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In commemoration of Paul Drude (1863–1906)

Infrared spectroscopy has emerged as a premier experimental technique to probe enigmatic effects arising
from strong correlations in solids. Here we report on recent advances in this area focusing on common patterns
in correlated electron systems including transition metal oxides, intermetallics and organic conductors. All
these materials are highly conducting substances but their electrodynamic response is profoundly different
from the canonical Drude behavior observed in simple metals. These unconventional properties can be
attributed in several cases to the formation of spin and/or charge ordered states, zero temperature phase
transitions and strong coupling to bosonic modes.
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1 Introduction

Among early seminal successes of quantum mechanics is the advent of the band theory of solids. Within the
band theory it became possible to account for fundamental distinctions between the properties of metals and
insulators without the need to invoke interactions in the electronic systems. Transition metal oxides including
NiO and CuO are notorious examples of the failure of the band theory. The theory prescribes a metallic
state in these compounds that are experimentally known to be insulators. Peierls and Mott proposed that
this enigma may be related to strong Coulomb interactions between the electrons. This realization, dating
back to the late 1930-s instituted the field of correlated electron systems, which to this day remains one
of the most vibrant sub-areas of modern condensed matter physics. The last two decades were devoted
to the systematic exploration of a diverse variety of materials where complex interplay between charge,
spin, lattice and orbital degrees of freedom produces a myriad of interesting effects. These include high-Tc

superconductivity, colossal magneto-resistance, spin- and/or charge ordered states, heavy electron fluids and
many others.A common denominator between these systems is that the interactions in the electronic systems
can no longer be regarded as “weak” as in ordinary metals or semiconductors. While standard theories of
metallic conductors are generally inadequate for correlated electron systems it has proven difficult to develop
novel theoretical constructs elucidating the complex physics of strong correlations.

Challenges of reaching deep understanding of correlated electron matter prompted development and
refinement of experimental techniques most relevant for advancing the experimental picture. A variety
of spectroscopic methods traditionally played the crucial role in establishing a description of metals and
semiconductors that currently constitutes several chapters in generic texts on condensed matter physics. The
last two decades brought dramatic progress in spectroscopies including tunneling, inelastic x-ray scattering,
photoemission and infrared/optical spectroscopy. In this article we attempt to discuss some of the recent
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successes in the studies of the electrodynamic response of correlated electron systems enabled by the
investigation of the interaction of the electromagnetic radiation in the �ω = 1 meV−10 eV range in several
classes of pertinent materials. The key advantage of this particular proccedure to study correlations in solids
is that it yields information on optical constants in the frequency region that is critical for the understanding
of elementary excitations, dynamical characteristics of quasiparticles and collective modes. The optical
constants can be modeled using a variety of theoretical approaches. Moreover, in the situations where the
theoretical guidance to the data interpretation is insufficient, valuable insights still can be obtained from
model independent analysis of the optical constants using a variety of the sum rules. Equally advantageous
is the exploration of the power laws in the frequency dependence of the optical constants that in many cases
uncovers universalities expected to occur in correlated matter in the proximity to phase transitions.

Regardless of the complexity of a correlated system response, the Drude model of metals is usually em-
ployed as a starting point of the examination of the electromagnetic properties. The Drude model establishes
a straightforward relationship between electrical and optical properties of metals: a giant leap made by Paul
Drude back in 1900 [1–3]. Indeed, a celebrated Drude expression for the complex optical conductivity
σ̃(ω) = σDC/(1− iωτ) gives a specific prediction for the response of a solid at all frequencies based on its
DC conductivity σDC and the relaxation time τ . Even though it is hard to justify the assumptions behind the
original derivation, the Drude formula has been remarkably successful in offering simple and intuitive de-
scriptions of mobile carriers in metals and doped semiconductors agreeing well with the experimental facts.
As a rule, conducting correlated electron materials reveal significant deviations from the Drude formula. In
this article we will examine physical mechanisms underlying unconventional electromagnetic behavior of
correlated electron materials.

This article is organized in the following way. We start by discussing experimental procedures used to
obtain the optical constants of a solid (Sect. 2). We then outline the Drude formalism and its modifications
in Sect. 3. Since many correlated electron systems are derived by doping Mott-Hubbard (MH) insulators
with holes and/or electrons, we will overview the generic features of the optical conductivity of this class of
compounds in Sect. 4. Doped charges in MH systems often form self-organized spin and/or charge ordered
states. It is instructive to explore these states in the context of what is firmly established regarding the
properties of more conventional charge- and spin-density wave systems (Sect. 5). In Sect. 6 we proceed
to unconventional power laws and scaling behavior commonly encountered in correlated electron matter.
Sect. 7 presents a comprehensive analysis of strong coupling effects in high-Tc superconductors with the
goal of critically assessing some of the candidate mechanisms of superconductivity. Sect. 8 focuses on the
analysis of the electrodynamics of heavy electron fluids. The analysis of the power laws in the conductivity
is continued in Sect. 9 where we compare and contrast the response of organic and inorganic 1-dimensional
conductors. Concluding remarks and outlook appear in Sect. 10.

2 Experimental observables and measurements techniques

The first step in the quantitative analysis of the electromagnetic response of a solid is a determination of
the optical constants of a material out of experimental observables. At frequencies above the microwave
region these observables include reflectance R(ω), transmission T (ω) and ellipsometric coefficients ψ(ω)
and ∆(ω). As a side note, we point out that the principles of ellipsometry were pioneered by Paul Drude.
The real and imaginary parts of complex dielectric function ε̃(ω) or the complex conductivity σ̃(ω) can be
inferred through one or several of the following procedures:

1. A combination of reflectance R(ω) and transmission T (ω) obtained for transparent materials can be
used to extract the dielectric function through analytic expressions. This procedure can be used for
film-on-a-substrate systems, as described for example in [4].

2. Kramers-Kronig analysis of R(ω) for opaque systems or of T (ω) for a transparent system.

3. Ellipsometric coefficients for either transparent or opaque material can be used to determine the di-
electric function through analytic expressions.
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Fig. 1 The energy scales of certain phenomena in condensed matter systems with strongly correlated
electrons. Most of these energies are in the microwave, infrared, visible and ultraviolet parts of the spectrum.
Infrared spectroscopy, combined with microwave and optical spectrometry can be used to probe all these
phenomena simultaneously.

Apart from these protocols based on the intensity measurements, two other techniques are capable of
yielding the optical constants directly through the analysis of the phase information:

4. Mach-Zehnder interferometry [5,6].

5. terahertz time domain spectroscopy [7].

All these methods have their own advantages and shortcomings. For example, (5) is ideally suited for the
survey of the temporal evolution of the optical constants under short pulsed photoexcitations [8,9]. However,
the frequency range accessible to this technique is inherently limited to THz and very far-IR. It is worth
noting that all these protocols produce the optical constants throughout the entire frequency range where
experimental data exist. A notable exception is (2), where both the low- and high-frequency extrapolations
required for KK-analysis effectively reduce the interval of reliable data. Nevertheless, KK-analysis of
reflectance is the most commonly used technique for the extraction of the optical constants in the current
literature. Recently several groups have combined methods (2) and (3) in order to improve the accuracy
of IR measurement over a broad frequency range [10,11]. Experimental advances allow one to carry out
reflectance measurements using micro-crystals [12] at temperatures down to hundreds of mK [13,14] and
in high magnetic field [15,16]. Probably the most powerful attribute of IR/optical spectroscopy is its ability
to probe a very broad range of photon energies, spanning several decades from microwave to ultraviolet
(Fig. 1). This diagram displays schematically some of the physical phenomena along with the relevant
energies. It is apparent that many of these phenomena fall into the part of electromagnetic spectrum which
can be and has been probed using IR spectroscopy, as will be discussed below.
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3 Understanding electromagnetic response of a solid

In 1900, only three years after electron was discovered, P. Drude introduced a simple model for the DC
conductivity of metals [1–3]:

σ0 =
ne2τ

m
, (1)

where n is the carrier density, m their mass and τ the relaxation time (mean time between collisions). The
model has also been generalized for finite frequencies:

σ̃(ω) = σ1(ω) + iσ2(ω) =
σ0

1 − iωτ
=

1
4π

ω2
pτ

1 − iωτ
, (2)

where, ω2
p = 4πe2n/mb is the plasma frequency, n is the carrier density, mb is the carrier band mass and

1/τ is the scattering rate. The functional form of the model predicts that the real (dissipative) part of the
optical conductivity σ1(ω) is a Lorentzian centered at ω = 0. At higher frequencies (i.e. for ωτ � 1), the
model predicts the fall-off σ1(ω) ∼ ω−2. In Sect. 6 we will report on the detailed analysis of the power law
behavior of the optical conductivity of simple and correlated metals.

In addition to this intra-band contribution, inter-band excitations can also contribute to the optical
conductivity and they are usually modeled using finite frequency Lorentzian oscillators:

σ̃lor(ω) =
1
4π

iωω2
pj

ω2 − ω2
j + iγjω

, (3)

where ωj is the frequency of the oscillator, γj its width and ωpj the oscillator strength. Other excitations
(such as phonons) can also contribute, and they can also be modeled using Eq. (3). A combination of Eqs. (2)
and 3 constitutes a so-called multi-component description to optical spectra [17].

An obvious problem with the Drude(-Lorentz) models is the assumption of the energy independent
scattering rate 1/τ = const. As we will discuss below, in many real materials the scattering rate is known
to deviate strongly from this assumption. To circumvent this limitation of constant scattering rate in Eq. (2),
J.W. Allen and J.C. Mikkelsen in 1977 introduced a so-called “extended Drude” model [18] in which the
scattering rate is allowed to have frequency dependence 1/τ(ω). Causality requires that the quasiparticle
effective mass also acquires frequency dependence m∗(ω)/mb. Both quantities can be obtained from the
complex optical conductivity as:

1
τ(ω)

=
ω2

p

4π
�

[
1
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ω2
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, (5)

where the plasma frequencyω2
p = 4πe2n/mb is estimated from the integration of σ1(ω) up to the frequency

of the onset of interband absorption. Eqs. (4) and (5) are the basis of a so-called one-component approach
for the interpretation of optical properties [17].

The optical constants obey various sum rules [17,19]. The power of these sum rules is that they are based
on the most fundamental conservation laws and are therefore model-independent. The most famous and the
most frequently used sum rule is the one for the real part of the optical conductivity σ1(ω):

∫ ∞

0
σ1(Ω)dΩ =

ω2
p

8
=
πne2

2m0
, (6)

and simply expresses the conservation of charge (n is the total number of electrons in the system and m0
is the free-electron mass). Note that in Eq. (6) the integration must be performed up to infinity in order to
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count all the electrons. From the practical point of view this integration to infinity is not possible. Instead
one introduces a so-called effective spectral weight defined as:

Neff (ω) =
120
π

∫ ω

0+
σ1(Ω)dΩ, (7)

which for ω → ∞ becomes the sum rule defined by Eq. (6). For finite integration limits the quantity
Neff (ω) represents the effective number of carriers contributing to optical absorption below the frequency
ω. This quantity is particularly useful in studying temperature- and doping-induced changes across phase
transitions. If one adopts the one-band description, and the integration in Eq. (7) is carried out over that
band, then one can extract the value of mb, the electron band mass.

4 Doped transition metal oxides

The last two decades have seen an explosion of interest in doped insulators, in particular doped transition-
metal oxides [20]. The interest stems from the fact that some of the physical phenomena that are currently in
the focus of condensed matter research, such as high-Tc superconductivity, metal-insulator transitions and
colossal magnetoresistance, are realized in doped insulators. Infrared and optical spectroscopy has been one
of the most important experimental techniques in the identification of the key signatures of the electronic
transport in these novel systems. Fig. 2 shows the in-plane optical conductivity of: La1−xSrxTiO3 [21],
La1−xSrxVO3 [22], La1−xSrxMnO3 [23], La1−xSrxCoO3 [24], La2−xSrxNiO4 [25] and La2−xSrxCuO4
[26]. In Fig. 2 these compounds are arranged according to the number of transition metal d-electrons, from
Ti with electron configuration [Ar]3d24s2, to Cu with configuration [Ar]3d104s. Note however that the
actual electronic configuration changes as La is being replaced with Sr. All systems shown in Fig. 2 can be
doped over a broad range of Sr, driving the compounds through various phase transitions and crossovers.
For zero doping (x = 0) all systems are antiferromagnetic (AFM) Mott-Hubbard (MH) or charge transfer
(CT) insulators [20]. They are all characterized by a gap in the density of states, a feature that dominates
the response of all undoped parent compounds. As doping x progresses, the gap gradually fills in at the
expense of a depression of the spectral weight associated with excitations at higher energy. This process
is also accompanied with the development of a zero-energy Drude mode, a clear signature of conducting
carriers in the system.

Data presented in Fig. 2 uncover generic characteristics common to diverse classes of doped MH insula-
tors. First, even minute changes of doping lead to radical modification of the optical conductivity extending
over the energy range beyond several eV. Similarly, relatively small changes of temperature (100-200 K,
i.e. 8.625-17.25 meV) often cause dramatic effects in the complex conductivity of doped MH systems also
extending over several eV [20, 27–29]. These aspects of the Mott transition physics are captured by dy-
namical mean field theory [30]. The impact of other external stimuli such as electric and magnetic field or
photo-doping on the properties of doped MH compounds has not been systematically explored, perhaps
with the exception of magnetic fields studies of manganites [31]. Another common feature of doped MH
insulators is the deviations of the free carrier response seen in conducting phases from a simple Drude form
that will be analyzed in more details in Sect. 6.

Apart from these universal trends, the dynamical characteristics of mobile charges can be quite distinct
in different materials belonging the MH class. These differences are particularly important as far as the
behavior of the quasiparticle effective mass m∗ in the vicinity of the Mott transition is concerned. Imada
et al. introduced the notion of two distinct types of Mott transitions: i) those driven by band-width and
ii) those driven by carrier density [20]. The canonical Brinkman and Rice scenario of the Mott transition
belongs to the former type and implies a divergence of m∗ at the transition boundary [32]. On the other
hand, in the second type of transition, driven by carrier density, the effective mass stays finite across the MI
transition [20]. The first type of the transition appears to be realized in La1−xSrxTiO3 (LSTO) series [21],
where as high-Tc superconductors belong to the second type [33]. In Fig. 3 we show the effective mass
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Fig. 2 The optical conductivity of several doped transition metal insulators: La1−xSrxTiO3 [21], La1−xSrxVO3 [22],
La1−xSrxMnO3 [23], La1−xSrxCoO3 [24], La2−xSrxNiO4 [25], and La2−xSrxCuO4 [26]. The panels are arranged
according to the number of d electrons of transition metals, starting with Ti with electron configuration [Ar]3d24s2,
until Cu with configuration [Ar]3d104s. In all systems as doping x increases the gap is filled, as the spectral weight
from the region above the gap is transferred below the gap and into the Drude-like mode.

spectram∗(ω) (from Eq. (5)) for La1−xSrxTiO3 [21] and also for high-Tc superconductors La2−xSrxCuO4
(LSCO) andYBa2Cu3Oy (YBCO) [33]. The top three panels display the doping dependence of the estimated
effective mass m∗. In high-Tc superconductors the effective mass is essentially unaffected by the metal-
insulator transition. On the other hand in LSTO the mass appears to diverge as one approaches the MH
parent compound (x = 0). The behavior of other members of La-Sr series (Fig. 2) remains to be explored.

5 Charge and spin ordered states in solids

Many correlated electron materials that are currently at the forefront of condensed matter research reveal
tendency toward some form of spin and/or charge ordering at low temperatures. Ordered states have been
identified in a variety of materials, including 1D organic systems (TTF-TCNQ and (TMTSF)2PF6 [35]),
transition metal di- and tri-dichalcogenides (NbSe2 and NbS3), transition metal oxides (La2−xSrxCuO4
and La2−xSrxNiO4), curpate ladders (Sr14−xCaxCu24O4), etc. In this section we review some of these
materials that have recently been studied using infrared spectroscopy.
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Fig. 3 Energy dependence of the carrier effective mass m∗(ω) in Sr1−xLaxTiO3 (left panel) [21], La2−xSrxCuO4 [33]
and YBa2Cu3Oy [34] obtained from the extended Drude model. The diagram shows a strong enhancement of m∗

values in the titanate, but not in cuprates. The upper panels show the doping dependence of the optical effective mass
m∗ = m∗(ω → 0). The top middle and right panels also display the optical mass values extracted from a combination
of the optical and Hall data as detailed in [33]. All data is taken at room temperature.

5.1 Charge density wave and spin density wave systems

Charge density wave (CDW) and spin density wave (SDW) refer to broken symmetry states of metals
associated with the periodic spatial variation of the electron or spin density. Signatures of the electromagnetic
response of SDW and CDW state include two prominent features: i) a collective mode and ii) an optical
gap [36]. The optical gap is usually described as a Bardeen-Cooper-Schrieffer-type gap in the density of
states, with type-II coherence factors [36]. One implication of the latter coherence factors for the optical
conductivity σ1(ω) is that the spectral weight from the intragap region is transferred to frequencies just
above the gap, the total spectral weight being conserved, as demanded by the sum rule Eq. (6). Interesting
scaling between the effective mass of the collective mode m∗ and the magnitude of the single particle gap
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∆ was predicted theoretically by Lee et al. [37]:

m∗

mb
= 1 +

4∆2

λ�2ω2
2kF

, (8)

where λ is the electron-phonon coupling constant, ω2
2kF

is the phonon frequency at 2kF and mb is the
band mass. The scaling relation m∗ ∼ ∆2 was observed experimentally (Fig. 4) to be followed (at least
approximately) by a number of conventional CDW systems, such as NbSe3, (NbSe4)2I, (TaSe4)2I, etc.
[19,36,38]. The slope of the line in Fig. 4 is ≈ 0.4, somewhat smaller then predicted by Eq. (8). In some
CDW materials, especially in 2D and 3D systems, CDW instability does not lead to a complete gap in
the density of states. For example, in quasi-2D transition metal dichalcogenides 2H-NbSe2 and 2H-TaSe2,
infrared studies have shown that the CDW transition in these systems has very little (if any) effect on the
optical properties [39–42].

The formation of rigid charge density waves is also known to have dramatic implications for optical
phonons in solids: new modes are observed corresponding to the lower symmetry of a crystal [36,43–52],
and also some of the resonances acquire oscillator strengths characteristic of electronic transitions [53].
Previous detailed studies of IR-active phonons provided valuable insights into the charge density wave
transition in solids, as well as into the spin Pierels physics [54–56].

A canonical example of a spin density wave system is metallic chromium Cr. Its IR properties have
been reported by Barker et al. [57] and more recently by Basov et al. [58]. Above TSDW = 312K the
IR spectrum is typical of metals, with a well defined Drude-like peak. A more detailed analysis of the
conductivity uncovered the frequency dependent scattering rate 1/τ(ω) following ω2 behavior (Fig. 5). The
ω2 power law is expected for canonical Fermi liquids (see Sect. 6 below). As temperature falls below TSDW
a gap opens over some parts of the Fermi surface as a consequence of SDW ordering. Gap opening manifests
itself in the IR spectra: the Drude mode narrows and the low energy spectral weight is suppressed, resulting
in a finite frequency maximum in σ1(ω) (Fig. 5). The optical scattering rate in the SDW state acquires a
non-trivial dependence: it is suppressed below ω < 500cm−1 and then overshoots the high-T curve. These
results uncover profound and non-intuitive consequences of an opening of a partial (incomplete) gap in
the density of states (DOS) of a metallic system. Even though the density of states at EF is reduced, the
DC and low-ω AC conductivity are enhanced. That is because the reduction of DOS is accompanied with
the reduction of the low-ω scattering rate. The two effects compete, and in some cases like Cr, the latter
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dependence of 1/τ(ω) expected within Landau Fermi liquid theory.At 10 K the spectra show deviations from
this canonical behavior: the conductivity reveals gap-like suppression between 200-700 cm−1 and narrowing
of the zero-energy mode. This results in suppression of scattering rate at low frequencies and characteristic
overshoot around 900 cm−1.
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overpowers the former, leading to “more metallic” behavior in the gaped state. As a side remark we note
the “area conservation” in the 1/τ(ω) data taken above and below the SDW transition [58]. This effect is a
property of the BCS density of states [59,60]. The behavior is relevant for the understanding of the pseudogap
in oxides and other correlated electron systems. Basov et al. [58] argued that in hole-doped cuprates the
opening of a pseudogap does not conserve the area under 1/τ(ω) spectra [61,62]. This finding is in apparent
conflict with the interpretation of the pseudogap in terms of superconducting and/or charge/spin density
wave gap which all preserve the area in 1/τ(ω) data. However, we emphasize that this area conservation is
only predicted for conventional CDW and SDW states with long range order. It is not clear if similar area
conservation should also be observed in the fluctuating CDW/SDW states that are proposed as candidates
to explain the pseudogap physics in the cuprates.

5.2 Charge and spin ordering in strongly correlated oxides

An unconventional form of spin and charge ordering has been theoretically proposed and experimentally
observed in transition metal oxides, particularly nickelates and cuprates [63]. In these systems strong
electron-electron correlations lead to self-organization of charge carriers into 1D objects referred to as
stripes. The role of stripes in high-Tc superconductivity of cuprates is a highly debated issue [63]. Un-
mistakable evidence for charge and spin stripes is found for Nd-doped La2−xSrxCuO4 system. A static
stripe order is likely to induce an energy gap discussed in the previous section. However, such a gap is
not resolved in IR measurements [64,65]. Nd-free La2−xSrxCuO4 crystals reveal evidence for spin stripes
based on neutron scattering data whereas the corresponding charge ordering peaks are not apparent [66].
Infrared studies carried out by Dumm et al. [67] uncovered significant anisotropy of the optical conductivity
with the enhancement of σ1(ω) in far-IR by as much as 50% along and the direction of the spin stripes [67].
Padilla et al. searched for the evidence of phonon zone-folding effects in La2−xSrxCuO4 crystals showing
the anisotropy of the optical conductivity attributable to spin stripes [33]. No evidence for additional phonon
peaks beyond those predicted by group theory has been found. This latter result points to a departure of the
spin ordered state in cuprates from a conventional stripe picture.

Some form of SDW state has been inferred from the analysis of IR data for electron-doped cuprates, such
as Pr2−xCexCuO4 (PCCO) [68] and Nd2−xCexCuO4 (NCCO) [69]. Zimmers et al. have measured a series
of PCCO samples with x = 0.11 (non-superconducting), 0.13 (underdoped Tc = 15 K), 0.15 (optimally
dopedTc = 21 K) and 0.17 (overdopedTc = 15 K). In all but the overdoped sample they observed a gap-like
feature in the low-temperature spectra. Their theoretical calculations based on tight-binding band structure
augmented with an optical gap of magnitude 0.25 eV were able to reproduce the most important features
of σ1(ω) spectra. This optical gap was claimed to be a density wave gap induced by commensurate (π, π)
magnetic order. Interestingly the optical gap was identified even in the optimally doped sample (x = 0.15),
for which no magnetic order has been observed in neutron scattering experiments. Similarly Onose et al.
claimed SDW in NCCO samples [69]. Wang et al. [70] reported analysis of the in-plane optical data for
a series of NCCO crystals in terms of the energy dependent scattering rate. In underdoped materials they
observe a characteristic non-monotonic form of 1/τ(ω) consistent with the BCS form of the density of
states. These findings support the SDW interpretation of the IR results for electron doped compounds.

Chakravarty et al. [71] proposed that the totality of transport and spectroscopic data for holed-doped
cuprates is consistent with a new form of long-range density wave, with d-wave symmetry of its order
parameter (DDW). It has been theoretically predicted that signatures of this peculiar order could be observed
in the infrared spectra. Valenzuela et al. [72] and Gerami and Nayak [73] have carried out numerical analysis
of possible effects in the optical conductivity and claimed that some of these effects might have already
been seen. In particular the transfer of spectral weight in σ1(ω) with opening of pseudogap is consistent
with the predictions of the DDW model.

Recently signatures of density waves have also been identified in cuprate ladder compounds. Osafune et
al. [74] investigated infrared response of the two-leg ladder system Sr14−xCaxCu24O4 for two doping levels
x=8 and 11. In both cases c-axis conductivity spectra (along the ladders) at room temperature revealed a
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monotonic frequency dependence. However as temperature was lowered the optical conductivity along c-
axis σc(ω) of both compounds developed a finite frequency peak in the far-IR part of the spectrum. Osafune
et al. argued that the peak is a collective mode of a pinned CDW, as opposed to carrier localization that
was used to explain similar finite frequency modes in disordered cuprate superconductors [75]. Based on
the spectral weight of the peak, Osafune et al. estimated the effective mass to be 100 free-electron masses
for the x = 11 sample, and 200 free-electron masses for the x = 8 sample. These large values signal a
collective nature of the excitations. Vuletic et al. have also studied the ladder systems Sr14−xCaxCu24O4
with x = 0, 3, and 9, but inferred somewhat smaller values of the effective masses 20 < m∗ < 50 [76].

Density wave states have been claimed in a number of oxide materials which do not show static long range
order in diffraction experiments (X-ray and/or neutron scattering). For example, the optical conductivity of a
layered ruthenium oxide BaRuO3 displays an opening of a pseudogap at low temperatures and characteristic
blue shift of the the spectral weight [77]. This was interpreted in terms of a fluctuating CDW order in the
system. Similar transfer of spectral weight was observed in the IR spectra of ferromagnetic BaInO3 [78].
In this quasi-1D transition metal oxide, the ferromagnetic ordering at Tc = 175 K was accompanied by
CDW formation. Moreover, Cao et al. argued that the ordered magnetism was driven by CDW formation
or partial gapping of Fermi surface.

Recently discovered NaxCoO2 compounds attracted a lot of attention because of the superconductivity
in hydrated samples [79]. Sodium contents x can be changed from 0 to 1, which drives the system to
various ground states. For x > 3/4 NaxCoO2 is in a spin ordered phase, near x=2/3 it is a Curie-Weiss
metal, a charge-insulator for x ∼ 1/2, and a paramagnetic metal for x ∼ 1/3. Infrared spectroscopy has
been performed on samples with different doping levels [80–84]. Samples with Na doping x=0.5 [83] and
0.82 [84] revealed tendency toward charge ordering. On the other hand infrared spectra of the sample with
x=0.7 doping indicated proximity to a spin-density-wave metallic phase [82].

We conclude this section with an interesting observation that the scaling between the optical gap and
effective mass (Eq. (8)) predicted for conventional CDW systems, also seems to work well for cuprate
ladders Sr14−xCaxCu24O4 (Fig. 4). The only exception is the sample with x = 9, for which a very small
value for the gap was inferred from the data [76]. Osafune et al. inferred a much larger value of the gap
for similar doping levels (x = 8 and 11) [74]. The reason for this discrepancy is the interpretation of the
far-IR feature, which was interpreted as as a pinned CDW mode by Osafune et al. and as the onset of a
CDW gap by Vuletic el al.. Interestingly, the scaling (Eq. (8)) is also followed by metallic chromium Cr,
a canonical SDW system. Similar scaling may also be expected in electron doped cuprates for which the
SDW scenario for the pseudogap is proposed. However, as Fig. 4 shows, several electron-doped cuprates,
such as Pr2−xCexCuO4 (PCCO) and Nd2−xCexCuO4 (NCCO), do not seem to follow the scaling.

6 Unconventional power laws and quantum criticality

The canonical Drude expression Eq. (2) offers an accurate account of the conductivity for a system of charges
with short-ranged interactions and predicts a power-law behavior σ1(ω) ∝ ω−2 at ω � 1/τ . A salient
feature of essentially every system belonging to the class of “strongly correlated materials” is a departure
from the ω−2 response. In many systems the conductivity follows the power law form σ1(ω) ∝ ω−α with
α < 2. In cuprate high-Tc superconductors near optimal doping, σ1(ω) reveals the power law conductivity
with α 	 0.65 − 0.7 [85–87] as exemplified in Fig. 6. The ruthenate SrRuO3 σ1(ω) shows power law
behavior with α 	 0.5 [88–90]. In this Section we will present a survey of unconventional (non-quadratic)
power laws in the conductivity of several classes of correlated electron system and will discuss different
scenarios proposed to account for this enigmatic behavior.

Power law scaling has been explored in great details in SrRuO3 by Dodge et al. [89] using a combination
of terahertz time domain spectroscopy by infrared reflectivity and transmission. A borad spectral coverage
has allowed the authors to examine scaling laws over nearly three decades in frequency (6-2400 cm−1).
These authors found the power law behavior with α 	 0.4 in the low temperature conductivity. An extended
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|σ(ω)|=Cω−0.65

Fig. 6 Universal power laws of the
optical conductivity spectra of a nearly
optimally doped high-Tc superconductor
Bi2Sr2Ca0.92Y0.08Cu2O8−δ with Tc = 88 K.
In (a) the absolute values of the optical conduc-
tivity |σ(ω)| are plotted on a double logarithmic
scale. The open symbols correspond to the
power law |σ(ω)| = Cω−0.65. In (b) the
phase angle function of the optical conduc-
tivity arctan(σ2/σ1) described in the text is
presented. From van der Marel et al. [87].

frequency range in the data set has uncovered unexpected aspects of a connection between THz/IR conduc-
tivity and the DC transport. Spectra in Fig. 7 clearly show that the divergence of σ1(ω) at low frequencies
is avoided on the frequency scale set by the scattering rate 1/τ , thus enforcing σ1(ω → 0) ∝ τα. This
observation is important since it challenges the ubiquitous practice of inferring relaxation times from dc
transport via σdc ∝ τ relation. Indeed, the latter relation becomes erroneous if the conductivity follows the
power law deviating from the simple Drude result Eq. (1). Specifically, in the case of SrRuO3 the resistivity
is linear with temperature between 25 K and 120 K, implying a quadratic temperature dependence of the
relaxation rate (inset of Fig. 7). A similar non-linear relationship between the dc data and the scattering rate
has been observed in another itinerant ferromagnet, MnSi, by Mena et al. [91].

It is commonly asserted that the power law behavior of the conductivity withα 
= 2 signals the breakdown
of the Fermi liquid (FL) description of transport in correlated electron systems. It is worth pointing out that
in this context σ1(ω) ∝ ω−2 behavior is a consequence of frequency independent scattering rate in the
simple Drude formula. However, the canonical Fermi liquid theory predicts the scattering rate that varies
quadratically both as a function of frequency and temperature:

1
τ(ω, T )

=
1
τ0

+ a(�ω)2 + b(kBT )2 (9)

with b/a = π2. Eq. (9) implies that the transport and single-particle scattering rates are not qualitatively
different. The ω2-behavior is observed, for example, in the elemental metal Cr [58] (see Fig. 5). It is easy
to verify that Eq. (9) does not modify the ω−2 character of the real part of the conductivity. However, the
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Fig. 7 Logarithmic plot of the optical con-
ductivity of SrRuO3 obtained by three meth-
ods, over three decades ranges of frequency. The
conductivity obtained from the infrared reflec-
tivity at 40 K is indicated by the long dashed
line. Results from the far-infrared transmission
measurements, as described in the text, are in-
dicated by solid lines, and THz measurements
by short dashed lines, with both sets ordered in
temperature from top to bottom with T = 8,
40, 60, and 80 K. Least-squared fits to σ(ω) =
A/(1/τ − iω)α using only THz data are shown
by dotted lines. Inset: temperature dependence
of τ obtained for α = 0.4 (closed circles), com-
pared to quadratic temperature dependence of
the relaxation rate. From Dodge et al. [89].

imaginary part of the conductivity of a FL metal and a Drude metal show very different power laws. In
Table 1 we display results of both analytical and numerical calculations of optical constants σ1(ω) and
|σ(ω)| =

√
σ2

1(ω) + σ2
2(ω) for several different models. For the models of Drude (Eq. (2)) and Ioffe and

Millis [92] (σ(ω) = σ0/
√

1 − iωτ and σ(ω) = σ0/(1 − iωτ)α) we derived simple analytical expressions.
For Landau (Eq. (9)) and Marginal Fermi Liquid (1/τ(ω) ∼ ω) we used KK analysis to obtain the imaginary
part.

We now discuss several theoretical proposals to account for the unusual power laws both within the Fermi
liquid theory and also using non-Fermi Liquid approaches. In order to account for the non-Drude power law
behavior of the conductivity within the FL approaches one is forced to invoke rather anomalous scattering
mechanisms. One of the earliest accounts is the so-called Marginal Fermi Liquid (MFL) theory postulating
scattering of quasiparticles from a bosonic spectrum that is flat over frequency scale fromT < ω < ωc where
ωc is a cut-off frequency [93]. The MFL theory assumes the following form of the electronic self-energy
Σ(ω) = λ[ωln(x/ωc) + iπx] where x = max(ω, T ). The model is in fair agreement with experiments on
high-Tc cuprates especially at not so low temperatures [94]. Alternatively, power law behavior of the optical
constants has been explored assuming strong momentum dependence of the quasiparticle lifetime along the
Fermi surface [92,95–97]. Interestingly, this momentum dependence originally inferred from the analysis of
transport and infrared data in [92,95,96] was later confirmed by direct measurements using angle resolved

Table 1 The power laws of the optical constants σ1 and |σ(ω)| =
√

σ2
1(ω) + σ2

2(ω). For Drude (Eq. (2)),
and Ioffe-Millis’ models [92] analytical calculations were employed, whereas for the Marginal Fermi Liquid
[93] and Landau Fermi Liquid (Eq. (9)) we used simple numerical calculations.

σ1(ω) |σ(ω)|
Drude ω−2 ω−1

Landau FL ω−2 ω−2

Marginal FL ω−0.45 ω−0.725

Ioffe-Millis ω−0.5 ω−0.5

Generalized I-M ω−α ω−α
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photoemission spectroscopy (ARPES) [98,99]. Specifically, the “cold spots” model of Ioffe and Millis not
only predicts the power law behavior of the conductivity with α 	 0.5 for the in-plane conductivity, but also
offers an account of the gross features of the interplane transport [92, 100]. The momentum dependence
of the quasiparticle lifetime is a natural feature of the spin fluctuation model of Chubukov et al. [101].
The power law behavior of the conductivity within this model has been analyzed in [102] in the context of
crossover from FL to non-FL behavior above a characteristic energy ωsf . Relevance of spin fluctuations to
the power law behavior of the optical data with α 	 0.65 also emerges out of numerical results obtained
within the t-J model by Zemljic and Prelovsek [103].

Unlike the (generalized) Fermi liquid models, the non-FL approaches propose that current carrying
objects are not simple electrons but instead may involve spinons and holons [104] or phase fluctuations of
the superconducting order parameter [105]. Both of these approaches predict the power law behavior of
the optical constants. Ioffe and Kotliar considered optical conductivity of spin-charge separated systems
and derived the form σ1(ω) ∝ 1/(T + ωα) [92,106]. Depending whether spinons or holons dominate the
transport the magnitude of α is predicted to be 4/3 or 3/2. Anderson proposed that a non-Drude power law
is a natural consequence of the Luttinger-liquid theory with spin-charge separation [107].

The analysis of the power law behavior and of the frequency/temperature scaling of the optical constants
is interesting in the context of quantum phase transitions occurring at T → 0. In the vicinity of such
a transition a response of a system to external stimuli is expected to follow universal trends defined by
the quantum mechanical nature of fluctuations [108–110]. Van der Marel et al. observed ω/T scaling in
the response of optimally doped high-Tc superconductor Bi2Sr2Ca0.92Y0.08Cu2O8−δ [87]. Both under-
and over-doped counterparts of this system did not reveal a similar scaling. This result was interpreted as
the evidence for quantum critical behavior of a high-Tc superconductor at optimal doping [87]. However
Norman and Chubukov recently argued that the observed scaling can be explained without the need to invoke
quantum critical behaviour. They showed that the scaling is characteristic of electrons interacting with a
broad spectrum of bosons [111]. Lee et al. reported an observation ofω/T scaling of the optical conductivity
in CaRuO3 system [90]. These authors attributed the quantum critical point to a zero temperature transition
between ferromagnetic and paramagnetic phases.

We conclude this section by pointing out another class of materials with “non-FL” electrodynamics.
Degiorgi et al. investigated a variety of heavy-electron systems which they also qualified as “non-Fermi-
Liquid” [112, 113]. These materials (such as: U0.2Y0.8Pd3, UCu3.5Pd1.5, U1−xThxPd2Al3, and others)
typically show a non-monotonic form of the conductivity dominated by a stark resonance at mid-IR fre-
quencies. This non-monotonic form of σ1(ω) distinguishes U-based non-FL compounds from doped MH
insulators discussed in this sections. The non-FL behaviour in these systems is usually explained in terms
of multichannel Kondo models, models based on proximity to quantum critical points, or models based on
a disorder [114].

7 Strong coupling effects in cuprates

It is widely believed that charge carries in cuprates are strongly coupled to bosonic excitations. Signatures
of strong coupling have been evidenced by a number of experimental techniques such as IR, ARPES and
tunneling. However the nature of bosonic excitations to which carriers are coupled is currently one of the
most debated subject in the field. Both phonons [115–118] and spin fluctuations [119–121] are currently
considered as possible candidates. At issue is whether or not the magnetic mode is capable of having a
serious impact on the electronic self-energy, in view of the small intensity of the resonance [122–124].

In order to discriminate between the candidate mechanisms it is desirable to learn as many details as
possible regarding the Eliashberg spectral function α2F (ω) quantifying strong coupling effects. This is
a challenging task. The key complication is that physical processes unrelated to strong coupling can in
principle mimic spectral signatures of quasiparticles coupled to bosonic modes. Specifically, the energy
gap or pseudogap is known to produce a characteristic threshold structure in the 1/τ(ω) data [61,62,125]
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Fig. 8 The electron-boson spectral func-
tion W (ω) for optimally doped cuprate
YBa2Cu3O6.95 (full line) and the spin excita-
tion spectrum I2χ(ω) (full symbols) [120]. The
W (ω) spectrum was obtained using Eq. (12) and
I2χ(ω) is from neutron scattering experiments.
Eq. (12) does not take into account a gap in the
density of states, which results in unphysical neg-
ative values in the spectral function. From Car-
botte et al. [120].

that makes it difficult to infer α2F (ω) from the raw data. It is therefore imperative to treat consistently
the two effects: (pseudo)gaps in the density of states and the coupling of charge carriers to some bosonic
mode [125]. We will discuss a new approach to this problem recently proposed by Dordevic et al. [126]
after giving the necessary background.

In 1971 P. Allen studied signatures of strong electron-phonon coupling in the infrared spectra of metals
and derived the following formula for the optical scattering rate at T = 0 K [127]:

1
τ(ω)

=
2π
ω

∫ ω

0
dΩ(ω − Ω)α2F (Ω). (10)

Although this is an approximate relation, the results it produces are in agreement with more rigorous
treatments [128]. Allen’s T = 0 results has been generalized to finite temperatures by Millis et al. [129]
and Shulga et al. [130]:

1
τ(ω, T )

=
π

ω

∫ ∞

0
dΩα2F (Ω, T )

[
2ω coth

( Ω
2T

)
−(ω+Ω) coth

(ω + Ω
2T

)
+(ω−Ω) coth

(ω − Ω
2T

)]
, (11)

which in the limit T → 0 K reduces to Allen’s result Eq. (10).
The integral form of Eqs. (10) and 11 implies that the task of extraction of α2F (ω) from experimental

data is non-straightforward and calls for the development of suitable inversion protocols. To extract the
electron-phonon spectral function in a conventional superconductor lead Pb Marsiglio et al. employed the
differential form of Eq. (10) [131]:

W (ω) =
1
2π

d2

dω2

[
ω · 1

τ(ω)

]
, (12)

where W (ω) is a function closely related to α2F (ω) [131]. We emphasize here that Eq. (12) assumes a
constant density of states at the Fermi level, and is therefore only valid in the normal state. The spectral
function obtained with Eq. (12) was in good agreement withα2F (ω) inferred from tunneling measurements
[131]. Eq. (12) requires taking the second derivative of experimental data, which introduces significant
numerical difficulties. The experimental data must be smoothed before derivatives can be taken. In order to
avoid the differentiation problems Tu et al. [132] and Wang et al. [133] fitted the optical spectra (reflectance
or scattering rate) with polynomials and then used Eq. (12) to calculate α2F (ω). Casek et al. [134] have
also used Eq. (12) to generate the electron-boson spectral function from the model conductivity spectra,
calculated within the spin-fermion model. Hwang et al. [136] have modeled the scattering rate spectra
1/τ(ω) with the formula which includes a non-constant density of states around the Fermi level [135].

Carbotte, Schachinger and Basov have also applied Eq. (12) to extract the electron-boson spectral func-
tion in the high-Tc cuprates [120]. Fig. 8 displays an example of these calculations for optimally doped
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YBa2Cu3O6.95. The electron-boson spectral function α2F (ω) extracted this way shows a characteristic
shape, dominated by a strong peak, followed by a negative dip. Carbotte et al. interpreted the main peak in
the spectral function as due to coupling of charge carriers to neutron “resonance” [120]. Abanov, Chubukov,
and Schmalian pointed out the importance of the peak-dip structure in W (ω) [137]. Previously, the idea
of quasipartcles coupling to a neutron mode had been proposed by Norman and Ding [138], Munzar [121]
and Abanov, Chubukov et al. [122,139].

A cursory examination of Fig. 8 uncovers one obvious problem of the second-derivative protocol: negative
values in α2F (ω) are unphysical. This artifact of the analysis stems from either the numerical instabilities
or the application of Eqs. (10) or 12 to systems with a (pseudo)gap in the density of states [140]. In his
celebrated 1971 article [127] P. Allen also derived the formula for the scattering rate in the superconducting
state at T=0 K, i.e. in the presence of a gap in the density of states:

1
τ(ω)

=
2π
ω

∫ ω−2∆

0
dΩ(ω − Ω)α2F (Ω)E

[√
1 − 4∆2

(ω − Ω)2
]

(13)

where ∆ is the (momentum-independent) energy gap andE(x) is the complete elliptic integral of the second
kind. For ∆ = 0 Eq. (13) reduces to Eq. (10).

The extraction of α2F (ω) from Eq. (13) is non-trivial, as the corresponding differential expression does
not exist. The integral equation must be solved (inverted) directly. Dordevic et al. have used a so-called
singular value decomposition (SVD) method to calculate the spectral function from Eq. (13) [126]. Fig. 9
displays inversion calculations for optimally doped YBCO (the same as in Fig. 8) with several different
gap values ∆. As the gap value increases, the negative dip in the α2F (ω) spectra diminishes and for
∆ ≈ 150 cm−1 it is almost completely absent. An obvious problem with these calculations is that they
assume: i) s-wave gap and ii) T = 0 limit. Neither of these assumptions are valid for cuprates. However
even with these inadequacies Eq. (13) is useful, because it allows one to treat both effects (coupling to
bosonic mode and gap in the density of states) on equal footing. Carbotte and Schachinger have developed
similar analysis protocol which takes into account d-wave symmetry of the order parameter [141].

The extraction of the spectral function α2F (ω) from 1/τ(ω) spectra can be complemented with the
analogous inversion procedure applied to the effective mass spectram∗(ω)/mb (Eq. (5)). The corresponding
formula derived by Chubukov [142]:

m∗(ω)
m0

= 1 + 2
∫ ∞

0
α2F (Ω)

[
1
ω

log
∣∣∣∣ Ω + ω

Ω − ω

∣∣∣∣ +
Ω
ω2 log

∣∣∣∣ Ω2 − ω2

Ω2

∣∣∣∣
]
dΩ, (14)

is mathematically of the same type as Eqs. (11) and 13 (the so-called Fredholm integral equation of
the first kind). Fig. 10 displays results of numerical calculations of the spectral function of underdoped
YBa2Cu3O6.65. The top panel is α2F (ω) obtained from the scattering rate 1/τ(ω) (using Eq. (11)) and the
bottom panel from effective mass m∗(ω)/mb (using Eq. (14)). Both inversions produce similar results, in
particular a strong peak, followed by a negative dip.

The inversion protocol based on the SVD algorithm can also be applied to ARPES data [126]. The
procedure is based on the analysis of the real part of the electron self-energy (Σ1(ω)), which is experimentally
accessible through ARPES. One must keep in mind that the spectral functions probed in the two experiments
are not the same: ARPES probes the equilibrium α2F (ω) which is a single-particle property, whereas IR
measures transportα2

trF (ω), a two-particle property. MoreoverARPES is a momentum resolving technique,
whereas IR averages over the Fermi surface. In the latter case, the effect of a d-wave energy gap must be
taken into account, which effectively shifts the peak up to higher energies. In the ARPES case the energy
gap (either superconducitng or pseudogap) should not play a role, if the data is taken along nodal direction.

The spectral functions obtained from ARPES have some similarities, but also some important differences
compared with IR. The resolution of ARPES data is presently poorer then IR, which implies that even fewer
features could be resolved in the spectral function. The ARPES α2F (ω) also has a strong peak, but unlike
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Fig. 9 The inversion calculations of the electron-
boson spectral function α2F (ω) with the for-
mula with the gap Eq. (13) for optimally doped
YBa2Cu3O6.95 (the same as in Fig. 8) [126]. The left
panels display α2F (ω) and the right panels scatter-
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Fig. 10 The electron-boson spectral functionα2F (ω) for
underdoped high-Tc superconductor YBa2Cu3O6.65 with
Tc � 60K. The top panel display α2F (ω) calculated from
the scattering rate 1/τ(ω) using Eqs. (10) or 11 [126]. The
bottom panel shows α2F (ω) calculated from the corre-
sponding effective mass m∗(ω)/mb spectra using Eq. (14).
In each panel, different curves represent calculations with
different number of singular values, as explained in [126].
Eqs. (10), 11 and 14 do not take into account a gap in the
density of states, which results in unphysical negative val-
ues.
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Fig. 11 The optical conductivity of a heavy fermion
system UPd2Al3 [151,152]. Above coherence temperature
T ∗ ≈ 50 K, the spectrum displays conventional behaviour
in the form of a broad Drude mode. Below T ∗ ≈ 50 K two
distinctive feature develop in the spectra: Drude-like mode
at zero frequency and gap-like excitations with an onset at
around 50 meV. In addition, below AFM ordering tempera-
ture TN = 14 K a new finite frequency mode develops at
around 5 cm−1, which causes further enhancement of the
effective mass.

IR the negative dip seems to be absent. Also the high-energy contribution is not identified in the ARPES
results. The position of the main peak is particularly interesting. The most direct comparison can be made
for optimally doped Bi2Sr2CaCu2O8+δ (Bi2212), for which both high quality IR and ARPES data exist.
The analysis has shown that the peaks actually occur at roughly the same frequency in both ARPES and
IR spectral functions. This result is surprising and unexpected, as the main peak in the IR α2F (ω) is
supposed to occur at higher frequencies (shifted by the gap). Hwang et al. have made a similar comparison
between the electron self-energy obtained from IR and ARPES for several different doping levels [143].
High quality ARPES and IR data for the cuprate families of LSCO and NCCO have recently become
available [33,68,118,144] and future analysis will reveal if the behavior observed in Bi2212 is universal.

8 Heavy fermion systems

Heavy fermion metals are intermetallic compounds which contain certain rare-earth elements, such as U, Ce,
orYb. They are characterized by large enhancements of their quaisparticle effective massm∗. The electronic
properties of HF metals are in accord with a scenario based on hybridization of localized f electrons and
delocalized s, p or d electrons [30,145–149]. At high temperatures the hybridization is negligible and the
properties are described by two independent sets of electrons. However, at low temperatures hybridization
leads to mixing of conduction and f-electrons and opening of a gap in the density of states: a so-called
hybridization gap. Infrared spectroscopy is ideally suited to probe the electronic processes in heavy fermion
systems. All hallmarks of the HF state can be simultaneously probed using this technique. In particular,
the Drude-like mode associated with the response of heavy quasiparticles as well as excitations across
the hybridization gap have been found and identified as characteristic signatures of the HF state in the IR
spectra [113,150].

The electrodynamic response of heavy fermion metals (HF) has been studied in a large number of systems
[113]. Fig. 11 displays optical conductivity of UPd2Al3 [151–153]. Above the coherence temperature
T ∗ ≈ 50 K, σ1(ω) is characterized by a broad Drude-like peak at zero energy. Below T ∗ ≈ 50 K, but
still above the AFM ordering temperature TN = 14 K, two notable features dominate the IR spectrum of
UPd2Al3: a very narrow Drude-like mode and a gap like excitation, with an onset around 50 meV. One also
observes a crossing of low- and high-T σ1(ω) spectra, with characteristic redistribution of spectral weight.
The electronic spectral weight removed from the far-IR part of the spectrum is redistributed both to higher
frequencies (above the gap) and to a narrow Drude-like mode at zero frequency. The spectral weight in the
Drude mode is smaller but significant since it is ultimately responsible for the metallic behavior of HF at
low temperatures. This minuscule spectral weight also indicates that the effective mass of the quasiparticles
is enhanced at low temperatures (ω∗2

p ∼ 1/m∗).
The extended Drude model (Eqs. (4) and 5) has been used frequently for the analysis of correlation

effects in HF [113,150,154–157]. The effective mass spectra (Eq. (5)) are especially useful in that regard,
as the quasiparticle effective mass m∗ can be extracted by extrapolating the m∗(ω)/mb spectra down to
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zero frequency. These so-called optical masses are usually in good agreement with the values obtained
using other techniques (specific heat, de Haas-van Alphen, etc.) [113,150,155]. In UPd2Al3 the effective
mass is enhanced by a factor of 35 compared to the band value mb. Once the system crosses into the AFM
ordered state, below TN = 14 K, a new mode develops around 5 cm−1. This leads to further enhancement
of the effective mass to about 50mb, in good agreement with specific heat measurements. Similar features
were observed in another canonical HF UPt3 [151, 158], which below 5 K progressively develops into a
magnetically ordered state, with extremely small local moments (0.02µB) and without long range order.

Hancock et al. studied the Kondo systems YbIn1−xAgxCu4 [159], whose properties are believed to be
driven by similar physics as in HF metals. InYbIn1−xAgxCu4 silver doping x can be continuously changed
over the whole range from 0 to 1. The physical properties of the system also change from a moderately heavy
fermion YbAgCu4 to a mixed-valence YbInCu4. For all doping levels the spectra reveal a finite frequency
(2,000 cm−1) peak, presumably due to excitations across the hybridization gap. Hancock et al. showed
that the energy of this mode scales with the square root of the Kondo temperature and concluded that the
same underlying physics governs the thermodynamic properties and the formation of this 2,000 cm−1 peak.
Somewhat different scaling has also been predicted [145] and experimentally observed in non-magnetic HF
between the magnitude of hybridization gap ∆ and the quasiparticle effective mass m∗/mb [150]:

m∗

mb
∼

( ∆
T ∗

)2
, (15)

whereT ∗ is coherence temperature (Fig. 12). This scaling relation reflects the fact that in the low-temperature
coherent state of HF the intra-band response (as characterized by m∗/mb) and inter-band response (rep-
resented by ∆) are intimately related, at least in the simplest version of the theory. Fig. 12 also includes
recently studied d-electron system Yb14MnSb11, the first case where heavy fermion behavior was discov-
ered by IR spectroscopy [160]. We also note that this scaling between the effective mass and the magnitude
of the gap is similar to the scaling in CDW systems Eq. (8), as discussed in Sect. 5 above. Similar scaling
relations are not surprising, knowing that the electrodynamic properties of both systems are described by
similar equations [161,162].

IR spectroscopy has recently been used to study the α → γ transition in elemental Ce [163]. This rare-
earth metal with f-electrons undergoes a phase transition from high temperature γ to low temperature α
phase. The nature of this phase transition has been a matter of debate. Reported infrared spectra strongly
resemble IR spectra of canonical HF metals. The high-T (γ) phase is characterized by a broad and featureless
spectrum; in the low-T (α) phase a narrow Drude-like mode and a peak at around 1 eV develop. LDA+DMFT
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calculations by Haule et al. [164] have been able to reproduce both these features. They also revealed that
the 1 eV peak is indeed due to excitations across hybridization gap, formed by mixing of f -electrons with
conduction electrons.

Holden et al. [13] studied the electrodynamic response of a heavy fermion superconductor UBe13,
both in the normal and superconducting state. At high temperatures a conventional Drude-like behavior
was observed, with essentially frequency independent scattering rate. In the coherent state, but still above
Tc = 0.9 K, Holden et al. found a development of a vary narrow zero-energy mode and a finite frequency
peak, presumably due to excitations across a hybridization gap. Finally, in the superconductng state, below
Tc, optical spectra revealed marked changes in the low frequency region. In particular, narrowing of the
Drude peak and further suppression of optical conductivity σ1(ω) compared to normal state values were
observed. This behavior is not expected for a dirty limit superconductors and has led Holden et al. to suggest
that UBe13 is a clean limit superconductor.

9 Dimensional crossover in organic and inorganic systems

Many familiar concepts of condensed matter physics are revised in one dimension (1D) [165]. For example,
the conventional quasiparticle description breaks down in 1D solids and the spin-charge separation paradigm
needs to be invoked to understand excitations. From a theoretical standpoint, the 1D conductors are interest-
ing in the context of Tomonaga-Luttinger (TL) liquid description predicting unconventional power laws in
transport properties and also numerous ground states in systems of coupled 1D chains [166,167].An arrange-
ment of coupled 1D conductors is envisioned as a paradigm to explain unconventional properties at higher
dimensions specifically in the context to the problem of high-Tc superconductivity [168]. Signatures of 1D
transport are being explored in a wide variety of systems including but not limited to carbon nano-tubes,
conducting molecules, and semiconducting quantum wires, as well as stripes in high-Tc superconductors
and quantum Hall structures. In this section we analyze common characteristics of the electromagnetic
response of of quasi-1D organic conductors and also of Cu-O chains in high-Tc superconductor of YBCO
family.

Infrared conductivity of quasi-1D conductors is highly unconventional [169–174]. Several groups have
investigated the response of linear chains of tetramethyltetrathiafulvalene (TMTTF)2X and tetramethyl-
tetraselenafulvalene (TMTSF)2X, with different interchain counterions X (such as X= AsF6, PF6, ClO4,
Br). Charge transfer of one electron from every two (TMTSF)2X molecules leads to a quarter-filled (or
half-filled bands due to dimerization) hole band. In a purely 1D situation this would lead to an insulating
(Mott) state. However, Bechgaard salts are better characterized as being only quasi-one-dimensional with
finite inter-chain hopping integrals which are distinct in the two transverse directions. Both (TMTTF)2X
and (TMTSF)2X families of materials as well as other classes of organic quasi-1D conductors typically
show high dc conductivity along the direction of the linear chains. One is therefore led to expect a metallic
reflectivity in the far infrared. Contrary to this expectation, experiments typically show lower conductivity.
The discrepancy between DC and IR results can be resolved assuming the existence of a narrow mode at
ω = 0 with the width smaller than the low-ω cut-off of the optical measurements. A direct observation of a
mode like this would provide strong argument in favor of collective transport along the conducting chain.
Cao et al. analyzed the limitations on the spectral weight of this mode and the width of the resonance based
on the existing reflectance data [173].

Optical conductivity data are capable of resolving the so-called “dimensionality crossover” in the re-
sponse of the linear chain compounds [166] as first demonstrated by Vescoli et al. [174]. In a purely 1D
situation linear chain systems are expected to be in a (Mott) insulating state because of 1/2 or 1/4 filled
bands. However this is no longer the case if inter-chain hopping integrals are finite, as is the case in Bech-
gaard salts. Nevertheless, at high temperatures or frequencies the interchain coupling is diminished thus
enabling experimental access to the 1D physics even in a system of weakly coupled chains. The studies
of the temperature dependence of the transport properties or of the frequency dependence of the optical
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Fig. 13 The frequency-dependent conductivities of
(TMTSF)2X (X=PF6, AsF6, and ClO4) obtained in
the polarization along the conducting linear chains.
Both axes have been normalized to the peak of the
finite energy mode near 200 cm−1. The universal be-
havior of the real part of the conductivity σ1(ω). From
Schwartz et al. [178].

conductivity then allow one to explore a crossover from the regimes where 1D physics dominates (high-T ,
high-ω) to the regime where interchain coupling dominates (low-T , low-ω). The low energy response of
(TMTSF)2X compounds is governed by a correlation gap leading to a sharp increase of the conductivity up
to a peak that signifies the magnitude of the gapEg . This behavior is followed by the power law dependence
of the conductivity at higher frequencies predicted theoretically [166,175]:

σ(ω) ∝ ω4n2
K−5

ρ (16)

where Kρ is the TL-liquid exponent and n is the commensurability. The authors have been able to show
that the experimental data indeed follow the power law dependence signaling a crossover to 1D transport
in mid-infrared frequencies.

To the best of our knowledge, similar power law scaling is not observed in any inorganic quasi-1D
compounds. An interesting exception is the response of the Cu-O chains in PrBa2Cu4O8 discovered by
Takenaka et al. [176]. In this family of high-Tc cuprates as well as in closely relatedYBa2Cu3Oy compounds
CuO2 bilayers are separated with 1-dimensional Cu-O chains directed along the b-axis. Assuming that
the b-axis conductivity can be described as a two-channel process one can isolate the chain response as
σch = σb − σa where σb and σa are the conductivities probed along and across the chain directions
respectively. This analysis uncovered the power law behavior of the chain conductivity σch consistent with
the response of Bechgaard salts. Lee et al. [177] examined scaling dependence of the σch spectra for a
variety of compounds ofYBa2Cu3Oy series with y = 6.28-6.75. Despite the significant doping dependence
of the spectra, they all showed a universal behavior when the scaling protocol of Schwartz et al. [178] was
applied (Fig. 13). The power law reported by Lee et al. with α = 1.6 in Fig. 14 is distinct from the ω−3

response expected for a band insulator [166], but is close to α = 1.3 seen in 1D Bechgaard salts [174,178].
The range of values of the correlation gap Eg in YBa2Cu3Oy is comparable to that of the Bechgaard salts
as well [174,178].

Even though the mid-IR response of 1D Cu-O chains in cuprates and that of the organic linear chain
compounds uncover common trends the low-frequency behavior of these two classes of 1D conductors is
radically different. Specifically, the low-energy collective mode in Bechgaard salt is responsible for less than
1 % of the total spectral weight of the infrared conductivity. In theYBCO system this contribution is as high
as 50 %. Lee et al. proposed that this discrepancy may originate from strong coupling of the Cu-O chains to
the conducting CuO2 planes [177]. This coupling appears to be enhanced with the increasing doping. The
frequency dependence of the collective mode is sensitive to the amount of doping and impurities.At relatively
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Fig. 14 Spectra of σch(ω) = σ1,b(ω) − σ1,a(ω)
at lowest temperatures for a series of YBCO crys-
tals. For y = 6.75, the coherent mode is not visible
because its weight is transferred to superconducting
δ-peak at ω = 0. (b) σch(ω)/σch

peak with ω/ωpeak as
the abscissa. For clarity, the sharp phonon structures
are removed from the data in the bottom panel. The
solid line represents ω−α-dependence with α = 1.6.

low dopings when chain segments are disordered the collective mode has the form of a finite frequency
resonance [177,179]. Once the chain fragment length exceeds the critical value and the separation between
these fragments is reduced, the σch(ω) spectra reveal the Drude-like metallic behavior which would be
impossible in a system of isolated disordered chains. Finally we also note that no scaling has been observed
in the in-plane conductivity data of high-Tc cuprates in the stripe ordered state discussed in Sect. 5. On the
other hand, IR measurements of the out-of-plane penetration depth in YBCO have indicated the possibility
of a dimensional cross-over from 2D to 3D [180,181].

10 Summary

Infrared spectroscopy has been instrumental in elucidating a number of interesting effects attributable to
strong correlations in solids. In these systems competing interaction often lead to a formation of the energy
gap or pseudogap that dominates the electromagnetic response at low energies. Two classes of correlated
systems: density wave compounds and heavy fermion conductors reveal correlations between the magnitude
of the energy gap and enhancement of quasiparticle effective mass. Despite fundamental differences in the
microscopic origins of the gapped state the theoretical description of the electromagnetic response is quite
common. One can identify similarities between the spectroscopic fingerprints of pseudogaps in correlated
transition metal oxides with the response of the density wave or hybridization gap materials.

Another common attribute of many correlated systems is strong coupling of quiasiparticles to collective
excitations. Infrared optics uncovered many interesting characteristics of this coupling.An inversion analysis
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that was exemplified here with the high-Tc results is capable of yielding the details of the relevant spectral
function. It will be instructive to apply this analysis will be applied to other materials as well. An important
virtue of infrared methods in this regard is that this technique is a bulk probe. Other experimental methods
capable of investigating strong coupling effects (tunneling, ARPES) are surface sensitive techniques.

Acknowledgements We thank our collaborators T. Timusk, C.C. Homes, J.P. Carbotte, A. Chubukov, L. Degiorgi,
W.J. Padilla, K.S. Burch and A. LaForge for useful discussions and critical comments on the manuscript.

References

[1] P. Drude, Annalen der Physik 1, 566 (1900).
[2] P. Drude, Annalen der Physik 3, 369 (1900).
[3] P. Drude, Physikalische Zeitschrift 1, 161 (1900).
[4] See for example E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, Phys.

Rev. B 68, 165204 (2003).
[5] G. Kozlov and A. Volov, in: Millimeter and Submillimeter Wave Spectroscopy of Solids, edited by G. Gruner,

(Springer, New York, 1998), p. 51.
[6] A.V. Pronin, M. Dressel, A. Pimenov, A. Loidl, I.V. Roshchin, and L. H. Greene, Phys. Rev. B 57, 14416 (1998).
[7] D. Grishkovsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. 7, 2006 (1990).
[8] R.A. Kaindl, M.A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, Nature 423, 734 (2003).
[9] R. D. Averitt and A. J. Taylor, J. Phys. Cond. Matt. 14, 1357 (2002).

[10] K. S. Burch, J. Stephens, R. K. Kawakami, D. D. Awschalom, and D. N. Basov, Phys. Rev. B 70 205208 (2004).
[11] A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).
[12] C. C. Homes, M.A. Reedyk, D.A. Crandles, and T. Timusk, Appl. Opt. 32, 2976 (1993).
[13] A.A. B. Holden, G. M. Wardlaw, M. Reedyk, and J. L. Smith, Phys. Rev. Lett. 91, 136401 (2003).
[14] D. N. Basov, S.V. Dordevic, E. J. Singley, W. J. Padilla, K. S. Burch, J. E. Elenewski, L. H. Greene, J. Morris,

and R. Schickling, Rev. Sci. Instrum. 74, 4703 (2003).
[15] W. J. Padilla, Z. Q. Li, K. S. Burch, Y. S. Lee, K. J. Mikolaitis, and D. N. Basov, Rev. Sci. Instrum. 75, 4710

(2004).
[16] S.V. Dordevic, K. S. D. Beach, N. Takeda,Y. J. Wang, M. B. Maple, and D. N. Basov, Phys. Rev. Lett. 96, 017403

(2006).
[17] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).
[18] J.W. Allen and J. C. Mikkelsen, Phys. Rev. B 15, 2952 (1977).
[19] M. Dressel and G. Gruner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2001).
[20] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[21] Y. Fujishima, Y. Tokura, T. Arima, and S. Uchida, Phys. Rev. B 46, 11167 (1992).
[22] F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev. B 52, 2221 (1995).
[23] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Phys. Rev. B 55, 4206 (1997).
[24] Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, and H. Takagi, Phys. Rev. B 58, R1699 (1998).
[25] T. Ido, K. Magoshi, H. Eisaki, and S. Uchida, Phys. Rev. B 44, 12094 (1991).
[26] S. Uchida, T. Ido and H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43, 7942 (1991).
[27] C. C. Homes, T. Timusk, R. Liang, D.A. Bonn, and W. N. Hardy, Phys. Rev. Lett. 71, 1645 (1993).
[28] M. J. Rozenberg, G. Kotliar, H. Kajueter, G.A. Thomas, D. H. Rapkine, J. M. Honig, and P. Metcalf, Phys. Rev.

Lett. 75, 105 (1995).
[29] D. N. Basov, H.A. Mook, B. Dabrowski, and T. Timusk, Phys. Rev. B, 52, R13141, (1995).
[30] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[31] Y. Tomioka, A. Asamitsu, H. Kuwahara, and Y. Tokura, Phys. Rev. B. 53, R1689 (1996).
[32] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
[33] W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S. Komiya, Y. Ando, and D. N. Basov,

Phys. Rev. B 72, 060511 (2005).
[34] Y. S. Lee, K. Segawa, Z. Q. Li, W. J. Padilla, M. Dumm, S.V. Dordevic, C. C. Homes, Y. Ando, and D. N. Basov,

Phys. Rev. B 72, 054529 (2005).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 7 – 8 (2006) 567

[35] K. Petukhov and M. Dressel, Phys. Rev. B 71, 073101 (2005).
[36] G. Gruner, Density Waves in Solids (Perseus Books Group, New York, 1994).
[37] P.A. Lee, T. M. Rice, and P.W. Anderson, Solid State Commun. 14, 703 (1974).
[38] D. Reagor, S. Sridhar, M. Maki, and G. Gruner, Phys. Rev. B 32, 8445 (1985).
[39] V. Vescoli, L. Degiorgi, H. Berger, and L. Forro, Phys. Rev. Lett. 81, 453 (1998).
[40] S.V. Dordevic, D. N. Basov, R. C. Dynes, and E. Bucher, Phys. Rev. B 64, 161103(R) (2001).
[41] B. Ruzicka, L. Degiorgi, H. Berger, R. Gaal, and L. Forro, Phys. Rev. Lett. 86, 4136 (2001).
[42] S.V. Dordevic, D. N. Basov, R. C. Dynes, B. Ruzicka, V. Vescoli, L. Degiorgi, H. Berger, R. Gaal, L. Forro, and

E. Bucher, Eur. Phys. J. B 33, 15 (2003).
[43] D. B. Tanner, K. D. Cummings, and C. S. Jacobsen, Phys. Rev. Lett. 47, 597 (1981).
[44] G. Travaglini and P. Wachter, Phys. Rev. B 30, 1971 (1984).
[45] A.W. McConnell, B. P. Clayman, C. C. Homes, M. Inoue, and H. Negishi, Phys. Rev. B 58, 13565 (1998).
[46] C. C. Homes and J. E. Eldridge, Phys. Rev. B 42, 9522 (1990).
[47] G. Minton and J.W. Brill, Phys. Rev. B 36, 4254 (1987).
[48] C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, Phys. Rev. B 28, 7019 (1983).
[49] C. C. Homes, J. L. Musfeldt, and D. B. Tanner, Phys. Rev. B 48, 16799 (1993).
[50] W. N. Creager, P. L. Richards, and A. Zettl, Phys. Rev. B 44, 3505 (1991).
[51] P. Calvani, G. De Marzi, P. Dore, S. Lupi, P. Maselli, F. D’Amore, S. Gagliardi, and S.-W. Cheong, Phys. Rev.

Lett. 81, 4504 (1998).
[52] Z.-T. Zhu, J. L. Musfeldt, Z. S. Teweldemedhin, and M. Greenblatt, Phys. Rev. B 65, 214519 (2002).
[53] M. Rice, Phys. Rev. Lett. 37, 36 (1976).
[54] H. Fehske, M. Kinateder, G. Wellein, and A. R. Bishop, Phys. Rev. B 63, 245121 (2001).
[55] B. R. Jones, A. B. Sushkov, J. L. Musfeldt, Y. J. Wang, A. Revcolevschi, and G. Dhalenne, Phys. Rev. B 63,

134414 (2001).
[56] A. B. Sushkov, O. Tchernyshyov, W. Ratcliff II, S.W. Cheong, and H. D. Drew, Phys. Rev. Lett. 94, 137202

(2005).
[57] A. S. Barker, Jr., B. I. Halperin, and T. M. Rice, Phys. Rev. Lett. 20, 384 (1968).
[58] D. N. Basov, E. J. Singley, and S.V. Dordevic, Phys. Rev. B 65, 054516 (2002).
[59] Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 88, 217001 (2002).
[60] A.V. Chubukov, Ar. Abanov, and D. N. Basov, Phys. Rev. B 68, 024504 (2003).
[61] A.V. Puchkov, P. Fournier, D. N. Basov, T. Timusk, A. Kapitulnik, and N. N. Kolesnikov, Phys. Rev. Lett. 77,

3212 (1996).
[62] D. N. Basov, R. Liang, B. Dabrowski, D.A. Bonn, W. N. Hardy, and T. Timusk, Phys. Rev. Lett. 77, 4090 (1996).
[63] E.W. Carlson, V. J. Emery, S.A. Kivelson, and D. Orgad, in: The Physics of Conventional and Unconventional

Superconductors, edited by K. H. Bennemann and J. B. Ketterson (Springer-Verlag, New York, 2003); S.A.
Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod.
Phys. 75, 1201 (2003).

[64] S. Tajima, N. L. Wang, N. Ichikawa, H. Eisaki, S. Uchida, H. Kitano, T. Hanaguri, and A. Maeda, Europhys.
Lett. 47, 715 (1999).

[65] M. Dumm, D. N. Basov, S. Komiya, Y. Abe, and Y. Ando, Phys. Rev. Lett. 88, 147003 (2002).
[66] M. Matsuda, M. Fujita, K. Yamada, R. J. Birgeneau, M.A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto, and G.

Shirane, Phys. Rev. B 62, 9148 (2000).
[67] M. Dumm, S. Komiya, Y. Ando, and D. N. Basov, Phys. Rev. Lett. 91, 077004 (2003).
[68] A. Zimmers, J. M. Tomczak, R. P. S. M. Lobo, N. Bontemps, C. P. Hill, M. C. Barr, Y. Dagan, R. L. Greene, A. J.

Millis, and C. C. Homes, Europhys. Lett. 70, 225 (2005).
[69] Y. Onose, Y. Taguchi, K. Ishizaka, and Y. Tokura, Phys. Rev. B 69, 024504 (2004).
[70] N. L. Wang, G. Li, Dong Wu, X. H. Chen, C. H. Wang, and H. Ding, cond-mat/0410242.
[71] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B 63, 094503 (2001).
[72] B. Valenzuela, E. J. Nicol, and J. P. Carbotte, Phys. Rev. B 71, 134503 (2005).
[73] R. Gerami and Ch. Nayak, cond-mat/0506237.
[74] T. Osafune, N. Motoyama, H. Eisaki, S. Uchida, and S. Tajima, Phys. Rev. Lett. 82, 1313 (1999).
[75] D. N. Basov, B. Dabrowski, and T. Timusk, Phys. Rev. Lett. 81, 2132 (1998).

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



568 S.V. Dordevic and D. N. Basov: Electrodynamics of correlated electron matter

[76] T. Vuletic, B. Korin-Hamzic, S. Tomic, B. Gorshunov, P. Haas, T. Room, M. Dressel, J. Akimitsu, T. Sasaki, and
T. Nagata, Phys. Rev. Lett. 90 257002, (2003).

[77] Y. S. Lee, J. S. Lee, K.W. Kim, T.W. Noh, Jaejun Yu, E. J. Choi, G. Cao, and J. E. Crow, Europhys. Lett. 55 280
(2001).

[78] G. Cao, J. E. Crow, R. P. Guertin, P. F. Henning, C. C. Homes, M. Strongin, D. N. Basov, and E. Lochner, Solid
State Commun. 113, 657 (2000).

[79] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
[80] S. Lupi, M. Ortolani, and P. Calvani, Phys. Rev. B 69, 180506(R) (2004).
[81] J. Hwang, J. Yang, T. Timusk, and F. C. Chou, cond-mat/0405200.
[82] G. Caimi, L. Degiorgi, H. Berger, N. Barisic, L. Forro, and F. Bussy, Eur. Phys. J. B 40, 231 (2004).
[83] N. L. Wang, Dong Wu, G. Li, X. H. Chen, C. H. Wang, and X. G. Luo, Phys. Rev. Lett. 93, 147403 (2004).
[84] C. Bernhard, A.V. Boris, N. N. Kovaleva, G. Khaliullin, A.V. Pimenov, Li Yu, D. P. Chen, C.T. Lin, and B.

Keimer, Phys. Rev. Lett. 93, 167003 (2004).
[85] Z. Schlesinger, R.T. Collins, F. Holtzberg, C. Feild, S. H. Blanton, U. Welp, G.W. Crabtree, Y. Fang, and J. Z.

Liu, Phys. Rev. Lett. 65, 801 (1990).
[86] A. ElAzrak, R. Nahoum, N. Bontemps, M. Guilloux-Viry, C. Thivet, A. Perrin, S. Labdi, Z. Z. Li, and H. Raffy,

Phys. Rev. B 49, 9846 (1994).
[87] D. van der Marel, H. J.A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven,

P. H. Kes, and M. Li, Nature 425, 271 (2003).
[88] P. Kostic, Y. Okada, N. C. Collins, Z. Schlesinger, J.W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R.

Beasley, Phys. Rev. Lett. 81, 2498 (1998).
[89] J. S. Dodge, C. P. Weber, J. Corson, J. Orenstein, Z. Schlesinger, J.W. Reiner, and M. R. Beasley, Phys. Rev.

Lett. 85, 4932 (2000).
[90] Y. S. Lee, Jaejun Yu, J. S. Lee, T.W. Noh, T.-H. Gimm, H.-Y. Choi, and C. B. Eom, Phys. Rev. B 66, 041104

(2002).
[91] F. P. Mena, D. van der Marel, A. Damascelli, M. Fath, A.A. Menovsky, and J.A. Mydosh, Phys. Rev. B 67,

241101 (2003).
[92] L. B. Ioffe and A. J. Millis, Phys. Rev. B 58, 11631 (1998).
[93] P. B. Littlewood and C. M. Varma, J. Appl. Phys. 69, 4979 (1991).
[94] J. Hwang, T. Timusk, A.V. Puchkov, N. L. Wang, G. D. Gu, C. C. Homes, J. J. Tu, and H. Eisaki, Phys. Rev. B

69, 94520 (2004).
[95] A. Carrington, A. P. Mackenzie, C.T. Lin, and J. R. Cooper, Phys. Rev. Lett. 69, 2855 (1992).
[96] B. P. Stojkovic and D. Pines, Phys. Rev. Lett. 76, 811 (1996).
[97] R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).
[98] T. Valla, A.V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu, and N. Koshizuka, Science

285, 2110 (1999).
[99] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

[100] L. B. Ioffe and A. J. Millis, Science 285, 1241 (1999).
[101] A.V. Chubukov, D. Pines, and J. Schmalian, in: The Physics of Superconductors Vol.1, edited by K. H. Benne-

mann and J. B. Ketterson (Springer-Verlag, New York, 2003), p. 495.
[102] Ar. Abanov, A.V. Chubukov, and J. Schmalian, Adv. Phys. 52, 119 (2003).
[103] M. M. Zemljic and P. Prelovsek, cond-mat/0504640.
[104] G. Baskaran, Z. Zou, and P.W. Anderson, Solid State Commun. 63, 973 (1987).
[105] V. Emery and S. Kivelson, Nature (London) 374, 434 (1995).
[106] L. B. Ioffe and G. Kotliar, Phys. Rev. B 42, 10348 (1990).
[107] P.W. Anderson, Phys. Rev. B. 55, 11785 (1997).
[108] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
[109] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, New York, 1999).
[110] P. Coleman and A. Schofield, Nature 433, 226 (2005).
[111] M. R. Norman and A.V. Chubukov, cond-mat/0511584.
[112] L. Degiorgi, St. Thieme, H. R. Ott, M. Dressel, G. Gruner, Y. Dalichaouch, M. B. Maple, Z. Fisk, C. Geibel, and

F. Steglich, Z. Phys. B 102, 367 (1997).
[113] L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 15, No. 7 – 8 (2006) 569

[114] G. R. Stewart, Rev. Mod. Phys. 71, 797 (2001).
[115] P.V. Bogdanov, A. Lanzara, S.A. Kellar, X. J. Zhou, E. D. Lu, W. J. Zheng, G. Gu, J.-I. Shimoyama, K. Kishio,

H. Ikeda, R. Yoshizaki, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett. 85, 2581 (2000).
[116] A. Lanzara, P.V. Bogdanov, X. J. Zhou, S.A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K.

Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001).
[117] Z.-X. Shen, cond-mat/0305576.
[118] X. J. Zhou, T.Yoshida,A. Lanzara, P.V. Bogdanov, S.A. Kellar, K. M. Shen, W. L.Yang, F. Ronning, T. Sasagawa,

T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C.T. Lin, F. Zhou, J.W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori,
Z. Hussain, and Z.-X. Shen, Nature 423, 398 (2003).

[119] D. Pines, Physica B 163, 78 (1990).
[120] J. P. Carbotte, E. Schachinger, and D. N. Basov, Nature 401, 354 (1999).
[121] D. Munzar, C. Bernhard, and M. Cardona, Physica C 312, 121 (1999).
[122] Ar. Abanov, A.V. Chubukov, M. Eschrig, M. R. Norman, and J. Schmalian, Phys. Rev. Lett. 89, 177002 (2002).
[123] H.-Y. Kee, S.A. Kivelson, and G. Aeppli, Phys. Rev. Lett. 88, 257002 (2002).
[124] A.V. Chubukov and M. R. Norman, cond-mat/0402304.
[125] A.V. Puchkov, D. N. Basov, and T. Timusk, J. Phys. C 8, 10049 (1996).
[126] S.V. Dordevic, C. C. Homes, J. J. Tu, T. Valla, M. Strongin, P. D. Johnson, G. D. Gu, and D. N. Basov, Phys. Rev.

B 71, 104529 (2005).
[127] P. B. Allen, Phys. Rev. B 3, 305 (1971).
[128] E. Schachinger, D. Neuber, and J. P. Carbotte, cond-mat/0510662.
[129] A. J. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B 37, 4975 (1988).
[130] S.V. Shulga, O.V. Dolgov, and E. G. Maksimov, Physica C 178, 266 (1991).
[131] F. Marsiglio, T. Startseva, and J. P. Carbotte, Phys. Lett. A 245, 172 (1998).
[132] J. J. Tu, C. C. Homes, G. D. Gu, D. N. Basov, and M. Strongin, Phys. Rev. B 66, 144514 (2002).
[133] N. L. Wang, P. Zheng, J. L. Luo, Z. J. Chen, S. L. Yan, L. Fang, and Y. C. Ma, Phys. Rev. B 68, 054516 (2003).
[134] P. Casek, Ch. Bernhard, J. Humlicek, and D. Munzar, cond-mat/0503666.
[135] S. G. Sharapov and J. P. Carbotte, cond-mat/0505304.
[136] J. Hwang, J. Yang, T. Timusk, S. G. Sharapov, J. P. Carbotte, D.A. Bonn, Ruixing Liang, and W. N. Hardy,

cond-mat/0505302.
[137] Ar. Abanov, A.V. Chubukov, and J. Schmalian, J. Electron Spectrosc. Relat. Phen. 117, 129 (2001).
[138] M. R. Norman and H. Ding, Phys. Rev. B 57 R11089 (1998).
[139] Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 83, 1652 (1999).
[140] Ar. Abanov, A.V. Chubukov, and J. Schmalian, Phys. Rev. B 63, 180510 (2001).
[141] J. P. Carbotte and E. Schachinger, this volume.
[142] A.V. Chubukov, private communication.
[143] J. Hwang, T. Timusk, and G. D. Gu, Nature 427, 714 (2004).
[144] N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, X. J. Zhou,

W. L. Yang, Z. Hussain, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, and Z.-X. Shen,
Phys. Rev. Lett. 68 064517 (2003).

[145] A. J. Millis and P.A. Lee, Phys. Rev. B 35, 3394 (1987).
[146] A. J. Millis, M. Lavagna, and P.A. Lee, Phys. Rev. B 36, 864 (1987).
[147] P. Coleman, Phys. Rev. Lett. 59, 1026 (1987).
[148] P. Fulde, Electron Correlations in Molecules and Solids 2nd Edition (Springer-Verlag, Berlin, 1993).
[149] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997).
[150] S.V. Dordevic, D. N. Basov, N. R. Dilley, E.D. Bauer, and M. B. Maple, Phys. Rev. Lett. 86, 684 (2001).
[151] M. Dressel, N. Kasper, K. Petukhov, B. Gorshunov, G. Gruner, M. Huth, and H. Adrian, Phys. Rev. Lett. 88,

186404 (2002).
[152] M. Dressel, N. Kasper, K. Petukhov, D. N. Peligrad, B. Gorshunov, M. Jourdan, M. Huth, and H. Adrian, Phys.

Rev. B 66, 035110 (2002).
[153] M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Nature 438, 1135 (2005).
[154] B. C. Webb, A. J. Sievers, and T. Mihalisin, Phys. Rev. Lett. 57, 1951 (1986).
[155] D.A. Bonn, J. D. Garrett, and T. Timusk, Phys. Rev. Lett. 61, 1305 (1988).

www.ann-phys.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



570 S.V. Dordevic and D. N. Basov: Electrodynamics of correlated electron matter

[156] P. Wachter, in: Handbook on the Physics and Chemistry of Rare Earths Vol.19, edited by K.A. Gschneidner and
LeRoy Eyring (Elsevier Science, Amsterdam, New York, 1994).

[157] S. Donovan, A. Schwartz, and G. Gruner, Phys. Rev. Lett. 79, 1401 (1997).
[158] P. Tran, S. Donovan, and G. Gruner, Phys. Rev. B 65, 205102 (2002).
[159] J. N. Hancock, T. McKnew, Z. Schlesinger, J. L. Sarrao, and Z. Fisk, Phys. Rev. Lett. 92, 186405 (2004).
[160] K. S. Burch, A. Schafgans, N. P. Butch, T.A. Sayles, M. B. Maple, B. C. Sales, D. Mandrus, and D. N. Basov,

Phys. Rev. Lett. 94, 046401 (2005).
[161] T. Portengen, Th. Ostreich, and L. J. Sham, Phys. Rev. Lett. 76, 3384 (1996).
[162] T. Portengen, Ph.D. thesis, University of California, San Diego.
[163] J.W. van der Eb, A. B. Kuz’menko, and D. van der Marel, Phys. Rev. Lett. 86, 3407 (2001).
[164] K. Haule, V. Oudovenko, S.Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 94, 036401 (2005).
[165] M. Dressel, Naturwissenschaften 90, 337 (2003).
[166] T. Giamarchi, Physica B 230-232, 975 (1997), and references therein.
[167] D. Controzzi, F. H. L. Essler, and A. M. Tsvelik, Phys. Rev. Lett. 86, 680 (2001).
[168] D. G. Clarke, S. P. Strong, and P.W. Anderson, Phys. Rev. Lett. 72, 3218 (1994).
[169] D. B. Tanner, C. S. Jacobsen, A. F. Garito, and A. J. Heeger, Phys. Rev. B 13, 3381 (1976).
[170] C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, Phys. Rev. B 28, 7019 (1983).
[171] H. K. Ng, T. Timusk, and K. Bechgaard, Phys. Rev. B 30, 5842 (1984).
[172] H. K. Ng, T. Timusk, D. Jerome, and K. Bechgaard, Phys. Rev. B 32, 8041 (1985).
[173] N. Cao, T. Timusk, and K. Bechgaard, J. Phys. I France 6, 1719 (1996).
[174] V. Vescoli, L. Degiorgi, W. Henderson, G. Gruner, K. P. Starkey and L. K. Montgomery, Science 281, 1181

(1998).
[175] T. Giamarchi, Chemical Rev. 104, 5037 (2004).
[176] K. Takenaka, K. Nakada, A. Osuka, S. Horii, H. Ikuta, I. Hirabayashi, S. Sugai, and U. Mizutani, Phys. Rev.

Lett. 85, 5428 (2000).
[177] Y.-S Lee, K. Segawa, Y. Ando, and D. N. Basov, Phys. Rev. Lett. 94, 137004 (2005).
[178] A. Schwartz, M. Dressel, G. Gruner, V. Vescoli, L. Degiorgi, and T. Giamarchi, Phys. Rev. B 58, 1261 (1998).
[179] C. C. Homes, D.A. Bonn, R. Liang, W. N. Hardy, D. N. Basov, T. Timusk, and B. P. Clayman, Phys. Rev. B 60,

9782 (1999).
[180] C. C. Homes, S.V. Dordevic, M. Strongin, D.A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N.

Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, Nature 430, 539 (2004).
[181] C. C. Homes, S.V. Dordevic, D.A. Bonn, R. Liang, W. N. Hardy, and T. Timusk, Phys. Rev. B 71, 184515 (2005).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org


