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Abstract

This paper develops and applies a model in which doctors have two dimensions

of skill: diagnostic skill and skill performing procedures. Higher procedural skill

increases the use of intensive procedures across the board, while better diagnostic

skill results in fewer intensive procedures for the low risk, but more for the high

risk. Deriving empirical analogues to our theoretical measures for the case of C-

section, we show that poor diagnosticians can be identified in the data and that

improving diagnostic skill would reduce C-section rates by 15.5% in the bottom

half of the risk distribution, and increase them by 5.5% in the top half. Such an

change in the allocation of procedures would improve birth outcomes among all

women.
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Skinner and seminar participants at Princeton, Georgetown University, Havard Medical School, Kyoto
University, NYU, the Japanese National Institute of Population and Social Security Research, Warwick
University, University College London, the London School of Economics, the Paris School of Economics,
the NBER Summer Institute, and the University of Michigan for helpful comments. This research was
supported by a grant from the Program on U.S. Health Policy of the Center for Health and Wellbeing.
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1 Introduction

A long literature focuses on experts’ decision making and highlights the fact that “pro-

fessional intuition is sometimes marvelous and sometimes flawed” (Kahneman and

Klein, 2009). At the time a decision is rendered, its quality is difficult to evaluate,

yet a flawed decision can have enormous consequences. The purpose of this paper is

to measure the quality of decision making in the context of a well defined setting - the

decision of an obstetrician to deliver a baby by either cesarean section or natural deliv-

ery. We show that this choice can be modeled as an information processing problem,

and show further that physicians vary systematically in their decision making ability.

While much of the literature in health economics deals with flawed decision making

resulting in medical errors, over or under use of procedures, and poor health outcomes

(Garber and Skinner 2008; Chandra et al., 2012), remarkably little previous research

has considered expert decision making, or diagnosis, as a distinct aspect of medical

practice.

This paper adds diagnostic skill to the canonical model of utility-maximizing physi-

cian behavior. Better diagnostic skill is conceived of as an ability to use patient infor-

mation to improve the match between patient condition and the treatment they receive.

This perspective highlights the ways that physicians adjust their behavior in response

to the condition of the patient. We apply the model to a common binary decision faced

by physicians: Whether to deliver a baby by C-section or not. In this context, physi-

cians who are better at diagnosis relative to their peers should have higher C-sections

rates for high risk patients and lower C-section rates for low risk patients.

The case of C-section is interesting for a number of reasons. First, there is widespread

recognition that C-section rates vary across hospitals in ways that cannot be explained

either by the condition of the patients or by their preferences (Kozhimannil et al.

(2013)). The large rise in C-section rates over the past 15 years (from 1 in 5 to 1 in 3)

has led to many proposals to lower them. For example, on January 1, 2014, the Joint

Commission that provides hospital acreditation and allows hospitals to participate in

the Medicaid and Medicare programs implemented a measure aimed at encouraging

hospitals to reduce C-section rates among first time mothers with single, head-down

fetuses. The Commission will publish a target rate based on a national sample of hos-

pitals every quarter, and will require hospitals to publish and track their own rates in

order to create pressure on them to lower rates. (Commission (2014) - see measure

PC-02). However, our analysis suggests that public policies that focus on simply low-

ering C-sections rates could easily lead to worse outcomes if physicians who are good
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at diagnosis are encouraged to lower their C-section rates across the board.

In addition to the new focus in this paper on physician diagnostic skill, we also

consider a more conventional type of physician skill, which we term procedural or

surgical skill. We show that physicians who are good at surgery will have higher C-

section rates for all patients, since their patients are at lower risk of bad outcomes. Over

time C-sections have become safer, and hence the model implies that some increase in

C-section rates over time is warranted and to be expected upon purely medical grounds.

Physicians may be more or less skilled at performing procedures, but they may also

be more or less skilled at diagnosis. We show that these two dimensions of skill can

be differentiated both theoretically and empirically, and that doctors whose decisions

are more sensitive to information about a patient’s medical conditions produce better

health outcomes. In contrast to a model with one dimension of skill, our model im-

plies that improvements in diagnostic skill make all patients better off, even as they

reduce the unnecessary use of intensive procedures in patients for whom low intensity

procedures are more appropriate. Moreover, we clearly show that there is variation

in the way that physicians use the same information about patient condition, so that

there can be no presumption that market forces alone (e.g. adjusting prices) will lead

physicians to make the best decisions for their patients.

Applying our model to data on all deliveries in New Jersey from 1997 to 2006, we

find that when diagnostic skill increases by one standard deviation, C-section rates fall

15.5% for women in the bottom half of the risk distribution, but rise 5.5% among women

in the high risk half of the distribution. Given that there are many more C-sections

among the high risk to begin with, such a change would both reduce the number of

unnecessary surgeries performed on low-risk women, and increase the overall number

of C-sections performed.

Thus, a surprising implication of our analysis is that not only are there too many

C-sections being performed on low-risk women, but there are too few C-sections being

performed on high-risk women. A one standard deviation improvement in diagnosis

leads to reductions in the probability of a negative health outcome for all women: There

is a reduction of 15.3% among the low risk, and of 9.1% among the high risk. When we

further divide bad health outcomes into those that are bad for the mother and those

that are bad for the infant, we find that reductions in bad outcomes among mothers

are concentrated in the low risk (who become less likely to suffer the consequences of

unnecessary surgeries), while for infants bad outcomes are reduced across the board.

The one exception is neonatal death, which declines with better diagnosis only among

the high risk (suggesting that C-sections are indeed life-saving among infants born to
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the highest risk mothers).

Contrasting the effects of diagnostic skill and surgical skill, we find that a one

standard deviation improvement in surgical skill would increase the incidence of C-

section 16.5% among patients in the lower half of the risk distribution and by 8.7%

among patients in the upper half. The same change is estimated to reduce the incidence

of any bad health outcome by 55.3% among the low risk, and by 50.4% among the high

risk.

One might conclude that it is more important to improve surgical skill than diag-

nostic skill. But it may be considerably easier to improve diagnosis than to make bad

surgeons into good ones. Indeed, policies such as checklists, computer aided diagnosis,

or administrative structures that require that physicians seek approval before schedul-

ing C-sections in women without risk factors, could perhaps be used as methods of

improving diagnosis ((Baker et al., 2008); (Doi, 2007); (Gawande, 2009)). Our results

suggest that with common procedures like C-section, it may well be possible to use

existing administrative health data bases to identify doctors who are weak in terms

of diagnosis and to make changes in the allocations of procedures that will improve

patient health outcomes.

The rest of the paper is laid out as follows. Section II briefly reviews some of the

relevant literature. The model is developed in Section III, which also explains how

we use the observable administrative data to implement the model. Briefly, we first

use the observable data to construct a measure of each patient’s appropriateness for

C-section. We then estimate doctor-specific regressions of the propensity to perform a

C-section on this measure of appropriateness. This procedure yields an intercept and

a slope term for each doctor, and the model explains the circumstances in which the

estimated slope can be interpreted as a measure of the doctor’s diagnostic skill. We

also propose a proxy for the doctor’s surgical skill. Section IV presents the results, and

this is followed by a discussion and conclusions in Section V.

2 Background

Health care is an important area in which we all rely on experts, to make judgments

that are referred to as diagnoses, and then to carry out the chosen procedure. Hence,

it is not surprising that many studies of expertise have focused on physicians. Meehl

(1954) reviewed a number of studies, mainly of clinical psychologists, and compared

their forecasts to those generated by simple statistical models, including optimal linear

combinations of variables that the experts also observed. He argued that predictions
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based on these simple models were generally more accurate than those of the experts.

A more recent meta-analysis of 136 studies in clinical psychology and medicine also

found that algorithms tended to either out-perform or to match the experts (Grove

et al., 2000).

Kahneman and Klein (2009) argue that algorithms are most useful when we have

confidence in the list of variables to be used for prediction; when we have a reliable and

measurable outcome; when there is a large body of similar cases; when the cost/benefit

ratio warrants the investment in developing an algorithm; and when the situation is

sufficiently stable that the algorithm will not immediately become obsolete. The case

of C-section appears to satisfy all of these criteria as we will argue further in the

data section below. In the psychological studies discussed above, the experts and the

statisticians generally had access to the same data. The advantage of the algorithms

arises mainly because the algorithms are more consistent than the experts. However,

in our application, we have another advantage which is that in our administrative birth

records we observe the universe of cases over a given time period, whereas each doctor

observes only their own cases.

Another difference between our study and many of those in psychology is that we

are agnostic about the source of the “errors” in decision making. The psychology liter-

ature is concerned about whether the errors arise from factors such as over-confidence,

or other heuristic biases. We are concerned with doctors who, for a variety of pos-

sible reasons, do not make the best use of the information at their disposal to make

good decisions. The literature in health economics offers many possible reasons for

these “mistakes.” One common explanation for faulty decision making is “defensive

medicine,” the idea that doctors perform unnecessary procedures in order to protect

themselves from lawsuits. However, Baicker et al. (2007) argue that there is little

connection between malpractice liability costs and physician treatment of Medicare

patients, while Dubay et al. (1999) and Currie and MacLeod (2008) cast doubt on the

idea that physicians perform unnecessary C-sections primarily due to fear of lawsuits.

There is more evidence that physician decision making is swayed by financial in-

centives. The fee for performing C-sections exceeds the fee for performing natural

deliveries. Gruber and Owings (1996) and Gruber et al. (1999) show that the inci-

dence of C-section increases with the wedge between the two fees. Johnson and Rehai

(2014) add to this literature by showing that financial incentives affect the treatment

of non-physicians, but have no impact on the treatment of physician-patients, who are

presumably better informed, and therefore less likely to meekly tolerate unnecessary

procedures.
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A third possibility is that doctors are influenced by the decisions of those around

them. Chandra and Staiger (2007) study the choice of surgery vs. medical management

of cardiac patients. Knowledge spillovers are the main theoretical driver of small area

variation in procedure use in their model. Physicians in areas that specialize in surgery

are assumed to become better at surgery and worse at medical management, and vice-

versa. Their model raises the possibility of mismatch between patients and physicians.

All patients in high surgery areas will be more likely to have surgery, even if medical

management would be more appropriate for some of them.

Both Epstein and Nicholson (2009) and Dranove et al. (2011) investigate the preva-

lence of spillovers in the case of C-section and neither find much evidence for them:

There is no convergence in practice styles among physicians in the same hospitals over

time. And since C-section is often considered a rather simple surgery, the benefits from

specialization may also be muted. Still, the model we discuss below is not inconsistent

with the potential existence of either specialization or spillovers as practice presumably

does help, and doctors could learn both to be better diagnosticians and better surgeons

from observing their colleagues.

The most important insight from the Chandra and Staiger (2007) model may be

that a reduction in the use of surgery in high use areas cannot be Pareto improving

because patients who are good candidates for surgery will be harmed by a decline in

the skill level of the physicians serving them. We will also argue that an across-the-

board cut in C-section rates cannot be optimal because such a reduction will reduce the

probability that high-need mothers will receive a procedure. What is desirable instead,

is a reallocation of C-sections from low-need to high-need mothers.

Patient preferences are often cited as a fourth potential reason for medically un-

necessary procedure use. In an innovative study using vignettes from patient and

physician surveys, Cutler et al. (2013) assess the hypothesis that regional variations in

procedure use are driven by differences in patient demand across areas. They conclude

that patient demand is a relatively unimportant determinant of regional variations and

that the main driver is physician beliefs about appropriate treatment that are often

unsupported by clinical evidence. Similarly, previous studies have found little evidence

that patient demand is driving the large differences in C-section rates across providers.

(McCourt et al. (2007))

Finkelstein et al. (2014) address the same question using longitudinal Medicare

claims data that allow them to track the same patients as they move through different

health care markets. They suggest that about half of the observed variation in proce-

dure use is due to supply-side factors, while half is due to patient-level, or demand-side
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factors. However, they conclude that much of the variation in patient demand is driven

by exogenous patient health, and so probably does not simply reflect patient tastes for

procedures. These findings agree with those of Cutler et al. (2013) in suggesting that

patient preferences play a relatively small role in explaining variations in care.

These are all important lines of inquiry, and our theoretical model incorporates the

effects of prices, patient preferences, patient health, and physician beliefs. However,

our main focus is on identifying doctors who, for whatever reason, are making poor use

of the observable data about their patients when making treatment decisions. We will

show that patients of these doctors tend to have worse outcomes than other comparable

patients. The fact that these doctors can be identified using simple models based on

administrative data is relevant for policy because it suggests that it would be possible

to improve patient outcomes by incorporating aids to diagnostic decision making into

standard practice.

3 Framework

3.1 Overview

We begin by estimating a qualitative choice model using all of the data for the state

of New Jersey between 1997 and 2006 following Smith et al. (2004). They show that a

logistic model provides a clinically useful summary of factors related to C-section risk,

and recommend providing this information in a useful fashion to the physician:

Prob {Ci = 1} = F (βXi) . (1)

We use the model to measure standard treatment in New Jersey, and then explore

how physicians deviate from this standard.1We then use the model to construct a one-

dimensional measure of the patient’s appropriateness for C-section:

hIi = βXi. (2)

By construction, our measure hIi is positively correlated with patient conditions that

are likely to merit a C-section. An important issue is that our constructed measure

captures the standard of practice in New Jersey, but does not necessarily capture

1An alternative way to risk adjust would be to look at C-section rates for discrete cases. However,
we have measures of 30 different conditions that all have some impact on the probability of C-section.
With n = 30 there are 230 = 1, 073, 741, 824 possible cases making it obviously impossible to risk adjust
in this case-specific fashion!
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appropriateness for a C-section in an absolute sense. Ideally, one might choose to

construct hIi using only “good doctors.” As we will show below, there seems to be

a good deal of consensus on the ranking of different patients by appropriateness for

C-section in our data.

For each doctor j ∈ J we estimate a model of the form:

Prob {Cij = 1} = F
(
θjh

I
i + γj)

)
.

By including both a fixed effect γj and a slope term θj , this formulation provides

a straightforward extension of the standard risk adjustment framework which treats

differences between doctors as a doctor specific fixed effect (Epstein and Nicholson

(2009), Srinivas et al. (2010)). We will show that there is variation in the slope term

across the population of physicians, and that this variation is clinically significant in

that it is associated with variation in outcomes. Before proceeding with the empirical

analysis, we show that the slope and intercept terms can be viewed as providing a

reduced form measure of information processing ability and surgical skill. In particular,

the slope will be shown to vary only with variations in information, and not with surgical

skill.

We let hi represent the true underlying condition of the patient and then suppose

that our estimate hIi (from equation 2) satisfies:

hIi = hi + εIi , (3)

where the error term has variance σ2I . The physician also has a signal of patient

condition hi, and the precision of this signal is what we use as a measure of diagnostic

skill. We will show that this measure of diagnostic skill is positively related to the slope

term θj , whereas surgical skill affects the intercept term, γj , but not θj .

3.2 Modeling Physician Decision Making

We begin with the standard hypothesis that physicians maximize their utility, but

care about patient outcomes (Gaynor et al. (2004), Arlen and MacLeod (2005), Currie

and MacLeod (2008) and Chandra et al. (2012)). As such the physician does her

best to process the information she receives and then make the appropriate choice of

procedure. The physician chooses between two procedures, T ∈ {N,C} which generate
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the following physician payoffs:

uij (N) = hNi + sNj +mN
j

(
PN
)

+ εijN ,

uij (C) = hCi + sCj +mC
j

(
PC
)

+ αPj h
P
i + εijC .

The term hTi is an index of the health status of the patient i in (log) utility terms after

procedure T is carried out, sj is the skill of the physician j at performing procedure T ,

and P T is the cost of the procedure.2

The term hPi represents a patient preference for procedure C (if it is negative, then

she prefers procedure N).3 The extent to which a physician is willing to alter her choice

of procedure in response to the preferences of the patient during childbirth is denoted

by αPj , which represents physician patient sensitivity, the extent to which the physician

responds to the preferences of the mother.4 In what follows, we do not observe hPi ,

and this term can thus also be thought of as incorporating any other variables that are

observed by the physician, but unrecorded in the data.

Given information Iij the physician chooses C if and only if:

E {uij (C)− uij (N) |Iij} ≥ 0. (5)

We suppose that surgical skill and prices are known and that our health measures have

been normalized so that E {εijC − εijN} = 0. These assumptions allow us to restate

the physician decision expressed in (5). The physician chooses the intensive procedure

(T = C) if and only if:

E {hi|Iij}+ sj +mjt + αPj h
P
i ≥ 0, (6)

2It is assumed that we have taken logs of level variables and hence utility is any real number (positive
or negative), and the units have been defined appropriately.

3We could put these preference terms into both equations, but ultimately we are concerned about
the relative preference of procedure C to N, and so we need only place this term into one equation.

4Note that this linear model can be generated from the a model that allows for complementarities:

Uij (T ) = (HT
i )(STj )MT

j

(
PT

)
, (4)

where STj is the skill of physician j at doing procedure T and Mj

(
PT

)
is the expected pecuniary

consequence of this choice as a function of the price paid, PT for procedure T . Taking logs yields:

uij (T ) = log(Uij (T ))

= log
(
HT
i

)
+ log

(
STj

)
+ log

(
MT
j

(
PT

))
= hti + sTj +mT

j

(
PT

)
.
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where sj = sCj − sNj , mj = mj

(
PC
)
−mj

(
PN
)

, and hi = hCi − hNi . For simplicity, we

normalize hCi = 0, so that hi = −hNi . The term for technical skill (sj) increases with

skill at C , and decreases with skill at N . The term mj represents the relative cost of

procedures C and N. Increases in the price of procedure C is expected to increase mj ,

while an increase in the price of procedure N would decrease this term.

Suppose that the physician has prior beliefs regarding the patient’s true condition

hi which are given by hi ∼ N
(
h0j , σ

2
j

)
. If the mean satisfies h0j + sj + mj > 0 , then

the physician believes that most women in her practice should be getting a C-section.

Suppose that all physicians see the same basic information, Xi, and that variation

in observed procedure choices reflects both their prior beliefs, h0j , and their ability to

process information. The variance of prior beliefs, σ2j , represents uncertainty about

the appropriate choice. We can also define:

Bj =
1

σ2j
.

Formally this is the precision of the prior distribution and represents the extent to

which a physician alters her beliefs in the face of new information. When Bj is large

(σ2j is small), then the physician has strong prior beliefs that makes her less sensitive

to the new information in Xi.

Given these beliefs, the physician observes the patient’s condition and makes an

assessment of her health status which is given by:

hij = hi + εij , (7)

where εji is normally distributed with mean zero and variance σ2Dj . We model vari-

ability in the diagnostic skill of doctors using variation in σ2Dj . Formally, we define the

diagnostic skill of a physician as:

Dj =
1

σ2Dj .
.

When Dj is higher, the physician makes a more accurate estimate of the patient’s

condition hi. Given these definitions we have:

Proposition 1. Given a doctor’s prior beliefs about the patient’s condition h0j , the

strength of the physician’s prior beliefs, Bj, diagnostic skill Dj, and her information

about the patient’s condition, hij, then her medical assessment of a patient’s condition
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is given by:

E {hi|Iij} = π0h0j + πhhij

where π0 =
Bj

Bj+Dj
and πh = 1− π0 =

Dj
Bj+Dj

.

The proof of this and subsequent propositions are in the appendix. This result fol-

lows directly from the optimal updating rule for normally distributed random variables

(see DeGroot (1972)). Notice that physicians with higher diagnostic skill are more

responsive to new information, and less dependent on prior beliefs.

The final piece of data used by the physician is the patient’s preference for a C-

section given by hPi . Suppose that patient preferences follow an arbitrary distribution

hPi ∼ N
(
h̄Pj , σ

2
Pj

)
, where h̄P and σ2PJ are practice specific parameters that can also

affect the observed decision.

This decision model illustrates that there are at least five physician characteristics

that affect decision making, which can be summarized by ωDj =
{
sj , h

0
j , Bj , Dj , α

P
j

}
-

physician surgical skill, prior beliefs about patient condition, the strength of these

prior beliefs, diagnostic skill, and the parameter from the doctor’s utility function

describing how sensitive the physician is to patient preferences. Unobserved practice

characteristics are given by ωPj =
{
h̄Pj , σ

2
Pj

}
. Let ωj = {ωDj , ωPj} denote the full set

of physician and practice level characteristics.

If we substitute these expressions into equation 6 we can show that procedure T = C

is chosen by physician j for patient i if and only if:

T
(
hij , h

P
i |ωj

)
= π0h0j + πhhij + sj +mj + αPj h

P
i ≥ 0. (8)

We can now derive the probability that a patient will receive procedure C as a function

of her underlying condition hi. Procedure C is chosen iff:

hi +
π0h0j + sj +mj + αP h̄Pj

πh
≥ −

(
εij + αPj ε

P
j /π

h
)
, (9)

where εPj is defined as the variation from the mean of patient preferences -
(
hPj − h̄Pj

)
.

We can rewrite the second term of this equation as:

γj =
π0h0j + sj +mj + αPj h̄

P
j

πh
,

=
Bj
Dj

(
h0j + γ̄j

)
+ γ̄j , (10)
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where γ̄j = sj + mj + αPj h̄
P
j are physician specific characteristics that are not part of

physician expectations. Let us define:

ζij = −
(
εij + αPj ε

P
j /π

h
)
,

which is a normally distributed random variable with mean zero and variance:

σ2jζ =

σ2Dj +

(
αPj
πh

)2

σ2Pj

 .

Then the probability of a C-section conditional on a patient’s true medical condition

hi is given by:

Prob [Tij = C|hi, ωj ] = F
(
θ̂j (hi + γj)

)
, (11)

where θ̂j = 1
σjζ

. Notice that the slope term increases with the diagnostic skill of

the physician. In the special case where either there are no unobserved preferences

for C-section (or unobserved medical information) then σ2Pj = 0. In the special case

where physicians disregard patient preferences (or unobserved medical information)

then αPj =0. In either special case, the slope is completely determined by 1/Dj . How-

ever, even in the special case where αPj = 0, the intercept term γj , is affected by a mix

of physician beliefs, surgical skill, and prices. As discussed above Cutler et al. (2013)

and Finkelstein et al. (2014) suggest that procedure choice is not generally driven by

patient preferences, and hence in what follows we identify variations in the slope term

as primarily reflections of diagnostic skill.

3.3 Measuring Physician Behavior

We now have a model that connects observed patient conditions to physician decision

making. The final step is to link this behavior to observables. We cannot directly

observe patient condition hi. It is assumed to be uncorrelated with εij in equation 7

because the contribution of each physician to hIi is assumed to be small. If we substitute

this expression into equation 9 then we can derive the probability of observing a C-

section conditional on hIi .

Proposition 2. The probability that physician j chooses T=C when patient condition

is observed to be hIi is given by:

pj
(
hIi
)

= F
(
θj(h

I
i + γj)

)
, (12)
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where γj defines treatment style, , and the slope term,θj , defines the sensitivity of the

doctor to the patient’s condition and is given by:

θj =
1√

σ2I + σ2jζ

(13)

=

(
σ2I +

1

Dj
+

(
Bj
Dj

+ 1

)2 (
αPj σPj

)2)− 1
2

, (14)

where σ2jζ is the variance of the doctor’s information conditional upon patient health,

and σ2I is variance of the measure of patient health given the observed birth record.

This proposition summarizes the effects of physician characteristics on procedure

choice as a function of the information that we can observe. We can directly estimate

both treatment sensitivity, θj , and treatment style, γj , which together define physician

decision making.

Since we are measuring patient condition with error, the slope term we measure is

less steep than the slope with respect to true underlying condition (θj <
1
σjζ

= θ̂j).

Despite this issue, as long as our proxy for patient condition, hIi is correlated with true

patient condition (σ2I is finite), then variations in physician characteristics will lead to

variations in both the intercept, γj , and the slope, θj . We now detail these effects.

Determinants of the Intercept Term

As one can see from equation (12), any increase in γj , which we call treatment style

to be consistent with the earlier literature, leads to an increase in the incidence of

procedure C. Treatment style is affected by several attributes of physicians and their

practices, as summarized in a corollary to proposition 2:

Corollary 3. Treatment style and the incidence of procedure C is increasing in physi-

cian beliefs (dpj

(
hIj

)
/dh0j > 0), relative surgical skill for procedure C ((dpj

(
hIj

)
/dsj >

0) and the relative pecuniary returns for procedure C ((dpj

(
hIj

)
/dmj > 0). Finally,

treatment style may be affected by both patient preferences and physician sensitivity to

these preferences, the αPj h̄
P
j term.

All these parameters have the same basic effect upon treatment choice - they move

the intercept term in (12). The effect of each of the first three parameters in corollary

3 is the same.
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Determinants of the Slope Term

The following proposition summarizes the effects of physician characteristics on the

slope term.

Corollary 4. The slope term, θj, is increasing with physician diagnostic skill
(
∂θj
∂Dj

> 0
)

,

decreasing with physician sensitivity

(
∂θj
∂αpj

< 0

)
, the strength of physician prior beliefs(

∂θj
∂Bj

< 0
)

and with the variance of patient preferences

(
∂θj
∂σ2
pj
< 0

)
. It is unaffected

by physician skill, physician expectations, and treatment costs.

This result follows immediately from an inspection of the formula for the slope in

proposition 2. An increase in diagnostic skill means that the physician increases the

weight that she places on observed patient condition, which leads to an increase in

the slope. Firmer prior beliefs about the patient’s condition have the opposite effect.

Similarly, if the physician places more weight on patient preferences (or alternatively,

on medical information that we do not observe), then this decreases the weight on the

observed medical information. An increase in the variance of patient preferences can

also lead to a lower weight on the observable information regarding a patient’s medical

condition.5

Consider now the relationship between diagnostic skill and the slope term, θj . De-

fine the elasticity of diagnostic skill with respect to θj as:

eDj (Dj) =
Dj

θj

∂θj
∂Dj

> 0.

Using this definition and proposition 2 we have:

Corollary 5. An increase in diagnostic skill increases treatment C if and only if:

hIi ≥ ĥIj ≡
(
1− eDj (Dj)

) (
h0j + γ̄j

)
− γj .

This result shows that diagnostic skill has an ambiguous effect on procedure choice.

For patients at high risk for procedure C (hIi ≥ ĥIj ), an increase in diagnostic skill

increases the incidence of procedure C, while the reverse occurs for low risk patients

(hIi < ĥIj ). This result is in sharp contrast to the effect of surgical skill. If a physician

5This result has interesting implications for patient self-selection. Suppose that there are two
physicians, one who is known to have a high C-section rate, while the other has a low C-section rate.
If patients know the physician’s type and self select, then this will tend to reduce the variance σ2

Pj

relative to the population variance of patient preferences, and thus increase the measured slope.
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is better at performing a C-section then this increases the incidence of C-sections for

all patients.

The contrasting effects of diagnostic and surgical skill are illustrated in Figures 1

and 2. In each figure, patients are arrayed along the X-axis from those with the lowest

values of hIi to those with the highest values. The lower line in Figure 1 illustrates

the initial relationship between the observed patient condition and the probability

that the intensive procedure is performed. The upper line in Figure 1 shows how this

relationship would be expected to change with increases in surgical skill. The main

takeaway is that one would expect an increase in the use of intensive procedures for

both high and low risk patients.

Figure 2 illustrates the effect of improving diagnostic skill. From corollary 3 we

have that patients with observed condition greater than ĥIj = −γj+
(

1− eDj (Dj)
)

have

higher C-section rates when diagnostic skill increases, and lower rates when hIi is less

than the threshold ĥIj . This is illustrated in figure 2 by the move from the green/dark

line to the red/light line. Thus as diagnosis improves, the use of the intensive procedure

falls among those with low hIi and increases among those with high hIi .

3.4 The Effect of Diagnostic and Surgical Skill on Outcomes

Let IC (hi, ωj) = 1 if and only if physician j chooses procedure C for patient i with

condition hi, and equal zero otherwise. Given this indicator for procedure choice, the

expected medical outcome of a patient with condition hi being treated by physician j

is given by:

W (hi, ωj) = E
{
sCj I

C (hi, ωj) +
(
hi + sNj

)
(1− IC (hi, ωj))

}
,

= sCj Prob [T = C|hi, ωj ] +
(
hi + sNj

)
Prob [T = N |hi, ωj ] . (15)

However, since physicians take into account both costs, mj , and patient preferences,

hPi , their decisions do not maximize observed medical benefit, which complicates the

computation of the effect of exogenous parameters on measured medical outcomes.

In this section we derive the effect of physician characteristics on observed medical

outcome by measured risk hIi . Formally we wish to compute:

W
(
hIi , ωj

)
= E

{
W (hi, ωj) |hIi , ωj

}
.

Since we have assumed that information about health is normally distributed, we can

use results about the expectation of normally distributed random variables conditional
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on a truncated distribution to obtain a closed form solution for patient welfare.6

Proposition 6. The expected medical benefit from treatment satisfies:

W
(
hIi , ωj

)
= sCj pj

(
hIi
)

+
(
sNj − hIi

) (
1− pj

(
hIi
))

+ σ2I
∂pj

(
hIi
)

∂hIi
.

This is an exact formula that essentially replaces hi with hIi plus an adjustment

term σ2I
∂pj(hIi )
∂hIi

to control for the fact that we do not observe hi but only an indicator,

hIi . If we assume that the effect of physician characteristics on the final term in welfare,

σ2I
∂pj(hIi )
∂hIi

, is small, then we can derive an intuitive expression for the effects of physician

characteristics on outcomes.

Consider first the effect of surgical skill:

∂W

∂sCj
= pj

(
hIj
)

+
(
sj + hIi

) ∂pj
∂sCj

.

This formula shows that the effect of skill on patient welfare can be broken into two

parts. The first term is always positive, indicating that for a woman who is having the

intensive procedure, more skill is always better. However, the second term is ambiguous

in sign. We know that
∂pj
∂sCj
≥ 0, so that other things being equal, greater doctor skill

increases the probability that an intensive procedure will be performed. If sj +hIj ≥ 0,

then the second term is positive and greater doctor skill enhances patient welfare.

However, for a low enough value of hIj , it is possible that sj + hIj ≤ 0 (health status

is in log terms, and hence is negative for low values). If
∂pj
∂sCj

is large enough, then

increases in doctor skill could make patients who don’t need a C-section worse off by

increasing the probability that they will receive an unnecessary procedure.

Next consider the effect of physician sensitivity to patient condition, θj . The vari-

able is a combination of various aspects of physician characteristics, but we cannot

separately observe these aspects. We do observe θj and γj for each physician in our

data, and hence can ask how outcomes would vary if we were to hold γj fixed but allow

θj to vary. Since θj has a first order effect on our last term, we include it, and leave

out the f ′′ term. In that case we get:

sign
∂W

∂θj
= sign

{(
sj + hIj

) (
hIj + γj

)
+ σ2I

}
.

This result illustrates the fact that the preferences of the physician take into account

6See Birnbaum (1950).
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their prior beliefs, costs, and patient preferences. Hence in general γj 6= sj . Whenever

hIj ∈ [min {sj , γj} ,max {sj , γj}] then it is possible to have sign∂W∂θj < 0, but in all

other cases we have a positive effect.

Proposition 7. Suppose hIj /∈ [min {sj , γj} ,max {sj , γj}] then increasing diagnostic

skill improves medical outcomes.

Our model suggests that average C-section rates are misleading. In particular, one

can observe physicians with the same risk adjusted C-section rates but quite different

outcomes: Increasing the C-section rate for the high risk and reducing it for the low

risk will lead to better outcomes, even if the overall C-section rate remains constant at

the population average.

4 Data and Methods

For our purposes of identifying the role of diagnostic skill and relating it to outcomes,

C-section, which is the most common surgical procedure in the U.S., is ideal. The

technology has been stable for a long time and there are detailed records on millions of

births, meaning that it should be possible to use the available data to rank pregnant

women in terms of their a priori risk of C-section with a fair degree of accuracy and

consistency over time. Moreover, we can investigate a variety of health outcomes,

including both poor outcomes for the mother and poor outcomes for the child, and

thus directly relate diagnostic skill to outcomes.

The data for this project come from approximately a million Electronic Birth Cer-

tificates, (EBC) spanning 1997 to 2006, from the state of New Jersey. These records

have several important features. First, in addition to information about the method of

delivery, they include detailed information about the medical condition of the mother

which enables us to estimate the probability of C-section for each mother. In particular,

we know the mother’s age, whether it is a multiple birth, whether the mother had a

previous C-section, whether the baby is breech, whether there is a medical emergency

such as placenta previa or eclampsia which calls for C-section delivery, and whether

the mother had a variety of other risk factors for the pregnancy such as hypertension

or diabetes.

Second, the birth records include detailed information about health outcomes for

both the mother and the child including complications that occur during the delivery

(maternal bleeding, fever, or seizures); maternal complications that occur after the

delivery; fetal distress (measured by the presence of meconium); birth injuries (fracture,
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dislocated shoulder and other injuries); and neonatal death (death in the first 30 days

of life). We also combine all of these measures into an indicator equal to one if there

was “any bad outcome.”

Third, the data has information about the latitude and longitude of each woman’s

residence, as well as codes for doctors and hospitals.7 In our analysis, we focus on

doctors and exclude midwives since only doctors can perform C-sections. Finally,

the data includes demographic information about the mother such as race, education,

marital status, and whether the birth was covered by Medicaid which have been shown

to be related both to the probability of C-section and to birth outcomes. The inclusion

of these variables may help us to control for variations in demand for C-sections by

different demographic groups.

We use these data to construct analogs of the key concepts in our model. We define

F (hIi ), the mother’s risk of C-section, by estimating a logit model of the probability of

C-section given all of the purely medical risks recorded in the birth data, as in equation

(1). Since we are trying to define medical risk, we do not include variables such as the

type of insurance and race in these logit models. The model we use is shown in column

1 of Table 1. Table 1 shows that the model predicts well, with a pseudo R-squared of

almost .32.

As discussed above this model reflects actual practice, but not necessarily best

practice. In principal, one might wish to estimate the model of medical risk using only

the best doctors, or perhaps only the beginning of the time period when C-section rates

were much lower. We have experimented with several alternative models and found that

the correlation between the ranking of C-section risk produced by our model, and the

ranking produced by the alternatives is above .95. These alternatives included a model

with fewer risk factors, a model that used births from 1997-1999 only, and a model

that used only doctors who were below the 25th percentile in terms of the fraction of

births with negative outcomes in their practices. Estimates of the latter “good doctor”

model are also shown in Table 1. One can see that the estimated coefficients for these

“good doctors” are similar to those for all doctors suggesting that there is not a lot of

controversy about the ranking of which women are the best candidates for C-section.

Rather, the controversy about C-section can be interpreted as a matter of where the

cutoff for C-section should occur.

Corollary 4 showed that the slope term in the model, θj , is affected by diagnostic

7These codes do not identify the physician, but allow us to identify all births delivered by the same
physician.We found, as a practical matter, that very few doctors practiced in more than one hospital
in a single year; hence the choice of doctor also defines the choice of hospital.

19



skill (Dj). The empirical analog can be obtained for each doctor by using the estimated

β’s from (1) to create the index of maternal condition hIi (this is simply βXi) and then

estimating a regression model for each doctor’s propensity to perform C-sections as a

function of hIi . The estimated coefficient on hIi , denoted by DiagSkillj , is an indicator

of how sensitive the doctor is to this index of observable indicators of patient risk and

varies with diagnostic skill as we discussed above. The distribution of slope coefficients

has a mean of 1.033 and a standard deviation of .183. The first percentile is .576 while

the 99th percetile is 1.491, suggesting that doctors range from being quite insensitive

to quite sensitive to maternal conditions. We normalize this measure by calculating a

Z-score, for ease of interpretation.

Figure 3 plots actual C-section rates against the propensity score that we calculate.

It shows that those who did not have a C-section generally had values of F (hIi ) less than

.5, while those with C-sections generally had values of F (hIi ) greater than .5. However,

there are individuals with no apparent risk factors who nevertheless have C-sections,

and perhaps more disturbingly, there are women with many risk factors for C-section

who do not receive the procedure. For a given level of medical risk, the probability of

C-section increased over our sample period at all but the highest risk levels as shown

in Appendix Figure 1. In fact, at the start of our sample period, New Jersey, with a

rate of 24%, had a lower C-section rate than several other states, including Arkansas,

Louisiana, and Mississippi, while by the end of our sample period, New Jersey had

pulled ahead to have the highest C-section rate of any state, at almost 40%. Appendix

Figure 2 shows that this increase was not due to a change in the underlying distribution

of medical risks. The figure shows only a slight increase in the number of high risk

cases, which is attributable to an increase in the number of older mothers, mothers

with multiple births, and increasing numbers of women with previous C-sections (itself

driven by the increasing C-section rate).

Figure 3 also shows that those who had values of F (hIi ) less than .06 (a group whom

we designate the very low risk) were very unlikely to have C-sections, while those with

F (hIi ) greater than .8 (a group whom we designate as the very high risk) were highly

likely to have C-sections. Of the women deemed very high risk, 89% received a C-

section, while among the women deemed very low risk only 6% received a C-section.

We measure procedural skill by calculating the rate of any bad outcomes among very

low risk births, and the rate of bad outcomes among high risk births for each doctor,

and then taking the difference between them. Taking the difference in the incidence

of bad outcomes between these two groups is suggested by the model, in which it is

the difference in skill in procedure C and in procedure N that affects the physician’s
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choice. The rate of bad outcomes in each group proxies for surgical skill because, as

noted above, the vast majority of high risk women get C-sections and most very low

risk women do not. At the same time, because the very high risk and very low risk

groups are defined only in terms of underlying medical risk factors, the measure is not

contaminated by the endogeneity of the actual choice of C-section within these risk

categories. This measure also exhibits considerable variation between doctors with a

mean of -.0493 (since bad outcomes are more frequent in high risk cases than in low

risk cases) and a standard deviation of .0646. The first percentile of this variable is

-.25, while the 99th percentile is .079. Again, we normalize this measure by calculating

a Z-score for ease of interpretation.

Although relative prices for C-sections and normal deliveries have been shown to

be an important determinant of C-section rates, they are not the main focus of our

analysis and are not well measured in our data. We use data from the Health Care

Utilization Project (HCUP), which includes hospital list charges for every discharge.

For each market and year, we take the mean price of all C-section deliveries that did

not involve any other procedures, less the mean price of normal deliveries without other

procedures. The mean differential was $4,711 real 2006 dollars.8

Having constructed these measures, we estimate models of the following form:

Outcomeijt = f(DiagSkillj , s
C
j − sNj ,∆Pjt, Zit,month, year, zip), (16)

where Outcomeijt ∈ {0, 1}, where 0 is a Natural delivery (or good birth outcome)

and 1 is a C-Section (or bad birth outcome), i indexes the patient, j indexes the doc-

tor, and t indexes the year. The vector Zit includes maternal age (missing, less than

20, 25-34, 35 and over), education (missing, less than 12, 12, 13-15), marital status,

race/ethnicity (African-American, Hispanic), and whether the birth was covered by

Medicaid, as well as the child’s gender and indicators for birth order. We include

month and year effects in order to control for seasonal differences in outcomes and for

longer term trends affecting all births in the state (e.g. due to other improvements in

medical care), zip code fixed effects (3 digit) in order to control for characteristics of

the location that may be associated with both medical care and outcomes, and also

include indicators for missing marital status, smoking, birth order, and whether the

birth occurred on a weekday. The standard errors are clustered at the level of the zip

8It is important to note that physician charges are generally separate from hospital charges and
are not included in HCUP. Also, while Medicaid generally reimburses less than private insurance for
deliveries, we do not find a significant effect of Medicaid coverage on C-section delivery, as shown in
Appendix Table 1.
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code in order to allow for unobserved correlations across a physician’s cases.

Sample means are shown in Table 2. The estimation sample is slightly smaller than

in Table 1 because while we used all births to calculate the probability of C-section,

in the rest of the paper we exclude births that were not attended by a doctor, as well

as those for whom we cannot calculate our measure of diagnostic skill (because there

are too few births per provider).9 These exclusions leave us with approximately 1,000

providers, who together deliver the vast majority of the babies in New Jersey over the

sample period. We show sample means for all women, and for those with F (hIi ) ≤ 0.2

(low C-section risk) and those with F (hIi ) > 0.2 (high C-section risk). This cutoff

is chosen because Figure 3 suggests a gap in C-section propensities at that value,

and because it divides the sample approximately in half. The first panel shows how

the outcome variables vary with risk. As expected, higher risk women have more C-

sections and a higher risk of a bad outcome. Examining the type of bad outcome more

narrowly suggests that women at high risk of C-section are more likely to experience

complications of labor and delivery as well as late maternal complications, and that

their infants are at a higher risk of neonatal death.

The second panel explores the characteristics of doctors and provides some initial

evidence with regard to an important question: The extent to which higher risk patients

see doctors with particular characteristics. Table 2 suggests that the doctors who treat

low risk patients do vary systematically from those that treat higher risk patients.

As discussed above, our measures of diagnostic skill and procedural skill have been

transformed into Z-scores, so in the full sample, they have a mean of zero and a standard

deviation of 1. Table 2 shows that on average, high risk patients see doctors with

slightly better diagnostic skills (.03 standard deviations), and slightly better surgical

skills (.014 standard deviations). Conversely, low risk patients see doctors with slightly

lower diagnostic skill (-.032 standard deviations) and procedural skill (-.016 standard

deviations). Thus, while there is some evidence of sorting, the extent of sorting appears

to be quite small. There is also some evidence that high risk patients see doctors with

slightly fewer deliveries and higher shares of high risk patients in their practices. Again,

however, these differences are quite small.

The third panel of the table provides an overview of selected maternal and child

characteristics including race and ethnicity, maternal education, marital status, and

whether the birth is covered by Medicaid. The table suggests that women at higher

risk of C-section tend to be older, married, and more likely to have private insurance

9We also exclude a very small number of doctors who did not have at least one high risk patient
and at least one low risk patient.
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rather than Medicaid. They are also more likely to be delivering a first child, and are

less likely to be African-American or Hispanic.

One empirical difficulty involved in estimating (16) is the possibility that women

choose their doctors on the basis of their skill. If women with high risk pregnancies

choose better doctors, then the estimated effect of doctor skill on birth outcomes will

be biased towards zero. Table 2 suggests that there is some evidence of this type of

selection, although it appears to be quite small. A second empirical problem is that

we are using estimated values of diagnostic and surgical skill, which are inevitably

measured with some errors.

One way to address these issues is to estimate models using market-level measures of

skill as instruments for individual doctor’s skill levels. Following Kessler and McClellan

(1996) our definition of a hospital market is defined with reference to all of the providers

actually selected by women in a particular zip code in a particular year. Specifically,

we include all hospitals within ten miles of the woman’s residence, plus any hospital

used by more than three women from her zip code of residence in the birth year, and we

consider all of the providers who practiced in those hospitals in that year as part of the

relevant market. Figure 4 shows the distribution of hospitals and illustrates this way of

defining markets. The figure shows that most women choose nearby hospitals, but that

some women bypass nearby hospitals in favor of hospitals further away. In some cases,

these are regional perinatal centers which are better equipped to deal with high risk

cases. For example, women from Princeton New Jersey could give birth in the hospital

in town, but many travel as far away as Morristown (two counties to the north) to

deliver in other hospitals.10 Thus, there is a distinct market, or set of provider choices,

facing each woman at the time of each birth.

Given this definition of a market, we construct instruments by taking the weighted

mean of the diagnostic skill and surgical skill measures for all physicians in the market

in the birth year, where the weights are given by the number of deliveries by each

physician.11 We interpret this instrument as a summary measure of the choices available

to a woman in a particular market. Variation in the set of providers facing each woman

at a point in time comes mainly from entry and exit of providers into the various

markets. By definition, these choices are affected by where women live, but recall that

10The figure also illustrates that the common practice of drawing a circle around a location in order
to define a market is likely to be seriously misleading: A circle wide enough to include all the hospitals
actually chosen would include hospitals that were never chosen, and a circle wide enough to include
most hospitals could miss specialty hospitals that were further away and yet within the choice set.

11In the crowded northern New Jersey hospital market, we included only hospitals within five miles
of the zip code centroid.
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we control for zip code fixed effects in all our models. These zip code fixed effects are

intended to absorb mean differences in the available health services. Hence, as long as

women are not moving in order to take advantage of year to year fluctuations in the

skill set of local physicians, our instruments will be valid. Table 3, which shows the

first stage regressions, shows that these instruments are highly predictive.12

A third issue is that by construction, good diagnosticians should be less likely to

perform C-sections on low risk women and more likely to perform C-sections on high risk

women. Similarly, physicians with good procedural skills should have better outcomes

for the high risk relative to the low risk. However, it is important to note that there is

no mechanical reason for our measure of diagnostic skill to affect health outcomes, and

similarly no mechanical reason for our measure of procedural skill to affect C-section

rates. Thus, estimates of these two relationships form the true test of our model.

5 Results

Table 4 shows both Ordinary Least Squares (OLS) and Two-Stage Least Squares

(TSLS) estimates of equation (16), where the dependent variable is whether there was

a C-section. These models include all of the control variables discussed above. The full

OLS models for the probability of C-section are shown in Appendix Table 1. Condi-

tional on C-section risk, African-American and Hispanic women are more likely to have

C-sections, as are less educated women, single women, older mothers, and mothers of

first born children. These estimates suggest that the stereotype that it is primarily

older, better educated white women who are “too posh to push” may be incorrect.

The estimated effect of market prices is positive, but not precisely estimated.

As discussed above, the OLS coefficients on the measures of physician skill may be

biased by selection and by measurement error. For example, a woman who desires a

C-section regardless of her medical condition will be likely to seek a physician who does

not insist on using her medical condition to determine treatment. In our taxonomy,

this will be a physician with a low slope term, which we are identifying with poor

diagnostic skills. In this case, OLS estimates of the coefficients on diagnostic skill will

12The IV estimate assumes that the instrument affects outcomes only through the quality of the
doctor. Yet it is conceivable that the quality of the hospital in terms of nursing staff, for example, also
matters. In this case, the IV estimate is going to pick up the “true” effect of the physician skill level,
plus the nearby-hospital-specific effects. If better doctors practice in higher-quality hospitals, then the
TSLS estimates could be biased upwards. In this case, the true estimate would be bounded by the
OLS and IV. However, in practice we found that there was as much variation in doctor quality within
hospitals as between hospitals leading us to believe that doctors are not strongly sorted into particular
hospitals.
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be biased towards zero. It is less clear how the coefficient on surgical skill will be

affected. Other things being equal, a woman bent on surgery might prefer a better

surgeon. However, diagnostic skill and surgical skill tend to be positively correlated in

our data (the correlation in the raw measures is .259), so in choosing someone willing

to disregard her medical condition, she may also be choosing a relatively poor surgeon,

in which case the coefficient on surgical skill will also be biased downwards.

Table 4 suggests that the coefficients on both skill measures are biased towards

zero in the OLS, although we do not have the precision to reject the null hypothesis

that the OLS and TSLS estimates or the effects of diagnostic skill are the same. The

TSLS estimates indicate that a one standard deviation increase in diagnostic skill would

reduce the risk of C-section by 1.6 percentage points among women in the lower half

of the risk distribution (a 15.5% reduction in the probability of C-section for these

women), but would increase the probability of C-section by 1.9 percentage points (a

3.5% increase in the probability of C-section) in the upper half of the distribution.

Overall, our measure of diagnostic skill has little effect, but this overall result masks

the type of heterogeneity in the effects of diagnostic skill on low and high risk women

that is predicted by our model.

An increase in surgical skill is estimated to increase the risk of C-section for every-

one, as predicted by the model. For women in the lower half of the risk distribution,

the TSLS estimate is 1.7 percentage points, indicating that a one standard deviation

increase in surgical skill would increase the risk of C-section by 16.5%. Among women

in the top half of the risk distribution, the increase is 3 percentage points, or 5.5%.

In the case of surgical skill, the TSLS estimates are considerably larger than the OLS

estimates. Table 2 does not suggest a huge amount of selection in terms of surgical skill.

However, given that each surgeon has a relatively small number of very high risk and

very low risk cases, and that bad outcomes are thankfully relatively rare, our measure

of surgical skill is likely to be quite noisy. Hence, measurement error may account for

the increase in the absolute value of the estimated coefficients when we move to TSLS.

The second panel of Table 4 shows the estimated effect of the two types of skill on

the probability of any bad outcome. Once again, the OLS coefficients are smaller than

the TSLS coefficients, and this is especially pronounced for the measures of surgical

skill. The TSLS estimates suggest that a one standard deviation increase in diagnostic

skill is associated with a 1.3 percentage point decrease in the probability of any bad

outcome among both low and high risk women. This translates into a 15.3% decline

among the low risk, and a 9.1% decline among the high risk. Similarly, a one standard

deviation increase in surgical skill reduces the probability of any bad outcome by 42.3%
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among the low risk, and by 50.3% among the high risk.

Tables 5 and 6 delve more deeply into the types of bad outcomes experienced

by mothers and children, respectively. Table 5 shows the effects of skill on any bad

maternal outcome, and then divides these outcomes temporally into bleeding, fever,

and seizures that take place during the labor and delivery, and complications that take

place after the delivery (e.g. infection or bleeding following surgery). Once again, we

focus on the TSLS results which tend to be larger than the OLS estimates, especially for

the surgical skill measures. Better diagnostic skill is estimated to reduce the incidence

of bad maternal outcomes, especially for the low risk. Among the low risk, diagnostic

skill significantly reduces the incidence of bleeding, fever, or seizures during delivery,

perhaps by discouraging unnecessary surgery. Among the high risk, there is no overall

effect since better diagnosis reduces the incidence of bad outcomes during delivery, but

increases late maternal complications. A possible interpretation is that these women

are more likely to need C-section deliveries so that providing C-section reduces the

incidence of poor outcomes during delivery. However, major abdominal surgery is not

without risk, and increases the probability of complications after the delivery. Better

surgical skills also reduce the incidence of maternal bad outcomes, but have a greater

percentage point impact among the high risk than among the low risk, which is to be

expected given that the later are more likely to have surgery.

Table 6 breaks down the infant health outcomes. The first panel suggests that

increases in diagnostic skill reduce poor child health outcomes, though the TSLS es-

timates are not very precise. The second panel indicates that there is a significant

negative effect of diagnostic skill on the probability of fetal distress. This is slightly

offset by a positive, though not statistically significant effect on the probability of birth

injury. A possible interpretation is that infants are more likely to sustain an injury such

as a dislocated shoulder if a vaginal delivery is attempted. The last panel indicates that

diagnostic skill has a significant negative effect on the probability of neonatal death,

but only among the high risk. This result suggests that C-section can be life-saving for

infants of mothers who really require a C-section, but that unnecessary surgery does

not pose a threat to the life of the infant among the low risk.

5.1 Robustness

Since the breakdown into high and low risk categories is arbitrary, one obvious way to

explore the robustness of our results is by dividing mothers differently. Moreover, since,

as we showed above, there is considerable concensus about the ranking of patients by
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appropriateness for C-section, we can assume that there is concensus about the high

and the low risk, but perhaps controversy about the people in the middle. Table 7

shows estimates based on three risk categories, where now low risk is defined as the

lowest quartile of F (hIi ) , high risk is defined as the highest quartile, and medium risk is

defined as the two quartiles in the middle. The first row of Table 7 suggests that better

diagnostic skill significantly reduces C-sections among the lowest risk, but has a large

positive effect on the highest risk group. Better procedural skill increases C-section

rates across the board.

The next panel of Table 7 indicates that the impact on “any bad outcome” is great-

est for the medium and high risk groups, while procedural skill improves outcomes for

all groups. Comparing the third panel of Table 7 to Table 5 indicates that better diag-

nostic skill has the greatest impact on preventing poor maternal outcomes among the

lowest risk mothers. This is consistent with the idea that negative maternal outcomes

are most likely to be caused by unnecessary surgery, since better diagnostic skill reduces

unnecessary surgery among the low risk. Comparing the last panel of Table 7 to Table

6 shows that it is infants born to the highest risk mothers who benefit the most from

better diagnosis in terms of preventing bad infant health outcomes. Like Table 6, this

result suggests that the gravest risk to infant health occurs when women who really

need a C-section do not receive one. Thus, if we only consider infant health outcomes,

the trend towards higher use of C-section is not necessarily cause for alarm. It is only

when we also consider maternal health that the high cost of excessive C-sections among

the low risk becomes apparent.

6 Discussion and Conclusions

Physicians who deliver children in the United States are marvelously skilled. Their

high quality surgical skills often save lives. Nevertheless, surgery is not risk free, and

families must also rely on doctor’s diagnostic skills. Previous work on procedure use has

focused upon hospital- level rates.. Our information-based approach suggests putting

the emphasis on the decision making skills of the physician. The fact that the risk

adjusted C-section rates are high in a particular hospital does not imply that measures

should be taken to reduce rates across the board. In some cases, C-section rates may

be too low.

Suppose for example, that a C-section rate of 1/6 is desired. One way to obtain a

perfect rate would be to simply roll a die and give each woman with a six a C-section.

And yet we do not think that this would maximize health outcomes. Physicians in
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the data with flat “slopes” have both too low a C-section rate for high risk cases, and

too high a C-section rate for low risk patients. Effective policies to address procedure

use should consider the possibility of variation in diagnostic skill and focus on assisting

physicians in making the right decisions on an individual basis. Moreover, the right

decision depends on the mother-physician pair, since physicians who are more skilled at

performing surgery should have higher C-section rates, other things being equal. The

tools we suggest in this paper are easy to use, and can no doubt be refined. However,

they demonstrate that it is possible to identify individual physicians who could benefit

from decision making assistance.

Economists often suggest the use of incentive systems to improve performance. In

the case of high C-section rates this would mean reducing the pecuniary incentive to do

the procedure, either by decreasing the price of a C-section, or increasing the price of a

natural delivery. Our results do not support such a policy because optimal procedure

use is a complex function of both physician and patient characteristics.

The previous literature on treatment choice emphasizes that it is affected by physi-

cian skill, but only allows physician skill to vary along a single dimension which can

be thought of as technical skill in executing procedures, or surgical skill. Taking a cue

from the literature on expert decision making we develop a model that includes an

additional dimension of skill: Diagnostic decision making. In our model, a good doctor

is one who is not only technically skilled, but who is also able to draw the correct in-

ferences from the available data in order to match patients correctly to the procedures

that are most likely to benefit them.

This simple framework yields rich predictions and allows us to distinguish between

two factors which we identify with the two types of skill. The model shows that

better procedural skill leads to higher use of intensive procedures across the board, for

both high and low risk patients. In contrast, better diagnostic skill results in fewer

procedures for the low risk, but more procedures for the high risk. That is, better

diagnostic skill improves the matching between patients and procedures and thus leads

to better health outcomes in both groups.

We provide an application of our model using data on C-sections, the most common

surgical procedure performed in the U.S.. We show that improving diagnostic skill by

one standard deviation would reduce C-section rates by 15.5% in the lower half of the

distribution of C-section risk, but would actually increase C-sections by 5.5% in the

top half of the distribution. This finding suggests that not only are there two many

C-sections among women without risk factors, but there are too few C-sections in the

group who really needs them.
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Our work highlights the importance of diagnostic decision making in medicine and

suggests an empirical approach to measuring it: Given a prediction of a patient’s med-

ical appropriateness for a procedure, a doctor’s diagnostic skill can be evaluated by

looking at whether they are responsive to this information. We show that doctors

who are not responsive to the publicly observed patient medical information typically

achieve worse health outcomes. This finding suggests then, that the medical informa-

tion contained in sources such as electronic patient records could be used to improve

medical decision making. We are not suggesting that doctors be replaced by machines,

but that a doctor’s individual expertise, which perforce depends on his or her indi-

vidual experience, could be enhanced by applying simple algorithms to the “big data”

contained in millions of administrative medical records.
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7 Figures
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Figure 1: Effect of Intercept upon Procedure Use
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Figure 2: The Effect of Diagnostic Skill on Procedure Choice
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Figure 3: Predicting C-sections Using the Logit Model
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Figure 4: Illustrating the Definition of a Market
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8 Tables

Table 1: Logistic Regression Model of C‐section Risk (rho) 

              All Doctors                   Good Doctors Only     

Marginal Marginal

Coeff. S.E. Effect Coeff. S.E. Effect

Age<20 ‐0.337 0.013 ‐0.075 ‐0.428 0.029 ‐0.095

Age >=25&<30 0.262 0.008 0.058 0.311 0.018 0.069

Age >=30&<35 0.434 0.008 0.096 0.483 0.017 0.107

Age >=35 0.739 0.009 0.164 0.840 0.018 0.186

2nd Birth ‐1.347 0.007 ‐0.298 ‐1.448 0.015 ‐0.321

3rd Birth ‐1.645 0.009 ‐0.364 ‐1.787 0.019 ‐0.396

4th or Higher Birth ‐2.140 0.012 ‐0.474 ‐2.317 0.027 ‐0.513

Previous C‐section 3.660 0.008 0.810 3.885 0.018 0.860

Previous Large Infant 0.139 0.029 0.031 0.293 0.065 0.065

Previous Preterm  ‐0.293 0.025 ‐0.065 ‐0.311 0.061 ‐0.069

Multiple Birth 2.879 0.014 0.638 3.278 0.032 0.726

Breech 3.353 0.016 0.742 3.810 0.040 0.844

Placenta Previa 3.811 0.054 0.844 3.843 0.116 0.851

Abruptio Placenta 2.048 0.030 0.454 2.196 0.072 0.486

Cord Prolapse 1.761 0.047 0.390 1.668 0.100 0.369

Uterine Bleeding 0.026 0.035 0.006 0.259 0.099 0.057

Eclampsia 1.486 0.096 0.329 1.047 0.230 0.232

Chronic Hypertension 0.745 0.025 0.165 0.754 0.060 0.167

Pregnancy Hypertension 0.639 0.013 0.142 0.696 0.029 0.154

Chronic Lung Condition 0.064 0.014 0.014 0.110 0.032 0.024

Cardiac Condition ‐0.121 0.020 ‐0.027 ‐0.175 0.042 ‐0.039

Diabetes 0.558 0.011 0.124 0.547 0.025 0.121

Anemia 0.131 0.018 0.029 0.203 0.043 0.045

Hemoglobinopathy 0.116 0.047 0.026 0.067 0.092 0.015

Herpes 0.461 0.024 0.102 0.558 0.049 0.124

Other STD 0.052 0.017 0.012 0.064 0.039 0.014

Hydramnios 0.616 0.018 0.136 0.645 0.042 0.143

Incompetent Cervix 0.043 0.035 0.010 ‐0.119 0.093 ‐0.026

Renal Disease ‐0.024 0.031 ‐0.005 ‐0.057 0.067 ‐0.013

Rh Sensitivity ‐0.045 0.040 ‐0.010 ‐0.082 0.109 ‐0.018

Other Risk Factor 0.276 0.006 0.061 0.210 0.013 0.047

Constant ‐1.414 0.007 ‐0.313 ‐1.374 0.015 ‐0.304

# Observations 1169654 262174

Pseudo R2 0.32 0.322

Notes: The model also included indicators for missing age, parity, and risk factors.

The correlation between rho estimated using the two different models is .99.
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Table 2: Means for Full Sample and by Probability of C‐Section

Low Risk of High Risk of

                    C‐section Risk: Full Sample C‐Section C‐section

Outcomes

C‐Section Rate 0.331 0.103 0.545

Any Bad Outcome 0.127 0.111 0.143

Bad Maternal Outcome 0.055 0.037 0.073

   Bleeding, Fever, Seizures at Delivery 0.039 0.024 0.053

   Late Maternal Complications 0.019 0.014 0.024

Bad Child Outcome 0.080 0.080 0.081

   Fetal Distress 0.071 0.073 0.069

   Birth Injury 0.003 0.003 0.003

   Neonatal death 0.004 0.003 0.006

Doctor Characteristics

# Deliveries per doctor 1019.45 1030.34 1009.22

(650.15) (674.73) (626.00)

Diagnostic Skill  0.000 ‐0.032 0.030

(1.000) (1.013) (0.987)

Procedural Skill Differential 0.000 ‐0.016 0.014

(1.000) (1.034) (0.966)

Market Price Differential ($1000) 4.711 4.687 4.734

(1.606) (1.590) (1.621)

Share High Risk 0.122 0.116 0.127

Mother & Child Characteristics

African American 0.158 0.185 0.132

Hispanic 0.210 0.388 0.179

Married 0.713 0.645 0.776

High School Dropout 0.128 0.177 0.082

Teen mom 0.030 0.052 0.009

Mom Age 35 or More 0.238 0.221 0.254

Smoked 0.081 0.090 0.073

Child Male 0.513 0.514 0.513

Child First Born 0.398 0.200 0.584

Medicaid 0.206 0.260 0.155

# of Observations 968748 469170 499578

Notes: The analysis sample excludes birth attendants who were not physicians, and 

birth attendants who had too few deliveries for a measure of diagnositic skill to be 

computed.  Standard deviations in parentheses.
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Table 3: First Stage Regressions of Doctor Skill Measures on Market Skill Measures

Doctor Diagnostic Skill Doctor Surgical Skill

All Low High All Low High

Market Diagnosis 0.353 0.356 0.347 ‐0.026 ‐0.024 ‐0.028

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Market Surgical ‐0.014 ‐0.009 ‐0.019 0.284 0.29 0.276

(0.001) (0.002) (0.002) (0.002) (0.003) (0.003)

R‐squared 0.165 0.179 0.152 0.098 0.105 0.09

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include

market price, estimated C‐section risk, indicators for African‐American, Hispanic,

race missing, education (less than high school, high school, some college, missing),

married, married missing, Medicaid, Medicaid missing, teen mom, 25‐34, 35 plus, smoking,

smoking missing, male child, parity 2, parity 3, parity 4 plus, parity missing, month and 

year of birth indicators, indicators for 3‐digit zip code, and an indicator for whether 

the birth was on a week day.  R‐squared shown for OLS and Chi‐squared shown for TSLS.
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Table 4: Effect of Doctor Diagnostic and Surgical Skill on P(C‐section) and Health Outcomes

OLS OLS OLS TSLS TSLS TSLS

                    C‐section Risk: All Low High All Low High

Dep. Var: C‐Section

Diagnostic Skill 0.004 ‐0.011 0.019 0.000 ‐0.016 0.019

(0.002) (0.002) (0.002) (0.006) (0.005) (0.008)

Procedural Skill Difference 0.003 0.003 0.003 0.020 0.017 0.03

(0.002) (0.001) (0.002) (0.010) (0.008) (0.011)

R‐sq/Chi‐sq. 0.41 0.044 0.319 230000 12674 88123

Dep. Var: Any Bad Outcome

Diagnostic Skill ‐0.008 ‐0.007 ‐0.009 ‐0.013 ‐0.013 ‐0.013

(0.002) (0.001) (0.002) (0.006) (0.007) (0.006)

Procedural Skill Difference ‐0.017 ‐0.008 ‐0.027 ‐0.058 ‐0.047 ‐0.072

(0.002) (0.002) (0.002) (0.006) (0.007) (0.006)

R‐sq/Chi‐sq. 0.02 0.016 0.023 6600 13213 1721

# Observations 968748 469170 499578 968748 469170 499578

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include

market price, estimated C‐section risk, indicators for African‐American, Hispanic,

race missing, education (less than high school, high school, some college, missing),

married, married missing, Medicaid, Medicaid missing, teen mom, 25‐34, 35 plus, smoking,

smoking missing, male child, parity 2, parity 3, parity 4 plus, parity missing, month and 

year of birth indicators, indicators for 3‐digit zip code, and an indicator for whether 

the birth was on a week day.  R‐squared shown for OLS and Chi‐squared shown for TSLS.
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Table 5: Effect of Doctor Diagnostic and Surgical Skill on Maternal Health Outcomes

OLS OLS OLS TSLS TSLS TSLS

                    C‐section Risk: All Low High All Low High

Dep. Var: Any Bad Maternal Outcome

Diagnostic Skill ‐0.005 ‐0.004 ‐0.005 ‐0.004 ‐0.005 ‐0.003

(0.001) (0.001) (0.001) (0.003) (0.002) (0.003)

Procedural Skill Difference ‐0.013 ‐0.005 ‐0.022 ‐0.035 ‐0.023 ‐0.049

(0.002) (0.001) (0.002) (0.007) (0.007) (0.008)

R‐sq/Chi‐sq. 0.018 0.013 0.016 4267 10269 1988

Dep. Var: Bleeding, Fever, Seizures During Delivery

Diagnostic Skill ‐0.006 ‐0.004 ‐0.008 ‐0.012 ‐0.008 ‐0.016

(0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

Procedural Skill Difference ‐0.007 ‐0.001 ‐0.013 ‐0.009 ‐0.004 ‐0.018

(0.001) (0.000) (0.001) (0.003) (0.002) (0.004)

R‐sq/Chi‐sq. 0.013 0.009 0.011 7007 3465 2340

Dep. Var: Maternal Complications After Delivery

Diagnostic Skill 0.001 ‐0.0001 0.002 0.008 0.003 0.013

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)

Procedural Skill Difference ‐0.007 ‐0.004 ‐0.011 ‐0.028 ‐0.021 ‐0.036

(0.002) (0.001) (0.002) (0.006) (0.006) (0.007)

R‐sq/Chi‐sq. 0.017 0.013 0.02 25060 997 645

# Observations 968748 469170 499578 968748 469170 499578

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include market price,

estimated C‐section risk, indicators for African‐American, Hispanics, race missing, education (less

than high school, high school, some college, missing), married, married missing, Medicaid, Medicaid

missing, teen mom, 25‐34, 35 plus, smoking, smoking missing, male child, parity 2, parity 3, parity 4 

plus, parity missing, month and year of birth indicators, indicators for 3‐digit zip code, and an 

indicator for whether the birth was on a week day.  R‐squared shown for OLS and Chi‐squared

shown for TSLS.
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Table 6: Effect of Doctor Diagnostic and Surgical Skill on Child Health Outcomes

OLS OLS OLS TSLS TSLS TSLS

                    C‐section Risk: All Low High All Low High

Dep. Var: Any Bad Infant Outcome

Diagnostic Skill ‐0.005 ‐0.005 ‐0.006 ‐0.010 ‐0.009 ‐0.010

(0.001) (0.001) (0.001) (0.007) (0.007) (0.007)

Procedural Skill Difference ‐0.006 ‐0.004 ‐0.008 ‐0.031 ‐0.029 ‐0.032

(0.001) (0.001) (0.002) (0.009) (0.009) (0.009)

R‐sq/Chi‐sq. 0.013 0.01 0.017 16421 1108 2099

Dep. Var: Fetal Distress

Diagnostic Skill ‐0.003 ‐0.004 ‐0.003 ‐0.012 ‐0.012 ‐0.012

(0.001) (0.001) (0.001) (0.006) (0.006) (0.006)

Procedural Skill Difference ‐0.007 ‐0.001 ‐0.013 ‐0.024 ‐0.025 ‐0.023

(0.001) (0.000) (0.001) (0.003) (0.002) (0.004)

R‐sq/Chi‐sq. 0.013 0.009 0.011 7007 3465 2340

Dep. Var: Birth Injury

Diagnostic Skill 0.0001 0.0001 0.0001 0.004 0.003 0.005

(0.000) (0.000) (0.000) (0.003) (0.002) (0.004)

Procedural Skill Difference ‐0.001 ‐0.001 ‐0.002 ‐0.009 ‐0.006 ‐0.011

(0.001) (0.001) (0.001) (0.004) (0.003) (0.006)

R‐sq/Chi‐sq. 0.003 0.002 0.004 268 392 563

Dep. Var: Neonatal Death

Diagnostic Skill ‐0.002 ‐0.001 ‐0.002 ‐0.001 ‐0.0003 ‐0.002

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

Procedural Skill Difference ‐0.001 ‐0.0003 ‐0.002 0.001 0.0006 0.001

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

R‐sq/Chi‐sq. 0.007 0.004 0.01 2427 1445 2026

# Observations 968748 469170 499578 968748 469170 499578

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include market price,

estimated C‐section risk, indicators for African‐American, Hispanics, race missing, education (less

than high school, high school, some college, missing), married, married missing, Medicaid, Medicaid

missing, teen mom, 25‐34, 35 plus, smoking, smoking missing, male child, parity 2, parity 3, parity 4 

plus, parity missing, month and year of birth indicators, indicators for 3‐digit zip code, and an 

indicator for whether the birth was on a week day.  R‐squared shown for OLS and Chi‐squared

shown for TSLS.
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Table 7: TSLS Estimates of Effect Diagnostic and Surgical Skill, Three Risk Categories

Medium

Low p(csect)>=.084 High

                    C‐section Risk: p(csect)<.084 p(csect)<=.439 p(csect)>.439

Dep. Var: C‐section 

Diagnostic Skill ‐0.015 ‐0.013 0.044

(0.004) (0.009) (0.006)

Procedural Skill Difference 0.014 0.022 0.038

(0.007) (0.012) (0.012)

Chi‐sq. 5208 29616 28375

Dep. Var: Any Bad Outcome

Diagnostic Skill ‐0.009 ‐0.018 ‐0.010

(0.007) (0.008) (0.003)

Procedural Skill Difference ‐0.043 ‐0.058 ‐0.078

(0.006) (0.008) (0.005)

Chi‐sq. 5131 17881 4699

Dep. Var: Bad Maternal Outcome

Diagnostic Skill ‐0.044 ‐0.008 0.003

(0.002) (0.004) (0.004)

Procedural Skill Difference ‐0.017 ‐0.033 ‐0.06

(0.006) (0.009) (0.008)

Chi‐sq. 609 2209 3330

Dep. Var: Bad Infant Outcome

Diagnostic Skill ‐0.006 ‐0.011 ‐0.013

(0.006) (0.010) (0.004)

Procedural Skill Difference ‐0.029 ‐0.034 ‐0.025

(0.007) (0.011) (0.007)

Chi‐sq. 19209 3809 3997

# Observations 251965 473011 243869

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include market price,

estimated C‐section risk, indicators for African‐American, Hispanics, race missing, education (less

than high school, high school, some college, missing), married, married missing, Medicaid, Medicaid

missing, teen mom, 25‐34, 35 plus, smoking, smoking missing, male child, parity 2, parity 3, parity 4 

plus, parity missing, month and year of birth indicators, indicators for 3‐digit zip code, and an 

indicator for whether the birth was on a week day.  R‐squared shown for OLS and Chi‐squared

shown for TSLS.
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Table 8: TSLS Estimates of Effect Diagnostic and Surgical Skill, Three Risk Categories

First Births Only

Medium

Low p(csect)>=.217 High

                    C‐section Risk: p(csect)<.217 p(csect)<=.309 p(csect)>.309

Dep. Var: C‐section 

Diagnostic Skill ‐0.018 ‐0.015 0.003

(0.007) (0.010) (0.014)

Procedural Skill Difference 0.021 0.022 0.028

(0.013) (0.012) (0.017)

Chi‐sq. 4056 4878 82795

Dep. Var: Any Bad Outcome

Diagnostic Skill ‐0.025 ‐0.02 0.000

(0.007) (0.011) (0.008)

Procedural Skill Difference ‐0.066 ‐0.067 ‐0.084

(0.011) (0.010) (0.009)

Chi‐sq. 4569 18187

Dep. Var: Bad Maternal Outcome

Diagnostic Skill ‐0.005 ‐0.011 0.001

(0.005) (0.004) (0.004)

Procedural Skill Difference ‐0.043 ‐0.039 ‐0.054

(0.015) (0.009) (0.010)

Chi‐sq. 1152 6165 323

Dep. Var: Bad Infant Outcome

Diagnostic Skill ‐0.022 ‐0.009 0.0004

(0.006) (0.013) (0.009)

Procedural Skill Difference ‐0.032 ‐0.04 ‐0.045

(0.009) (0.013) (0.010)

Chi‐sq. 1840 1359 690

# Observations 95123 184238 105752

Notes: Standard errors clustered at the 3‐digit zip code level.  Regressions also include market price,

estimated C‐section risk, indicators for African‐American, Hispanics, race missing, education (less

than high school, high school, some college, missing), married, married missing, Medicaid, Medicaid

missing, teen mom, 25‐34, 35 plus, smoking, smoking missing, male child, parity 2, parity 3, parity 4 

plus, parity missing, month and year of birth indicators, indicators for 3‐digit zip code, and an 

indicator for whether the birth was on a week day.  R‐squared shown for OLS and Chi‐squared

shown for TSLS.
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A Appendix - Proofs

Proof of Proposition 1

Proof. If x ∼ N
(
m,σ2

)
has a normal prior distribution, and one has an observa-

tion y = x + ε, where ε ∼ N
(
0, σ2y

)
is normally distributed and independent of

x, then from Theorem 1, DeGroot (1972), section 9.5, the posterior distribution of

x ∼ N (πm+ (1− π) y, ρx + ρy), were ρx = 1
σ2 and ρy = 1

σ2
y

are the precisions of x and

y, while π = ρx
ρx+ρy

is the weight on prior mean.

The normal distribution is called a conjugate family because when the prior and

signals are normally distributed, then so is the posterior. This allows for very simple

linear learning rules. We can use other distributions, but it would greatly complicate

the analysis while providing few benefits in terms of new insights.

Proof of Proposition 2

Proof. From 9 we have T = C iff:

hIi +
1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

)
≥ −

(
εIi + εhij

)
−
αPj ε

P
ij

πh
. (17)

The right hand side is a normal distribution with zero mean and variance:

σ2j =

(
σ2I +

1

Dj
+

(
αsjσP

πh

)2
)

(18)

Hence, we can write (17) as:

1

σj

(
hIi +

1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

))
≥ ε,

where ε ∼ N (0, 1). Hence we have:

pj
(
hIi
)

= F

(
1

σj

(
hIi +

1

πh
(
π0h0j + sj +mj + αPj h̄

P
j

)))
,

from which we obtain the result.

Proof of proposition 6

Proof. We can write welfare as:
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W (hi, ωj) = sCj Prob [Tij = C|hi, ωj ] + E
{
−hi + sNj |Tij = N,hi, ωj

}
Prob [Tij = N |hi, ωj ]

= sCj Prob [Tij = C|hi, ωj ] + sNj Prob [Tij = N |hi, ωj ]

− E {hi|Tij = N,hi, ωj}Prob [Tij = N |hi, ωj ] .

Next we condition on hIi and observe that E
{
E {X|hi, ωj} |hIi , ωj

}
= E

{
X|hIi , ωj

}
,

since this is strictly less information. First, we already have from equation 12:

Prob
[
Tij = C|hIi , ωj

]
= pj

(
hIi
)
.

Next we have from 9:

E
{
hi|Tij = N,hIi , ωj

}
= E

{
hIi − εIi |hIi − εIi + γj ≤ ζij

}
= E

{
hIi − εIi |hIi + γj ≤ ζij + εIi

}
.

From Birnbaum (1950) we have that if X and Z are two normally distributed

random variables with variances σ2X and σ2Y then:

E {X|q ≤ Z} = E {X}+
cov (X,Z)

σQ
R

(
q − E {Z}

σQ

)
,

where R (x) = f(x)
1−F (x) is the Mills ratio for the Normal distribution. Applying this

formula with X = hIi − εIi , Z = ζij + εIi and q = hIi + γ̄j we get:

E
{
hi|Tij = N,hIi , ωj

}
= hIi −

σ2I
σj
R

(
hIi + γj
σj

)
,

where σj is defined in 18. Notice that θj = 1
σj

and pj
(
hIi
)

= F
(
θj
(
hIi + γj

))
.

Thus we get:

W
(
hIi , ωj

)
= E (W (hi, ωj))

= sCj pj
(
hIi
)

+ sNj
(
1− pj

(
hIi
))

−
(
hIi − σ2IθjR

(
θj
(
hIi + γj

))) (
1− pj

(
hIi
))

= sCj pj
(
hIi
)

+
(
sNj − hIj

) (
1− pj

(
hIi
))

+ σ2Iθjf
(
θj
(
hIi + γj

))
.
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Now
∂F(θj(hIi+γj))

∂hIi
= θjf

(
θj
(
hIi + γj

))
and therefore we may write:

W
(
hIi , ωj

)
= sCj pj

(
hIi
)

+
(
sNj − hIj

) (
1− pj

(
hIi
))

+ σ2I
∂pj

(
hIi
)

∂hIi
.
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B Appendix - Table

Appendix Table 1: Effect of Diagnostic and Surgical Skill on Probability of C‐Section 

Ordinary Least Squares

                    C‐section Risk: All Low High

Diagnostic Skill 0.004 ‐0.011 0.019

(0.002) (0.002) (0.002)

Procedural Skill Difference 0.003 0.003 0.003

(0.002) (0.001) (0.002)

Market Price (coeff x 100) 0.276 0.291 0.285

(0.226) (0.249) (0.221)

C‐section Risk 1.002 0.902 0.906

(0.007) (0.069) (0.009)

African‐American 0.05 0.047 0.050

(0.004) (0.003) (0.005)

Hispanic 0.036 0.024 0.051

(0.003) (0.002) (0.005)

Less than High School 0.022 0.019 0.026

(0.003) (0.002) (0.005)

High School 0.026 0.022 0.032

(0.001) (0.002) (0.003)

Some College 0.012 0.011 0.013

(0.001) (0.002) (0.002)

Married ‐0.007 ‐0.009 0.006

(0.002) (0.003) (0.003)

Medicaid 0.005 0.007 0.001

(0.004) (0.004) (0.006)

Teen Mom ‐0.013 ‐0.023 0.012

(0.004) (0.005) (0.009)

Mother 25‐34 0.019 0.028 0.005

(0.003) (0.002) (0.004)

Mother 35+ 0.025 0.041 0.013

(0.003) (0.003) (0.005)

Mother Smoked 0.007 0.010 0.004

(0.004) (0.003) (0.006)

Child Male 0.023 0.018 0.027

(0.001) (0.001) (0.002)

Child 2nd Born ‐0.013 ‐0.040 0.051

(0.003) (0.008) (0.004)

Child 3rd Born ‐0.018 ‐0.043 0.032

(0.003) (0.009) (0.006)

Child 4th Born or Higher ‐0.022 ‐0.034 0.001

(0.006) (0.010) (0.010)

R‐squared 0.41 0.044 0.319

# Observations 968845 469204 499641

Notes: Standard errors clustered by 3 digit zip code.  Regressions also include indicators for 

month and year of birth and 3‐digit zip code, as well as indicators for missing education,   

marital status, Medicaid coverage, smoking, parity, and an indicator for birth on a weekday.
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C Appendix - Figures

Figure 1: Shift in Probability of C-section Given Medical Risk Over Time
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Figure 2: Shift in Medical Risks over Time
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