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Electromagnetic interaction between a sub-wavelength particle (the “probe”) and a material surface
(the “sample”) is studied theoretically. The interaction is shown to be governed by a series of
resonances corresponding to surface polariton modes localized near the probe. The resonance param-
eters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity
of the material. Calculation of such resonances is carried out for several types of axisymmetric
probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is devel-
oped, capable of handling cases of large or strongly momentum-dependent surface reflectivity.
Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered
with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves,
i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape
and optical constants of the model. For less resonant materials such as silicon oxide, the dependence
is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic

@ CrossMark

approximation with radiative damping included perturbatively. © 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941343]

I. INTRODUCTION

The problem of electromagnetic interaction between a
material surface and a small external particle is fundamental
to numerous physical phenomena and spectroscopic techni-
ques, including surface-enhanced Raman scattering, surface
fluorescence, adsorbed molecules spectroscopy, and near-field
microscopy. From the point of view of electromagnetic
theory, it is a special kind of scattering problem where the
scatterer resides in a uniform half-space, e.g., vacuum, while
the effect of the other half-space—the sample—is represented
by the surface reflectivity r,(q,®). The reflectivity may
depend on the in-plane momentum ¢, frequency , and polar-
ization o =P or S. Far-field optics describes the regime
g < w/c. Momenta g > w/c, which correspond to in-plane
distances Ap much smaller than the diameter c¢/w of
Wheeler’s radian sphere,' are the domain of near-field optics.

This work is motivated by recent advancements of the
scattering-type near-field optical microscopy>> (s-SNOM),
which has become one of the leading tools for measuring op-
tical response of diverse materials on spatial scales as short
as 5-20nm. Thanks to technical improvements and the de-
velopment of tunable and broad-band infrared sources,*”’ the
s-SNOM has provided insights into properties of complex
oxides,* ' organic monolayers,'®> graphene, and other two-
dimensional crystals.>'¢'®

The schematics of a s-SNOM experiment is shown in Fig.
1(a). A sharp elongated probe is brought into close proximity
of a sample and is illuminated by an external electromagnetic
wave with electric field E.e . Its interaction with the probe
creates scattered waves e ==ior g — (v y) with arbitrary
in-plane momentum ¢, including large-g evanescent waves,
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K =1/(w/c)* — ¢* ~ ig. Multiple reflections of these waves

inside the probe-sample nanogap cause small but important
changes in the total radiating dipole moment pe~'" of the
probe. These changes are detected by measuring the far-field
scattering signal as a function of the probe coordinates. This
signal is proportional to the probe polarizabilities

=P /Ey 1 =pYEL, (1)

which have the dimension of volume.

The goal of this paper is to study the properties of func-
tions - and I For simplicity, we consider only axisymmet-
ric probes. We are especially interested in probes of large
aspect ratio. In the experiment, strongly elongated probes are
used because of high longitudinal polarizability y*, which
promotes an efficient coupling between evanescent and far-
field radiation modes—the “antenna” effect—making the
detection of the near-field component possible.

We assume that the length of the probe is much smaller
than the diameter of the radian sphere ¢/, so that the scat-
tering problem can be treated within the quasistatic approxi-
mation. The probe shape we examine the most is a prolate
spheroid. At first glance, both of these assumptions are unre-
alistic because actual probes are not spheroidal and their
length (typically, tens of um) can often exceed ¢/w for w in
infrared or optical frequency domain. Yet this model was
previously found to yield quantitative agreement with the s-
SNOM experimental data for many materials. This apparent
agreement can be expected in cases where the surface reflec-
tivity r,(g, ) of the sample is not too large, and the aspect
ratio of the probe does not vary greatly from one experiment
to the next. Under such conditions, the gross features of the

© 2016 AIP Publishing LLC
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FIG. 1. (a) Schematics of a s-SNOM experiment in which a polarizable probe is used to examine a sample characterized by the surface reflectivity r,(q). The
external electric field E., incident on the system creates evanescent waves inside the probe-sample gap. This modifies the dipole moment p of the probe, which
is detectable by its far-field radiation. (b) The real-space potential distribution for the first four eigenmodes of the probe polarizability z* computed numeri-
cally for a spheroidal probe of half-length L = 25a. The axes are the x- and z-coordinates in units of @, the curvature radius of the apex of the probe. The
probe’s location is represented by the uniformly shaded beige area in the upper left corner of each panel.

s-SNOM scattering amplitude should indeed have only a mod-
est dependence on the exact shape of the probe and other ex-
perimental parameters. However, fine details of the scattering
amplitude are shape-dependent even in this case'® and they
may be discerned as the instrumental resolution improves.
Furthermore, for samples with high reflectivity, even the gross
features become sensitive to the shape and size of the probe.
To demonstrate these trends in this paper, we study the longitu-
dinal and the transverse polarizabilities in great detail. We will
ignore the S-polarization reflectivity rs(g, ) because for most
materials it becomes very small at ¢ > w/c. Hence, y” are
functionals of the remaining reflectivity function rp(g, @) and
the probe-sample distance z;,. We show that such functionals
can be quite complicated, especially for strongly momentum-
dependent reflectivity typical of layered and/or ultrathin mate-
rials. Therefore, it is good to start with a simpler case of a bulk
medium with a g-independent reflectivity

ﬁ(w) = "P((Za (JJ), 2

so that for a fixed z;, and w, the probe polarizabilities are
functions of a single parameter f.

It should be clarified that while the absolute reflectivity
may not exceed unity for the radiative modes ¢ < w/c
because of energy conservation, for the evanescent ones g >
/c it is allowed do so. Large f’s are indicative of weakly
damped surface modes in a material, e.g., surface phonons in
dielectrics or surface plasmons in metals. We use the umbrella
term “surface polaritons” for all such modes. The energy loss
due to evanescent modes is governed not by |f| but by Im f8
which must be nonnegative at ¢ > w/c. (To compute the
losses, Im f§ needs to be integrated over g with a weight that
depends on the probe-sample distance.?®) In the limit of van-
ishingly small dissipation, Im ff(®) tends to a J-function peak
at the mode frequency. In practice, Im f# (and consequently
|[A]) as high as 10-20 is possible for well-ordered crystalline
solids, e.g., aluminum oxide Al,O5; possessing sharp phonon
modes [Fig. 2(a)]. Therefore, a robust theoretical formalism
must be capable of computing functions y”(f) in the entire
upper complex half-plane. To meet this requirement, such a
formalism must correctly reproduce the analytic properties of
functions y”(f8). We adopt a version of the generalized spec-
tral method (GSM) in which the total field outside the probe

and sample is decomposed into eigenfunctions of an auxiliary
homogeneous problem, and the role of eigenvalues is played
by the reflectivity 5, the so-called f-method in the terminol-
ogy of Ref. 21. (Similar formalism is also known in the theory
of conductivity of heterogeneous media.***) Following Refs.
21-23, one can show, for the quasistatic case, that for any
probe-sample distance zg, > 0 functions x”(f) are meromor-

phic. In other words, they admit the series representations

i R
7 (B) ;ﬁi—ﬁ’

v=_lor]|, 3)

where the sequence of poles ff; has no accumulation points,
and so, no upper limit. Additionally, we will show that if the
probe is made of an ideal conductor and no other sources of
dissipation are present, then the poles / > 1 and the resi-
dues R} > 0 are real. If the dielectric constant ¢, of the
probe is considered fixed, R} and 8 depend only on the geo-
metric factors: the probe shape, size, and its distance zg, to
the surface. All these results comply with the general theory
of the -method developed in Ref. 21.

The poles 5 grow exponentially with k but their ratios
with R are bounded and satisfy the sum rule

>

k v
2 = 10 “)
k=0 By

Here, yf = z”(f = 0) is the polarizability of an isolated probe,
which does not depend on zg,. These properties ensure conver-
gence of the series (3) at any f # ;. On the other hand, if a
material-specific f(w) approaches any of f5;, a resonant peak in
% and ultimately, in the near-field signal, would be observed.
The divergence of y” at a given pole implies that a non-
zero dipole, i.e., free oscillations may exist in the absence of
any external field. Physical intuition about this regime is
aided by the method of images, according to which real
charges Q; on the probe interact with their virtual images
—pQ; inside the sample and for f > 1 achieve a runaway
positive feedback. However, one must keep in mind that
these eigenmodes arise only in the auxiliary problem where
the sample is substituted by a fictitious material of reflectiv-
ity 3. The divergence never actually happens in real materi-
als due to their inherent dissipation, which enters in the form
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FIG. 2. (a) Near-field reflectivity /(@) of bulk Al,O5 discussed in Sec. VI. Whenever the condition Reff(w) = ff/ is met, a local maximum appears in Imy".
The frequencies of three such resonances are indicated by the dashed lines. (b) In the complex plane of f3, the poles 5/ lie on the positive real axis, while real
materials trace curves in the upper half plane, shown in red. (c) A full electrodynamic treatment predicts that the poles shift into the lower half-plane and an

additional nonanalyticity in the form of a branch cut [1, co) appears.

of a positive imaginary part in § as shown in Figs. 2(a) and
2(b). The resonances are further damped due to the shifting
of the poles f5] to the lower complex half-plane when radia-
tive corrections are considered [Fig. 2(c)], as discussed in
more detail in Sec. VIII. For a generic probe that ends in a
rounded tip, the amplitude of the eigenmodes is the greatest
near the tip, as illustrated in Fig. 1(b) for a spheroidal probe.
Overall, this physical picture of tip-localized eigenmodes is
an elegant and economical approach to understanding the
mechanism of probe-sample coupling.

The main objective of the present work is to elucidate the
analytical properties of the coefficients ff; and R}. We focus on
the practically interesting case where the probe length L is
much larger than the curvature radius a of the probe tip. We
show that for such strongly elongated probes three regimes can
be distinguished. The first is the short-distance limit zg, < @
where the behavior of f3; is universal. We show that it can be
derived from the known exact solutions for spherical particles
(Sec. II). The second is the long-distance limit, z;, > L, where
the probe acts as a point-dipole and the functional form of the
resonance parameters is again universal. The remaining third
regime a < z;, < L is the most nontrivial one where f{ and
R} depend on the probe shape.

For all the probe geometries, we study the poles 5 grows
exponentially with &, and so for moderate values of f it is per-
missible to truncate the series in Eq. (3) after one or a few
leading terms. This truncation is effectively done in simplified
models®**?7 of the probe-sample coupling (see Sec. IX).
However, this simplification may lead to qualitatively and
quantitatively wrong results at small z, and/or for large f.
The latter characterize highly polar materials such as Si0,*® (a
commonly used substrate) and the already mentioned Al,O;
(an important reference material of infrared optics).

Besides addressing analytical properties of the probe polar-
izabilities, we also discuss methods for their numerical computa-
tion. For the simplest case of a momentum-independent
reflectivity, the calculation can be made virtually instantaneous
with the help of Eq. (3) once the first few 5] and R} are com-
puted and stored. For specific case of a spheroidal probe, this cal-
culation can be further accelerated using the spheroidal

harmonics basis instead of the standard boundary element
method (BEM). Since the number of relevant poles and residues
is relatively small, for further convenience, they can be fitted to
analytical forms, see an example for L = 25a spheroidal probe
in Ref. 29. The speed becomes a crucial consideration if the cal-
culations have to be done repeatedly. An important example is
extracting optical constants of the sample from near-field spec-
troscopy data by curve-fitting algorithms.'” One may anticipate
to find a considerable speed-up if this inverse problem was
treated using the GSM. The acceleration occurs because the
unknown physical parameter f = () of the sample and the
geometric parameters f3; and R} of the probe stand clearly sepa-
rated. The GSM also applies for momentum-dependent rp(g, ),
e.g., for layered samples; however, in the current implementa-
tion, the speed-up compared with the BEM is less significant.

The remainder of the article is organized as follows. In
Sec. II, we analyze the universal aspects of the short- and the
long-distance regimes. In Sec. III, the spheroidal probe model
is considered. The equations for the poles and residues are pre-
sented and the results of their numerical solution for the case
of a g-independent rp are discussed. In Sec. IV, we explore the
effects due to a weakly g-dependent surface reflectivity. In
Sec. V, we discuss caveats in the simulation of the s-SNOM
experiment. In Sec. VI, we apply our numerical method to
computing the near-field response of bulk Al,Os, a strongly
polar material. In Sec. VII, we perform the calculation for the
same Al,Oj3 substrate but covered with graphene, which is a
system with a strongly g-dependent reflectivity. In Sec. VIII,
we discuss the effects of the probe shape and retardation on
these calculations. We also do a similar comparison for SiO,, a
less polar material. In Sec. IX, we discuss prior theoretical
work and close with concluding remarks. Technical details of
the derivations and the source code of our computer program
are available in the supplementary material.

Il. PROBE-SAMPLE INTERACTION IN SHORT- AND
LONG-DISTANCE LIMITS

We start with a qualitative analysis of the short-distance
regime defined by the condition z;, < a. In this limit, the
structure of the localized polariton modes can be understood
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intuitively by analogy>’ to electromagnetic modes in an open
cavity. The probe-sample gap can be approximated by a cav-
ity with height z(p) ~ z4, + (p?/2a) gradually increasing as
a function of the radial position p. For simplicity, let us
assume the surface reflectivity of the probe is equal to unity,
as for an ideal conductor. To have free oscillations exist in
such a cavity, the surface reflectivity 5 of the sample must
exceed unity, compensating for the exponential decay of the
evanescent waves. The condition of the self-sustained oscil-
lations is fexp(2ik*(p)z(p)) = 1. Accordingly, the local ra-
dial momentum ¢(p) ~ —ik*(p) = log § / 2z(p). Imposing
the quasiclassical Bohr-Sommerfeld quantization condition
I dpq(p) = n[k 4+ O(1)] for mode number k, we obtain

8z
log fi == [k + 0(1)]\/?, Zip < a. 5)

The mode is localized at distances p=, /Zipa . The validity of
this qualitative analysis is supported by the exact results for
spherical particles. For the v =|| part, the following compact
formulas for the poles and residues are available:**2

ﬁ/!(“) _ e(2k+3)oc’ (6)
Rl(x) = 4(k + 1)(k + 2)a* sinh’«, 7

where
o = arccosh (Z% + l). ®)

It is easy to check that Egs. (5) and (6) agree in the limit of
small o. (Dependence of ﬁ,ﬂ‘ on o is qualitatively similar; how-
ever, the residues scale as Rkl ~ ka’o? at small oc.29) It is rea-
sonable to think that the behavior of /() at « < 1 should be
common for any shape ending in a rounded tip. As long as the
modes are localized at p < a, they should be affected weakly
by rest of the probe. This hypothesis is supported by numeri-
cal calculations presented later in this article.

Consider next the long-distance limit zg, > L. In this
case, the probe-sample interaction can be analyzed using the
multipole expansion. For the lowest resonance k=0, it is suf-
ficient to include only the dipole term. The dipole moment of
the probe is given by p” = ygEy, where E = EV + E ; is
the total field at the probe position and Ej , is the field induced
by the image dipole. In particular, Ejy = fip*/4z;, and
EiHnd = ppl / SZfip. Solving these equations for p” and casting
the result for y = p”/EY , in the form (3), we get

ext

é ~ 4zfip/xé, Ry ~ 4zgp, (9a)
I~ 823,/ Rl ~ 823, (9b)

For the sphere y§ = a’, so that the last pair of equations
agrees with the exact result (6) and (7). The £ > 0 resonances
are dominated by higher-order multipoles. The principal de-
pendence of the poles and residues on o is expected to be the
same as for the sphere, i.e.,

2%+3
v [ vy 2 .
Y~ ( ;P) , R~ c_”(k+ 1)(k+ 2)23ip if zgp > L,

(10)
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where ¢ =1 and ¢l = 1/2. The forms for RY are verified
numerically in Sec. III. Equations (9a), (9b), and (10) imply
that in the large zgp limit the sum rule (4) is saturated by the
k=0 mode alone.

The case of a g-dependent reflectivity can be treated
similarly. Thus, for k=0, one finds?®

v

20

XV W, Ziip ) = v ) (1T)
(4 Zip) 1 — %08 (@, zip)
g"(,2q) = “”J re(q, 0)e Fogidg.  (12)
0

Note that the integral in Eq. (12) is dominated by the in-
plane momenta g ~ 1/z4,, which we assume to be well out-
side the light cone, ¢ > w/c. At z3, > ¢/w, this condition
no longer holds and one has to include retardation effects
(see Sec. VIII).

In summary, in this section, we presented arguments
that the limiting case formulas (5) and (9a)—(12) apply to
perfectly conducting probes of arbitrary shapes. For the
sphere L =a and for probes of modest aspect ratio L =a,
these formulas match by the order of magnitude at z;, ~ a.
However, for strongly elongated probes L > a, an additional
intermediate regime a < z, < L exists which requires fur-
ther study. The simplest example of such a shape is the pro-
late spheroid and we discuss it in Section III.

lll. INTERMEDIATE DISTANCES: SPHEROIDAL PROBE

Unlike the problem of a sphere, that of a spheroidal
probe cannot be solved analytically. However, we can take
advantage of the separation of variables in prolate spheroidal
coordinates (Fig. 3), which enables a more efficient numeri-
cal solution.* In this coordinate system, the spheroid is a
surface of constant £ = L/F = &,. The focal length F, the
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FIG. 3. The prolate spheroidal coordinate system. Contours of constant & (1)
are confocal spheroids (hyperboloids). The unit vector 7 and polar angle 0 of
spherical polar coordinates and unit vectors p and z of cylindrical polar
coordinates are also shown for reference.
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major semi-axis L, the minor semi-axis W, and the curvature
radius a of the spheroid apex are related by

F=VI>—W?,

This implies &, = [1 — (a/L)]_l/z. We assume that the major
axis of the spheroid is along the z-axis. If the distance
between the spheroid and the sample is zp, the sample sur-
faceis at z = —L — zgp.

We consider the quasistatic limit where the scalar poten-
tial has the harmonic time dependence o e, Its spatial
part must obey the Laplace equation in the domain outside
both the spheroid and the sample. Therefore, it can be
expanded into spheroidal harmonics, which are products of
the generalized Legendre functions of the first and second
kind P}"(x) and Q}'(x). Here, m = 0, =1, *2, ... is the z-axis
angular momentum and / must be greater or equal to |m|. As
shown in Ref. 29, the expansion coefficients A”; can be
related to the charge distribution on the spheroid. For exam-
ple, A" is proportional to the total oscillating charge of the
spheroid oc e, For a passive probe, A" = 0. The /=1
terms determine the components of the dipole moment
induced on the probe

a=W?/L. (13)

. 2
px —ipy =< FPA'). (14)

1
pz:__F3A017 3

3
For each m, the set of coefficients A”; satisfies the infinite-
order system of linear equations

o0
S (A — Hp)A™y = b, (15)
=1

where A}, and Hjy are defined by Eqs. (21) and (24) below.
According to Eq. (14), to find p, we need to consider only
m =0 and m = 1. The requisite coefficients »"; on the right-
hand side of Eq. (15) are given by

4
by = *gEz, (16)

4 1
b = g(Ex —iEy)), b= 3 (Ex+iEy).  (17)
If the external field E. = E % + E,y + E.Z is uniform, all
other b”; vanish. Once we solve the system (15) for m =0,

we can find the transverse polarizability from

4 Aol
=t =—F . 18
x ol 7, (18)

In turn, the solution for m =1 would give us A'y and

| _ Px— 1Py

8 . Al
= =_F 19
Y TE—iE, "9 b, (19)

Equation (15) we wish to solve can be cast in a matrix form
(A" —H)A" =b". 20)

Matrix A" is diagonal, A" = A}"0;, where

J. Appl. Phys. 119, 054305 (2016)

d 1
op(6) g2l
d 1 ’
dé() Pl (50)

"1:(_1)’” 4 €
P20 Legy— 1| P PI(&)

2n

and e, is again the dielectric constant of the spheroid. If the
probe is made of an ideal conductor, €;, — oo, then Eq. (21)
simplifies to

4 0M&)
20+ 1PM(&)

A= (=1)" (22)

All these A}" are actually positive numbers because the factor
(—1)" is compensated by the same factor in the definition of
07" (&y)- The behavior of A}" at large / is approximately expo-
nential, as can be deduced from the asymptotic formula

()

7’(50) ~ ne—(ZH—l)ao

(%o) ’

In Sec. VI, we also consider the case where €, is a finite
positive number. In this case, the decay of A}" at large / is
also exponential but with a different factor in front.

The elements of matrix H in Eq. (20) are given by

(="

oy = arccoshéy. (23)

v
~3

00 o d
Hy = 27‘CJ rp(q,w)IH%(qF)I,,%(qF)e Zq-p;q, (24)
0

where [,(z) are the modified Bessel functions of the first
kind and

Zp = zp + L. 25)

As mentioned in Sec. I, the reflectivity rp(gq,w) may have
strong peaks at the dispersion curves w(g) of the surface
polaritons of the sample. In practice, rp(g, w) is always finite,
so that the integrand in Eq. (24) is well-behaved and exponen-
tially decreasing. A fast method of computing H;y numerically
is explained in the supplementary material. In the remainder
of this section, we will assume that 7p(g, @) is g-independent.
We will show that the polarizabilities of the spheroidal probe
are meromorphic functions as stated in Sec. I. We will also
present our analytical and numerical results concerning the
behavior of their poles and residues.

If rp(q, ) = f = const, then matrix H factorizes H =
BH and Eq. (20) becomes

(A" — BH)A™ = b". (26)

A particular case of this equation for z;, = 0 was previously
derived in Ref. 33. In general, Eq. (26) implies that A" as a
function of f§ has poles f§{ that are the solutions of the eigen-
value problem

(A" — B/ H)uy = 0. 7)

~1/2

The substitution u; = (A™)™ /v, transforms it to

vi =B/ My, M= (A")""PH(AM)TVE (28)
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Since all A}" are assumed to be positive, matrix M is real and
symmetric, and so its eigenvalues (/)" are real and its eigen-
vectors v; can be chosen to be orthonormal. Assuming v,
forms a complete basis, the solution A” of Eq. (26) can be
sought as a linear combination of the corresponding uy. Taking
into account Egs. (18) and (19), we arrive at Eq. (3) with
Rl/

B_g = X5|(Vk)0|2 )
where, once again, m=0 for v = 1, m=1 for v =||, and
(Vi) is the first component of vector v. The completeness of
the basis entails Zk|(vk)0|2 = 1, leading to the sum rule (4).
The explicit formulas for yg that follow from Egs. (22) and

v

dm—+1
o =35

- F 2
g AT I (29)

(29) are
L3 [11 (50+1) 1]1 1% 308)
‘o = —= |=zIn - =—, a
W38 Mg 1) ) At
213 1 N 1%
h= o | —-1n(§°+ ) = (0n)
33|21 2 \& -1 4nl

where V = (4n/3)L?a is the volume of the spheroid and L”
are the depolarization factors of the spheroid**

[l (53 _ 1) B éoln(éz - i) . 1}, 31)

1-L*
2

Ll =

(32)

These formulas should be familiar from classical electrostatics
or from the theory of light scattering by small particles.** For
strongly elongated spheroid L > a, &, ~ 1, they yield

L~ %L (33a)
X0 = 3n(4L/a)’
217 (33b)
0 — 3

In Sec. I, we stated that the sequence f5{ may not have
accumulation points. For the present case of a spheroidal
probe, this can be proven directly from the properties of ma-
trix M. The first step is to show that the matrix elements of
H obey the asymptotic bound

InHy < —(1 41 + 1)arccosh (pr) (34)

at large [ and /. This can be established using the saddle-
point integration in Eq. (24). Together with Egs. (22) and
(23), this bound ensures that at z;, > 0 the high-order matrix
elements of M decay exponentially

InMy < —(I+1+1) [arccosh (coshoc + Z%") — 4 )

Here, o [Eq. (8)] parametrizes the probe-sample distance zp.
Hence, the double series > ,M% = trM? is convergent.
Considering the identity
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(B2 =trM? < o0, (35)
k=0

we see that the accumulation points are ruled out. On the
contrary, trM? diverges at Ziip = 0 and one accumulation
point does exist: f=1. For the sphere, this can be found
directly from Eq. (7) by setting o =0.

In the spherical limit £, — oo, an analytical solution of
our equations exists although it is not obvious. We deduced
the form of this solution from the method of images.*” At fi-
nite &y, we resorted to solving the problem numerically. As
already mentioned, due to an exponential growth of f5; with
k, only a first few of such poles are usually needed for eval-
uating the polarizabilities in question y”. To compute such
B¢ and the corresponding R}, we used the following proce-
dure. Given L/a and «, we would generate an N x N matrix
made of the first N rows and columns of the full infinite ma-
trix M. We would diagonalize this finite-size matrix by
standard library routines.>> The obtained eigenvalues ap-
proximate the first N poles ;. We would gradually increase
the matrix size until the poles we are interested in would
show no variation as a function of N within the desired ac-
curacy. The larger L/a and the smaller o, the higher N was
needed. We found this procedure workable as long as N did
not exceed about 500. As a rule, the higher eigenvalues of
larger matrices would either fail to reach the accuracy or
would show an w«-dependence inconsistent with physical
principles. This behavior stems most likely from roundoff
errors. In principle, one can combat them by utilizing
higher-precision arithmetic but we did not pursue this route.
For L = 25a, the computation of the first nine poles with at
least two-digit accuracy was possible for o« > 0.08, i.e.,
Ziijp > 0.003a. The residues R] were obtained from the
eigenvectors of the truncated matrix M using Eqgs. (29),
(30a), and (30b). In the interval 0 < o < 0.08, we used the
linear  interpolation  between /(o =0.08)  and
Bllx=0) = 1.

The results of these calculations are presented in Fig. 4
for the first four modes, k=0 to 3. The solid lines in panels
(a) and (c) show ﬁj and ﬂﬂ, respectively, as a function of o.
The corresponding quantities for a sphere are shown by the
dashed lines. The residues R} /a* are plotted in panels (b)
and (d). The first nine pole-residue pairs of the spheroid for
v = 1 have also been fitted with an error of 5% or smaller to
a combination of elementary functions in the range
0.003a <z, < 10a. The fitting formulas and their coeffi-
cients are cataloged in Ref. 29. The residue Ry behaves dif-
ferently from the others because it was constrained to satisfy
the sum rule (4). Using these formulas, one can find the
response = with negligible computational cost for any ()
as long as its value is not extremely large. Note that although
these results are for perfectly conducting spheroids €, = oo,
calculations for arbitrary finite €;, can be done in the same
way except one has to use Eq. (21) instead of Eq. (22).

Let us now compare the obtained dependence of 5 on
ziip With the limiting asymptotic behavior predicted in Sec.
II. First, at z3, < a, the poles of the spheroid approach that
of a sphere, as expected (see Figs. 4(a) and 4(c)). The other
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limit is zi, > L, where the point-dipole formulas (9a) and
(9b) should apply. In Fig. 4, it is seen that the lowest eigen-
value of both shapes indeed have the correct behavior. The
intermediate regime a < zip, < L is the most nontrivial one.
We argue that in this regime function ﬂd‘ (zip) behaves as

By (zip) = cIn(zip/a), a <zip <L, (36)
with some coefficient ¢ ~ 1 independent of L. To arrive at
this formula, we first find bounds on ﬁé using the following
theorem. Consider two perfectly conducting probes of differ-
ent sizes. If the surface of one probe can be inscribed into
the other, then the first probe must have a larger ;. This
statement is physically natural because self-sustained oscilla-
tions around the smaller body require a larger compensation
from the surface reflectivity (cf. Sec. II). It can also be pro-
ven mathematically from the variational principle.?'® To
place bounds on ﬁé of the spheroid, we can consider two
other probes, a larger one and a smaller one. We get

(c]one,u < ﬁ(l; < ﬁ(s)s,u’ (37)

where f;"" is the lowest pole of a cone with a vertex touch-
ing the sample and enveloping the spheroid; ;" is the low-
est pole of a spheroid of shorter length L = z4,. It can be
shown®”? that 5" ~ (1/m)In(zp/a). As for the smaller
spheroid, the point-dipole formula should apply by order of
magnitude, BSS’L ~ 6In(zgp/a), cf. Egs. (9a) and (33a). Since

the functional form of these bounds coincides with Eq. (36)

Ztip/ @

up to numerical coefficients, we argue that f3y (zp) should
obey the same equation as well. The graph shown in Fig.
4(a) is consistent with this prediction. However, due to nu-
merical limitations, L/z;, and zj,/a could not be very large
in our simulation and we could obtain only a crude estimate
1 < ¢ < 3 of the coefficient c¢. The poles ﬁLI of the in-plane
polarizability, which are plotted in Fig. 4(c) as a function of
o, also show crossovers among three regimes (short, long,
and intermediate distances) and can be understood in a simi-
lar way.

The behavior of the residues R} is more difficult to ana-
lyze. At large distances zg, > L, the residues of the spheroid
approach those of the sphere [Eq. (10)]. At small distances,
where the poles behave as Infs; ~ (2k + 3)a, the polarizabil-
ity is determined by a large number ~1/o of terms in the
pole-residue series. The sum rule (4) implies that the sum of
these dominant residues must be of the order of g for each
shape. Indeed, the residues of the sphere, which have the
form Rj o kao? and R) o (k + 1)(k + 2)a%03,% obey this
requirement. The residues of the spheroid are always larger
than those of the sphere, consistent with the higher yg. The
intermediate-distance behavior of R, defies an obvious char-
acterization. It is intriguing that at small distances only the
residues are affected by the aspect ratio of the probe, while
at large distances only the poles are altered.

Information about the probe-sample coupling comple-
mentary to the properties of the poles and residues can be
obtained by examining the potential distribution of the polar-
iton modes in real space. The examples for the L. modes are
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depicted in Fig. 1(b). The potential is strongly peaked near
the tip of the spheroid, demonstrating the localized nature of
near-field coupling. Note that the number of times the poten-
tial changes sign along x is equal to k.

IV. MOMENTUM-DEPENDENCE OF THE
PROBE-SAMPLE COUPLING

A simple physical picture of the s-SNOM that served as
an important insight in the early days of the field and still
remains popular today is the notion that the probe couples
predominantly to momenta ¢ ~ 1/a. Accordingly, the
s-SNOM signal is collected from a very small region of size
~a directly underneath the tip. Modern applications of
s-SNOM to two-dimensional and layered systems require
going beyond this oversimplified picture because the
g-dependence of the reflectivity rp(w, ¢) of such systems can
be very sharp due to presence of dispersive collective modes
(Sec. VII). Recall that for a momentum-independent reflectiv-
ity S5 [Eq. (2)], the poles and residues of the polariton eigenm-
odes are determined solely by the permittivity and geometry
of the probe. Unfortunately, for a g-dependent reflectivity,
such a clean separation of the probe and sample properties in
the eigenproblem is not possible. While one can still define
the eigenmodes by suitably modifying Eq. (3), the corre-
sponding poles and residues will be, in general, complicated
functionals of rp(w, ¢). However, if the ¢-dependence of the
reflectivity is weak, it can be treated as a perturbation, and
the sample-independent resonant modes are retained. As we
show in this section, in this perturbative case, one can pre-
cisely define the probe-sample coupling as a function of ¢
and the “dominant” momentum as a function of z.

Consider a small g-dependent correction to the reflectivity

rp(q) = f+ ore(q). (38)

The kth pole 5 of the probe-sample eigenmodes is a func-
tional of rp. The key question is how this pole is affected by
the nonlocal correction to rp. The answer can be written in
terms of —GJ(q,zip), the first variational derivative of
Bilrp(q)] with respect to rp

o0

OB (zip) = —j G/ (q.20p)0r0()dg. (39)

0
This is the desired relation to the leading order in orp. A few
general properties of function G} at ¢ < 1/zg, can be estab-
lished. First, this function decays exponentially at large ¢

Gy (q, zip) ~ e 24, (40)

This is so because the probe-sample interaction is mediated
by multiple reflections of evanescent waves (Sec. I) and the
shortest distance such waves have to travel is 2z;,. Next, it is
easy to see that G} is normalized

J G (g, zip)dg = 1. (41)
0

Using a variation principle, one can also show that for a per-
fectly conducting probe G} (g, zp) is nonnegative. Therefore,
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functions GY(¢, zip) can be considered weight functions for
the perturbation drp(g). To put it another way, this set of
functions quantifies the momentum dependence of the probe-
sample coupling. Below we show that the properties of these
functions paint a much more nuanced physical picture than
the naive idea that the coupling is maximized at a single mo-
mentum ¢ ~ 1/a. However, if one insists on characterizing
the entire distribution of relevant momenta by a single num-
ber, the logical candidates are the average momenta

g = j G (> 20)qda. “2)
0

The idea is that unless G{(q, zjp) has a complicated structure
or a slow decay, g{ should play the role of a characteristic
momentum that determines kth polariton pole f;.
Accordingly, we may expect that 1/g; should give an
improved estimate of the spatial resolution of the probe in
the context of near-field imaging by s-SNOM. Interestingly,
gy can be found by differentiating 8 (zp)

—v 1 0 v
Qi (2ip) =5 6z—ﬁplog By (43)

To obtain this formula, consider first a sample with a g-inde-
pendent reflectivity f§ and let the probe-sample separation be
Zip = z + dz. This system is equivalent to another one: the
probe separated by zi, = z from a fictitious two-component
medium composed of a vacuum layer of thickness dz plus
the original sample. The surface reflectivity of such a two-
component medium is g-dependent, rp(q) = fe 24, so
that it has the form (38) with drp(q) = —2¢fidz. Evidently,
such a orp(q) shifts the resonant pole from f = f/(z) to
p=p(z+9z), ie., causes a differential change Jf;
= (0P} /0z)dz. Substituting these relations into Eq. (39), we
get Eq. (43). Note that as f§; rises more steeply with z;, for
larger k, g} increases with k.

An equivalent description of the effect of a g-dependent
perturbation is that it induces a correction to the surface
reflectivity. The effective reflectivity f is different for
each k and v

o0
(U= p-o = | Gl mmnad @)
0
The corresponding polarizability y” is given by
[o.¢]
v Ry
L= Z v ¢ v,eff * (45)
k=0 Pr = Pk

In the following, we focus on function G{(qg,z,) because
k=0 is the dominant resonance at all but very small zgp.
Actually, the large-distance limit of this function has the uni-
versal form

G(g,zip) = 4zgpq e 27, 24y > L, (46)

same for both v. Equation (46) follows from Egs. (11) and
(39) and is consistent with the surmised large-g behavior
(40). As one can see, Eq. (46) gives G{(q,zip) that is
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normalized, nonnegative, and has a single maximum at
q = 1/zp. The average momentum is gf =~ 3/(2zp).

In the intermediate-distance regime, functions GY(q, zp)
are not expected to be universal. The specific example we
treat in detail is again the conducting spheroidal probe.
Combining Eq. (43) with the results of Secs. II and III, for
the strongly elongated spheroid, we obtain the following:

(azip)'/? Zip K 4,
7 -
_ 1 N 2Ztip log (% o a< g K L (47)
Qé_ (Ztip) 27
Ztlp . L
—3 N Zup > L.

Since the left-hand side has the physical meaning of the spa-
tial resolution of the probe, we expect it to monotonically
decrease as z;, decreases. Therefore, the length scale L
appearing on the second line of Eq. (47) should be of the
order of L /31log(L/a). The presence of a large logarithmic
factor log(zip/a) in the intermediate-distance regime a <
Ziip K L indicates that function Gy (¢, zip) has a considerable
weight at ¢ parametrically smaller than 1/zg,. In other
words, a strongly elongated spheroidal probe senses electric
fields beyond its immediate vicinity p < zjp. (A similar point
was made previously in Ref. 28.) As L/a decreases, L comes
close to a, and this intermediate regime disappears. For
example, the sphere acts essentially as a local probe.

The calculation of G}(q,zip) for the spheroid can be
done as follows. Applying the first-order perturbation theory
to the linear system (26), one finds

Ty’
u, Hu,
G (4 7iip) = —=— (48)
(4 Zi) quuk
where H' is the matrix with elements
/ 2n —2¢z,

Once the eigenvectors u; are found, e.g., as described in
Sec. III, function G} (g, zip) can be readily computed.
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Our numerical investigation of G}(g,zi,) was limited
mainly to k=0 and v = L. We observed that the eigenvector
components approximately followed the geometric series
(ug); ~ #. The quotient ¢ is somewhat larger than unity for
small zp. As z, increases, ¢ becomes less than unity, so that
the first component (ug), dominates. Neglecting all other
components and expressing the modified Bessel function
I3)5(z) in terms of elementary functions, we obtain the ana-
lytical approximation from Eqgs. (48) and (49)

GG(% Ztip) = % (gF cosh gF — sinh (]F)2g72q4>7 (50)

where ¢ is a normalization constant. At zg, > L, we can
focus on the range of momenta less than 1/L because at
larger ¢ this function is already exponentially small. For
such ¢, the bracketed expression on the right-hand side can
be replaced by (Fg)®/9 and zp = Ziip + L by zjp, which yields
the asymptotic form (46).

To examine small and intermediate distances, we used
the direct numerical evaluation of uy and G§(q, zip). As in
Sec. III, we considered two aspect ratios: L/a =25 and
L/a=1. Only v= 1 part was studied. The results for
L/a = 25 are shown using the false color scale in Fig. 5(a).
It can be seen that as zj, decreases, both c]é‘ (zip) and the
position of the maximum of Gy (¢,zp) as a function of ¢
shift toward larger values. This implies that the probe
becomes more sensitive to finer spatial features of the sam-
ple, as discussed above. The line plot of Gy (g, zp) for sev-
eral zg, presented in Fig. 5(b) depicts the same trend. The
average momentum ¢y and the position of the G (¢) maxi-
mum are of the same order of magnitude except at very short
distances where gg increases more rapidly as z;, decreases.
Note that Eq. (47) predicts that g diverges at z;, = 0. From
Fig. 5(b), we also see that for the same z;, the maximum of
Gy (g, zip) is found at ¢ smaller by a factor of 3-10 for the
spheroid compared to the sphere. This confirms that the
spheroid is much more sensitive to small in-plane momenta
than the sphere, i.e., the response of a strongly elongated
spheroid is affected by a relatively wide range of length
scales.
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FIG. 5. (a) The weight function G§ (¢, zp) for the spheroid with L = 25a and &;, = co. The dashed line shows g (zgp)- (b) Gy (¢, zip) for several zp, with
circles indicating g; . The solid lines are for the spheroid and the dashed lines are for the sphere. The spheroid is more sensitive to small ¢ compared with the
sphere, while both shapes are more sensitive to large g as z;, decreases. (c) The first three G;-(g) for zg, = a, with solid circles indicating G- The number of
nodes in G} () is equal to k, while ;- increases with k. The logarithmic scaling of the horizontal axes is used to show the small-¢ structure more clearly.
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For k>0, G{-(q, zip) has nodes as a function ¢ at fixed
Zip- The number of nodes is equal to k (see Fig. 5(c)).
Apparently, at such ¢, near-field coupling between oscilla-
tory charge distributions on the probe and the sample exactly
vanishes. Therefore, small perturbations at such discrete ¢ do
not affect the kth resonant mode. Finally, although g
increase with k for the reasons explained above, the maxima
of G show the opposite trend, which is presently not
understood.

V. FROM NEAR-FIELD POLARIZABILITIES
TO FAR-FIELD OBSERVABLES

In order to apply our theory to simulation of s-SNOM
experiments, we need to include a few more ingredients in
our calculation. The first one is the so-called far-field factor
(FFF) F”(®). This factor accounts for the fact that the probe
is illuminated not only by the incident wave but also by its
reflection from the sample. In experiment, P-polarized inci-
dent field is usually used, to take advantage of the high trans-
verse polarizability of the probe. Assuming the sample
surface is flat, uniform, and its linear dimensions are much
longer than the radian sphere diameter ¢/, the reflection of
the incident wave is described by the coefficient rp(g;, ®),
where

%:§me (51)

is the in-plane photon momentum and 6 is the angle of inci-
dence. Hence, the ratio of v-component of the electric field
at the surface to that of the incident wave is 1*rp(g;, @) for
v = 1 and ||, respectively. The FFF also takes into account
that the field scattered by the probe reaches the detector in
two waves: directly and after reflection from the sample sur-
face. Usually, the backscattered field is measured. It has the
in-plane momentum —¢g, and therefore the same reflection
coefficient rp(—¢y, ®) = rp(gs, ®) as the incident wave. The
total FFFs for this setup are given by

FH(w) = [1 4 rp(gs, )]* sin0), (52a)

Fl(w) = [1 = rp(gs, ®)]* cos?0. (52b)

The trigonometric factors on the right-hand side take care of
conversion between the total electric field E.y of the waves
and their L, || components. Note that our assumption of the
plane-wave illumination is not entirely realistic. In experi-
ment, a focused Gaussian beam is typically used, in which
case the FFFs are effectively averaged out over a range of
angles 0. Numerical apertures ~0.4 are common. We must
also stress that Eqs. (52a) and (52b) should be modified if
the system studied by s-SNOM is nonuniform on scales
shorter than ¢/w. Typical examples include a small sample
residing on some substrate®® or measurements done close to
a boundary of two different materials.

Another point we have to discuss is signal demodula-
tion. In the experiment, the probe is made to oscillate
mechanically, which causes periodic variation of the probe-
sample distance
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zip(®) =20 + Az(1 — cos @) , p = Qr. (53)

The oscillation amplitude is typically Az = 20-90 nm, com-
parable with the radius of curvature ¢ ~ 30 nm of the probe.
The minimal approach distance zy > 0 can be equal to zero
if the probe taps the sample. The tapping frequency Q is
many orders of magnitude smaller than the laser frequency
o, and so the motion of the tip does not affect the electro-
magnetic response. Effectively, the experiment consists of
measuring the scattered signal for many static configurations
with different z;,. The nth Fourier harmonic of the backscat-
tered field is referred to as the demodulated signal s,. (Here,
we define s, as a complex number but in experimental litera-
ture it is common to discuss the amplitude and the phase of
s, separately.) The primary purpose of demodulation is to
suppress the far-field background signal created by reflec-
tions from the body of the tip, the cantilever, etc. This back-
ground is large but depends on zj, very weakly (linearly)
and thus contributes predominantly to the » =1 harmonic.
Unfortunately, demodulation strongly diminishes the signal
amplitude, making it more susceptible to experimental noise.
In practice, n=2 or 3 usually gives the best approximation
of the true near-field signal. >

The demodulated signal is related to the polarizabilities
1" (@, zip) we have been discussing in Sections I through IV by

si(w) = const X y/(w)F"(w), (54)

where y”(w) is the nth Fourier harmonic of y”
(d
¢
(W) = J% 1 (@, zip (@) )cos ng. (55)
0

One more element of the experimental protocol is normaliza-
tion. What is typically reported is s/ («) normalized against a
certain reference material, e.g., Si or Au

5n(0) = s;(0) /5" (). (56)
The normalization eliminates a number of physically unin-
teresting or poorly known factors, such as the constant in Eq.
(54) that are related to the optical setup of the experiment.
The FFFs may also be canceled if both the studied and the
reference objects in the experiment are positioned nearby, so
that the data for the two are taken at points no farther apart
than the diameter ¢/ of the radian sphere.

The last point we wish to draw attention to is that the
absolute value of the minimum probe-sample distance z,
[Eq. (53)] cannot be determined very accurately. Therefore,
experimentalists have to measure the so-called approach
curve, which is the s-SNOM response as a function of z, at a
fixed frequency. They then identify the point zp =0 as a
point where a qualitative change in behavior in s, or s;
appears. The logic behind this procedure is that once the
probe makes the mechanical contact with the sample, its
oscillations become reduced in amplitude, marking an unam-
biguous change. A potential flaw of this argument is that
sharp changes in s,’s may be generated by a rapid variation
of electromagnetic coupling between the probe sample at
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short separation even before making mechanical contact. We
will discuss this issue in more detail in Sec. VI.

VI. CASE OF LOCAL REFLECTIVITY: ALUMINUM
OXIDE

In this and Sections VII-IX, we discuss the implications
of our theory for near-field response of real materials. We
choose bulk o—Al,O3, also known as sapphire or corundum,
as our first example of highly resonant material with a
momentum-independent reflectivity f [Fig. 2(a)]. Another
material with these properties, silicon carbide, has been a
subject of a recent s-SNOM study co-authored by two of the
present authors.'” Modeling results based on the BEM show-
ing good agreement with the data were also reported in that
work. Realistic probe shapes and retardation effects have
been taken into account in order to achieve that. The latter
was necessary since the probe length 2L ~ 20 um in the
experiments was in fact larger than the diameter of the radian
sphere ¢/w ~ 11 um. Here, we do not aim for a perfect
agreement with a particular experiment but instead wish to
illustrate how the general theory of multiple eigenmodes for-
mulated in Secs. I through III can generate novel features in
far-field observables. We study mostly probes of an idealized
spheroidal shape but examine some other shapes as well. We
stay within the quasistatic approximation but we will com-
ment on retardation effects in Sec. VIII.

We use the following momentum-independent model
for the reflection coefficient of the uniaxial Al,O3 crystal

€eff — 1
Blo) =" en(0) = Vee, (57)
€t + 1

where €, for p = o (ordinary) and e (extraordinary) axes is
given by

Z)’/’LO,p

(58)

/LOp
= e [ 12
’ —w?

ki jTO p — Y10, ® »

The optical constants of Al,Os reported in the literature*'*
have slight variations, presumably because of different crys-
tal purity and processing. In our calculations, we adopt the
results of Ref. 42 at room temperature, reproduced in Ref.
29. (For simplicity, the weak oscillator at wro, = 634 cm™!
is neglected.) Due to smallness of the optical phonon line-
widths 7, in this material, the near-field reflectivity of Al,03
can be as high as f§ ~ 10.

We start by studying the behavior of the probe polariz-
abilities y” as a function of frequency w. In the mid-infrared
range, the reflection coefficient f§ of Al,O3 has a single peak
centered at the surface-phonon frequency wsp = 818cm™!,
depicted in Fig. 2(a). As w approaches wsp from below,
Ref(w) steeply rises. Equation (3) implies that whenever
Ref is equal to a pole 5/, Imy” has a local maximum as long
as the damping Imf(w) is not too large. The positions of
three such underdamped resonances are indicated schemati-
cally in Fig. 2(a). Thus, a single surface mode wsp of Al,O3
may produce multiple modes of the coupled probe-sample
system. These localized eigenmodes (resonances) have been
discussed at length in Secs. I-III. For example, they are
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depicted in Fig. 1(b) for the case of a spheroidal probe. Note
that all the resonances are red-shifted from the frequency
wsp. Since Imf increases as o approaches wsp, higher-order
resonances are progressively more broad.

The scenario above is described in terms of constant f3}.
However, the poles are functions of zg,, and so the frequency
of each resonance shifts with zg,. This is clearly seen in a false
color plot of Imy*(w, zp) [Fig. 6(a)], where each mode cre-
ates a bright curve. All the curves are red-shifted from wgp
but converge to it at large z;,. The smallest z, = 0.02a in
Fig. 6(a) is limited by the accuracy of our numerical calcula-
tion. Based on our analytical results we expect that at smaller
zip the resonance curves are shaped as parabolas that
approach wro = 576 cm ™! where Reff = 1 (cf. Egs. (5), (57),
and (58)). A horizontal line cut through Fig. 6(a) taken at
ziijp = 0.6nm is plotted in Fig. 6(b) along with the absolute
value of y*. The strongest peak in this plot corresponds to the
k=0 mode. The multiple weaker peaks at higher frequencies
are produced by k£ > 0 modes.

Next, we consider the effects of demodulation on the s-
SNOM signal, which can be understood as follows. As the
probe oscillates, it spends most time at the minimum and
maximum distances from the surface. One therefore expects
peaks in y" at frequencies near those of y”(zp,®) and
1" (z0 + 2Az, ®). This gives two frequencies per each resonant
mode. Actually, the number of observable peaks is smaller.
Indeed, from Figs. 6(a) and 6(d), one can see that all the reso-
nance curves modes should merge together at z = zy + 2Az
for typical Az ~ 50 nm. Hence, all the modes should produce
a single common peak in the demodulated signal from such z.
Furthermore, while the peaks of y”(zo, ) are distinct, only a
few strongest of them can survive the smearing effect of the
demodulation. These expectations are supported by Fig. 6(c),
where we plot the normalized quantities 75(w,z0) = z3/75"
and 53 for v = 1, assuming tapping amplitude Az = 50 nm,
zo = 0.6 nm, and Si as the reference material. In Fig. 6(c), we
see only three peaks. The peak at 650 cm ™' in |53] is produced
by the dominant £ =0 mode. It has the same frequency as the
k=0 peak in Fig. 6(b). The second peak near 725cm~! in
|53] (which looks more like a shoulder in 73) is produced by
the k=1 mode at the zj, = zo point. The remaining third
peak at 787 cm~! is produced collectively by all the modes. A
similar correspondence between the resonance curves of the
polarizability function and the peaks in the demodulated sig-
nal is found in the v =| component (cf. Figs. 6(d)-6(f)).
However, the lower k=1 peak is now very weak and is con-
siderably blurred by the demodulation (Fig. 6(f)). Should we
have considered a model with smaller dissipation, this and
other high-order peaks would have been more clearly distin-
guishable in |53]. Note that although the normalized and
demodulated signal strength is comparable for the two v com-
ponents, the polarizability for v =|| is orders of magnitude
smaller so its contribution can be safely ignored.

The discussion above pertain to horizontal cuts of
1" (zip, ). Taking a fixed-frequency (vertical) cut through
Fig. 6(a) and performing the demodulation for a range of
minimum distances z,, one obtains the v = 1 approach
curve for the scattering signal. An intriguing result of this
analysis is the possibility of a nonmonotonic dependence of
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nent, v =||. The plots again reveal multiple resonances. However, the overall magnitude of the polarizability is greatly reduced, yl ~

1072y, and the resonan-

ces are more strongly bunched near the surface phonon frequency wsp = 818cm™!.

the approach curve on z,. The nonmonotonicity is due to the
crossing of the resonance curves of y' by the vertical line
cut. Such crossings are found between wro where Reff = 1
and wsp where Refl reaches its maximum. Near the low-
frequency end of this interval, the k=0 mode should be
again dominant. It is expected to produce a peak in the
approach curve, which would follow the same trajectory as
the k=0 curve in Fig. 6(a), moving to larger z; as
increases. Higher order modes should appear at frequencies
closer to wsp and produce weaker peaks at smaller zy. The
amalgamation of these peaks give rise to the nonmonotonic-
ity of the approach curve.

We show in Fig. 7(a) the s3 approach curves for v = L
for three frequencies. All the curves are normalized to their
value at their left ends, zo = 0.6 nm. The approach curve for
® = 600cm~! decays monotonically with increasing z
because the cut at such o does not cross any of the resonan-
ces. In the approach curve for 700cm~!, a strong peak is
seen at around 2nm due to the crossing of the k=0 reso-
nance. The last approach curve, for 800 cm™! contains a se-
ries of oscillations at small zy and a broad hump at large z,
due to the multiple resonance crossings. The approach curves
for v =|| plotted in Fig. 7(b) exhibit the same general trends
as those forv = L.

FIG. 7. Approach curves of |s§| for
bulk Al,Os, normalized to the value at
zo = 0.6 nm, for several characteristic
frequencies. The lowest frequencies in
both (a) and (b) are such that no reso-
nance curves are crossed during the
probe tapping motion. The approach
curves are monotonic. For the middle
pair of frequencies, one crossing (of
the k=0 resonance) does occur. At
such crossing, each approach curve has
a peak. The last pair corresponds to the
frequencies where |54 is close to the
maximum value in the spectral range
studied. The approach curves have sev-
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FIG. 8. Comparison of spectra of the quantity |55 | using two different exper-
imental protocols, at two different minimum approach distance z,. The value
at each frequency is taken either from the maximum of the |s3| approach
curve (solid) or from a fixed z, (dashed).

The striking multi-peak spectra and anomalous nonmono-
tonic approach curves we described above stem from the large
rp of Al,O3 and are not found in less resonant materials (see
Sec. VIII and Ref. 19). This rich structure is also quite sensi-
tive to the choice of z. If this parameter is too large, the peaks
in the spectrum of the scattering signal merge together at
o = wsp. If zg is too small, the resonance curves become very
flat at w < wgp, so the corresponding peaks are smeared by
demodulation and dwarfed by the wgp peak. Hence, there
exists an optimal value of z, that allows one to resolve multi-
ple peaks most clearly. For our Al,O; model, this value is
actually not too far from zyp = 0.6nm used in Fig. 6. For
example, the s3 spectrum for a smaller zy = 0.06 nm is shown
in Fig. 8 (dashed lines), where the k = 0 peak is much less pro-
nounced while more higher order peaks become distinguish-
able and form small steps. For even smaller z,, the steps are
further smoothed, eventually leaving only one peak near wgp.

In addition to the value of z;, many other experimental
parameters and procedures can significantly alter the resultant
spectrum. For instance, the experimental determination of z,
based solely on the s-SNOM approach curve can be inaccurate
due to its possible nonmonotonicity, as discussed in Section
V. It is generally incorrect to ascribe zy = O to the probe posi-
tion at which the near-field signal has the highest amplitude.
Such a protocol effectively yields a frequency-dependent z.

J. Appl. Phys. 119, 054305 (2016)

The difference from the spectra taken for a truly constant z,
can be drastic, as illustrated in Fig. 8. Conversely, the strong
sensitivity of the near-field signal to the value of probe-sample
distance may perhaps be used for a more accurate measure-
ment of z, (although this may require knowing the curvature
radius @ and perhaps other details of the probe shape).

The tapping amplitude Az is another parameter that
affects the spectrum. When Az is small, the demodulation at
nth order is roughly equivalent to taking the nth order deriva-
tive of y”(zip). Therefore, a material with a sharply varying
approach curve yields a stronger demodulated signal than the
material with a smoothly varying one. In our case, the signal
of Al,O; is normalized against Si, whose polarizability
decays monotonically with z;, [Fig. 9(b)]. As Az decreases,
the polarizability of Al,O; become increasingly oscillatory,
while that of Si remains smooth. This results in the increased
contrast of the demodulated signal for the two materials for
smaller Az [Fig. 9(a)].

Other than these controllable parameters, the scattering
signal is also dependent on the dielectric function of the
probe itself. The calculation in the preceding discussion is
done for a perfectly conducting probe, €;, = oc. In practice,
near-field probes often have a Si core and a layer of metallic
coating whose thickness ~20nm can be smaller than the
skin depth, i.e., the electric field penetration length of the
metal. In this case, it may be more appropriate to set €;p =
esi ~ 11.7 in Eq. (21). Repeating the calculations, we find
that while qualitative features in the signal are retained, there
are major quantitative differences (Fig. 10).

The discussion above shows that the rich structure of the
s-SNOM signal found for the case of Al,O3 sample is sus-
ceptible to many experimental parameters. (Retardation
effects, discussed later in Sec. VIII, introduce further signifi-
cant dependence on the probe geometry.) This presents a se-
rious challenge to realistic modeling of s-SNOM
experiments. On the other hand, these strong dependences
arise only for highly crystalline material with low dissipa-
tion. For other, less resonant materials, the modeling can be
quite robust, as discussed in Sec. VIII.

VIl. NONLOCAL REFLECTION FUNCTION

The example material of Section VI is a bulk crystal
with a local (momentum independent) reflectivity function.

FIG. 9. (a) Spectra of [s3| for zg =
0.6nm and five different tapping
amplitudes. The magnitude of 55
increases rapidly with decreasing A:z.
(b) The x* approach curves for Al,Os,
SiO,, and Si, taken at frequencies cor-
responding to the largest peak in [s5|
(790cm™" for ALOs, 1120cm™" for
SiO,, and an arbitrary @ for the

frequency-independent case of Si). For
Al,O; sample, |y%| shows multiple
oscillations; for SiO, sample, it has a
single maximum at small z;,; for Si,
the approach curve decays monotoni-
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However, in many other systems studied through s-SNOM,
including thin films, graphene, and multi-layered systems
reflection is inherently nonlocal. Thus, it is imperative to
study how the g-dependence of the reflectivity affects the
probe-sample interaction. As mentioned in Sec. IV, a general
description of such interaction is challenging because the se-
ries representation of the polarizability

Re

- (59)
Ak

X =

k
has generalized eigenvalues A, and residues Ry that are now
complicated functionals of 7p [/1,:' is the k-th eigenvalue of
the matrix (A™)” > H(A™)""/?, cf. Eq. (20)]. Still, we can
attempt to analyze these expressions using the simple pertur-
bation theory developed in Sec. IV, in which A; are com-
puted from the poles of the g-independent theory, with

700 800 900
w (ecm™)

corrections obtained by integrating the weighting functions
over the momentum. As shown below, this scheme produces
qualitative agreement with the calculated s-SNOM response
for graphene on bulk Al,Os3.

The Al,Os/graphene system has two collective modes
(the upper and the lower one) that emerge from hybridization
of the surface phonon of Al,Oj;, originally at wgp ~
750cm~! with the plasmon of graphene, w(q) o /HUFq.
(Coupling of substrate phonons to graphene plasmons has
been probed by s-SNOM experiments with graphene/SiO,
systems.”'® This and related work is reviewed in Ref. 43.)
The modes share the optical weight and exhibit a level-
repulsion that causes both to be dispersive. Both features
depend on the chemical potential u of graphene. Below we
focus on the upper mixed mode and study its s-SNOM
response for a range of u, and compare the results with the
perturbation theory method. To proceed, we need the

FIG. 11. (a) Collective mode disper-
sion of graphene/Al,O3 system. The
mode repulsion between the graphene
plasmon and the Al,Oj surface pho-
nons are evident. The false color stands
for Imrp(g, »), which is a measure of
power dissipation.”” This quantity is
additionally raised to power of 0.35 to
reduce the contrast. The vertical
dashed line marks ¢ = 1/a. The faint
curve just below @ =500cm™! is a
weak surface phonon*? that we do not
discuss. The chemical potential of gra-
phene is gt = 1200cm™". (b) The solid
curves are constant momentum g =

r ——300 cm™! ]
2l —600 cm™! f
[ ——1200 cm™! []
—— 1800 cm ! [

1/a line cuts through maps like (a) for
several p. The particular case of (a) is
shown by the red curve (second solid
curve from the right). The dashed
curve is the same quantity computed
for bulk Al,O; without graphene. (c)
Imy*(w) and (d) 53(w) computed
using the g¢-dependent rp(g,w) at
zip = 0.02a and zp = 0.02a, respec-
tively. Graphene chemical potentials p
for (b)—(d) are indicated in the legend
of panel (c).
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formula for the reflectivity of the composite system. This
formula is well-known (see, e.g., Ref. 5)

€, € 4no

: kK o
ip(q, (l)) _6160—47'50' . (60)
Kk o

Here, €; = er [Eq. (57)] is the permittivity of the lower
half-space (Al,O3), o = 1 is that of the upper half-space

(vacuum), k]z- = ,/ej%z — g2 is the z-component of the wave

vector in medium j=0, 1, and ¢ = ¢(q, w + it~!) is the con-
ductivity of graphene, which we calculate within the random
phase approximation***> with a finite relaxation time
=1 =25cm™!. For ¢ > w/c, one finds k; =~ ig and Eq. (60)
reduces to

e —1 —i—47rqE
re(g,0) = —————2, ©1)
€+ 1 —|—4nq5

which can be compared to Eq. (57). A convenient way to visu-
alize the dispersion of the collective modes is to plot the imag-
inary part of rp(q, ), which represents the power dissipation
in the system,”® as a false-color map. An example for u =
1200cm™! is shown in Fig. 11(a). In the low-g regime
(hvpq < ho < 1), *** the lower bright curve is mainly the
plasmon with dispersion @ o< \/uvrq, while the upper bright
curve represents the dispersionless Al,Oz surface phonon.
(The additional bright curve around @ = 500cm~! is a
weaker Al,O5 surface phonon, which we do not discuss.) An
increase in u leads to a steeper dispersion of the plasmon,
which causes both hybrid modes to go up in frequency.
Decreasing p has the opposite effect. Additionally, if u drops
below Ziwsp/2 ~ 380cm ™!, the upper mode falls into the
interband transition region of graphene, which results in strong
damping of the surface phonon. As we will see below, this
causes the u = 300cm™! curve to look qualitatively different
from the rest in Fig. 11(b). Let us now discuss how the collec-
tive modes manifest themselves in the s-SNOM response.

In the simplistic picture of the s-SNOM response, the
probe-sample interaction is dominated by a single momentum
g = 1/a. If this assumption were accurate, we could set
rp(g, ) as f(w) and calculate the response using the set of
poles and residues established previously. We would then see
peaks in the response generated by the upper hybrid mode.
However, this crude approximation leads to higher peak fre-
quencies than the calculation using the full rp(q, ®), as seen in
Figs. 11(b), 11(c), and 11(d). Indeed, we have shown in Sec.
IV that when the g-dependence in reflection is treated as a per-
turbation, each mode has its own range of sensitive momenta
due to the inherent length scales in its potential distribution.
The distributions change with an additional length scale—the
tip-sample distance zg,, so that the momentum weighting
functions are dependent on z, as well, Gy = Gi(q, zp). For
each mode, these functions provide a means to average over
momentum and find an effective g-independent sample

J. Appl. Phys. 119, 054305 (2016)

reflection S5 (), cf. Eq. (44), so that we can again apply the
established pole-residue decomposition. Strictly speaking, the
perturbative method cannot be applied here as the mixed
mode may be strongly g-dependent. Even so, we find a very
reasonable agreement with the computed signal in the range
of graphene chemical potentials 1= 600-1800cm™" that we
study. We first consider peak frequencies in Imy~*, which can
be predicted by invoking the resonance condition Reﬁ‘;’,ff = b
For the lowest mode k=0 and z4, = 0.02 q, there is a system-
atic overestimate of the peak position by 20-30cm~! for
i =600-1800 cm™~'. The discrepancy is larger for higher u at
which the g-dependence of the upper hybrid mode is stronger.
This discrepancy is due in part to the well-known general
tendency of the first-order perturbation theories to overesti-
mate the lowest eigenvalues. Next, for the k = 1 mode, the res-
onance condition is satisfied only for p=600cm~' at
w=797cm~! and n=1200 cm™ ! at @w=823cm™!, which
agree well with the smaller peaks in Imy*. At these frequen-
cies, Imﬁ‘l’ff are larger than the k=0 case and the peaks have
smaller magnitudes. For x = 1800cm !, the resonance condi-
tion is not met and the very small peak at @ =827 cm ' in
Imy* corresponds to where Reﬁ?ﬁ is largest and thus closest
to f1. Finally, for k> 1, f§; is larger than Reﬁzff for all fre-
quencies and no peaks in Imy* are found. Seeing qualitative
agreement in the polarizability, we proceed to analyzing the
demodulated signal.

As inferred in Sec. VI, the demodulated signal is strong-
est near the peaks in y*(zo, w) and y*(zp + 2Az, w), where
each peak is attributed to a resonant mode. For the dominant
k=0 mode, we find a set of corresponding peaks in
53 (z0, ) at the same frequencies as those in y*(z9, ®), as
shown in Figs. 11(c) and 11(d). For the other set of peaks in
the s3 spectra, we must consider how the situation is changed
at zo + 2Az. At such distances, z;, itself becomes the primary
length scale and the sensitivity function Gy is shifted toward
smaller momentum, where the upper mode has a flatter dis-
persion and its frequency is close to wsp of the bulk Al,O;
crystal. Therefore, this set of peaks should all appear near
wsp, which is indeed the case. Repeating this procedure for
the k=1 mode, we find that the peaks it contributes are
inseparable from the set of higher frequency peaks produced
by the k=0 mode as both have frequencies very close to
wsp. Its contributions, however, alter the heights of these
peaks. For instance, the k=1 peak is strongest in x(zo, ®)
for 1 = 600 cm~! (among the four we used), so the high fre-
quency peak in 55 for this chemical potential has the largest
relative magnitude with respect to the low frequency peak.
Thus, we conclude the demodulated s-SNOM signal can be
qualitatively explained by the perturbative method, albeit
with inaccuracy in the lower peak frequency. However, as
we argued in Sec. VI, the lower frequency peak in the
demodulated signal is mainly an artifact of the finite z, we
are forced to use. If zy were truly zero, only the peak near
wsp would survive.

Vill. MODEL-DEPENDENT EFFECTS

The spheroid model differs from real s-SNOM probes in
two important ways: (i) the real probe resembles an inverted
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FIG. 12. (a) The s-SNOM signal s3 computed for AL,O5 samples. The inset shows the probe shapes used (spheroidal, with L = 254, and a pear-shaped). The
two types of probes produce qualitatively similar but quantitatively different results. (b) Spheroids of longer length have drastically increased signal strength.
The inset depicts the probe shape and the values of L/a used. Note that this quasistatic calculation neglects radiative damping and antenna resonances (see Sec.
VIII). If included, such effects are expected to greatly reduce s3 . In all cases, Az = 50 nm and a@ = 30 nm. The value of s5 is taken either from the maximum of
the approach curves at each frequency (solid lines) or at the closest approach distance zp = 0.6 nm (dashed lines).

pyramid and (ii) at infrared wavelengths, the length ~10 y m
of the probe exceeds several times the diameter ¢/ of the
radian sphere. In the previous literature, it was assumed that
these differences can all be neglected as the probe-sample
interaction is focused around the apex of the probe [Fig.
1(b)], while contribution from the rest of the probe is can-
celed out during the process of demodulation and normaliza-
tion. Hence, the exact shape of the probe is unimportant and
the only relevant physical quantity is the apex radius of cur-
vature a. Further, since the characteristic length scale a is
well within the radian sphere, a quasistatic description
should suffice. This simplistic argument is backed by the pre-
vious agreement between the spheroid model and experi-
ment.'®'®2® However, we have shown that different probe
shapes exhibit universal behavior only when zg,/a is of the
order of a few percent (cf. Fig. 4(a)). This range is much
smaller than typical tapping amplitudes, so the majority of
the s-SNOM response lies outside the universality regime
and should indeed be probe shape dependent. Additionally,

recent experiment and modeling have shown that a quasi-
static formalism with ad hoc probe shapes is insufficient for
highly resonant materials such as on silicon carbide.'

In this section, we re-examine these issues by examining
two materials, the highly resonant Al,O5 and the dissipative
SiO,, and study the probe shape dependence of their
response as well as electrodynamic corrections. We find that
for dissipative materials shape dependence is weak and retar-
dation effects are of less importance, so the spheroid model
describes the s-SNOM experiment reasonably well. This
explains the success of our model in reproducing the
response of various materials in experiment. On the other
hand, we find the response of resonant materials to be highly
dependent on the probe shape and less well described within
the quasistatic approximation. For such materials, a full elec-
trodynamic treatment with the exact probe shape may be
required. Common numerical methods suitable for electrody-
namic treatment of light scattering by a spheroid near a sur-
face include T-matrix method*®*” and BEM.'® For the case
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FIG. 13. (a) The reflection coefficient of SiO,* has a larger imaginary part than Al,O5 due to its inherent dissipation, leading to a weaker shape dependence in
the s-SNOM signal. (b) The signal of the pear-shaped probe is very close to that produced by the spheroid. (c) Increasing the probe length leads to a much
smaller increase in the signal strength. The overall shape of the spectrum is also preserved. All geometric parameters are the same as in Fig. 12.
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of a sphere near a surface, the calculation of necessary ma-
trix elements can be done efficiently using recursion tech-
nique similar to what we use here.*®

We consider the probe shape dependence and the retarda-
tion effects separately. To study the former, we simulated the
s-SNOM signal of Al,O3 samples obtained with spheroidal
probes of different length. We also calculated (using BEM)
the results for pear-shaped probes that may better mimic the
inverted pyramids. As shown in Fig. 12(a), the signal for a
pear-shaped probe is qualitatively similar to that for the sphe-
roid of the same length, but there are quantitative differences.
For spheroids, we find that the signal strongly increases and
the peak frequencies steadily decrease as the length of the
probe increases at a fixed apex radius, as shown in Fig. 12(b).
These features can be explained by the scale invariance of the
problem. It implies that an increase in probe length is equiva-
lent to a simultaneous decrease in tapping amplitude and the
apex radius. The decrease in radius produces changes in both
the poles and residues. The former explains the shift in peak
frequencies. The latter is mostly canceled out by normaliza-
tion. In turn, the decrease in tapping amplitude leads to a
larger contrast between the sample and the reference as dis-
cussed in Sec. VI [see Fig. 9(b)], so the signal strength is dra-
matically increased.

The strong probe-shape dependence found above seem to
suggest that theoretical modeling of the s-SNOM experiments
must always be done using the actual shape to be reliable. In
fact, such a sensitivity to the probe shape pertains only to the
highly-resonant, i.e., large § materials. In Al,Oj3, this parame-
ter reaches the maximum value of || ~ 12 (Fig. 2(a)). For
comparison, in Figs. 13(b) and 13(c), we show that the pear-
shaped probe and the spheroid produced almost identical sig-
nals for amorphous SiO,, a material with |f] < 1.5. (For ex-
perimental studies of this material see, e.g., Refs. 6 and 28.)
In this case, a factor of 16 increase in the probe length leads
to only a doubled signal strength, compared to a nearly ten-
fold increase for Al,O5 seen in Fig. 12(b).

The results above are obtained within the quasistatic
approximation. In reality, a probe half-length of 200a already
exceeds the diameter ¢/ of the radian sphere and one has to
consider retardation effects. Naively, contributions from such
effects should be eliminated by demodulation, as they pertain
to a length scale much larger than the tapping amplitude.
However, we show that one contribution—the radiative damp-
ing—survives demodulation. The radiative damping has an
effect similar to a finite Im f, i.e., the dissipation in the sam-
ple. Hence, for dissipative materials, one can neglect radiative
damping and still find reasonable agreement with experiment,
while doing so for highly resonant materials may lead to qual-
itatively wrong results. Let us illustrate these statements using
the simplest model for the probe—the point dipole. The elec-
trodynamic interaction between the dipole and the sample
with the dielectric constant € is given® by a modified version
of Eq. (12)

i(q) *qutipd 62
0 B(@ K@) TR ¢ o
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where the second fraction in the integrand is the full form of
the reflectivity 7p(q, ). [It is obtained from Eq. (60) by set-
ting ¢ to zero.]

Suppose @ and z;, are fixed, then the above integral
defines g” as a function of €, which is generally a complex
number. Alternatively, ¢” is a function of f=(e—1)
/(e + 1). The integration domain Eq. (62) includes momenta ¢
both inside and outside the light-cone. The radiative damping
effect arises from the integration over former, i.e., the
momenta g < kj. This part of the integral yields a negative
imaginary contribution to g”, which shifts the pole of y” [Eq.
(11)] to the lower complex half-plane of f3. The real parts of
the poles also change but this is less conceptually important
(see below). Consider now the remaining part of the integral,
over momenta g >kj. It is easy to see that if
e =—q*/(¢* — w*/c?), then

cko(q) +ki(g) = 0, (63)

so that there is a pole on the integration path. As a result,
functions g” and y” have branch cuts at € € (—oo, —1] in the
complex e plane or equivalently at ff € [1, 00) in the complex
f plane. These additional features are shown schematically in
Fig. 2(c). The physical origin of both the poles and the branch
cut is quite clear. The discrete poles has been discussed at
length in this article. They correspond to the polariton modes
localized near the tip (Fig. 1(b)). In turn, the branch cut corre-
sponds to the continuum of delocalized surface polaritons that
exist without the probe. Indeed, Eq. (63) is the well-known
equation for the spectrum of such excitations.™

Of the two features, the branch cut is not expected to
affect the signal as the small-momentum contribution is
greatly diminished by demodulation. Demodulation should
also make less important the change in the real parts of the
poles, because these real parts vary greatly with z;, on
account of the tapping motion of the probe. However, the
shift of the discrete poles away from the real axis is a qualita-
tive change and its effects remain after demodulation. Our
next objective is therefore to find this shift for the case of the
spheroidal probe.

A free standing spheroid has an effective polarizability
given by

X0

a2 (e
3\c¢ %o

to the lowest order in /¢ when radiative correction is con-
sidered.’'? Modifying A accordingly [specifically A", cf.
Eq. (29)], it is easily shown that this formula applies to our
geometry as well. Namely, the s-SNOM polarizability cor-
rected for the radiative damping is given by

Xoeff = (64)

X v Ry
S — =Y . (65)
.z(w)% Ay
I1—iz|{—] «
3\c¢

Viewed in the complex f plane, this correction is equivalent
to the shift of the poles f; into the lower half-plane by

v o0
v
Arad =
=0
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—i(2/3)(w/c) Ry (to the leading order in w/c). Therefore,
both the radiative damping and the intrinsic dissipation in
the sample play a similar role: they increase the distance
from the poles to the curve traced by the surface reflectivity
f of the sample as o varies [Fig. 2(c)]. For a dissipative ma-
terial, the curve begins far from the poles, and so further
increase in the distance produces little change. Conversely,
for highly resonant materials the () curve passes close to
the real axis, and so radiative damping may obscure or elimi-
nate the fine features of the signals, such as multiple resonant
peaks discussed in Sec. VI. It is worth noting, however, that
while it may be important for s-SNOM in infrared or visible
domains, the radiative damping should be rather weak in the
(experimentally more challenging) terahertz range, where
typical s-SNOM probes would fit well inside the radian
sphere.

Finally, a class of retardation effects we have not
addressed here are antenna resonances arising when the
length of the probe exceeds several times the diameter of the
radian sphere. They give rise to additional peaks in the s-
SNOM signal as a function of w. For most materials, such
resonances are removed once the s-SNOM signal is normal-
ized to a reference sample; however, for strongly resonant
materials such as SiC and presumably also Al,O5; we studied
here, the cancellation is not complete."”

IX. DISCUSSION AND CONCLUSION

Further progress in the s-SNOM and related areas of
near-field microscopy requires a quantitatively reliable pro-
cedure for determining the fundamental response function
rp(q, ») from the amplitude and phase of the s-SNOM scat-
tering data, from which one can proceed to the next step of
inferring the optical constants of the studied sample.
Typically, materials with a higher absolute value of rp(g, ®)
produce a higher amplitude s-SNOM signal. However, the
peaks in the s-SNOM signal are often red-shifted with
respect to those in |rp(g, ®)| or Imrp(g, w).

Given additional information about the system, these
inverse problems can be tackled by fitting the experimental
data to the solution of the direct problem with a trial form of
rp(q, ®) as the input.'” Unfortunately, the direct problem is
also difficult to solve. The three-dimensional nature of this
problem and the presence of widely different length scales
make realistic simulations®> > of s-SNOM experiments very
computationally intensive. This led to popularity of simple
ad hoc approximations known as the point-dipole®*2° and
the finite-dipole model,>*”>*7 in which the actual charge
distribution induced on the probe is approximated by a
point-like image dipole or a combination thereof with addi-
tional point charges.

The point-dipole model® postulates that Eqs. (9a)—(12)
that are rigorous in the asymptotic long-distance limit z;, >
L remain qualitatively correct at much shorter zgp, if the input
physical parameters are suitably renormalized. Thus, the
bare polarizabilities y; become the adjustable parameters of
the model. It is customary to assume that the in-plane polar-
izability Xp) is negligible compared the out-of-plane one,
which is taken to be
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w=a, (66)

where a is of the order of the curvature radius of the tip.
Another adjustable parameter™® h=1 specifies the position
of the effective dipole inside the probe

zp = ba + zp. 67)

Clearly, the point-dipole model accounts only for the sharp
tip and ignores the body of the probe, as y” for the point-
dipole in Eq. (11) is much smaller than yg for a tip with
L > a. If the point-dipole model were literally correct, the
radiating dipole of the probe in typical s-SNOM experiments
would be so small that no measurable signal would be
observed.

The finite-dipole model improves upon the point-dipole
one by including the missing antenna-like enhancement
approximately. It assumes that the electric field of a spheroi-
dal probe of length 2 L is equivalent to that of several point
charges of total zero charge that are positioned inside the
spheroid near both of its ends. For small z;, /L, this

model®®>? yields the following functional form of the probe
polarizability:
fdp {)dp fdp Zi%ip
% :constJrﬁgdp_ﬁ, y ~ 1440 13) (68)

where Rgdp o al?. The finite-dipole model was shown to give
a good qualitative agreement with s-SNOM data obtained for
quartz, amorphous SiO,, and SiC samples once parameters
Rgdp and ﬁf)dp are suitably adjusted.® Thus, the best fit to the
data was achieved choosing the length 2L = 600 nm of the
probe, which is about one third of the diameter c¢/w
~ 1700 nm of the radian sphere. Interestingly, this is approxi-
mately the value of 2 L in the quasistatic calculation for which
one obtains, in the case of SiO, sample, the same result for s3
as one gets from the full electrodynamic calculation for a
probe of a realistic (much longer) length.'®

Agreement with the data notwithstanding, from the
theory point of view, Eq. (68) is unsatisfactory on at least
three counts. First, R(fflp does not follow the correct scaling
L?/InL as a function of L, thus underestimating the probe
polarizability. Second, the constant term in Eq. (68) violates
the general requirement that y — 0 as § — oo, corresponding
to the case when the applied field is screened completely by
the induced charges in the sample. Third, ﬂgdp goes to ~1.4
when z;, = 0. Instead, all smooth probe shapes must behave
as a sphere at zi, < a and therefore yield f, = 1 at zz, = 0.
The fact that finite-dipole model violates these general
requirements suggest its limited usability. Figure 14 is an
illustration of how widely different the predictions of the four
discussed s-SNOM models can be for the case of Al,Os.
Additional examples of similarly large differences for SiO,
and SiC samples can be found in previous works of the pres-
ent authors and their collaborators.'”*® All these examples
compel us to conclude that the prior success of the point- and
finite-dipole models in fitting experimental data has to be due
to insufficient range of the data, multitude of adjustable pa-
rameters, and also the demodulation and normalization
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FIG. 14. The spectrum of the probe polarizability [x*| for Al,O; sample
according to four different models. The point- and the finite-dipole models
each predict a single peak in |y*|. The calculations for spherical and spheroi-
dal probes reveal multiple peaks. The sphere and the point-dipole models
produce y*/a® ~ 1. The L = 25a spheroidal probe yields y* ~ 10°-10*
the finite-dipole of the same L gives about an order of magnitude lower y*.
These dramatic differences in both the form and the absolute magnitude of
7+ can however be significantly reduced in the usually reported 5’3{ the nor-
malized demodulated signal.

procedures that mask the errors in both the functional form
and the magnitude of the calculated signal.

Another way to explain the difference between the ear-
lier ad hoc models and our GSM is as follows. For the case
of a sample with a local reflectivity f3, the exact scattering
problem of a dielectric probe near a surface reduces to a gen-
eralized eigenproblem,”’ which has an infinite number of
eigenmodes, as we discussed in Sec. I. In contrast, both the
point- and the finite-dipole models attempt to approximate
the infinite number of eigenmodes by a single one.

Since the real-space potential distribution of the eigenm-
odes [Fig. 1(b)] depends on the shape and size of the probe
and probe-sample distance but not on f5, we can describe
interaction of the probe with an arbitrary sample efficiently
using the precalculated basis of such eigenmodes. This
allows one to use our GSM approach to model s-SNOM
response for a wide range of materials. However, calcula-
tions for realistic probe shapes are not always practical. In
search of a broadly applicable yet simple model, we have
chosen the prolate spheroid to be our probe shape, as it cap-
tures the essential features of the actual probes—a sharp
apex and a strongly elongated shaft. We quantified the
eigenmodes of the probe-sample system in the form of poles
and residues of the polarizability functions »*,? allowing an
expedient, in fact, instantaneous calculation of the s-SNOM
response. The point-dipole, finite-dipole, and other ad hoc
models no longer have the advantage of computational speed
and should now be considered obsolete.

Recent work'® has shown that in the strong-coupling re-
gime of the probe-sample interaction a fully electrodynamic
treatment using the BEM and realistic probe shape is neces-
sary in order to reproduce the measurements. This regime is
realized experimentally®'® when using samples of SiC, a ma-
terial for which || can be as high as 15. The same
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considerations apply for Al,Oz for which |f| can reach 12
(see Fig. 2(a)). Our GSM theory gives analytical insight into
near-field response of such materials. We have shown that
due to simultaneous excitation of multiple eigenmodes, novel
features of the s-SNOM signal such as multi-peaked spectra
and nonmonotonic approach curves can appear. These fea-
tures are however very sensitive to experimental parameters
such as tapping amplitude, minimum approach distance, and
even the data collection protocol. Retardation effects, espe-
cially radiative damping can also qualitatively alter the signal
and must be considered. In order to observe the predicted
anomalous approach curves and multi-peak spectra, it may be
necessary to make efforts to minimize the radiative damping,
which requires working with shorter probes or at lower fre-
quencies. In contrast, in the weak- and moderate-coupling
regimes, which are relevant for the vast majority of samples,
the lowest-order eigenmode is dominant. Hence, the approach
curves should be monotonic in z;p,, while the spectra should
be mostly insensitive to experimental details and retardation
effects. This is the regime where our spheroidal probe model
can be used with the greatest confidence.

Our GSM theory also applies to a more complicated
problem where the sample reflectivity is nonlocal, i.e.,
momentum-dependent. Here, the salient advantages of our
method are two-fold. First, in the case of a weak nonlocality,
our GSM provides a mapping of the nonlocal problem to a
local one. Thereby, the sample-independent eigenmode
decomposition is retained, providing an intuitive interpreta-
tion of the scattering signal. Second, our numerical algorithm
(see the supplementary material) is much more efficient than
the standard BEM because the number of necessary matrix
element calculations scales linearly instead of quadratically
with the matrix size. It will be worthwhile to compare the
actual computational speed of our algorithm with that of a
recently developed and significantly more efficient BEM that
utilizes pre-calculated matrix elements.'®

We hope that the improved physical understanding of
near-field probe-sample coupling enabled by the generalized
spectral method advanced in this work as well as the numeri-
cal procedures we developed for its implementation can be
of use for modeling and analysis of future s-SNOM and other
near-field experiments.
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