potential has the simple analytical form,

V (x,0) = V0

2
×

⎧⎨⎩
+1, x � −a,

− 2
π

arcsin (x/a ), |x| < a,

−1 x � a,

(35)

familiar from classical electrostatics. Its Fourier transform is
given by

Ṽ (kx) = iV0

kx
J0(kxa) , (36)

where J0(x) is the Bessel function of the first kind and V0

is potential difference between the two parts of the gate. The
tangential electric field corresponding to this potential,

Ex = V0

π
√

a2 − x2
, (37)

exhibits an inverse square-root divergence at the edges, which
enables the localized HP2 emission.

Carrying out the quadrature in Eq. (33) numerically, we
have calculated the components and also the amplitude of
the electric field E = √

E2
x + E2

z over an interval of x a few
|δ| in length and z varying from 0 to d. Our results for
E = E(x,z) for two doping levels, corresponding to λp = 0
(undoped SS) and λp = a (doped SS) are illustrated by the
false color plots in Fig. 5(c). These plots are superimposed on
perspective projections of the two slabs (doped and undoped),
which are placed next to each other for easy comparison. The
remaining parameters of the calculations are δ = −2.2d and
a = 0.1d. We see that a finite shift of the “hot stripes” at the top
surface z = d exists in the doped case. This seems to vindicate
our intuition but actually the situation is a bit more subtle.
The problem is that the momentum distribution of our source
[Eq. (36)] is very different from what we assumed it to be in the
beginning of our discussion of the GH effect. This distribution
is not narrow and not centered at some finite kx . Instead, it
has positive and negative kx harmonics of equal strength and
a long power-law tail at |kx | 	 1/a. The reason why the GH
shift persists in our case is the spatial separation of the kx

harmonics: due to the directionality of the HP2 propagation,
the stripes to the left (right) of the launching points are created
predominantly by negative (positive) kx . Since l has the same
direction as q = (kx,0), the stripes shift away from the origin
on both sides of the y axis. A formal derivation of this result
can be done by splitting the integral in Eq. (33) into the kx > 0
and the kx < 0 parts and identifying the relevant poles kx = qn

using contour integration methods.
From numerical experiments with different a, we found that

the largest shift of the stripes is obtained for a ∼ λp. This can
be explained by arguing that the shift is maximized when the
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characteristic kx ∼ π/a contributing to the integral in Eq. (33)
is close to the momentum π/λp at which l = lmax in Eq. (31).

Experimental detection of the “hot stripes” and their
doping-dependent GH shift is possible via the s-SNOM
imaging. This technique involves measuring the light scattered
by the tip of an atomic force microscope brought to the sample
and scanned along its surface [47,48]. Using clever signal
processing methods, it is possible to isolate the genuine near-
field component of this scattered light, which originates from
conversion of evanescent electromagnetic waves emanating
from the sample into free-space photons. In the proposed
experiment, the evanescent waves are due to the HP2 modes
launched by the split gate. The spatial resolution of the
s-SNOM imaging is set by the tip curvature radius R. For
typical R = 20–40 nm, it is barely sufficient to observe
the predicted GH shifts in hBN/G, Fig. 6(b). Nevertheless,
detecting the cumulative shift after several stripe periods
should be feasible. The prior success of s-SNOM imaging
experiments of surface plasmons and polaritons in graphene
and hBN structures [20,23–25,27,28,33,35] gives us a firm
confidence in this approach. Note that if a doped graphene
layer only partially covers the top surface of hBN, one literally
gets the situation depicted in Fig. 5(c), where the doped and
undoped regions are positioned side by side.

In the case of Bi2Se3 where the GH shift ∼ 200 nm
[Fig. 6(a)] is much larger, the spatial resolution of the s-SNOM
is even less of an issue. The main obstacle is the scant
availability of suitable THz sources. We are optimistic that
in a near future this problem can be overcome as well.

V. SUMMARY AND OUTLOOK

Recent experiments [8,14] have shown that coupling be-
tween Dirac plasmons and bulk phonons of bismuth-based TIs
should be strong. In this paper, we have studied this interaction
taking into account the anisotropic phonon spectrum of such
TIs. We have predicted that a TI slab can act as a tunable waveg-
uide for phonon polaritons, with the doping of the surface
states being the tuning parameter. In additional to the change
in dispersion, the phonon-plasmon coupling can cause measur-
able real-space shifts of the polariton rays. Similar phenomena
have been recently studied in artificial structures made by
stacking graphene layers on top of hBN. The present work
indicates that the TIs are a promising alternative platform
for realizing highly tunable, strongly confined, low-loss
electromagnetic modes in a natural material. Additionally,
while hBN/G waveguides operate in midinfrared frequencies,
Bi2Se3 and similar compounds extend the same functionality
to the technologically important THz domain.

We envision several directions for further work in this field.
One is to attempt a multisource coherent control of polariton
emission and propagation using ultrafast laser pulses. A variety
of such techniques has been developed [60] in the context
of THz polaritonics of LiNbO3 and LiTiO3. (Incidentally, a
theoretical proposal [61] of integrating graphene into such
materials would lead to polariton waveguides similar in
functionality and perhaps also tunability to those studied in
the present work.) Another intriguing direction is to explore
oscillating spin currents, which were predicted to accompany
charge density currents produced by Dirac plasmons [32].

It may be also interesting to study the effect of optical
hyperbolicity [19] on the high-energy bulk plasmons of the
TIs [62,63]. Finally, it may be worthwhile to investigate
new applications that can be enabled by tunable hyperbolic
polaritons. Harnessing such types of modes for hyperlensing
[64–66] or focusing [23,24] has been widely discussed. The
present work shows that the GH effect and its dependence
on doping and dielectric environment of the TI can be another
avenue for applications, for example, THz chemical sensing or
characterization of spatially inhomogeneous TI samples. We
hope our work can stimulate these and other future studies.
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APPENDIX: NEAR-FIELD SPECTRA

A fully realistic modeling of the s-SNOM imaging exper-
iments proposed in Sec. IV is an unwieldy task requiring a
repeated solution of the Maxwell equations for a system with
complicated material properties, a hierarchy of widely differ-
ent length scales, and no special symmetries. In this Appendix,
we present some results of less ambitious calculations that
simulate a simpler structure depicted in Fig. 1(b). Although no
split gate is present in this structure, the measured signal is still
expected to reveal characteristics of the collective modes. In
this case, these modes are excited by the sharp tip itself. Hence
the tip plays the role of both the launcher and the detector
of the HP3 modes. Unfortunately, this implies that only the
local response can be measured, which is a superposition of
responses due to a distribution of momenta up to qt ∼ 1/R

rather than one specific q.
We assume that the TI slab and the substrate are infinite

and uniform in x and y coordinates, so that the imaging
capability of the s-SNOM is irrelevant. Instead, the quantity
of interest is the frequency dependence of the measured
near-field signal s(ω). A few more explanations about our
calculational scheme are in order. We model the tip as a
metallic spheroid with the curvature radius R = 40 nm and
total length 720 nm. We use the quasistatic approximation
but include the radiative corrections included perturbatively.
This model [67,68] has been successful for simulating many
recent s-SNOM experiments, and should be especially suitable
in the THz domain where no antenna resonances or other
strong retardation effects [69] should appear. Our calculations
incorporate the so-called far-field factors [67–69], which are
expressed in terms of rP (q,ω) at q ∼ ω/c. This factors account
for the fact that the incident wave is originally created by a
far-field source and the scattered wave is ultimately measured
by a far-field detector. Finally, what we compute is not the
full scattering amplitude s but its third harmonic s3, which
is what experimentalists typically report. The idea is that
in the experiment the tip is made to oscillate at some low
frequency , so that s is periodic with this fundamental tapping
frequency. The third Fourier harmonic of s, which is s3, gives
a good representation of the genuine near-field signal.

Naively, one can think of s3(ω) as a weighted average
of the surface reflectivity rP (q,ω) over q. The weighting
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FIG. 7. (Color online) Simulation of the s-SNOM signal s3 for
Bi2Se3 slabs on a substrate with εs = 10. (a) Fixed μ = 0.29 eV and
different d . (b) Fixed d = 120 nm and different μ.

function has a broad maximum near q = qt , which in this
case is equal to qt = 0.025 nm−1 [the dashed lines in Fig. 4].
The presence of strong maxima of m rP due to collective
modes with momenta q � qt tends to enhance s3(ω). In a more
rigorous picture [68], the maxima of s3(ω) correspond not to
the resonances of the sample alone but to those of the coupled
tip-sample system. The coupling can decrease the resonance
frequencies by as much as [67–69] 10–20 cm−1 compared to
those seen in m rP maps.

Our results for Bi2Se3 slabs of various thickness d and
chemical potential μ are shown in Fig. 7. Pairs of distinct
peaks as well as smaller additional features are readily seen.
In each trace, the stronger and sharper peak is located close
to ω⊥

to,1 = 64 cm−1. The height of this peak decreases as d

decreases [Fig. 7(a)]. However, its position is independent of
d [Fig. 7(a)] or μ [Fig. 7(b)], which suggests that it is not
related to the dispersive HP3 modes. Indeed, we have verified
that this prominent peak is almost entirely due to the far-field
factor |1 + rP |2, which has a narrow maximum at ω⊥

to,1 where
rP ≈ 1.

Each of the doped samples also produces smaller peaks
in s3(ω), of which the most prominent ones are those located
near ω = 146 and 163 cm−1, the upper boundaries of regions B
and C of Fig. 3. The position and especially the strength of the
peaks is μ-dependent. As μ increases, the peaks grow in height
and gradually shift to higher frequencies, see Fig. 7(b). These
peaks are due to the surface modes: the n = 1 mode of region B
and the n = 0 mode just above region C, see Figs. 4(d) and 4(e).
The increase of the peak heights with μ can be qualitatively
explained by the increase of the absolute value of rP . The shift
in position is unfortunately more difficult to interpret without
a better understanding of the effective weighting function that
relates m rP (q,ω) to s3(ω).

While μ > 0 traces are due to combined action of plasmons
and phonon polaritons, the μ = 0 one is expected to reveal the
phonon-polariton response. Interestingly, that trace exhibits a
sharp dip at ω = 163 cm−1, see Fig. 7(b). We have checked
that this dip is not caused by the far-field factor. However, its
relation to the HP2 modes of Fig. 4(d) is not obvious to us.

The thickness dependence of s3 is illustrated in Fig. 7(a).
As one can see, the near-field peak at ω = 163 cm−1 has a
broad high-frequency side, which systematically expands as d

decreases. This trend reflects the blue shift of the n = 0 mode
dispersion in thinner slabs, compare Figs. 4(e) and 4(f).

Overall, our simulations predict that the near-field response
of Bi2Se3 slabs should exhibit systematic spectral changes with
doping and thickness that are measurable by the s-SNOM.
Such experiments may provide insights into properties of
tunable HP3 modes of these novel systems.
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F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera,
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[40] T. Stauber, G. Gómez-Santos, and L. Brey, Phys. Rev. B 88,

205427 (2013).
[41] R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, Phys. Rev.
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