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We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected
by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong
enhancement of the local optical conductivity caused by optical transitions involving these bound states.
We propose that the bound states can be systematically created, controlled, and liquidated by an
ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally
enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical
concept.
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Plasmon scattering and plasmon losses in Dirac materi-
als, such as graphene and topological insulators, are
problems of interest to both fundamental and applied
research. It is an outstanding challenge to understand
various kinds of interaction (electron electron, electron
phonon, electron photon, electron disorder) responsible for
these complex phenomena [1–5]. At the same time, control
of plasmon scattering is critical if this class of materials is
to become a new platform for nanophotonics [6–9].
One source of plasmon scattering is the long-range

inhomogeneity of the electron density, which causes local
fluctuations in the plasmon wavelength λp. If the inhomo-
geneities are weak, those of size comparable to the average
λp are expected to be the dominant scatterers [10,11]
Surprisingly, recent experiments have revealed that one-
dimensional (1D) defects of nominally atomic width can
act as effective reflectors for plasmons with wavelengths as
large as a few hundred nanometers. Strong plasmon
reflection was observed near grain boundaries [12,13],
topological stacking faults [14], as well as nanometer-scale
wrinkles and cracks [11,12] in graphene. If this anomalous
reflection is indeed a ubiquitous effect largely unrelated to
the specific nature of a defect, it calls for a universal
explanation. In this Letter we attribute its origin to electron
bound states commonly occurring near 1D defects. We
show that optical transitions involving the bound states can
produce strong dissipation at small distances x from the
defect and, therefore, alter plasmon dynamics. To support
this idea we present a theoretical analysis of an exactly
solvable model, which illustrates the qualitative and quan-
titative characteristics of the bound states and predicts
how their optical response depends on the tunable param-
eters of a 1D potential well. We also report an attempt to
probe the predicted effects experimentally. Our approach is
to employ an ultranarrow electric gate in the form of a

carbon nanotube (CNT) to create a precisely tunable 1D
barrier in graphene. This device enables a systematic
investigation and control of plasmon propagation, includ-
ing, in principle, an implementation of a plasmon on-off
switch (Fig. 1). What we find is that the measured real-
space profile of the plasmon amplitude (Fig. 4) cannot be
accounted for by a local change in λp alone. Instead, the
data are consistent with the presence of an enhanced
dissipation in the region next to the CNT. The amount
of this dissipation agrees in the order of magnitude with the
power absorption due to 1D bound states in our model.
Model.—We assume that the graphene quasiparticles can

be described by a 2D Dirac Hamiltonian H ¼ ℏvFðσzkxþ
σykyÞ þ vðxÞ, where σy, σz are the Pauli matrices and vðxÞ
is the total (screened) potential induced by the 1D gate. For
simplicity, we assume that vðxÞ is a square well of width d
and depth u although more realistic potentials [15–18] can

FIG. 1. Schematic of an ultranarrow plasmon reflector. The
incident plasmon (blue) can propagate freely unless a local
perturbation hosting a 1D electron state (the dashed arrow)
causes it to be reflected (orange). The bound state parameters
are controlled by the voltage Vg of a nanotube gate (green).
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also be considered. In the present case the eigenfunctionsΨ
are combinations of plane waves and/or exponentials that
have to be matched at x ¼ �d=2, see Ref. [19]. The
electron momentum ky along the perturbation (in the y
direction) is conserved, so that the gapless 2D Dirac
spectrum is effectively replaced by a 1D one with a gap
Δ ¼ jℏvFkyj. Within the gap electron states localized at the
well exist [Fig. 2(b)]. The energies εnðkyÞ of these bound
states, where n ¼ 1; 2;…, are the solutions of the tran-
scendental equation [35]
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Here, E ¼ εnd=ðℏvFÞ is the dimensionless energy and

Ky ¼ kyd; U ¼ ud=ðℏvFÞ; ð2Þ

are, respectively, the dimensionless y momentum and the
well depth. The dispersions of the three lowest bound states
for U ¼ 5 are shown in Fig. 2(a).
The response of the system to an optical excitation of

frequency ω polarized in the x direction is described by an
effective conductivity σðxÞ given by the Kubo formula [19],
which determines the local current density jxðxÞ ¼ ExσðxÞ
in the approximation that the total electric field Ex due to
the optical excitation is uniform. Below we focus on the
real part of σðxÞ, which determines local power dissipation.
We assume that graphene is doped and consider only
frequencies ℏω < 2jεFj, for which the optical conductivity
of an infinite graphene sheet vanishes (if we neglect
disorder, many-body scattering, and thermal broadening [3]).

This implies that in the absence of the perturbation,U ¼ 0, we
must have ReσðxÞ ¼ 0 at all x. On the other hand, when the
potential well is present, a finite ReσðxÞ exists. There are two
types of relevant optical transitions: those that involve the
bound states [as either the initial i or the final f states, Fig. 2(a)]
and those that do not. The contribution of the former to ReσðxÞ
is maximized near the potential well and decays exponentially
at jxj > d=2 due to the localized nature of the bound states.
The contribution of the latter is small, oscillating, and decaying
algebraically with x [19]. Resolving the detailed real-space
features of σðxÞ in an optical experiment is challenging
(see below). A more practical observable is the normalized
integrated conductivity:

σ̄ ≡ 1

d

Z
∞

−∞
dxReσðxÞ: ð3Þ

According to our simulations, transitions that involve
the bound states give the dominant contribution to σ̄.
In particular, bound-to-bound state transitions produce
numerically large values of σ̄ expressed in units of e2=h.
Such transitions are possible at discrete ky where the
energy difference between the states of the same momen-
tum matches ℏω provided the lower (higher) state is
occupied (empty). If the chemical potential μ is gradually
increased, e.g., by electrostatic gating, the state occupa-
tions would change, leading to either blocking or unblock-
ing of these transitions. Accordingly, σ̄ would either
sharply drop or jump, see Fig. 3(a). These changes persist,
albeit blurred, at finite temperatures, see thedashedcurve in
Fig. 3(a).
Sharp drops in σ̄ also occur when the bound states merge

with the continuum and get liquidated (become extended).
The drop is abrupt if the optical transitions probe a single ky

(a) (b)

FIG. 2. (a) Dispersion of bound states for a sheet (blue) or a
ribbon of width 2d (the black dots) for U ¼ 5. The light gray are
empty states in the continuum. The dark and medium gray are
occupied states in the continuum. The last of these, with E
between EF ¼ μd=ℏvF and Emin ¼ EF − ωd=vF, enable optical
transitions (the arrows) of frequency ω. Transitions between
bound states (the dashed arrow) can occur for some EF, e.g.,
EF ¼ 0 at which the state i is filled and the state f is empty.
(b) The density distribution n̄ ¼ jΨj2 of the two states i and f for
the transition indicated by the cyan arrow in (a). The state f (blue)
is localized in the well, while the state i (orange) is extended.
Parameters: Ky ¼ 2.5, ωd=vF ¼ π=2.

(a) (b)

FIG. 3. (a) Integrated conductivity σ̄ of a graphene sheet at
ω ¼ 830 cm−1. The sharp changes are caused by blocking or
unblocking of the transitions involving bound states as a result of
changing occupations of the levels as a function of the graphene
chemical potential μ. For example, the plateau at 0.02 < μðeVÞ <
0.12 is due to the (blue) dashed-line transition in Fig. 2(a).
(b) Integrated conductivity σ̄ of a sheet (s) and a ribbon (r) at
T ¼ 0 and KF ¼ −π=2. Sharp changes at U ¼ 8 and 10 for
ω ¼ ω2 arise from a transition between bound states. Parameters:
d ¼ 10 nm, ω1 ¼ 83 cm−1, ω2 ¼ 830 cm−1.
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or a narrow range of ky. In principle, this situation can be
realized in a graphene ribbon running perpendicular to the
linelike perturbation. In such a ribbon the allowed ky ¼
mπ=W þ const are discrete, as shown schematically by the
dots in Fig. 2(b). The coupling to a single bound state can
be achieved under the condition π=W > ω=vF, i.e., by
using a ribbon of a narrow width W or the excitation of a
low frequency ω. In Fig. 3(b) we show three numerically
calculated traces of σ̄ as a function of the well depth U for a
fixed dimensionless chemical potential EF ¼ μd=ðℏvFÞ ¼
−π=2. The first trace is computed for a ribbon of width
W ¼ 2d probed at the excitation energy ℏω ¼ jμj. It
exhibits pronounced oscillations of σ̄. In particular, σ̄ drops
to zero when a bound state merges with the continuum. The
other two traces correspond to a 2D graphene sheet.
Although the sharp drops become blurred, they remain
pronounced at a low excitation energy ℏω1 ¼ jμj=10 and
still evident at ℏω2 ¼ jμj.
The enhanced local optical conductivity around the 1D

gates described above causes plasmons to be strongly
reflected. According to the first-order perturbation theory
[11,12,19], the reflection coefficient r of a normally
incident plasmon wave is

r1 ≃ 2πi
λp

Z
∞

−∞
dx

�
σðxÞ
σ∞

− 1

�
: ð4Þ

For arbitrary perturbations, we can use the approximation
jrj ≈minðjr1j; 1Þ. Using the results of Fig. 3(b) we estimate
jrj ≈ 0.3 at the chemical potential of 0.25 eV where
the predicted σ̄ ≈ 5e2=h. This roughly corresponds to the
regime probed by our experiments (see below). At the
chemical potential of 0.3 eV where the calculated local
conductivity is much larger, σ̄ ≈ 40e2=h, the reflection
coefficient should approach unity, realizing the “reflector
on” state in Fig. 1.
Experiment and analysis.—To investigate the described

above phenomena experimentally we fabricated a nano-
device that contained (bottom to top) a Si=SiO2 substrate, a
10 nm-thick layer of hexagonal boron nitride (hBN), and a
mechanically exfoliated graphene flake. A metallic single-
wall CNTwas placed between the hBN and SiO2. The local
charge density of graphene was tunable by the voltage Vg
applied between the CNT and graphene. The average
carrier density in graphene jnj ∼ 5 × 1012 cm−2 was pro-
duced by uncontrolled ambient dopants (acceptors) [36]. To
infer the local optical conductivity σðxÞ we used scattering-
type scanning near-field optical microscopy (s-SNOM)
[3,37,38], see Fig. 4(a). The s-SNOM utilizes a tip of an
atomic force microscope (AFM) with a radius 25 nm as an
optical antenna that couples incident infrared light to
graphene plasmons. The backscattered light is analyzed
to extract the amplitude s̄ and the phase ϕ of the genuine
near-field signal, Figs. 4(b), 4(d), and 4(e). Crudely speak-
ing, this signal is proportional to the electric field inside the

tip-sample nanogap. The variation of this field with the tip
position is caused by the standing-wave patterns of the
surface plasmons [23,39]. These standing waves are due to
the interference of the plasmon waves launched by the tip
with the waves reflected by the charge inhomogeneity
induced by the CNT. The spacing of the interference fringes
is equal to one half of the plasmon wavelength λp. The
latter is given by λp ¼ Reð2π=qpÞ, where qpðxÞ ¼
iκω=2πσðxÞ is the complex plasmon momentum and κ is
the average permittivity of the media surrounding the
graphene [3]. Therefore, s-SNOM images combined with
the formula for qp give a direct estimate of ImσðxÞ. The
extraction of ReσðxÞ requires an electromagnetic simula-
tion of the coupled tip-graphene system, which was done
using the numerical algorithm developed previously
[12,19,23]. To facilitate a connection with that previous
work, we parametrized the conductivity via

σðxÞ ¼ e2vF
πℏω

ikFðxÞ
1þ iγðxÞ ; ð5Þ

(a)

(b)

(c)

(d)

(e)

FIG. 4. Measurement of the conductivity σ̄ by s-SNOM. (a) A
schematic showing graphene (variable intensity gray) gated by a
CNT (green) separated from it by a thin hBN layer. The induced
perturbation is parametrized by spatially varying kF and γ. In the
experiment, the AFM tip (triangle) is polarized by a focused
infrared beam (not shown), which enables it to launch a plasmon
(blue). The reflected plasmon (orange) causes an additional tip
polarization, resulting in a modified optical signal backscattered
by the tip and detected in the far field. (b) The s-SNOM
amplitude images of the region next to the CNT for Vg ¼
þ1;…;−2 V and ω ¼ 890 cm−1. The twin fringes (bright lines)
intensify and separate as jVgj increases. (c) The AFM topography
image of the same region. Scale bar: 1 μm. (d),(e) The s-SNOM
amplitude (s̄) and phase (ϕ) along the line perpendicular to the
CNT; s̄ is normalized to the x ¼ −200 nm point. The best
theoretical fits (gray) for Vg ¼ −2 V are included in (e).
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which was modeled after the long-wavelength Drude
(intraband) conductivity of graphene [3] with Fermi
momentum kF and dimensionless damping factor γ. The
goal of the data analysis was to determine the profiles of
kFðxÞ and γðxÞ that yield the best fit to the s-SNOM data.
In this parametrization, the presence of the bound states
should increase the local damping, so the signature we were
looking for was the enhanced value of γðxÞ.
Our experimental data are presented in Fig. 4. The AFM

topography image, Fig. 4(c), shows that the CNT does not
produce any visible topographic features. However, in the
near-field signal, up to two pairs of intereference fringes
appear on each side of the CNT [the bright lines in
Fig. 4(b)]. Similar twin fringes have been observed in prior
s-SNOM imaging [12–14,36] of linear defects in graphene.
Importantly, the intensity and spacing of the fringes we
observe here evolve with the CNT voltage Vg, which attests
to their electronic (specifically, plasmonic) origin.
In addition to the controlled perturbation induced by the

CNT, graphene contains uncontrolled ones due to random
defects. To reduce the random noise caused by those, we
averaged the near-field signal over a large number of linear
traces taken perpendicular to theCNT. The thus obtained line
profiles of both the amplitude s̄ and the phaseϕ are plotted in
Figs. 4(d) and 4(e).We focus on theVg ¼ −2 V trace, which
shows the strongest modulation. The accurate determination
of the functions kFðxÞ and γðxÞ is impacted by the s-SNOM
resolution limit∼20 nm. Inour fittingwe assumed that kFðxÞ
is given by the perfect screening model k2FðxÞ ¼ ½k2Fð0Þd2þ
k2Fð∞Þx2�=ðd2 þ x2Þ, which should be a good approxima-
tion for high doping [24]. The adjustable parameters are
kFð0Þ and kFð∞Þ. For γðxÞ we considered trial functions in
the form of a peak (dip) at x ¼ 0, with adjustable width and
height (depth), as sketched in Fig. 4(a). The trial kFðxÞ and
γðxÞ were fed as an input to the electromagnetic solver
described previously [12,23]. As detailed inRef. [19], a good
agreementwith theobserved formof the twin fringes requires
a strong peak in γðxÞ near the CNT. The shape of the fringes
was found to depend primarily on the integral of
γðxÞ − γð∞Þ, so in the end we modeled γðxÞ by a boxlike
discontinuity with a central region of a fixed width 13.5 nm
and two adjustable parameters γð0Þ, γð∞Þ. The best fits [the
gray curves in Fig. 4(e)] to the Vg ¼ −2 V s-SNOM data
were obtained using γð0Þ ¼ 1.65.
To establish a rough correspondence between the pro-

files of Fig. 4(e) and the square-well model we take d to be
the thickness of the hBN spacer d ¼ 10 nm and U to give
the same integrated weight

R
vðxÞdx≡ ud ¼ ℏvFU ¼

ℏvF
R ½kFðxÞ − kFð∞Þ�dx. This prescription implies

EF ¼ 4, U ¼ 13, and σ̄ ¼ 3.5e2=h for ω ¼ 890 cm−1 ¼
1.7vF=d [19]. The square-well model in Fig. 3 yields a
comparable optical conductivity σ̄ ¼ 4.7e2=h although for
a smaller U ¼ 5. Given a number of simplifying assump-
tions we have made in the modeling, this level of agreement
seems adequate.

Summary and future directions.—In this Letter, we
proposed a model for the anomalous plasmon reflection
by ultranarrow electron boundaries in graphene. We vali-
dated this concept in experiments with electrostatically
tunable linelike perturbations. One broad implication of our
work is that nanoimaging of collective modes can reveal
nontrivial electron properties, in this case, 1D bound states.
Recent experiments have demonstrated that this technique
is not limited to plasmons or graphene or 2D systems
[40–43]. We hope that our work stimulates even wider use
of this novel spectroscopic tool.
A particularly intriguing future direction is to comple-

ment s-SNOM with scanned probe techniques other than
AFM topography. For example, scanning tunneling micros-
copy, which has a superior spatial resolution, can be used to
measure the local electron density of states (LDOS). For the
particular model system studied here, the features exhibited
by the LDOS should be quite striking, see Fig. 5 and
Ref. [19]. The origin of these features can be understood by
examining the dispersions in Fig. 2(a). Within the selected
energy interval there is the total of three bound states. The
topmost one has a monotonic dispersion; the other two have
energy minima at which the LDOS has van Hove singular-
ities (diverges), see Fig. 5. The strength of these singularities
decreases exponentially with x because these bound states
are localized near thewell. At large x, the LDOSdisplays the
V-shaped energy dependence characteristic of uniform
graphene [3]. We anticipate that the combination of optical
and tunneling nanoimaging and nanospectroscopy could
provide refined information about the local electronic
structure. One example of a possible application of this
knowledge is the design of optimized plasmon switches
(Fig. 1) for Dirac-material-based nanoplasmonics.
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FIG. 5. The LDOS as a function of the dimensionless energy E
for the U ¼ 5 square-well model at the three fixed distances from
the CNT: x=d ¼ 0 (red), 0.6 (green), and 1.0 (violet). The dashed
line shows the LDOS of unperturbed graphene.
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