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ABSTRACT

Icosahedral quasicrystals are characterised by the absence of a distinct
Drude peak in their low-frequency optical conductivity and the
same is true of their crystalline approximants. We have measured
the optical conductivity of i-GdCd7.98, an icosahedral quasicrystal,
and two approximants, GdCd6 and YCd6. We find that there is a
significant difference in the optical properties of these compounds.
The approximants have a zero frequency peak, characteristic of a
metal, whereas the quasicrystal has a striking minimum. This is the
first example where the transport properties of a quasicrystal and its
approximant differ in such a fundamental way. Using a generalised
Drude model introduced by Mayou, we find that our data are well
described by this model. It implies that the quantum diffusion of
electronwave packets through the periodic and quasiperiodic lattices
is responsible for these dramatic differences: in the approximants,
the transport is superdiffusive, whereas the quasicrystals show
subdiffusive motion of the electrons.
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1. Introduction

Quasicrystals are a class of crystals that, rather than possessing periodic translational
symmetry of the lattice, have a quasiperiodic order that still gives rise to a discrete
diffraction pattern [1]. Despite being discovered three decades ago, we still cannot calculate
the band structures of quasicrystals without resorting to approximations to periodic
crystals. Consequently, we cannot accurately predict their transport properties, since the
powerful Bloch theoremdoes not apply. Thismakes it necessary to experimentally compare
quasicrystals to their periodic analogues: quasicrystal approximants.

With their large unit cells, similar stoichiometries, similar atomic clusters and diffrac-
tion patterns with pseudo-forbidden symmetries, approximants are the closest things to
quasicrystals without quasiperiodic lattices [2]. This similarity allows experimentalists
to explore the physics unique to the quasiperiodic lattice by looking for the differences
between quasicrystals and their approximants.

In previous works [3–10], icosahedral quasicrystals and their approximants showed
broad interband transition (IBT) maxima around 1-3 eV with optical conductivities
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between 1600 to 13000 (� cm)−1. At low photon energies, there is what appears to be
either a highly suppressed Drude peak or the absence of a Drude peak altogether. The
samples of RMgZn (R=Y, Ho, Er), with the most prominent so-called Drude peak, are not
compared to approximants and have a DC conductivity of around 6000 (� cm)−1 with an
IBT maxima around 8000 (� cm)−1 [10].

In the instances that authors compared icosahedral quasicrystal to their approximants
[7,9], the approximants had quite similar optical conductivities to the quasicrystals. Due
to this similarity, it has been concluded that the quasiperiodic lattice was not the cause
of the peculiar optical conductivities [9]. It should be noted that one of the samples of
Demange et al. [4] use a significantly different definition of an approximant that would
accept γ -AlCrFe as both a decagonal and icosahedral approximant. Demange et al. admit
it is a poor approximant because of the anisotropy and small lattice constants. We simply
consider it a poor metal and ignore it here.

Recent results suggest that magnetic properties can manifest differently in quasicrystals
and their approximants [11,12]. There are further hints that transport properties are
also affected by quasilattices; in the Au–Al–Yb system, DC resistivity measurements as
a function of temperature show differences between periodic and quasiperiodic lattices;
however, these effects are small and at low temperature (see Figure S1(a) in Deguchi et al.
[12]).

Inspired by the linear optical conductivity of aluminium-based icosahedral quasicrystals
and their approximants,Mayou [13] derived a generalisedDrudemodel (GDM) to account
for the quantum diffusion of electron waves that spread, in time t, according to

L(t) =
√〈[X(t) − X(0)]2〉 ∝ t

α+1
2 , (1)

where X(t) is the position operator of the wave packet and α is restricted to −1 ≤ α ≤
1. In a classical picture, L(t) could be regarded as the square root of the mean square
displacement of a macroscopic particle. However, in this model, transport is an inherently
quantumphenomenonbecause the semiclassical Bloch–Boltzmannpicturedoesnot always
apply, as it requires that the average distance awave packet travels be greater than the spread
of the wave packet itself. However, L(t) is still a measure of the displacement of the wave
packet from its initial position. At precisely α = 0, the spreading is called diffusive and is
analogous to classical Brownianmotion. For α ≥ 0 and α ≤ 0, we are in the superdiffusive
and subdiffusive regimes, respectively. When α = 1 we recover the classical Drude model
in Equation (2).

Mayou proposed a generalised Drude model of the form:

σ(ω) ≈ e2n(μ)A�(α + 2)
(

τ

1 − iωτ

)α

(2)

where n(μ) is the density of states at the chemical potential,A is a constant,� is the gamma
function, ω is the frequency, τ is the mean time between scattering and α characterises the
quantum diffusion of the wave packet and takes the values −1 ≤ α ≤ 1. In this model,
when the electrons are travelling superdiffusively, there is a peak at zero frequency in
the conductivity that decreases monotonically with photon energy, like the Drude model.
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When travelling subdiffusively, the electrons will have a dip in their conductivity at zero
frequency that increases monotonically with photon energy (see Figure 1 in [14]).

There have been many other methods of modelling the optical conductivities of qua-
sicrystals. Deigiorgi et al. [5] and Bianchi et al. [8] conduct a standard analysis using
Drude and Lorentz oscillators. Basov et al. [7] fit the interband transitions to a simple
bandgap model. The GDM has been used once before by Demange et al. [4], but the
low-frequency fit did not account for the low-frequency tails of interband transitions.
Burkov et al. [14] interpret the linear conductivity in terms of an admittedly simple, nearly
free electron model that uses high-intensity Bragg peaks to define a Jones zone. Wu et
al. [9] use the Burkov model plus a Drude component. Karpus et al. [10] extended the
theoretical analysis of Burkov et al. by augmenting the model with parameters determined
through photoemission spectroscopy. In the case of Karpus, they fit a standard Drude
model to the flat conductivity at low frequency. Timusk et al. [15] reinterpret the linear
optical conductivities in terms of massless 3D Dirac points. In this work, we too model
the interband transitions as a series of Lorentz oscillators when fitting our high-frequency
data; in addition, the generalised Drudemodel is modified to fit data across all frequencies.

2. Experiment

Samples of i-GdCd7.98, GdCd6 and YCd6 were grown, using a high-temperature flux
technique, and characterised at Ames Laboratory [11]. When cleaned and annealed, the
quasicrystal showed a nearly flat temperature dependence in the resistivity [16]. The
approximants also have a metallic temperature dependence with a low residual resistivity
ratio very similar toMori et al. [17]. The crystals were large with facets of a fewmillimetres.
These samples were chosen because they could be grown to the sizes needed for optical
spectroscopy.

To remove residual flux from the surfaces of the crystals, due to the growth process, the
crystals were mechanically polished in stages of 9 μm, 3 μm, 1 μm, 250-nm and 30-nm
grit using standard mechanical polishing techniques. Optical spectroscopy was performed
using an IFSv/66 Bruker spectrometer from 20 cm−1 to 7500 cm−1 and, aWoolamM-2000
spectroscopic ellipsometer from 0.7 to 5 eV. Although measurements were performed at
temperatures as low as 15 K in the 60 to 700 cm−1 region, there were not substantial
differences from measurements performed at room temperature, so the low temperatures
are not shown here.

The reflectivities for the QC and the approximants are displayed in Figure 1. The
three curves have some common features. At the lowest frequencies, the reflectivities are
near unity as is expected of materials with free electrons. The reflectivities drop over
several hundred meV, suggesting a small number of free carriers, before levelling off
between 0.6 and 0.7. Below 200 meV, the quasicrystal reflectivity drops below that of the
approximants by several per cent. The quasicrystal reflectivity turns up around 3.5 eV.
Both approximants show an increase in reflectance of ≈2% around 1.3 eV. Previous work
on QCs has shown that high-frequency ellipsometry is affected by the type of surface
treatment and with special treatment the reflectance drop (traditionally associated with
the plasma frequency) was moved up to 7 eV [10]. We also see this surface sensitivity
in our ellipsometry measurements, which did not give reasonable results above where
our data ends in the figures and are thus omitted. This corresponds to a wavelength of
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Figure 1. (colour online) Room temperature reflectivity of i-GdCd7.98, GdCd6 and YCd6 determined
from reflectance and ellipsometry measurements. Inset: low-frequency view of reflectivity to illustrate
differing behaviour.
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Figure 2. (colour online) Real part of the optical conductivity of i-GdCd7.98, GdCd6 and YCd6 via Kramers-
Kronig analysis of reflectivity in Figure 1. Note the contrast, at low frequency, between the metal-like
approximant and the almost insulating quasicrystal.

approximately 250 nm, which is nearly identical to our second smallest polishing grit size,
which suggests our 30-nm grit polish was ineffective.

The optical conductivities of the approximants, GdCd6 andYCd6 (Figures 2 and 3) both
have a zero-frequency peak with an amplitude of 10,100 and 9900 (� cm)−1, respectively.
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Figure 3. (colour online) Same data as Figure 2 below 200 meV, including DC values as filled circles, for
the real part of the optical conductivity of i-GdCd7.98, GdCd6 and YCd6. The DC values have an estimated
uncertainty of 30% and are excluded from the analysis below.
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Figure 4. (colour online) An example of a Drude fit plus a constant term to the low frequency data of
GdCd6. The Drude model does not fit well and, in particular, does not have the proper curvature at low
frequency.

Peaks such as these would typically be fit with a Drudemodel. There is a local minimum
at 200 meV and two maxima between 1 and 3 eV. The i-GdCd7.98 quasicrystal exhibits a
minimum in the optical conductivity (Figures 2 and 3) of 800 (� cm)−1 at 3 meV, which
is the low-frequency limit of our data. There are two maxima at 1.3 eV and 4.1 eV which
exceed the amplitudes of the approximant peaks. Interestingly, this quasicrystal does not
have a linear optical conductivity between 0 and 1 eV, unlike other quasicrystals lacking a
low-frequency peak [15].

In all other cases, icosahedral quasicrystals and their approximants do not show such
unequivocal zero-frequency peaks. Others have found either no Drude peak in icosahedral
quasicrystals and their approximants, or have fit Drude peaks with very large scattering
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Figure 5. (colour online) Representative oscillator fits to the real part of the optical conductivity of
i-GdCd7.98(left), GdCd6(centre) and YCd6(right). The filled curves are the individual oscillators. The red
area represents the GDM; all others represent Lorentz oscillators. The black line is the experimental data
and the red line is the sum of the oscillators that are fit to the black line.

rates resulting in nearly flat optical conductivities. To be explicit, we found peaks in GdCd6
and YCd6 that have amplitudes of several thousand (� cm)−1, from the zero-frequency
peak to the first local minima; whereas, others have, at best, an amplitude of a couple
hundred (� cm)−1 from peak to minima, which is comparatively a flat response.

The room temperature DC conductivities are measured with a standard four-probe
technique that has an estimated uncertainty of 30%. Our AC conductivities at our lowest
frequency are within 50% of the DC values, which is acceptable given the uncertainty
of the measurements. The approximant YCd6 has a σDC ≈ 9200 (� cm)−1 and a
σAC ≈ 9900 (� cm)−1; whereas, GdCd6 has a σDC ≈ 6250 (� cm)−1 and a σAC ≈
10, 100 (� cm)−1. The quasicrystal i-GdCd7.98 has a σDC ≈ 1600 (� cm)−1 and a
σAC ≈ 800 (� cm)−1.

3. Analysis

The optical conductivities of both GdCd6 and YCd6 have a distinct peak at low frequency,
which has only been unequivocally seen in decagonal approximants in the periodic direc-
tion [7]. Interestingly, unlike the decagonal approximant peaks, our peaks cannot be fit
with traditional Drude theory (Figure 4). They can be fit to the generalised Drude model
with a fractional power law, derived by Mayou, to account for the character of electron
diffusion in quasicrystals and their approximants.

According to Mayou [18], at high frequencies, the electron diffusion must physically
return to the well-knownDrude form of α = 1, since high frequencies correspond to short
time scales. At small times, the wave packet has not spread far and thus the time evolution
of the wave packet spreading is not suppressed yet. However, Mayou’s GDM, as presented
in Equation (2), is a low-frequency model since most values of α will give, via the optical
sum rule, an infinite plasma frequency.

To fit our experimental data, we give the diffusion parameter a frequency dependence
of α = α1 + α2ω to return it to the standard Drude form at high frequencies; where
α1 is between -1 and 1, and α2 is a small positive value that returns α to 1 beyond the
low-frequency region.

The data were fit with Lorentz oscillators in the interband transition region to include
the possible effects of low-frequency components of interband transition. Note that due
to the freedom in fitting many oscillators, the fit is not unique therefore multiple different
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Figure 6. (colour online) Low-frequency regions of the representative oscillator fit to the real part of
the optical conductivity of i-GdCd7.98(left), GdCd6(centre) and YCd6(right). The filled curves are the
individual oscillators. The red area represents the GDM; all others represent Lorentz oscillators. The black
line is the experimental data and the red line is the sum of the oscillators that are fit to the black line.

Table 1. Estimate of bounds on the diffusion parameter α for i-GdCd7.98, GdCd6 and YCd6. Using
L(t) ∝ t

α+1
2 , we can infer the time evolution of the electron from these bounds.

Sample αlower αupper

i-GdCd7.98 −0.6 −0.2
GdCd6 0.16 0.6
YCd6 0.06 0.5

IBT oscillator combinations are used throughout the analysis. For the approximants and
quasicrystals, no Lorentz oscillators are fit below 100 meV and 200 meV, respectively.

With the large amount of freedom of the many oscillators, we can only put a bound on
the values of α1 by requiring that the optical sum rule of the GDM be lower than some
chosen plasma frequency, defined by

ω2
p

8
=

∫ ∞

0
σ1,GDMdω = πne2

2m
(3)

where ωp is the plasma frequency, σ1,GDM is the optical conductivity of the GDM, n is
the number density of the conduction electrons and m is the mass of the electron. Using
Equation (3), the calculated plasma frequencies for i-GdCd7.98, GdCd6 and YCd6 are 11.6,
11.5 and 11.6 eV, respectively. Being conservative and rounding these up to 15 eV, the
acceptable α2 values are those that give a plasma frequency below 15 eV given by the
integral in Equation (3). In Figures 5 and 6, we show typical final fits, with the GDM and
individual Lorentz oscillators shown. Repeating this analysis for numerous IBT fits, we
estimate the bounds on the diffusion parameters α at zero frequency in Table 1.

We can see from Table 1 that in the large unit cell approximants, the electrons are
travelling weakly to moderately superdiffusively, which is unlike the strong superdiffusion
of the Drude model seen in small unit cell metals [18]. Further, the quasiperiodic lattice
with its infinite unit cell size has the electron transport suppressed even more into the
subdiffusive regime. Both approximants show similar bounds, which is expected, as the
materials are quite similar: their lattice constants only differ by 0.055 Å [17]. If one were
to conduct a photoemission analysis similar to Karpus analysis of interband transitions, it
may be possible to reduce the size of these estimated bounds.
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In summary, we have found a unique example where an almost insulating quasicrystal
is paired with conducting approximants. Analysis of the conductivity shows a free carrier
response that is best described by a non-Drude form. A generalised Drude model of
Mayou that allows for quantum diffusion of the wave packets describes the data for both
the quasicrystal and its approximants. Further characterisation of other quasicrystals and
approximants from this familymay allow trends to be determined and allow one to explore
why these particular quasiperiodic and approximant lattices are dramatically different,
whereas all other previous icosahedral families lacked these differences.
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