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Abstract

I introduce a new learning-to-forecast experimental design, where subjects in a virtual

New-Keynesian macroeconomy based on Woodford (2013) need to forecast individual in-

stead of aggregate outcomes. This approach is motivated by the critique of Preston (2005)

and Woodford (2013) that substituting arbitrary forms of expectations into the reduced-form

New-Keynesian model (consisting of the “DIS” equation, the “Phillips curve” and the “Tay-

lor” rule) is inconsistent with its microfoundations. Using this design, I analyze the impact

of di↵erent interest rate rules on expectation formation and expectation-driven fluctuations.

Even if the Taylor principle is fulfilled, instead of quickly converging to the REE, the exper-

imental economy exhibits persistent purely expectation-driven fluctuations not necessarily

around the REE. Only a particularly aggressive monetary authority achieves the elimination

of these fluctuations and quick convergence to the REE. To explain the aggregate behavior

in the experiment, I develop a “noisy” adaptive learning approach, introducing endogenous

shocks into a simple adaptive learning model. However, I find that for some monetary pol-

icy regimes a reinforcement learning model, applied to di↵erent forecasting rules, provides a

better fit to the data.
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Woodford. Furthermore, I would like to thank Jess Benhabib, John Du↵y, George Evans, Albert Marcet, Luba
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University, the Monetary Economics Colloquium at Columbia University, the Macro Lunch at New York University,
the CREI Macroeconomic Breakfast, the Barcelona GSE Summer Forum conference and the Tinbergen Institute
Workshop in Behavioral Macroeconomics for their feedback. I would furthermore like to thank the Barcelona GSE
for financial support for this project.
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1 Introduction

This paper introduces a new experimental design based on the structural form of the New-

Keynesian model in Woodford (2013) to analyze the impact of di↵erent interest rate rules on

expectation formation and in particular expectation-driven fluctuations. The data on expectations

obtained from the laboratory are subsequently used to extend previous approaches of modeling

expectations.

The fact that interest rate setting by central banks can be described by simple rules is well

documented by a large empirical literature following Taylor (1993). The validity of policy recom-

mendations regarding interest rate rules crucially depends on how agents form their expectations

regarding future economic conditions. The standard approach of modeling expectations as model-

consistent or rational expectations can be considered as unnecessarily strong, as this presumes

a correct understanding of the model, knowledge of all parameters and common knowledge of

rationality, i.e. that all agents know that all other agents are rational. The central policy rec-

ommendation for the design of interest rate rules both under rational expectations and in the

macroeconomic learning literature is considered to be the ”Taylor principle”, implying that in-

terest rates should actively respond to inflation. Under rational expectations, the reason for

the desirability of the Taylor principle is that in New-Keynesian frameworks it guarantees local

determinacy of the rational expectations equilibrium (REE) and thus avoids the emergence of

multiplicity.

A weak requirement for the adoption of rational expectations is often whether agents at least

asymptotically learn how to form model-consistent or rational expectations. (see e.g. Bullard and

Mitra (2002); Evans and Honkapohja (2003, 2006), Marimon and Sunder (1994)) A theoretical

learning literature addresses this question using particular hypotheses regarding the process of ex-

pectation formation. One assumption that is frequently made is that agents in the model behave

like econometricians. (Marcet and Sargent, 1989; Sargent, 1994; Evans and Honkapohja, 2001) In

the context of a New-Keynesian model, Bullard and Mitra (2002) investigate stability under least

square learning (E-stability1) of the REE based on the reduced-form equations, i.e. the “dynamic

IS” equation, the “Phillips curve” and the interest rate rule. They find that the Taylor principle is

necessary and su�cient for E-stablity. This finding has, however, already been questioned by the

1Marcet and Sargent (1989) show a one-to-one correspondence between E-stability and learnability under least
square learning.
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adaptive learning literature, since Orphanides and Williams (2007) recommend a more aggressive

monetary policy in the presence of learning, if agents’ misperceptions of the economy’s steady

state levels are taken into account.

Yet, since the theoretical learning literature relies on particular assumptions regarding agents’

expectation formation behavior, a complementary experimental literature2 has developed. On

the one hand, this literature investigates the nature of belief formation empirically and, on the

other hand, for this observed behavior it tests the robustness of policy recommendations derived

under rational expectations or other hypothesized forms of expectation formation. In this type

of experiment, subjects act as forecasters in virtual markets or economies in which outcomes are

generated by the computer conditional on subjects’ beliefs. This methodology is adopted due to

several distinct advantages. As opposed to real macroeconomic time series where the REE cannot

easily be observed, in the laboratory the REE is controlled by the experimenter, which enables

to easily examine whether learning dynamics converge to the REE. Secondly, surveyed inflation

expectations depend on many uncontrollable factors so that it can be immensely challenging to

isolate and identify the e↵ect of monetary policy. Thirdly, in the laboratory the experimenter can

incentivize subjects by paying them according to their forecasting performance, while respondents

in surveys do not have any incentive to accurately contemplate about their beliefs.

The experimental test about monetary policy in a reduced-form New-Keynesian model has been

delivered by Pfajfar and Žakelj (2014) and Assenza et al. (2014). Using the reduced-form equa-

tions, both corroborate the theoretical literature that relies on least square learning and find

convergence to the REE under satisfaction of the Taylor principle, while without satisfying the

Taylor principle non-convergence patterns and high fluctuations are observable.3

Yet, Bullard and Mitra (2002), Pfajfar and Žakelj (2014) and Assenza et al. (2014) are subject

to the criticism that substituting any arbitrary form of expectation formation into the reduced-

form equations of the New-Keynesian model is inconsistent with the microfoundations that model.

Preston (2005) shows that the “dynamic IS” equation and the “Phillips curve” follow from the

infinite-horizon optimality conditions under the law of iterated expectations. Preston thus anal-

yses E-stability under infinite horizon learning with a representative agent constructing forecasts

of aggregate variables infinitely far into the future using least squares coe�cients of the regression

2Laboratory experiments are an increasingly popular methodology to study questions related to macroeconomics.
See Du↵y (2014) for a survey.

3Arifovic and Petersen (2015) use a similar design to examine policies to escape expectation-driven liquidity
traps.
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on the MSV-solution variables. Surprisingly, he finds that the necessary and su�cient condition

for E-stability is the same as in Bullard and Mitra (2002), i.e. satisfaction of the Taylor principle.

Furthermore, Woodford (2013) and Honkapohja et al. (2013) note that the derivations of these

equations follow under homogeneous beliefs.4

Hence, I introduce a new, internally consistent learning-to-forecast experimental design based on

the structural-form of the heterogeneous expectations New-Keynesian framework in Woodford

(2013), so that the experimental setup is solely based on first-order conditions of agents’ opti-

mization problems into which arbitrary expectations can be substituted. The design is without

any exogenous shocks so that all shocks in the experiment come from agents’ expectations. My

experimental results di↵er from the experiments of Pfajfar and Žakelj (2014) and Assenza et al.

(2014) and are more congruent with the theoretical results of Orphanides and Williams (2007)

and Ferrero (2007), as I do not find evidence that Taylor-rule reaction coe�cients outside the

unit circle guarantee learning dynamics converging to the REE in a structural New-Keynesian

model. If the Taylor principle is barely satisfied, I instead find persistent fluctuations not nec-

essarily around the steady state. Since in the absence of exogenous shocks all fluctuations are

purely expectation-driven, it is desirable to eliminate these and ensure convergence. To do so,

my results and the subsequently developed “noisy” adaptive model suggest that the monetary

authority needs to adopt a reinforced Taylor principle reacting more strongly to deviations of

inflation from the desired level, with a reaction coe�cient on inflation around 3.

To understand the di↵erences observed in the experimental economies under di↵erent Taylor rules,

I consider two general approaches to modeling learning: The first approach is using a model with

few free parameters to explain the aggregate behavior in the experiment, while the second ap-

proach is considering a more sophisticated model to replicate aggregate and individual behavior. I

conduct agent-based computational economic (ACE) path simulations to investigate whether the

dynamics as observed in the experiments are predicted by di↵erent learning models.

The starting point for the first approach, i.e. modeling aggregate behavior, is exploring a fre-

quently assumed hypothesis in the macroeconomic learning literature proposed by Marcet and

Sargent (1989) and Evans and Honkapohja (2001), postulating that agents’ forecasting behavior

resembles an econometrician. While subjects certainly do not literally apply econometric tech-

4Although these papers merely note that homogeneity is a su�cient condition for deriving the reduced-form
equations, studies like Branch and McGough (2009) and Kurz et al. (2013) that derive the reduced-form New-
Keynesian equations under diverse beliefs rely on other strong behavioral assumptions on the expectations operator,
whose empirical validity raises questions.
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niques, this learning rule can alternatively be interpreted as agents adjusting their forecasts in the

direction of the last observed forecast error and attaching decreasing weight to new observations.

This is the intuition why least square learning can be considered a special case of adaptive learn-

ing. (Sargent (1994) for details) I also consider an alternative case of adaptive learning, which is

constant gain learning, meaning that agents discount past observations. While least square learn-

ing and constant gain learning are successful in qualitatively predicting the di↵erences between

active but less aggressive monetary policy and particularly aggressive monetary policy, they do

not predict the fluctuations observed in the experiments.

A combination of the macroeconomic and the microeconomic learning literature, which I call noisy

adaptive learning, improves the fit to the experimental data and accurately predicts the di↵erence

in the convergence patterns: I take an adaptive specification with constant gain, into which I in-

troduce idiosyncratic cognitive shocks in the learning process similarly to some applications in the

microeconomic learning literature. (Fudenberg and Harris, 1992; Binmore et al., 1995; Nagel and

Vriend, 1999; Anderson et al., 2004) A novel feature is that the shock variance is endogenous with

a specification similar to the ones used for conditional heteroskedasticity models in the financial

econometrics literature. (Engle, 1982; Bollerslev, 1986).

Following the second approach, i.e. to fit both aggregate and individual behavior, I consider the

hypothesis by Brock and Hommes (1997) and Anufriev and Hommes (2012a), where agents choose

among a finite set of possible forecasting models with endogenous probabilities of using each model.

I find that the functional form for the switching probabilities of the reinforcement model by Roth

and Erev (1998) provides a better fit to the data than the one specified by Brock and Hommes

(1997) or Anufriev and Hommes (2012a). The reason is the assumption by Brock and Hommes

(1997) that agents consider fictitious play, i.e. the ceteris-paribus payo↵ for forecasting rules that

were not used, which is dubious in the context of my experiment, where agents’ own forecasts

have a relatively large influence on individual market outcomes.

2 Model

One former approach has been to implement complete structural versions of the New-Keynesian

model in the laboratory (see e.g. Petersen (2012)), where subjects assume the roles of households

and firms and make similar decisions to agents in the model such as production, consumption and
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labor supply decisions. Yet, in such a framework, it is challenging to isolate the role of expecta-

tions.

Once narrowing the set of possible experimental designs to “learning-to-forecast” experiments,

an approach could be implementing a nonlinear version of the New-Keynesian model so that the

dynamics can be obtained as being consistent with exact optimization behavior of individuals

independently of the size of the expectational error. Hommes et al. (2015) introduce a non-linear

New-Keynesian model into the laboratory. However, their setup is simplified, since the only input

obtained from subjects are point forecasts. Since the variables that are to be forecast are not

independent, determining behavior in a non-linear model does not only require conditional means

of future variables but also other moments of the conditional distribution so that in fact a more

complex description of subjects’ probability beliefs would be needed.

Hence, I take a di↵erent approach and base my experiment on the linearized heterogeneous expec-

tations New-Keynesian model by Woodford (2013). The important di↵erence to Preston (2005)

is that this model departs from the representative agent. Expectations represent a well-behaved

probability measure, but can be heterogeneous across agents and need not necessarily be model-

consistent. For the experiment, I only make minimal changes from Woodford (2013):

• Although Woodford (2013) presents the model with an exogenous preference shock and a

markup shock, in the model used for the experiment there will be no exogenous shocks, since

individual behavior deviating from the rational expectations outcome already introduces

shocks into the system. Since the MSV solution of the model is thus a constant, it will

create an easier learning environment for agents.

• While Woodford (2013) considers a log-linearized model around a zero inflation steady state,

I consider a model of full price indexation as first used by Yun (1996), i.e. in the periods

between price re-optimizations firms mechanically adjust their prices according to steady

state inflation ⇡̄. There are several reasons for adopting an interest rate steady state above

zero: firstly, most central banks target a medium-run inflation above zero. Secondly, assum-

ing that subjects start with a random guess, zero would be the expected initial outcome.

Since zero thus seems a natural choice for a starting value, it is convenient to specify the

equilibrium of one group to be non-zero. Thirdly, a non-zero inflation steady state provides

additional margin to prevent interest rates from attaining the zero lower bound.
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The model is presented in more detail in Woodford (2013) and Appendix 9.1. Below an abridged

version.

2.1 The demand side

This cashless economy is populated by a continuum of households, indexed by i, seeking to maxi-

mize the present discounted value of expected utility

Êi

t

1X

T=t

�T�t[U(C i

T

)�⌥(hi

T

(j))] (1)

where C i

t

is a composite consumption good and Êi

t

is an arbitrary subjective (not necessarily

rational) expectations operator of household i given the information set in period t, which however

satisfies the law of iterated expectations such that Êi

t

Êi

t+1

x
t+k

= Êi

t

x
t+k

. hi(j) is the amount of

labor supplied by household i for the production of good j. The second term in the brackets is

to be interpreted as the total disutility of labor supply. There is an equal number of households

supplying labor for each type of good.5

Woodford (2013) introduces a union negotiating the wage on behalf of all households so that the

household has no choice but supplying the hours of work demanded by the firm at the given wage.

Thus, a household only has to decide on its (real) consumption expenditure, C i

t

. There is one

single riskless one-period bond in the economy whose holdings in a period t by household i can

be denoted Bi

t

. One main di↵erence of this heterogeneous agent model to the representative agent

model is that households can have non-zero asset holdings. A log-linearised approximation to the

consumption function takes the form:

ĉi
t

= (1� �)b̂i
t

+
1X

T=t

�T�tÊi

t

{(1� �)(Ŷ
T

� ⌧̂
T

)� ��(̂i
T

� ⇡̂
T+1

) + (1� �)s
b

(� î
T

� ⇡̂
T

)} (2)

where the -̂superscripts denote log-deviation from steady state, b
t

the value of the maturing bond

holdings deflated by the price level at period t� 1, Y aggregate output, ⌧ the level of lump sum

taxes deflated by the current period price level, i the nominal interest rate set by the central bank,

⇡ the current level of inflation and s
b

the steady-state level of government debt divided by the

steady state level of output. (2) can be rewritten in its recursive form under internally consistent

5Woodford (2003, p. 144↵.) shows that under this assumption, this is equivalent to a representative agent
supplying labor for each type of good.
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expectations of the household as

ĉi
t

= (1� �)b̂i
t

+ (1� �)(Ŷ
T

� ⌧̂
T

)� �[� � (1� �)s
b

]̂i
t

� (1� �)s
b

⇡̂
t

+ �Êi

t

vi
t+1

(3)

where

vi
t

⌘
1X

T=t

�T�tÊi

t

{(1� �)(Ŷ
T

� ⌧̂
T

)� [� � (1� �)s
b

](� î
T

� ⇡̂
T

)} (4)

I adopt this notation from Woodford (2013), since the advantage is that individuals only need

to forecast a single variable. Using the goods market clearing condition Ŷ
t

=
R
ĉi
t

di, aggregate

demand can be obtained as

Ŷ
t

= (1� �)b̂
t

+ v
t

� �⇡̂
t

(5)

Woodford (2013) assumes for simplicity that government expenditure is an exogenous disturbance,

but, since I introduce the model into the laboratory without any shocks, in my setup, the govern-

ment merely uses the taxes to service the debt it has accumulated. Hence, the government’s flow

budget constraint is given as

b̂
t+1

= ��1[b̂
t

� s
b

⇡̂
t

� ⌧̂
t

] + s
b

î
t

(6)

(4) implies the recursive form

vi
t

= (1� �)v
t

+ �(1� �)(b̂
t+1

� b̂
t

)� ��(̂i
t

� ⇡̂
t

) + �Êi

t

vi
t+1

(7)

where v
t

=
R
vi
t

di is the average value across agents of the expectational variable defined in (4).

I follow Woodford (2013) in assuming that expectations are Ricardian so that

b
t

= Êi

t

1X

T=t

�T�t[⌧̂
T

� s
b

(� î
T

� ⇡̂
T

)] (8)

This is a strong assumption. However, it simplifies the model considerably and this assumption

is frequently made in non-RE analyses. (See Woodford (2013) for a detailed discussion.) In the

context of this experiment, this can be interpreted as the computerized household understanding
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that government cannot forever accumulate debt. Under this assumption, aggregate demand is

independent of the supply of public debt and can be more compactly written as

Ŷ
t

= v̄
t

� �⇡̂
t

(9)

where v̄
t

= v
t

+ (1 � �)b̂
t

is the aggregate of a subjective variable v̄i
t

, which is the variable that

one group of subjects, labeled as “household advisors”, needs to forecast in the experiment, and

which can be defined simply as

v̄i
t

⌘
1X

T=t

Êi

t

{(1� �)Ŷ
T

� �(�i
T

� ⇡
T

)} (10)

(10) together with (2) and (4) imply

v̄i
t

= ĉi
t

+ �⇡̂
t

� (1� �)(bi
t

� b
t

) (11)

The model was log-linearized near a steady-state in which all households have the same level of

bond holdings, so that bi
t

� b
t

is small by assumption. Since this term is additionally multiplied

by a small factor 1� �, the following approximate relationship holds

v̄i
t

⇡ ĉi
t

+ �⇡̂
t

(12)

As ci
t

represents real expenditure, nominal expenditure can be written (in log deviation) as ĉi
t

+p
t

.

To make the variable stationary (as there will be a unit root in the price level in equilibrium), one

can define a real measure of expenditure in terms of the previous period price level p
t�1

as

ĉi
t

+ p
t

� p
t�1

(13)

Since � = 1, (13) is equal to

ĉi
t

+ �(p
t

� p
t�1| {z }

=⇡̂t

) ⇡ v̄i
t

(14)
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so that v̄i
t

is close to real expenditure. Likewise (9) implies

v̄
t

= Ŷ
t

+ �⇡̂
t

(15)

so that the aggregate of v̄i
t

is likewise closely related to the real output gap (expressed in terms of

the price level in period t� 1.)

(10) is consistent with a recursive form of

v̄i
t

= (1� �)v̄
t

� ��(̂i
t

� ⇡̂
t

) + �Êi

t

v̄i
t+1

(16)

which is the data-generating process in the experiment.

The computerized central bank is specified as to adopting a Taylor rule only reacting to the

deviation of inflation from its steady state. However, interest rates cannot fall below zero so that:

i
t

= max(0, ī+ �
⇡

(⇡
t

� ⇡̄)) (17)

2.2 The supply side

Woodford (2013) assumes Calvo (1983) price-setting such that a fraction 0 < ↵ < 1 of goods

prices are exogenously held fixed in any period. Producers engage in Dixit-Stiglitz monopolistic

competition, which means that each firm sets the price for a good that it alone produces. Under

full price indexation, the log-linearized approximation of the inflation dynamics is given by

⇡̂
t

= (1� ↵)p̂⇤
t

(18)

where, for each firm j that is chosen to re-optimize its price in period t, p⇤j
t

is the amount by which

the firm would choose to set the log price of its good higher than p
t�1

. p⇤
t

=
R
p⇤j
t

dj is the average

value of this variable across all firms that are chosen by the Calvo mechanism to reoptimize prices

in period t. The solution to firm j’s maximization problem takes the form:

p̂⇤j
t

= (1� ↵�)
1X

T=t

(↵�)T�tÊj

t

{popt
T

� p
t�1

� (T � t+ 1)⇡̄} (19)
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where popt
T

is the single-period optimal log price, being the same for each firm, as they face the

same labor market and aggregate conditions. Using the law of iterated expectations, one can

rewrite (19) in its recursive form:

p̂⇤j
t

= (1� ↵�)(popt
t

� p
t�1

� ⇡̄) + ↵�(Êj

t

p̂⇤j
t+1

+ ⇡̂
t

) (20)

Suppose that the union, setting the wage on behalf of the households, pursues the objective that

at that wage, a marginal increase in labor demand would neither increase nor decrease average

perceived utility across households, if for each household the marginal utility of additional wage

income is weighted against the marginal disutility of additional work. Hence, the optimality

condition for the union is

⌥
h

(h
t

)

u
C,t

(C
t

)
=

w
t

P
t

(21)

By log-linearising (21), one obtains

!̂
t

= #̂
t

� û
c,t

(22)

where !
t

is the log real wage, #
t

is the log of the (common) marginal disutility of labor and u
c,t

is the (log) aggregate marginal utility of additional real income across households. Hence

!̂
t

= #̂
t

+ ��1ĉ
t

= #̂
t

+ ��1Ŷ
t

(23)

Given that m̂c
t

= !̂
t

� m̂pn
t

and since both #̂
t

and m̂pn
t

can be expressed as functions of labor

hours and thus as output (which is determined by the market clearing condition for the aggregate

goods market), one can summarize popt
t

as

popt
t

= p
t

+ ⇠Ŷ
t

(24)

Under the assumption of constant returns to scale in the aggregate and a disutility function of

labor of

⌥(hi

t

(j)) =
hi

t

(j)1+'

1 + '
(25)
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it is easy to see that ⇠ ⌘ ��1 + '. We obtain, by using (24) in (20):

p̂⇤j
t

= (1� ↵)p̂⇤
t

+ (1� ↵�)⇠Ŷ
t

+ ↵�Êj

t

p̂⇤j
t+1

(26)

2.3 From the structural to the textbook reduced form

Only under the hypothesis that all expectations are identical, subjective expectations {Êi

t

} and

{Êj

t

} can be replaced by the single expectations operator Ê
t

and the system reduces to

v̄
t

= ��(i
t

� ⇡
t

) + Ê
t

v̄
t+1

(27)

⇡
t

= Ŷ
t

+ �Ê
t

⇡
t+1

(28)

where  ⌘ (1�↵)(1�↵�)
↵

⇠. This represents a reduced-form system similar to the ones in Woodford

(2003), Gaĺı (2008) or Walsh (2010), which has been used in the experiments by Pfajfar and Žakelj

(2014) and by Assenza et al. (2014).

2.4 System

By integrating (7) over i and (26) over j and by inserting the resulting equations back into (7) and

(26), one obtains the system upon which the experimental economy in the new design is based

2

66666664

v̄
t

p⇤
t

v̄i
t

p⇤j
t

3

77777775

= ⌦b⇡̄ + A

2

66666664

R
1

i=0

Êi

t

v̄i
t+1

di
R

1

j=0

Êj

t

p⇤j
t+1

dj

Êi

t

v̄i
t+1

Êj

t

p⇤j
t+1

3

77777775

(29)
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with ⌦ ⌘ 1

↵+�⇡�⇠(1�↵)(1�↵�) and

b ⌘

2

66666664

(1� ↵)↵��(�
⇡

� 1)

(1� �) + �
⇡

�⇠(1� ↵)(1� ↵�)

↵��(�
⇡

� 1)(1� ↵)

↵(1� �) + �
⇡

�⇠(1� ↵)(1� ↵�)

3

77777775

(30)

A ⌘

2

66666664

↵+�⇠(1�↵)(1�↵�)
↵+�⇡�⇠(1�↵)(1�↵�)

↵��(�⇡�1)(↵�1)

↵+�⇡�⇠(1�↵)(1�↵�) 0 0

� ⇠(↵��1)

↵+�⇡�⇠(1�↵)(1�↵�)
↵�

↵+�⇡�⇠(1�↵)(1�↵�) 0 0

↵(1��)+(1�↵)(1�↵�)�⇠(1���⇡)
↵+�⇡�⇠(1�↵)(1�↵�)

↵��(�⇡�1)(↵�1)

↵+�⇡�⇠(1�↵)(1�↵�) � 0

� ⇠(↵��1)

↵+�⇡�⇠(1�↵)(1�↵�)
�↵�(↵+�⇡�⇠(1�↵)(1�↵�)�1)

↵+�⇡�⇠(1�↵)(1�↵�) 0 ↵�

3

77777775

(31)

2.5 Calibration

Parameter Value Comment
� 0.99 implies quarterly risk-free real rate of 0.01
 0.3
↵ 0.67 Rotemberg and Woodford (1997)

⇠ 1.76 consistency with  ⌘ (1�↵)(1�↵�)
↵

⇠ = 0.3
� 1 elasticity of intertemporal substitution
⇡̄ 2 commonly chosen inflation target

Table 1: Calibration

I use the same calibration as Clarida et al. (2000) with � = 1,  = 0.3 and � = 0.99. I set

⇡̄ = 2, since this is a commonly chosen inflation target by central banks. For the structural form,

I need to specify two more parameters. Following Rotemberg and Woodford (1997), I specify

↵ = 0.66, which implies ⇠ = 1.76 to be consistent with  = 0.3.

With this calibration, the coe�cient matrices become6

Structural-form system with �
⇡

= 0.5

A�⇡=0.5 =

2

66666664

1.1304 0.1435 0 0

0.7826 0.8609 0 0

0.1404 0.1435 0.99 0

0.7826 0.2009 0 0.66

3

77777775

(32)

6The systems are shown for the case where the zero lower bound is not binding.
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Structural-form system with �
⇡

= 1.5

A�⇡=1.5 =

2

66666664

0.8966 �0.1138 0 0

0.6207 0.6828 0 0

�0.0934 �0.1138 0.99 0

0.6207 0.0228 0 0.66

3

77777775

(33)

Structural-form system with �
⇡

= 3

A�⇡=3 =

2

66666664

0.6842 �0.3474 0 0

0.4737 0.5211 0 0

�0.3058 �0.3474 0.99 0

0.4737 �0.1389 0 0.66

3

77777775

(34)

2.6 Discussion of the di↵erent systems

The linear systems imply a unique rational expectations steady state with v̄i = v̄ = 0 and

p⇤j = p⇤ = ⇡̄ = 2. For the REE to be determinate, the eigenvalues of the Jacobian matrix A need

to lie inside the unit circle. (Blanchard and Kahn, 1980) If monetary policy conforms with the

Taylor principle and the ZLB is not binding, the absolute values of all eigenvalues of coe�cient

matrix A in systems (33) and (34) lie within the unit circle. However, if agents do not know the

underlying model but have to learn the coe�cients, they implicitly also need to learn the eigenval-

ues of the system. Hence, it could be that through misperceptions, the perceived law of motion of

agents has eigenvalues outside the unit circle and thus exhibits explosive or fluctuating behavior.

Assenza et al. (2014, p.30) note that, in the reduced-form system, where both eigenvalues depend

on the reaction coe�cient �
⇡

, the perceived law of motion can potentially be rendered stationary

by reacting more strongly to inflation, as this can push the eigenvalue su�ciently far away from

the unit circle.

Yet, this conclusion becomes questionable, if one considers the structural-form systems (33) and

(34) under active monetary policy, whose Jacobian matrix, A, has two eigenvalues that do not

depend on �
⇡

, but which are constants equal to ↵� and �. Since ↵ and � are constants within the

unit circle under a standard calibration, one does not have an indeterminacy problem of the equi-

librium under rational expectations. Yet, if individuals have to learn the coe�cients, especially
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� = 0.99, implying near-unit root behavior, a problem arises, since even very small misperceptions

by individuals might give rise to a perceived law of motion that has an eigenvalue outside the unit

circle and which thus results in an explosive or oscillatory path. As a coe�cient of � = 0.99

appears in the equation (7) of the households, one would, in particular, expect unstable dynamics

for v̄.

3 New experimental design

The experiment took place in the BES laboratory at Pompeu Fabra University (Barcelona, Spain)

in April and May 2015. The whole experiment was computerized, conducted in Spanish and

the program was written in z-tree (Fischbacher, 2007). Most subjects were undergraduate stu-

dents studying Business Administration, Economics, Engineering, Humanities, Management or

Medicine. The experiment consisted of 50 periods. Every subject was only allowed to participate

in one experimental session.

I first investigated the replicability of the experiments by Assenza et al. (2014) and Pfajfar and

Žakelj (2014) in this laboratory and thus ran two groups with a reduced-form design based on

the “DIS equation” (27) and the “Phillips curve” (28). Appendix 9.2 shows that the result of

these replications conforms with the previous results of Assenza et al. (2014) and Pfajfar and

Žakelj (2014), i.e. that a Taylor rule coe�cient �
⇡

just outside the unit circle guarantees quick

convergence to the REE.

The new experimental design based on a structural-form New-Keynesian model consists of7

• computerized households

• computerized firms

• a computerized central bank

• 6 HUMAN household advisors being asked to submit Êi

t

v̄i
t+1

• 6 HUMAN firm advisors being asked to submit Êj

t

p⇤j
t+1

7By assumption, fiscal policy has no e↵ect on the beliefs of computerized households and aggregate output is
entirely independent of the paths of both public debt and taxes. Hence, mentioning the existence of a government
to agents might only create confusion and does not provide any benefits.
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Hence, there were two possible roles to which subjects were randomly assigned: an “advisor to

firms” or an “advisor to households”. They keep the same role for the duration of the whole

experiment. As opposed to the design of Pfajfar and Žakelj (2014) and Assenza et al. (2014),8

who ask subjects to forecast aggregate outcomes, subjects in my experiment forecast individual

outcomes.

3.1 Role 1: Household advisor

In each period, advisors to households are asked to submit Êi

t

v̄i
t+1

. An alternative would be asking

them to forecast inflation, their own optimal consumption and bond holdings, but forecasting

several variables at the same time complicates the task for subjects.9

3.2 Role 2: Firm advisor

In each period, advisors to firms are asked to submit Êj

t

p⇤j
t+1

, i.e. the forecast of the deviation of a

firm’s own optimal price in the next period (t+1) from the general price level in the current period

(t). Since in the model only the forecasts of the subsample of firms matters that is chosen by the

Calvo mechanism to reoptimize their prices, subjects were informed that the firm that seeks their

advice can be di↵erent in each period. This way the forecasts of all subjects could be considered

for the inflation dynamics. Due to identical production technologies of all firms, the optimal price

setting p⇤j1
t

of a particular firm j
1

in period t can be compared to the forecast of this optimal

price setting made in the previous period for a possibly di↵erent firm j
2

, Ê
t�1

p⇤j2
t

. Since deflation

beyond �100% is impossible, �100% was introduced as a natural lower bound. To be consistent

across groups, �100% was also set as a lower bound for the household advisors.10

3.3 Aggregate outcomes

Due to a continuum of agents in the model, the influence of one person should be infinitesimally

small. Since it is not possible to conduct the experiment with a very large number of subjects,

aggregate outcomes are proxied by medians so that in particular

8See Appendix 9.2 for more details.
9Since leaving variables in abstract terms would make the instructions too complicated, v̄t was labeled for

participants as the deviation of real expenditure (out of the current labor income) from a household’s “usual
expenditure”. See Section 2 for the explanation why v̄t is closely related to a household’s real expenditure. “Usual
expenditure” is supposed to be a more intuitive description of the long-run steady state and was explained to be
participants to be “average expenditure per period that a household can expect to be able to a↵ord over time.”

10For technical and operational reasons, I also had to introduce an upper bound, which was set to 1000.
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• p⇤
t

is the median price change of firms that are paired with subjects

• v̄
t

is the median of v̄i
t

across households advised by subjects

•
R

1

i=0

Êi

t

v̄i
t+1

di is the median expectation of all household advisors

•
R

1

j=0

Êj

t

p⇤j
t+1

dj is the median expectation of all firm advisors

3.4 Information provided to subjects

3.4.1 Beginning of the experiment

All subjects received the same instructions,11 which informed them about their own role, the role

of the other group and I also gave qualitative information about the economy. The qualitative

information included explanations of the macroeconomic variables and a verbal description of

equations (7) and (26). Subjects did not know the coe�cients in the equations or the steady states

of the model.12 Apart from the fact that this has become standard for complex experimental

games13 as this one, this approach can be justified in particular as follows: firstly, it is not

realistic that agents have fixed rules in mind when making decisions, but that these rules need

to be extracted from possibly long histories of past data. Secondly, two central questions of

the adaptive macroeconomic learning literature can be considered to be: firstly, whether REEs

are learnable solely from a su�ciently long history of data; secondly, since the macroeconomic

literature commonly assumes that agents in the model know its structural equations, it addresses

the question how agents inside the model learn the structure of the economy. These questions also

lie at the core of this study.14

3.4.2 Information at the beginning of period t

In every period t, individuals can observe their own outcomes and payo↵s as well as the macroe-

conomic variables - output gap, inflation and interest rate - up to period t-1, as well as all their

11The full instructions are available upon request.
12Full price indexation in this context could also be interpreted as the firms not chosen by the Calvo mechanism

adjusting their prices on average by the long-run steady state.
13See e.g. Nagel and Vriend (1999), Lei and Noussair (2002), Hommes et al. (2005), Hommes et al. (2008),

Heemeijer et al. (2009), Bao et al. (2013), Pfajfar and Žakelj (2014)
14Arifovic and Petersen (2015) deviate from this approach and provide agents with the model equations, but

their focus is on comparing di↵erent policies in the laboratory and whether agents learn the REE is not a central
question in their study.
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predictions including the one for period t made at time t-1. The information was both shown in

a history table and depicted graphically. (see Figure 1 for an exemplary screenshot)

Figure 1: Computer screen for a household advisor with graphed time series and corresponding
history table

3.5 Payo↵

Participants are rewarded according to how close their forecast is to the actual optimal outcome

in the next period. The payo↵ function is of the same functional form as in Adam (2007), Pfajfar

and Žakelj (2014) and Assenza et al. (2014):15

Score =
100

1 + |Forecast error| (35)

where the forecast error is Êi

t

v̄i
t+1

� v̄i
t+1

for the advisors to households and Êj

t

p⇤j
t+1

� p⇤j
t+1

for the

advisors to firms. Subjects were informed about the functional form of the payo↵ function and

were provided with a graph and a table in the instructions, illustrating the relationship between

the forecast error and the payo↵. Hence, the scores were based on how close participants’ forecasts

were to the actual outcome in the next period. The payo↵ units were fictitious and converted to

15This payo↵ function is to be preferred to a quadratic distance metric. Quadratic distance functions become
very flat for small forecast errors so that subjects have little incentives to think about small fluctuations in the
variables that they need to forecast.
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euros according to a fixed exchange rate which was 1 euro per 150 points. In addition, participants

received a show-up fee of 4 euros.16 Average earnings per session ranged between 15 and 25 euros.

4 Treatments

Treatment 1 is based on the structural model with (32) and �
⇡

being 0.5 so that the Taylor

principle is not fulfilled.17

Treatment 2 is based on the structural model with system (33) and �
⇡

being 1.5 so that the Taylor

principle is satisfied. �
⇡

= 1.5 is the original coe�cient found by Taylor (1993) and, moreover,

the coe�cient used by Pfajfar and Žakelj (2014) and Assenza et al. (2014).

Treatment 3 uses the structural model with system (34) and �
⇡

being 3. The motivation for this

treatment is twofold: Firstly, Clarida et al. (2000) find that US monetary policy in periods of

macroeconomic stability reacts more strongly to inflation with empirical estimates of �
⇡

ranging

from 2.15 to 3.13, depending on the subsample and the planning horizon of the central bank.18

The second reason is the lacking evidence for convergence with �
⇡

= 1.5. The treatments are

summarized in Table 2, also showing the number of observations (groups) collected for each

treatment:

Treatment �
⇡

no. observ. avg. earnings v (p) in points
1 0.5 2 373 (319)
2 1.5 4 2207 (1939)
3 3 4 2529 (2897)

Table 2: Treatments

5 Results

5.1 Aggregation over groups

Figure 2 shows the aggregates of inflation and output gap over the di↵erent experimental groups.

The following observations stand out:

16The fixed payo↵ in treatment 1 had to be adjusted to 14 euros to guarantee an adequate reward for two-and-
a-half-hours in the experiment.

17I refrain from using �⇡ close to 1, since as �⇡ ! 1 the (solved) equation for households becomes vit = 0.99Êi
tv

i
t+1.

Hence, only the individual forecast would matter and not the forecasts of other participants.
18Target horizons play no role in this experimental study. One reason why central banks adopt a target horizon

is that monetary policy a↵ects macroeconomic variables with some lag. (Clarida et al. (2000), p.160) However, by
design, in the experimental economy, monetary policy contemporaneously a↵ects macroeconomic variables so that
there is no good reason to engage in forward-looking behavior for the central bank.
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Figure 2: Aggregation over experimental groups

Observation 1. Not fulfilling the Taylor principle (Treatment 1 with �
⇡

= 0.5) leads to diver-

gence.

Observation 2. With the Taylor principle barely satisfied (Treatment 2 with �
⇡

= 1.5), inflation

tends to remain above the RE steady state and there is no evidence that the economy converges

within 50 periods.

Observation 3. With particularly aggressive monetary policy (Treatment 3 with �
⇡

= 3), the

economy converges to the RE steady state within 50 periods and tends to be similarly stable to

the reduced-form experiment.

5.2 Results at the group level

Analyzing single experimental groups could be important, since large heterogeneity between them

is an indicator that the economic development under this particular monetary policy regime ex-
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hibits high uncertainty.

Observation 4. For low Taylor rule coe�cients, i.e. �
⇡

= 0.5 or �
⇡

= 1.5, there is considerable

inter-group heterogeneity, while the heterogeneity tends to vanish with more aggressive monetary

policy, i.e. �
⇡

= 3.
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Figure 3: Outcomes with �
⇡

= 0.5

Figure 3 shows that the dynamics di↵er between the two groups in treatment 1 with �
⇡

= 0.5:

in group 1, aggregate outcomes follow an explosive path and never return to the vicinity of the

REE. In group 2, the path of macroeconomic variables displays extreme fluctuations.

Also figure 4 shows considerable heterogeneity between the four groups in treatment 2 with

�
⇡

= 1.5: groups 1 and 2 tend to display relatively low fluctuations above the steady state, while

group 4 displays larger fluctuations. In group 3, it looks as if there is convergence to the REE in

period 42, although this conclusion should be treated with caution since there is a downward-trend

in output gap from period 47 and inflation also decreases from period 49 to period 50.

In contrast, figure 5 shows less distinct heterogeneity for the groups of treatment 4 with �
⇡

= 3,

as the outcomes are all fairly stable and close to the RE steady state. This is similar to the

reduced-form experimental design. (Appendix 9.2.3 for the two reduced-form groups) In some

groups, the output gap exhibits some instability and displays persistent fluctuations. Yet, these

fluctuations are considerably lower than in the sessions with �
⇡

= 1.5.

Observation 5. In treatment 3 with �
⇡

= 3, inflation fluctuations tend to be countercyclical

with respect to output fluctuations.
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Figure 4: Outcomes with �
⇡

= 1.5

This stylized fact can be explained by the higher Taylor rule, reducing the positive feedback

in the system.

5.3 Evaluation of the results

Table 3 shows the average quadratic distance from the REE of each group. The highest distance

from the RE steady state is achieved, when the Taylor principle is not satisfied. However, this

at best implies that the Taylor principle is necessary for learnability but not that it is su�cient.

Treatment 2 with �
⇡

= 1.5, where the Taylor principle is satisfied, still does not provide evidence

for convergence to the RE steady state. Interestingly, the average quadratic distance in all ob-

servations is considerably above the ones found in the reduced form with the same Taylor rule

coe�cient.

Only if the monetary authority adopts a Taylor principle with coe�cient 3, the quadratic distance
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Figure 5: Outcomes with �
⇡

= 3

from the REE becomes su�ciently small so that in this case the REE provides a good approxima-

tion to actual economic outcomes. A Wilcoxon-Mann-Whitney rank-sum test shows a significant

di↵erence for the average quadratic di↵erence between inflation in treatments 2 and 3 (p-value:

0.0286), while for the output gap the di↵erence between treatments 2 and 3 exhibits borderline

significance (p-value: 0.0571).

6 Modeling expectation formation

The objective of this paper is not only describing the results of the experiment but investigating

whether the experimental data support an alternative formal modeling device that can be used

instead of rational expectations. A quantitative model of expectation formation should ideally be

able to forecast the evolution of macroeconomic time series under di↵erent coe�cients, a di↵erent

number of players or for a di↵erent time length than the ones used in the experimental sessions.
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Treatment �
⇡

Group Inflation Output gap

1 0.5 1 76524.54 154036
1 0.5 2 37769.78 19311.5
2 1.5 1 0.81 0.68
2 1.5 2 1.21 2.35
2 1.5 3 2.11 4.42
2 1.5 4 6.21 4.98
3 3 1 0.35 1.22
3 3 2 0.16 0.21
3 3 3 0.19 0.30
3 3 4 0.05 0.15

RF = reduced form; SF = structural form

Table 3: Average quadratic distance from the RE steady state

There are two general approaches to modeling learning: The first approach is finding a parsimo-

nious model with few parameters that is relatively easy to track and that predicts behavior well on

average. This view tends to be taken in the macroeconomic learning literature. Adaptive learning,

a frequently taken approach in macroeconomic contexts, tends to rely on few parameters and on

the weak assumption that agents adjust their beliefs in the direction of the observed outcomes.

(Marcet and Sargent, 1989; Sargent, 1994; Evans and Honkapohja, 2001) Adaptive learning could

be expected to correctly predict the aggregate patterns of non-convergence for 1.5 and convergence

for 3 within 50 periods, as faster convergence for a higher Taylor rule coe�cient was shown by Or-

phanides and Williams (2007) and Ferrero (2007) in a reduced-form New-Keynesian framework.

The second approach is building up behavioral models of heterogeneous expectations, which are

not only supposed to fit aggregate outcomes but also individual outcomes. A way how individual

heterogeneity has previously been introduced into learning is that agents choose among a finite

set of forecasting models, each of which has an endogenous probability of being chosen. (Brock

and Hommes, 1997; Anufriev and Hommes, 2012a)

To assess the empirical performance of the learning models, I create agent-based computational

economic (ACE) path simulations, which is a common methodology to understand the aggregate

behavior in laboratory experiments with human subjects. (See Du↵y (2006) for a detailed survey)

A path simulation uses initial behavior (e.g. the first two observations) from the experimental

sessions with the human subjects and subsequently calculates the experimental outcomes for fic-

titious computerized subjects that are endowed with the learning rules given in the models. The

criterion for model assessment is how well, in terms of mean square error to the experimental data,

a simulated path over 50 periods created by the model can replicate the time series of the di↵erent
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experimental groups. Additionally, following the idea of Kydland and Prescott (1982), I consider

whether the model simulations are able to match a set of aggregate and individual statistics. For

the sake of conciseness, the average of the outcomes and other statistics over experimental groups

are reported.

6.1 Modeling average behavior: Noisy adaptive learning

Appendix 9.3 shows that adaptive learning both with least squares and with constant gain qual-

itatively predicts large di↵erences in the convergence patterns between �
⇡

= 0.5, �
⇡

= 1.5 and

�
⇡

= 3. Yet, it would merely predict fluctuations in the presence of exogenous noise. Since in

this experimental economy there is no exogenous noise and all shocks come from the subjects, an

intriguing question to explore is whether the fit of an adaptive learning model to the data can be

improved by specifying noise in subjects’ learning processes. This would allow for more random-

ness in individuals’ behavior and thus also address the conceptual concern of heuristic-switching

models that subjects’ behavior may not be accurately described by a discrete, finite set of rules.

This section develops a simple model that has three building blocks: an adaptive rule as a bench-

mark; shocks representing randomness and an endogenous variance. The model thus adopts and

combines concepts from di↵erent kinds of literatures: adaptive learning similarly to Marcet and

Sargent (1989), Sargent (1994) and Evans and Honkapohja (2001), randomness in behavior as

in the microeconomic learning literature (see e.g. Anderson et al. (2004)) and conditional het-

eroskedasticity as in the financial econometrics literature (Engle, 1982; Bollerslev, 1986). While

the exposition is for v̄i, the procedure is exactly analogous for p⇤j.

6.1.1 The adaptive specification

There are several possible specifications for adaptive learning:

Êi

t

v̄i
t+1

= Êi

t�1

v̄i
t

+ �
t

(v̄i
t

� Êi

t�1

v̄i
t

) (36)

Êi

t

v̄i
t+1

= Êi

t�1

v̄i
t

+ �
t

(v̄i
t�1

� Êi

t�1

v̄i
t

) (37)

Êi

t

v̄i
t+1

= Êi

t�2

v̄i
t�1

+ �
t

(v̄i
t�1

� Êi

t�2

v̄i
t�1

) (38)
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(36) is the specification as it is commonly used in the adaptive learning literature. (Marcet and

Sargent, 1989; Evans and Honkapohja, 2001) However, this specification would be inconsistent

with the information structure in the experiment, as v̄i
t

is unknown at the time where agents need

to submit Êi

t

v̄
t+1

.

(37) would be the specification, using the standard assumption in the macroeconomic learning

literature that agents’ perceived law of motion corresponds to the minimum-state variable solution,

giving a perceived law of motion corresponding to a constant. (37) is the recursive form of agents’

estimate of this constant, using observations until period t-1.

(38) is plausible in an environment, where agents need to make two-period ahead forecasts such as

in the experiment, since v̄i
t

is a function of Ei

t

v̄i
t+1

and thus cannot be known at the time of being

asked to submit Ei

t

v̄i
t+1

. (38) states that agents adjust their forecasts in the direction of the last

observed forecast error, v̄i
t�1

� Ei

t�2

v̄i
t�1

. Thus, it corresponds to an explicit specification of the

“directional learning hypothesis” (Selten and Stoecker, 1986; Selten, 1998), which has frequently

been used in the microeconomic learning literature (see e.g. Nagel (1995); Anderson et al. (2004))

and which proposes that agents tend to shift their decisions in the direction of a best response to

recent outcomes.19

Another degree of freedom is the gain sequence, as one could adopt a decreasing gain scheme such

as �
t

= (t� 1)�1, a constant gain learning scheme such as �
t

= �̄, 8t or an endogenous gain as for

instance proposed by Marcet and Nicolini (2003).

When introducing exogenous noise with endogenous variance as described below, it turns out that

(38) with constant gain provides the best fit to the experimental data among these specifications.

Appendix 9.6 shows that a decreasing gain delivers much worse outcomes for Treatment 2 (�
⇡

=

1.5) than constant gain and endogenous gain only yields slight improvements for Treatment 3

(�
⇡

= 3.0) but does not seem preferable, as it renders the model considerably more intractable.

19The non-recursive form of (38) would imply that agents merely consider the even or the odd outcomes respec-
tively. This can be reconciled by the behavioral assumption of imperfect recall. Similarly to Molavi et al. (2015), I
assume that agents treat vit�1 � Ê

i
t�2v

i
t�1, i.e. the discrepancy between the last available outcome and the forecast

of that particular observation, as a su�cient statistic for all information available to them without considering how
Ê

i
t�2v

i
t�1 was formed. Piccione and Rubinstein (1997) present another application of imperfect recall.
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6.1.2 Introducing randomness

I first investigate how forecasting behavior of individuals in the experiment di↵ers from a forecaster

using the adaptive rule (38). I define the forecast of this adaptive forecaster, Êi,ADA

t

v̄i
t+1

, as20

Êi,ADA

t

v̄i
t+1

=Êi,ADA

t�2

v̄i
t�1

+ �(v̄i
t�1

� Êi,ADA

t�2

v̄i
t�1

) (39)

and the deviation of the actual forecast submitted by the subject from the adaptive forecast, (39),

as

⌘i
t

⌘ Êi

t

v̄i
t+1

�Êi,ADA

t

v̄i
t+1

(40)

Figure 6 shows the distributions for ⌘i
t

over the range -20 to 20.21

Observation 6. As shown in figure 6, ⌘i
t

is approximately normally distributed.

Observation 7. The variance of the distribution of ⌘i
t

di↵ers considerably across treatments. The

lower �
⇡

, the more likely extreme deviations from an adaptive rule occur.

Motivated by observations 6 and 7, I specify the shock ⌘i
t

⇠ N(0, �2

t,i

) as a random draw from

a normal distribution with an endogenous variance that depends on the forecast errors that would

have been achieved with an adaptive rule:22

�2

t,i

=!
t�1X

j=1

(1� !)j�1(v̄i
t�j

� Êi,ADA

t�j�1

v̄i
t�j

)2 (41)

= (1� !)�2

t�1,i

+ !(v̄i
t�1

� Êi,ADA

t�2

v̄i
t�1

)2 (42)

(42) postulates that if an adaptive rule performs well (poorly), subjects follow an adaptive rule

more (less) closely, as deviations from an adaptive rule tend to be small (large).

20The gain �̄ is calibrated as 0.2, being the maximum likelihood estimate obtained in Section 6.1.3.
21This range comprises over 90 % of all observations in treatments 2 and 3, but less than 50 % of all observations

for treatment 1.
22I considered the following alternative way of introducing shocks

Ê

i
tv

i
t+1 =Ê

i
t�2v

i
t�1 + �(vit�1 � Ê

i
t�2v

i
t�1) + ⌘

i
t

with endogenous shock variance

�

2
t,i = (1� !)�2

t�1,i + !(vit�1 � Ê

i
t�2v

i
t�1)

2

This approach is considerably less successful in fitting the experimental data no matter whether one uses (36),(37)
or (38) as the main specification.
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Figure 6: Deviations from adaptive rule with a constant gain of 0.2

Hence, this approach can be considered a more tractable simplification of the heuristic-switching

model by Brock and Hommes (1997) and Anufriev and Hommes (2012a). The di↵erence from

Anufriev and Hommes (2012a), who model deviations from an adaptive rule as switching to dif-

ferent forecasting rules, is that I consider random deviations from the adaptive rule. Furthermore,

noisy adaptive learning not only reproduces the convergence result of the reduced-form setup (see

Appendix 9.2.4) but also, in contrast to the heuristic-switching model, predicts the di↵erent dy-

namic patterns in treatment 2 (�
⇡

= 1.5) and treatment 3 (�
⇡

= 3.)

Noisy adaptive learning is also related to endogenous variance models in the financial economet-

rics literature (Engle, 1982; Bollerslev, 1986). In fact, (42) could be considered a GARCH(1,1)

specification, as it includes the first lag of the variance itself and the last observed (i.e. the first

lag of the) forecast error, which is the explanatory variable in the specification of the conditional

mean of a subject i’s forecast.
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6.1.3 Estimation

To simulate this model, Êi,ADA

0

v̄i
1

and Êi,ADA

0

v̄i
2

have been initialized as Êi

0

v̄i
1

and Êi

0

v̄i
2

, i.e. the first

two expectations submitted by each subject in the experiment. In period 2, Êi,ADA

2

v̄i
3

is calculated

according to (39) and the variance is initialized according to (42) as �2,i

2

= !(v̄i
1

�Êi

0

v̄i
1

)2. Following

a standard approach in the experimental (see e.g. Stahl (1996), Roth and Erev (1998), Camerer

and Ho (1999)) and macroeconomic literature (see e.g. McGrattan et al. (1997)), the parameters �,

and ! are estimated by maximum likelihood using the individual data all treatments, which gives

parameter estimates of � = 0.20 and ! = 0.62.23 Figure 7, depicting the experimental data and

the mean of 6,000 replications of the simulation, shows that the noisy learning model captures the

di↵erences in the speed of convergence between treatment 2 (�
⇡

= 1.5) and treatment 3 (�
⇡

= 3)

and the explosive patterns in treatment 1 (�
⇡

= 0.5.) Appendix 9.2.4 shows that noisy learning

can also replicate the convergence in the reduced-form design with �
⇡

= 1.5. Single replications

with the noisy learning model are shown in Appendix 9.5.2.

6.2 Modeling average and individual behavior: reinforcement

Appendix 9.4.1 shows that a major drawback of the heuristic-switching model by Brock and

Hommes (1997) is that it predicts too fast convergence for �
⇡

= 1.5. Hence, it is worthwhile to

reconsider the single components of this model: The steps are 1. evaluating which information

individuals use in this more complex setup than the reduced form (Section 6.2.1); 2. investigating

which forecasting rules individuals use (Section 6.2.2); 3. describing the model of endogenous

switching (Sections 6.2.3 and 6.2.4) in which these rules are used.

6.2.1 Which information do individuals use?

The approach taken to analyze which information individuals use is running OLS-regressions on

all information available to subjects. One challenge to these regressions is that in the structural

form, by construction, the individual outcomes are perfectly linear functions of both the individ-

ual forecasts and the aggregate outcomes, which results in strong multicollinearity when using

regressions. This is not only apparent for regressions at individual level (sample size: 50) but

even for regressions on individual data at group level (sample size: 600=12 subjects·50 periods),

23Estimating the model under the hypothesis of random shocks gives di↵erent gain parameters from the baseline
case without random shocks. One explanation is given by Engle (1982), showing that maximum likelihood, jointly
estimating the parameters of the mean and variance specifications, gives more e�cient parameter estimates.
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Figure 7: Actual (mean over all experimental groups) outcomes and simulated (mean over 6,000
replications) aggregated outcomes using noisy learning

forecaster type level (sample size: 1200=4 groups · 6 subjects·50 periods) and even treatment

level (sample size: 2400=4 groups · 12 subjects·50 periods), where estimation requires omitting

regressors due to collinearity. Providing enough variation in the data to disentangle the e↵ect

of di↵erent variables required pooled panel vector autoregressions (VARs) for both forecasting

groups (firms and households) over several treatments:

Êi

t

xi

t+1

=↵ +
3X

k=1

�
k

xi

t�k

+
3X

l=1

�
k

xi,av

t�l

+
3X

m=1

µ
m

Ê
t�m

xi

t�m+1

+
3X

n=1

⌫
n

⇡
t�n

+
3X

o=1

!
o

v
t�o

+
3X

p=1

⇠
p

i
t�p

+ ⌘
t,i

(43)

so that subjects’ forecasts of their individual variables xi

t

= {v̄i
t

, p⇤j
t

} are regressed on the first

three lags of all potential available information: the individual outcome, the sample mean of the
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individual outcomes xi,av

t�l

until time t� l, the individual forecast, inflation, aggregate expenditure

and the interest rate.24 Standard errors were clustered at subject level. Besides the baseline

pooled OLS-regression over all treatments, I provide the following robustness checks: a) inclusion

of individual fixed e↵ects25 and b) omitting the unstable treatment 1 (�
⇡

= 0.5). Table 4 reports

the results.

In all specifications, the means of the past outcomes are highly significant. Due to the high

(1) (2) (3) (4)
VARIABLES Tr. 1-3 Tr. 1-3 Tr. 2-3 Tr. 2-3

Dep. variable: Forecast
Outcome (lag 1) -0.0712 0.0441 0.708 0.691*
Outcome (lag 2), -0.224 -0.211 -0.964 -0.855
Outcome (lag 3), 0.0805 0.158 0.367 0.537
Mean past outcome (lag 1), 9.722*** 8.275*** 10.13*** 8.530***
Mean past outcome (lag 2), -12.19** -10.11** -12.17*** -10.32***
Mean past outcome (lag 3), 2.893 2.143 2.278** 1.787*
Forecast (lag 1) 0.440*** 0.353** -0.284 -0.239
Forecast (lag 2) 0.334 0.288 1.073 0.954
Forecast (lag 3) -0.0740 -0.156* -0.350 -0.506
Inflation (lag 1) 0.454 -0.345 4.816 4.172
Inflation (lag 2) -0.0222 0.314 -7.309 -6.805
Inflation (lag 3) 0.720* -0.0509 3.779 2.603
Aggregate v (lag 1) -0.0235 -0.0156 -0.698 -0.668
Aggregate v (lag 2) 0.213 0.213 1.833 1.800
Aggregate v (lag 3) -0.0919 -0.0794 -0.795 -0.808
Interest rate (lag 1) -0.268 1.165 -1.109 -0.697
Interest rate (lag 2) -0.884 -1.573** 0.110 -0.106
Interest rate (lag 3) -1.279** 0.186 -0.0952 0.517
Constant 16.99*** 11.77** 5.563** 4.847

Fixed e↵ects NO YES NO YES

Observations 5,640 5,640 4,512 4,512
R2 0.789 0.600 0.786 0.714
Number of subjects 120 120 96 96

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Regression

collinearity, F-tests for joint significance have been conducted on the null hypothesis that the

24Panel regressions often include time fixed e↵ects to capture omitted factors that are common in the period.
Since in this application all information that subjects receive is controlled for, the interpretation of these time
dummies would become dubious.

25Nickell (1981) shows that the fixed e↵ects estimator is inconsistent when the strict exogeneity assumption is
violated like in this application with a dynamic panel. However, as the number of time periods is large, the bias is
small.
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aggregate variables have no predictive power for individual forecasting behavior. In regressions

1 and 2, only higher-order lags of the interest rate are significant, which seems a non-credible

result. If one excludes the significant higher-order lags of the interest rate, the hypothesis that the

remaining variables have a zero e↵ect could not be rejected at the 5 % significance level neither in

regression 1 (p-value: 0.0876) nor in regression 2 (p-value: 0.1126). Once the unstable treatment

1 (�
⇡

= 0.5) is removed, the aggregate variables are all jointly highly insignificant (p-value in

regression 3: 0.3594; p-value in regression 4: 0.3721) Lags one to three of the individual forecasts

and outcomes, however, are jointly highly significant independently of the specification.

Eyeballing the data gives rise to a strong concern that behavior cannot be adequately captured by

linear forecasting models. A Ramsey RESET test, which detects potential misspecification and

structural breaks, provides strong evidence that this general linear model is misspecified for each

specification (p-value: 0.0000), a result which remains robust when the insignificant variables are

removed. (p-value: 0.0000)

6.2.2 Individual regressions

I focus on forecasting rules based on individual variables for three reasons: first, there is no

evidence in the pooled regression that aggregate variables play any role in determining forecasting

behavior; secondly, the inclusion of aggregate and individual variables would cause collinearity in

regressions at individual level; thirdly, the assumption that subjects use heuristics solely based on

the variable they are asked to forecast is frequently made in learning-to-forecast experiment. (See

e.g. Assenza et al. (2014), Anufriev and Hommes (2012a)).

The rules considered are the ones that have been found to be important in previous learning-to-

forecast experiments and are described in more detail in table 5:

Rule Description

adaptive ADA xe

t+1

= xe

t

+ ↵(x
t�1

� xe

t

)

trend-following TR xe

t+1

= x
t�1

+ ↵(x
t�1

� x
t�2

)

anchor & adjustment LAA xe

t+1

= 0.5(xav

t�1

+ x
t�1

) + ↵(x
t�1

� x
t�2

)

xt = {v̄it, p
⇤j
t }

Table 5: Set of heuristics

I determine which linear model describes each subject best on average by running an OLS

regression for each rule and for each individual. Since in all three rules, one coe�cient had to
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be estimated, R2 could be used to determine the best linear model for each subject.26 Figure 8

shows considerable heterogeneity in forecasting behavior both across treatments and across roles

(household vs. firm advisor.)

Observation 8. In all treatments, households engage more in adaptive behavior than firms.

Observation 9. The impact of the trend-following rule becomes smaller, as the Taylor rule

coe�cient is increased.
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Figure 8: Characterization of the subjects

6.2.3 Endogenous switching

The analysis in Section 6.2.2, assuming that individuals can throughout be represented by the

same forecasting model, represents a simplistic view, as previous learning-to-forecast experiments

(Anufriev and Hommes, 2012a; Bao et al., 2013; Pfajfar and Žakelj, 2014; Assenza et al., 2014)

document that switching between di↵erent models provides a more accurate description of their

26The use of R2 is equivalent to the use other measures, such as sum of squared errors (SSE) or mean square
error (MSE).
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decisions. Therefore, Brock and Hommes (1997) and Anufriev and Hommes (2012a) endogenize

the switching probability by linking it to the past performance of di↵erent forecasting rules.

Their model presumes a finite set of forecasting rules H. Given the evidence in 6.2.2, I use the same

four heuristics (adaptive, weak trend-following, strong trend-following, anchor and adjustment) as

Anufriev and Hommes (2012a).27 However, one heuristic is added, as it is frequently observed in

Treatment 2 (�
⇡

= 1.5): unchanged behavior, which means submitting exactly the same forecast

as in the previous period so that xe

t+1

= xe

t

. This is a special case of adaptive (ADA) forecasting

with ↵ = 0. The precise specifications of the five heuristics are given in table 6. While the

Rule Description
adaptive ADA xe

1,t+1

= 0.3x
t�1

+ 0.7xe

1,t

weak trend-following WTR xe

2,t+1

= x
t�1

+ 0.4(x
t�1

� x
t�2

)
strong trend-following STR xe

3,t+1

= x
t�1

+ 1.3(x
t�1

� x
t�2

)
anchor & adjustment LAA xe

4,t+1

= 0.5(xav

t�1

+ x
t�1

) + (x
t�1

� x
t�2

)
unchanged UC xe

5,t+1

= xe

5,t

xt = {v̄it, p
⇤j
t }

Table 6: Set of heuristics

heuristic-switching model correctly predicts the explosive behavior for �
⇡

= 0.5, the model does not

accurately predict the distinction between �
⇡

= 1.5 and �
⇡

= 3 as it is observed in the experimental

treatments, because the heuristic-switching model predicts relatively fast convergence for �
⇡

= 1.5

to the RE steady state, while in the experiment, in particular for p⇤, there is no evidence for

convergence to the RE steady state within 50 periods.

Observation 10. The di↵erent game structure in the structural form as compared to the reduced

form makes it less plausible that subjects consider “fictitious play.”

The heuristic-switching model assumes that subjects fix the outcomes in their minds and con-

sider the fictitious ceteris-paribus payo↵s that unchosen strategies would have yielded. However,

in the structural form, subjects are informed that their outcome depends not only on aggregate

behavior but also on their individual forecasts. From a conceptual point of view, it is therefore not

reasonable to hold the outcome fixed and consider the payo↵ of an alternative strategy. Thus, the

rule to which subjects switch may be determined by experimentation rather than by fictitious play

considerations, an idea which is referred to as “reinforcement learning” (Roth and Erev, 1998).

27I follow Anufriev and Hommes (2012a) in obtaining the coe�cients of the heuristics from subject-level regres-
sions. While the coe�cients for trend-following rules are similar to reduced-form experiments, the gain coe�cient
in the adaptive rule di↵ered considerably between the structural and the reduced form. While the median gain
across all subjects of type ADA in the reduced form replication corresponded roughly to 0.65, which is the estimates
of Anufriev and Hommes (2012a), in the structural the median gain was approximately 0.3.
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If this argument is correct, one would observe that a reinforcement model performs considerably

better than the heuristic-switching model.

6.2.4 Specification for reinforcement

There are two related modeling approaches for reinforcement: firstly, introducing a parameter

that governs fictitious play into Anufriev and Hommes (2012a); secondly, returning to the original

specification by Roth and Erev (1998).

Table 6.2.4 illustrates the similarities and di↵erences between Anufriev and Hommes (2012a) and

Roth and Erev (1998). Both models consist of an equation updating the performance of each

heuristic h for an individual i. The crucial di↵erence is that Anufriev and Hommes (2012a) con-

sider fictitious play so that they do not distinguish whether the heuristic h has been played or not,

while Roth and Erev (1998) merely update the performance of heuristics that have been played.

To the best of my knowledge, this is the first application of Roth and Erev (1998) to data from a

“learning to forecast” experiment.

The performance measure of heuristic h (denoted U or q respectively, keeping the original nota-

tion of the papers) is then used to calculate the probability of playing this particular heuristic h,

where the probability of heuristics not being applied is not updated in Roth and Erev (1998). An

adaptation of Anufriev and Hommes (2012a) to my setup is the individual-superscript. This is

unnecessary for the original setups for which the model has been developed, where agents forecast

the same aggregate outcomes and n
h,t

thus depends on identical outcomes being common knowl-

edge. In my setting, subjects forecast individual outcomes, whose realizations are observed in

addition to aggregate data.28 I use the same calibration for the learning parameters as Anufriev

and Hommes (2012a) and Roth and Erev (1998).29

An idea would be introducing a parameter �, governing fictitious play, into Anufriev and Hommes

(2012a). Yet, it turns out that the approach by Roth and Erev (1998) yields a better quantitative

28Thus, there are two possible approaches: the first one is interpreting n

i
h,t as the probabilities of agents using

a particular rule, so that Ê

i
tv

i
t+1 = v

i,e
h,t+1 with probability n

i
h,t. The second approach is interpreting n

i
h,t as the

shares that agent i attaches to each heuristic h so that Êi
tv

i
t+1 =

PH
h=1 n

i
h,tv

i,e
h,t+1. While the latter approach results

in deterministic forecasts and outcomes, the former gives stochastic simulations so that each time the simulation is
executed the simulated path is di↵erent. There is little di↵erence in mean square error over repeated simulations
between these approaches.

29These parameters cannot be reestimated by maximum likelihood, as heuristic-switch and reinforcement merely
choose between five points for each subject, which would give a likelihood of zero if actual forecasts in the exper-
iment di↵er from the forecasts predicted by the model. Anufriev and Hommes (2012a) find these parameters by
“experimentation.”
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Heuristic-switching
(Brock and Hommes, 1997)

Reinforcement
(Roth and Erev, 1998)

Anufriev and Hommes (2012a)

Updating of performance

U i

h,t

= ⌘U i

h,t�1

+ Payo↵i
t�1

qi
h,t

=

(
(1� �)qi

h,t�1

+ Payo↵i
t�1

if rule h used

0 otherwise

Calibration: ⌘ = 0.7 � = 0.1
probabilities

ni

h,t

= �ni

h,t�1

+ (1� �)
exp(�U

i
h,t�1)P

h �U
i
h,t�1

pi
h,t

=
q

i
h,tP
h q

i
h,t

Calibration: � = 0.9
� = 0.4

idea: reconsider relative weight of fictitious play �:
U i

h,t�1

= ⌘U i

h,t�1

+ (�+ (1� �) (h played))Payo↵i
t�1

Anufriev and Hommes (2012a): � = 1
� = 0
I follow Roth and Erev

(.) denotes the indicator function, being 1 if the statement in brackets is true and 0 otherwise

Table 7: Reinforcement

fit than Anufriev and Hommes (2012a) even when the �-parameter is introduced. (Details for the

simulation of the heuristic-switching model in Appendix 9.4.1). Appendix 9.2.4 shows that even

for the reduced-form model reinforcement yields a lower mean square error than the heuristic-

switching model for both aggregate variables.

The simulation is initialized by the first two individual outcomes for 6 individuals, two initial

attractions for each strategy, which have been set to 0.2 to give each strategy equal weight. With

the initial values and the initial probabilities, the outcomes in periods 3 and 4 can be computed.

From period 5, each individual expectation and outcomes is fully determined by the simulations.

For the starting values of each experimental group, 6,000 replications of the simulation have been

conducted. Finally, I average over all experimental groups. Examples of single replications are

given in Appendix 9.5.1. Figure 9 depicts the average outcomes over 6,000 replications, showing

that the reinforcement model only converges slowly in treatment 2 (�
⇡

= 1.5).
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Figure 9: Actual (mean over all experimental groups) outcomes and simulated (mean over 6,000
replications) aggregated outcomes using reinforcement

7 Model comparison

7.1 Criteria for model assessment

7.1.1 Mean square error (MSE)

One common criterion to evaluate the models is a quadratic loss function between the aggregate

outcomes v̄ and p⇤ in each experimental group and the aggregate outcomes v̄M and p⇤M created by

the simulated paths described above. This procedure is standard both in experimental economics

(see e.g. Roth and Erev (1998)) and in the macroeconomic learning literature (see e.g. Orphanides

and Williams (2007)), as a central focus in the both literatures are long-run phenomena such as

convergence. While the exposition is for v̄, the procedure is exactly analogous for p⇤. The mean
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square error (MSE) by each model M is:

MSEM =
1

4

4X

g=1

1

48

50X

t=3

(v̄
t,g

� vM
t,g

)2 (44)

where t is time period subscript and g is group subscript. Thus, v̄
t,g

is the aggregate expendi-

ture variable in group g in time period t, while v̄M
t,g

is the forecast of the aggregate variable for

period t by model M. The particular v̄M
t,g

that minimizes the mean square error is the conditional

expectation E(v̄M
t,g

|[v̄1, ..., v̄6]
t=1,2

, [p⇤1, ..., p⇤6]
t=1,2

) (see e.g. Hamilton (1994); p. 72) Since noisy

learning and reinforcement are stochastic models and the conditional expectation of reinforcement

is particularly challenging to evaluate analytically, I use the ensemble average of a large number

of replications (N = 6, 000), which is a good approximation of the conditional expectation due

to the weak law of large numbers. To ensure comparability, this procedure has been adopted for

both models. Specifically:

MSEM ⌘ 1

4

4X

g=1

1

48

50X

t=3

(v̄
t,g

� 1

N

NX

n=1

v̄M
t,g,n

)2 (45)

where the n-subscript denotes the n-th replication. Due to the self-referential nature of the system,

the models exhibit path dependence so that the initial conditions can have a large impact on the

dynamic behavior of the outcomes. To address this concern, I discard the first 30 periods, as this

is standard for simulations in the learning literature to attenuate the e↵ect of initial conditions.

See for example Orphanides and Williams (2007).

7.1.2 First and second moments

Anufriev and Hommes (2012b) note that mean square error may be a dubious criterion to evaluate

models that exhibit fluctuations, as those are penalized if the fluctuations are out of phase with

the real data. To address this concern, I compare the first (mean) and second moments (standard

deviation) predicted by the path simulations of the learning models to those in the experiment.

7.1.3 Mean square distance (MSD) to REE

The mean is indicative of how fast the model converges, while the standard deviation is a measure

of the fluctuations. As a robustness check, it is useful to report a statistic that measures these

two concepts simultaneously, which is the mean square distance to the REE.
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7.1.4 Individual statistics

As a particularly interesting question to ask is how well the learning models capture the underlying

individual behavior, a set of individual statistics is reported: mean square error (MSE) and the

mean square distance (MSD) from REE averaged over all individuals as well as an index of

intra-period dispersion, calculated as 1

T

P
50

t=1

Std. dev.(vi
t

) for household advisors and analogously

1

T

P
50

t=1

Std. dev.(p⇤j
t

) for firm advisors.

7.2 Results

The results for noisy adaptive learning and reinforcement are reported in table 8 for all periods

and in table 9 for periods 30-50. The complete statistics for all learning models, including least

square learning, constant gain and heuristic-switching, are in Appendix 9.7. The simulation result

that is closer to the experimental data is bold-faced.30 The following results stand out:

Observation 11. Treatment 1 (�
⇡

= 0.5): While noisy adaptive learning qualitatively predicts

divergence, reinforcement provides a better quantitative fit.

Observation 12. Treatment 2 (�
⇡

= 1.5): Noisy adaptive learning provides a better quantitative

fit than reinforcement.

Observation 13. Treatment 3 (�
⇡

= 3): While statistics for the whole sample indicate that

reinforcement is the better model, this conclusion may be driven by initial conditions. For periods

30-50 in treatment 3 (�
⇡

= 3), it largely depends on the statistic of interest which model receives

a better fit.

Hence, the answer to the question which model should be used for expectation formation

depends on the context: If the researcher looks for a tractable model with few parameters, noisy

adaptive learning may be a good choice. If the research focus is, on the other hand, for instance

on examining di↵erences in expectation formation for a divergent path as opposed to paths that

stay in the vicinity of the REE, a more sophisticated model such as reinforcement may need to

be used.
30Investigating significance is not conclusive in this context, as the sample size is very large due to a large number

of replications. An extremely large sample size leads to a standard error close to zero, which leads to extremely
low p-values even if the di↵erence is minimal.
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�
⇡

= 0.5 �
⇡

= 1.5 �
⇡

= 3.0
Measures Data Reinf. Noisy Data Reinf. Noisy Data Reinf. Noisy

Aggregates
MSE: v̄ 0.00 149720.10 271734.30 0.00 7.68 7.25 0.00 0.71 1.24
MSE: p⇤ 0.00 305299.15 517709.31 0.00 18.29 18.21 0.00 1.02 1.92
Mean: v̄ 377.43 485.33 8.59 1.32 0.16 1.18 0.26 -0.02 -0.17
Mean: p⇤ 562.20 725.75 15.41 5.05 3.34 6.40 2.72 2.19 3.32
MSD from REE: v̄ 268390.11 443216.51 129.21 8.58 1634.55 5.34 0.75 1.22 1.86
MSD from REE: p⇤ 514324.42 925942.38 290.86 23.26 4376.35 24.57 1.70 2.47 4.08
Standard dev.: v̄ 311.47 402.38 6.03 2.41 1.68 1.74 0.71 0.69 1.27
Standard dev.: p⇤ 434.66 569.56 8.60 3.19 2.67 1.79 0.99 1.03 1.50

Individuals
MSE: v̄i 0.00 142536.97 347077.80 0.00 5068.70 7370.78 0.00 5895.72 8408.16
MSE: p⇤j 0.00 310652.46 508485.47 0.00 25.13 29.04 0.00 5.85 11.40
MSD from REE: v̄i 343486.43 674365.20 243.48 7152.72 82.78 109.26 8060.09 19.90 28.80
MSD from REE: p⇤j 505904.75 1320941.26 239.52 34.08 11.19 28.12 11.05 2.75 13.18
Dispersion of v̄i 278.19 219.71 14.54 45.67 25.24 8.91 31.93 18.92 7.54
Dispersion of p⇤j 160.10 42.83 5.81 2.92 1.65 3.21 1.86 1.26 2.91

MSE=mean square error; MSD=mean square distance

Table 8: Measures all periods

�
⇡

= 0.5 �
⇡

= 1.5 �
⇡

= 3.0
Measures Data Reinf. Noisy Data Reinf. Noisy Data Reinf. Noisy

Aggregates
MSE: v̄ 0.00 201402.64 330359.47 0.00 8.26 7.28 0.00 0.32 0.84
MSE: p⇤ 0.00 383002.42 558448.10 0.00 20.25 14.71 0.00 0.59 0.43
Mean: v̄ 494.84 847.00 13.59 1.03 -0.39 0.21 0.10 -0.05 -0.54
Mean: p⇤ 707.07 1247.83 23.33 4.89 2.01 5.16 2.37 1.97 2.20
MSD from REE: v̄ 343633.59 847755.38 255.30 7.43 3887.46 2.50 0.31 2.04 1.08
MSD from REE: p⇤ 588244.14 1735919.83 583.50 21.57 10401.91 15.23 0.55 4.65 0.69
Standard dev.: v̄ 241.03 196.44 5.40 2.08 0.99 1.14 0.50 0.35 0.70
Standard dev.: p⇤ 272.92 188.03 6.79 2.69 1.42 1.11 0.49 0.38 0.60

Individuals
MSE: v̄i 0.00 176738.81 426851.90 0.00 2926.50 2693.71 0.00 2239.73 2415.66
MSE: p⇤j 0.00 400773.41 586213.54 0.00 25.59 19.16 0.00 2.51 3.99
MSD from REE: v̄i 444173.06 823199.31 689.85 2734.91 9610.66 102.91 2408.98 20902.58 85.68
MSD from REE: p⇤j 616582.76 1713221.67 634.34 27.13 10307.62 23.00 2.55 5.88 4.35
Dispersion of v̄i 360.54 299.81 15.87 35.15 27.24 8.84 17.97 25.59 7.18
Dispersion of p⇤j 221.88 46.21 6.02 2.29 1.08 1.99 1.00 0.52 1.64

MSE=mean square error; MSD=mean square distance

Table 9: Measures periods 30-50

8 Conclusion

This study has shown that due to the di↵erent feedback structure, the structural-form New-

Keynesian model does not produce the same results as the reduced-form New-Keynesian model.

This implies that analysts or researchers should be careful, if they draw policy implications based

on empirical analysis with the reduced-form New-Keynesian model. More generally, relying upon

RE models for policy analysis might not be constructive, if the observed process of expectation

formation exhibits bounded rationality, as conclusions and policy implications that are based

upon RE might be misleading. This study provides an important example, since the experimental

results indicate that barely fulfilling the Taylor principle can at best “prevent the worst” but
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exhibits no evidence of convergence to the REE even within the considerable time frame of 50

periods. A novel feature of this paper is the application of the reinforcement model by Roth and

Erev (1998) to data generated by a “learning-to-forecast” experiment. Furthermore, a theoretical

contribution is the noisy adaptive learning model based on the experimental data to explain both

the slow convergence for a Taylor rule coe�cient of 1.5 in the structural form and the expectation-

driven fluctuations. Consistently with the experimental results, both adaptive learning and noisy

learning suggest that the monetary authority might need to adopt a reinforced Taylor principle

with a larger reaction coe�cient to ensure E-stability of the REE.

Laboratory experiments are one example of providing empirical foundations for actual behavior,

but they are not the end of exploring bounded rationality. One needs to test their external validity

and find a good connection to decisions of real firms and households. This is crucial in order to

verify the policy recommendations implied by the experimental data and thus certainly a potential

direction of further research. Yet, laboratory experiments are a good starting point for several rea-

sons. firstly, they provide the closest link to the theoretical models, as important assumptions from

theory can easily be implemented in the laboratory. Secondly, they can o↵er intuition and hints,

pinpointing in which direction existing models could be extended and what to look for in real data.
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9 Appendix

9.1 Model in Woodford (2013)

9.1.1 The demand side

This cashless economy is populated by a continuum of households, indexed by i, seeking to maxi-

mize the present discounted value of expected utility

Êi

t

1X

T=t

�T�t[U(C i

T

)�⌥(hi

T

(j))] (46)

where C i

t

is a composite consumption good and Êi

t

is an arbitrary subjective (not necessarily

rational) expectations operator of household i given the information set in period t, which however

satisfies the law of iterated expectations such that Êi

t

Êi

t+1

x
t+k

= Êi

t

x
t+k

. hi(j) is the amount of

labor supplied by household i for the production of good j. The second term in the brackets is

to be interpreted as the total disutility of labor supply. There is an equal number of households

supplying labor for each type of good.31

The household has no choice but supplying the hours of work demanded by the firm at the given

wage, being negotiated by a union on behalf of all households, so that H i(t) =
R

1

0

hi(j) = H
t

, 8i.

Thus, a household has a single decision each period, which is the amount to individually spend

on the composite consumption good, C i

t

, defined as:

C i

t

⌘ [

Z
1

0

ci
t

(j)
✏�1
✏ ]

✏
✏�1 with associated price index P

t

⌘ [

Z
1

0

P
t

(j)1�✏]
1

1�✏ (47)

where ci
t

(j) is the (real) expenditure of household i on good j. One main di↵erence of this het-

erogeneous agent model to the representative agent model is that households can have non-zero

asset holdings. There is one single riskless one-period bond in the economy and the household’s

law of motion of bond holdings can be written as

Bi

t+1

= (1 + i
t

)[Bi

t

+W
t

H
t

+

Z
1

j=0

⇧̃
t

(j)dj �
Z

1

j=0

p
t

(j)ci
t

dj � T
t

] (48)

31Woodford (2003, p. 144↵.) shows that under this assumption, this is equivalent to a representative agent
supplying labor for each type of good.
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where i
t

denotes the nominal interest rate on bonds held at the end of period t, Bi

t

the household’s

nominal bond holdings carried into period t, W
t

is the nominal wage, ⇧̃
t

(j) is nominal profits of

firm j (distributed in equal dividend shares to the households), p
t

(j) is the price of good j and T
t

denotes net lump-sum taxes. Since each firm’s profits are given by

⇧̃
t

(j) = p
t

(j)y
t

(j)�W
t

H
t

(j) (49)

we have

Z
1

j=0

p
t

(j)y
t

(j)dj = W
t

H
t

+

Z
1

j=0

⇧̃
t

(j)dj (50)

Optimal allocation of household expenditure across di↵erentiated goods yields the set of demand

equations

ci
t

(j) = C i

t

(
P
t

(j)

P
t

)�✏ (51)

which further implies

Z
1

j=0

p
t

(j)ci
t

(j)dj = P
t

C i

t

(52)

Z
1

j=0

p
t

(j)y
t

(j)dj = P
t

Y
t

(53)

where Y
t

is aggregate demand for the composite consumption good defined in (47). Standard anal-

ysis shows that household intertemporal optimality is given by the consumption Euler equation:

1

1 + i
t

= �Ê
t

[
P
t

P
t+1

U
C

i
,t+1

(C i

t+1

)

U
C

i
,t

(C i

t

)
] (54)

To work with a predetermined indicator of bond holdings, we define bi
t

⌘ B

i
t

Pt�1 ¯⇧
. The structural

relations of the model are subsequently log-linearized around a deterministic steady state in which

(a) the inflation steady state ⇡̄ is set by the monetary authority, i
t

⇡ ln(1 + ī) = ⇡̄ � ln � (as

implied by (54))32, bi
T

=
B

i
T

PT�1
= b̄, Y

T

= Ȳ , C
T

= C̄ and ⌧̄
T

⌘ TT
PT

= ⌧̄ for all T � t, (b) all

32Assenza et al. (2014) and Pfajfar and Žakelj (2014) neglect the term ln�.
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subjective expectations are correct. By log-linearising (54) and (48), we obtain

ĉi
t

=Êi

t

ĉi
t+1

� �(̂i
t

� Êi

t

⇡̂
t+1

) (55)
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� ⌧̂
t

)� ĉi
t

) (56)

where s
b

⌘ ¯

b

ˆ

Y

. “x̂
t

” (in minuscules) denotes the deviation from the steady state in natural loga-

rithms of any variable X at time t; except for nominal bond holdings, where b̂i
t

⌘ b

i
t�¯

b

¯

Y

is written

in terms of steady state output, and the interest rate, where î
t

= ln 1+it
1+

¯

i

is used.

Solving (55) forward at time t and substituting the result into the also forward-solved equation

resulting from (56) gives:

ĉi
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1X

T=t

�T�tÊi

t

{(1� �)(Ŷ
T

� ⌧̂
T

)� ��(̂i
T

� ⇡̂
T+1

) + (1� �)s
b

(� î
T

� ⇡̂
T

)} (57)

(57) can be rewritten in its recursive form under internally consistent expectations of the household

as

ĉi
t

= (1� �)b̂i
t

+ (1� �)(Ŷ
T

� ⌧̂
T

)� �[� � (1� �)s
b

]̂i
t

� (1� �)s
b

⇡̂
t

+ �Êi

t

vi
t+1

(58)

where

vi
t

⌘
1X

T=t

�T�tÊi

t

{(1� �)(Ŷ
T

� ⌧̂
T

)� [� � (1� �)s
b

](� î
T

� ⇡̂
T

)} (59)

The advantage of this notation is that individuals only need to forecast a single variable. Using

the goods market clearing condition Ŷ
t

=
R
ĉi
t

di, aggregate demand can be obtained as

Ŷ
t

= (1� �)b̂
t

+ v
t

� �⇡̂
t

(60)

Woodford (2013) assumes for simplicity that government expenditure is an exogenous disturbance,

but, since I introduce the model into the laboratory without any shocks, in my setup, the govern-

ment merely uses the taxes to service the debt it has accumulated. Hence, the government’s flow
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budget constraint is given as

b̂
t+1

= ��1[b̂
t

� s
b

⇡̂
t

� ⌧̂
t

] + s
b

î
t

(61)

(4) implies the recursive form

vi
t

= (1� �)v
t

+ �(1� �)(b̂
t+1

� b̂
t

)� ��(̂i
t

� ⇡̂
t

) + �Êi

t

vi
t+1

(62)

where v
t

=
R
vi
t

di is the average value across agents of the expectational variable defined in (4).

I follow Woodford (2013) in assuming that expectations are Ricardian so that

b
t

= Êi

t

1X

T=t

�T�t[⌧̂
T

� s
b

(� î
T

� ⇡̂
T

)] (63)

This is a strong assumption. However, it simplifies the model considerably and this assumption

is frequently made in non-RE analyses. (See Woodford (2013) for a detailed discussion.) In the

context of this experiment, this can be interpreted as the computerized household understanding

that government cannot forever accumulate debt. Under this assumption, aggregate demand is

independent of the supply of public debt and can be more compactly written as

Ŷ
t

= v̄
t

� �⇡̂
t

(64)

where v̄
t

= v
t

+ (1 � �)b̂
t

is the aggregate of a subjective variable v̄i
t

, which is the variable that

one group of subjects, labeled as “household advisors”, needs to forecast in the experiment, and

which can be defined simply as

v̄i
t

⌘
1X

T=t

Êi

t

{(1� �)Ŷ
T

� �(�i
T

� ⇡
T

)} (65)

9.1.2 The supply side

We assume Calvo (1983) price-setting such that a fraction 0 < ↵ < 1 of goods prices are ex-

ogenously held fixed in any period. Producers engage in monopolistic competition, which means

that each firm sets the price for a good that it alone produces. Under full price indexation, the

51



log-linearized approximation of the inflation dynamics is given by

⇡̂
t

= (1� ↵)p̂⇤
t

(66)

where, for each firm j that is chosen to re-optimize its price in period t, p⇤j
t

is the amount by which

the firm would choose to set the log price of its good higher than p
t�1

. p⇤
t

=
R
p⇤j
t

dj is the average

value of this variable across all firms that are chosen by the Calvo mechanism to reoptimize prices

in period t. The firm j’s maximization problem is

max
P

⇤j
t

1X

T=t

↵T�tÊj

t

{Q
t,T

(P ⇤j
t

Y
T

(j)⇧̄T�t � (Y
T

(j)))} (67)

subject to (51), where Y
T

(j) denotes output in period T for a firm j,  (.) is the nominal cost

function and Q
t,T

is the stochastic discount factor, describing how a unit of income in each state

and at date T is valued in the present:

Q
t,T

= �T�t

P
t

P
T

U
C

(Y
T

)

U
C

(Y
t

)
(68)

Denoting MC
T |t =

 t

PT
as the real marginal cost, the log-linearized first-order condition then takes

the form:

p̂⇤j
t

= (1� ↵�)
1X

T=t

(↵�)T�tÊj

t

{popt
T

� p
t�1

� (T � t+ 1)⇡̄} (69)

where popt
T

⌘ m̂c
t

+ p
T

is the single-period optimal log price, being the same for each firm, as they

face the same labor market and aggregate conditions. Using the law of iterated expectations, one

can rewrite (19) in its recursive form:

p̂⇤j
t

= (1� ↵�)(popt
t

� p
t�1

� ⇡̄) + ↵�(Êj

t

p̂⇤j
t+1

+ ⇡̂
t

) (70)

Suppose that a union sets the wage on behalf of the households under the objective that at that

wage, a marginal increase in labor demand would neither increase nor decrease average perceived

utility across households, if for each household the marginal utility of additional wage income is

weighted against the marginal disutility of additional work. Hence, the optimality condition for
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the union is

⌥
h

(h
t

)

u
C,t

(C
t

)
=

w
t

P
t

(71)

By log-linearising (71), one obtains

!̂
t

= #̂
t

� û
c,t

(72)

where !
t

is the log real wage, #
t

is the log of the (common) marginal disutility of labor and u
c,t

is the (log) aggregate of the marginal utility of additional real income. Since

û
c

i
,t

= ���1ĉi
t

(73)

we have

!̂
t

= #̂
t

+ ��1ĉ
t

= #̂
t

+ ��1Ŷ
t

(74)

Given that m̂c
t

= !̂
t

� m̂pn
t

and since both #̂
t

and m̂pn
t

can be expressed as functions of labor

hours and thus as output (which is determined by the market clearing condition for the aggregate

goods market), one can summarize popt
t

as

popt
t

= p
t

+ ⇠Ŷ
t

(75)

Under the assumption of constant returns to scale in the aggregate and a disutility function of

labor of

⌥(hi

t

(j)) =
hi

t

(j)1+'

1 + '
(76)

it is easy to see that

⇠ ⌘ ��1 + ' (77)
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We obtain, by using (75) in (20):

p̂⇤j
t

= (1� ↵)p̂⇤
t

+ (1� ↵�)⇠Ŷ
t

+ ↵�Êj

t

p̂⇤j
t+1

(78)

9.2 Reduced form

9.2.1 Systems

In matrix form, the system comprising the “dynamic IS” equation (27) and the “Phillips curve”

(28) can be rewritten as

2

64
v̄
t

⇡
t

3

75 =  d⇡̄ + C

2

64
Ê

t

v̄
t+1

Ê
t

⇡
t+1

3

75 (79)

with  ⌘ 1

(↵+�⇡�⇠�↵�⇡�⇠�↵��⇡�⇠+↵2
��⇡�⇠)

and

d ⌘

2

64
↵��(�

⇡

� 1)

↵(1� �) + �
⇡

�⇠(1� ↵)(1� ↵�)

3

75 ;C ⌘

2

64
↵ + �⇠(1� ↵)(1� ↵�) �↵��(�

⇡

� 1)

⇠(↵� 1)(↵� � 1) ↵�

3

75 (80)

With the calibration given in Table 1, being the same parameter as in Pfajfar and Žakelj (2014)

and Assenza et al. (2014), we have

C =

2

64
0.8966 �0.3414

0.2069 0.6828

3

75 (81)

9.2.2 Experimental design

I follow the existing design based on the reduced-form (Pfajfar and Žakelj, 2014; Assenza et al.,

2014), which consists of

• a computerized central bank

• 6 HUMAN output gap forecasters being asked to submit Ê
t

Ỹ
t+1

• 6 HUMAN inflation forecasters being asked to submit Ê
t

⇡
t+1

Since the objective of this experiment is to replicate previous findings, I follow Assenza et al.

(2014) and Pfajfar and Žakelj (2014) and elicit the simple averages of the forecasts of di↵erent
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individuals. Since I expected convergence in the reduced form, I used a di↵erent exchange rate (1

euro per 250 points) in order to save resources.

9.2.3 Results with �
⇡

= 1.5
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Figure 10: Reduced-form outcomes

Observation 14. In the reduced form with �
⇡

= 1.5, the economy converges to the REE after

30 periods.

Figure 10 depicts the macroeconomic outcomes for the reduced form. Both groups converge

to the REE, although out-of-equilibrium behavior at the beginning di↵ers across groups: While

group 1 converges to the REE after about 15 periods, group 2 takes about 20 periods. Due to

Preston’s [2005] criticism on the internal validity of this approach and since the paramount result

that in both groups the experimental economy converges to the REE is consistent with Assenza

et al. (2014) and with Pfajfar and Žakelj (2014), no further sessions with the reduced form were

conducted and the paper only entails a minimalistic analysis of this experiment.

9.2.4 Learning models and reduced form

The same learning models that have been applied to the structural form were also applied to the

reduced form. The following points are worth highlighting:

• Since the heuristic-switching model was originally developed for setups like the reduced form,

it was used in its original form. Hence, the simulation outcomes with the heuristic-switching

model are deterministic.
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• When fitting an adaptive rule to subjects’ data, the gain coe�cient di↵ers considerably

between the structural and the reduced form. Thus I allow the following parameters to

di↵er across setups: the adaptive-rule coe�cient in the heuristic-switching model and re-

inforcement (structural form: 0.3; reduced form: 0.65), the gain in constant gain learning

(structural form: 0.11; reduced form: 0.80) as well as the gain parameters in noisy learning

(structural form: � = 0.20, ! = 0.62; reduced form: � = 0.71, ! = 0.23.) Conceptually,

the setup-varying gain is defensible, since in a setup, where the same outcome needs to be

forecast, there is a stronger coordination motive so that making strong adjustments in the

direction of the forecast error is sensible. In the structural form, however, as subjects are

informed that their forecasts have a direct impact on their outcomes, it is reasonable to make

cautious adjustments.33 Rather than endogenizing the gain, this simplistic specification has

the advantage that it keeps the model tractable. Furthermore, appendix 9.6 shows that an

endogenizing the gain makes a low marginal contribution.

Figure 11 and tables 10 and 11 report the average results for 6,000 repeated simulations.

Reduced form: �
⇡

= 1.5 all periods
Measures Experiment HSM OLS CG Reinforcement Noisy

MSE: v̄ 0.00 0.81 0.64 0.61 0.31 0.88
MSE: inflation 0.00 0.64 1.77 0.71 0.34 0.99
Standard deviation: v̄ 0.68 0.94 0.61 0.57 0.65 1.05
Standard deviation: inflation 1.05 1.10 0.82 1.12 0.96 1.31
Mean: v̄ -0.09 -0.31 -1.04 -0.18 -0.27 -0.34
Mean: inflation 2.51 2.22 3.40 2.23 2.31 2.31
Mean squared distance from REE: v̄ 0.47 0.93 1.82 0.39 0.53 1.43
Mean squared distance from REE: ⇡ 1.35 0.42 1.89 0.32 0.21 1.06

Table 10: Measures all periods

9.3 Adaptive learning

9.3.1 Least square learning

In specifying the functional form or Perceived Law of Motion (PLM) of agents’ regression, I follow

the standard in the adaptive learning literature by assuming that this functional form corresponds

33Given that the structural form is a more sophisticated experimental game than the reduced form and may
thus be closer to reality, the hypothesis that the gain is smaller in the structural than in the reduced form can
also be supported by the fact that the empirical learning literature based on surveyed expectation data and real
macroeconomic data also finds small gains. See for example Orphanides and Williams (2005a),Orphanides and
Williams (2005b),Milani (2007),Orphanides and Williams (2007) and Pfajfar and Santoro (2010).
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Figure 11: Actual (mean over all experimental groups) outcomes and simulated (mean over 6,000
replications) aggregated outcomes

to the functional form of the REE. Hence I assume that the PLM is a constant so that the least

square forecast of agents for period t+1 corresponds to the sample mean of the past observed
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Reduced form: �
⇡

= 1.5 periods 30-50
Measures Experiment HSM OLS CG Reinforcement Noisy

MSE: v̄ 0.00 0.58 0.46 0.03 0.09 0.06
MSE: inflation 0.00 0.23 1.14 0.02 0.04 0.02
Standard deviation: v̄ 0.12 0.61 0.04 0.01 0.09 0.19
Standard deviation: inflation 0.07 0.47 0.09 0.01 0.04 0.13
Mean: v̄ -0.09 -0.30 -1.35 -0.01 -0.21 0.07
Mean: inflation 2.11 2.04 2.87 2.00 2.03 2.02
Mean squared distance from REE: v̄ 0.03 0.53 2.18 0.00 0.11 0.07
Mean squared distance from REE: ⇡ 0.02 0.23 0.85 0.00 0.03 0.03

Table 11: Measures from period 30 to 50

values of this variable up to period t-1:

Ei

t

v̄i
t+1

= (t� 1)�1

t�1X

s=1

v̄i
t�s

(82)

or written recursively

Ei

t

v̄i
t+1

= Ei

t�1

v̄i
t

+ (t� 1)�1(v̄i
t�1

� Ei

t�1

v̄i
t

) (83)

Similar to the simulation with the heuristic-switching model, I base the simulation on the two

initial values of the outcomes v̄i
t

, p⇤j
t

and the submitted forecasts that generated these outcomes.

From period 3, expectations and the corresponding outcomes are generated by least square learn-

ing. Figure 12, showing the outcomes for aggregate v̄ and p⇤ respectively simulated by least square

learning, indicates that least square learning outperforms the heuristic-switching model in predict-

ing the di↵erent convergence patterns on average between Treatment 2 (�
⇡

= 1.5) and Treatment

3 (�
⇡

= 3.0.)
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Figure 12: Actual (mean over all experimental groups) outcomes and simulated (mean over 6,000

replications) aggregated outcomes using least squares

9.3.2 Constant gain learning

A similar learning mechanism to recursive least square learning is constant gain learning, which

geometrically discounts old observations instead of attaching equal weight to all observations.

This mechanism can be viewed as approximately optimal, if agents suspect living in an unstable

environment with parameter drift as shown by Evans et al. (2010). The updating equation, which

would be analogous to the least square case in (83), would be

Ei

t

v̄i
t+1

= Ei

t�1

v̄i
t

+ �(v̄i
t�1

� Ei

t�1

v̄i
t

) (84)

Assuming that the learning parameter � is stable across subjects and treatments yields an estimate

of 0.11.

59



Figure 13, depicting the simulations of the constant-gain model with these estimates, shows that

the constant gain version also predicts the di↵erence between treatment 2 (�
⇡

= 1.5) and treatment

3 (�
⇡

= 3).
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Figure 13: Actual (mean over all experimental groups) outcomes and simulated (mean over 6,000
replications) aggregated outcomes using constant gain

9.4 Heuristic-switching model

9.4.1 Simulation

The simulations are initialized by two initial values of the outcomes v̄i
t

, p⇤j
t

respectively and initial

weights ni

t,h

which have been set to 0.25 for each subject and each heuristic h. With the initial

values and the initial weights, the outcomes in periods 3 and 4 can be computed. From period 5,

each individual expectation and outcomes is fully determined by the simulations. For the starting

values of each experimental group, 6,000 replications of the simulation have been conducted.
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For each replication the median outcomes and other the other interesting statistics have been

calculated and subsequently averaged. Finally, I average over all experimental groups. Figure 14

depicts the averages of aggregate v̄ and p⇤ over 6,000 simulation replications for each group.
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Figure 14: Actual (mean over all experimental groups) outcomes and simulated (mean over 2000
replications) aggregated outcomes using HSM
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9.5 Single replications

9.5.1 Reinforcement
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Figure 15: Actual (mean over all experimental groups) outcomes and simulated (one replication)

aggregated outcomes using reinforcement
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9.5.2 Noisy learning
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Figure 16: Actual (mean over all experimental groups) outcomes and simulated (one replication)

aggregated outcomes using noisy learning

9.6 Endogenous gain

An intriguing question is whether other gain algorithms than constant gain improve the fit of

noisy adaptive learning to the experimental data. I consider both decreasing gain and a more

sophisticated endogenous gain algorithm by Marcet and Nicolini (2003).

9.6.1 Decreasing gain

A plausible mechanism is a gain of (t� 1)�1, which could be interpreted as subjects making high

adjustments at the beginning of the experiment, which are, however, decreasing, as subjects gain

more experience. Under this mechanism, the only parameter that needs to be estimated, the
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variance coe�cient, is given by approximately ! = 0.59 for both the structural form and the

reduced form.

9.6.2 Marcet and Nicolini (2003)

Marcet and Nicolini (2003) relate the gain to the past observed forecast errors, which is, however, at

the expense of tractability. Since subjects directly observe the profit as a non-linear transformation

of the forecast error, I specify their endogenous gain algorithm as

�
t

=

8
>><

>>:

1

�̄

�1
+h

if
Pt�1

k=t�J Profit

i
k

J

� �

�̄ if if
Pt�1

k=t�J Profit

i
k

J

< �

(85)

where h denotes the number of periods since the last switch to decreasing gain, J is the window

length of past forecast errors considered, � is an arbitrary cuto↵ point and �̄ is the threshold gain

once subjects switch to a constant gain algorithm. Milani (2014) assumes that � is endogenously

given by the mean of the past forecast errors. I further generalize this mechanism by assuming

that

� =

P
t�1

l=t�W

Profiti
l

W
(86)

so that subjects have a certain window length of their profits as a benchmark. Estimating the

parameters of noisy learning with endogenous gain using maximum likelihood gives �̄ = 0.40,

! = 0.50, J=1 and W=8.

Table 12, reporting the mean square errors, shows that decreasing gain considerably worsens the

fit, while the fit with the endogenous gain leads to similar results to the constant gain case. The

latter is, however, preferable, as it retains tractability.
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MSE = 1

4

P
4

g=1

1

48

P
50

t=3

(v
t,g

� 1

N

P
N

n=1

vM
t,g,n

)2

RF �
⇡

= 1.5 SF �
⇡

= 0.5 SF �
⇡

= 1.5 SF �
⇡

= 3

v ⇡ v p⇤ v p* v p*

HSM 0.81 0.64 366507.77 554832.90 8.43 20.90 0.83 1.05

OLS 0.64 1.77 264495.34 504139.91 8.73 28.52 1.70 0.85

CG 0.61 0.71 263375.30 501560.52 9.39 26.15 1.51 1.17

Reinforcement 0.31 0.34 149720.10 305299.15 7.68 18.29 0.71 1.02

Noisy

baseline 0.88 0.99 271734.30 517709.31 7.25 18.21 1.24 1.92

decreasing gain 1.28 5.92 276021.28 572200.71 8.90 28.28 1.30 1.38

endogenous gain 1.08 0.90 245060.72 461194.02 8.26 19.22 0.97 1.02

Table 12: Mean square error
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9.7 Tables for all learning models

9.7.1 All periods

�
⇡

= 0.5

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 366507.77 264495.34 263375.30 149720.10 271734.30

MSE: p⇤ 0.00 554832.90 504139.91 501560.52 305299.15 517709.31

Mean: v̄ 377.43 557.42 5.98 7.13 485.33 8.59

Mean: p⇤ 562.20 765.16 11.12 12.90 725.75 15.41

MSD from REE: v̄ 268390.11 630093.47 50.17 86.13 443216.51 129.21

MSD from REE: p⇤ 514324.42 1123272.73 111.03 200.23 925942.38 290.86

Standard deviation: v̄ 311.47 501.38 0.74 1.87 402.38 6.03

Standard deviation: p⇤ 434.66 649.56 0.91 2.57 569.56 8.60

Individuals

MSE: v̄i 0.00 374015.88 338145.43 336897.40 142536.97 347077.80

MSE: p⇤j 0.00 558014.57 495119.52 492527.53 310652.46 508485.47

MSD from REE: v̄i 343486.43 614143.10 84.83 122.22 674365.20 243.48

MSD from REE: p⇤j 505904.75 1120158.18 132.25 225.95 1320941.26 239.52

Dispersion of v̄i 278.19 78.59 4.91 4.91 219.71 14.54

Dispersion of p⇤j 160.10 22.67 2.98 3.20 42.83 5.81

Table 13: All periods for �
⇡

= 0.5
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�
⇡

= 1.5

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 8.43 8.73 9.39 7.68 7.25

MSE: p⇤ 0.00 20.90 28.52 26.15 18.29 18.21

Mean: v̄ 1.32 0.13 1.29 1.38 0.16 1.18

Mean: p⇤ 5.05 3.37 7.29 7.00 3.34 6.40

MSD from REE: v̄ 8.58 1.67 4.22 5.62 1634.55 5.34

MSD from REE: p⇤ 23.26 6.41 35.31 31.96 4376.35 24.57

Standard deviation: v̄ 2.41 1.11 0.55 0.83 1.68 1.74

Standard deviation: p⇤ 3.19 1.98 0.62 1.15 2.67 1.79

Individuals

MSE: v̄i 0.00 7399.52 7025.04 7020.54 5068.70 7370.78

MSE: p⇤j 0.00 26.62 36.21 36.48 25.13 29.04

MSD from REE: v̄i 7152.72 52.25 39.43 40.91 82.78 109.26

MSD from REE: p⇤j 34.08 13.90 48.58 49.00 11.19 28.12

Dispersion of v̄i 45.67 6.54 6.32 6.31 25.24 8.91

Dispersion of p⇤j 2.92 1.37 2.65 2.85 1.65 3.21

Table 14: All periods for �
⇡

= 1.5
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�
⇡

= 3.0

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 0.83 1.70 1.51 0.71 1.24

MSE: p⇤ 0.00 1.05 0.85 1.17 1.02 1.92

Mean: v̄ 0.26 -0.08 -0.69 -0.50 -0.02 -0.17

Mean: p⇤ 2.72 2.17 2.51 2.74 2.19 3.32

MSD from REE: v̄ 0.75 0.10 0.68 0.54 1.22 1.86

MSD from REE: p⇤ 1.70 0.20 0.57 1.39 2.47 4.08

Standard deviation: v̄ 0.71 0.41 0.45 0.46 0.69 1.27

Standard deviation: p⇤ 0.99 0.82 0.87 1.08 1.03 1.50

Individuals

MSE: v̄i 0.00 8392.21 8013.70 8013.99 5895.72 8408.16

MSE: p⇤j 0.00 5.98 8.82 10.55 5.85 11.40

MSD from REE: v̄i 8060.09 58.66 18.97 18.91 19.90 28.80

MSD from REE: p⇤j 11.05 6.42 11.85 16.17 2.75 13.18

Dispersion of v̄i 31.93 6.84 4.63 4.63 18.92 7.54

Dispersion of p⇤j 1.86 1.20 2.68 2.87 1.26 2.91

Table 15: All periods for �
⇡

= 3
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9.7.2 Periods 30-50

�
⇡

= 0.5

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 526997.96 337958.89 334816.45 201402.64 330359.47

MSE: p⇤ 0.00 689847.60 573762.16 566104.17 383002.42 558448.10

Mean: v̄ 494.84 1050.05 7.39 11.05 847.00 13.59

Mean: p⇤ 707.07 1389.42 13.41 19.26 1247.83 23.33

MSD from REE: v̄ 343633.59 1287328.10 71.82 167.91 847755.38 255.30

MSD from REE: p⇤ 588244.14 2216424.87 164.33 403.35 1735919.83 583.50

Standard deviation: v̄ 241.03 119.60 0.41 0.00 196.44 5.40

Standard deviation: p⇤ 272.92 122.23 0.47 3.07 188.03 6.79

Individuals

MSE: v̄i 0.00 507459.91 436485.68 432934.86 176738.81 426851.90

MSE: p⇤j 0.00 714967.94 600927.47 593556.64 400773.41 586213.54

MSD from REE: v̄i 444173.06 1235593.52 106.63 207.08 823199.31 689.85

MSD from REE: p⇤j 616582.76 2211486.29 177.38 413.63 1713221.67 634.34

Dispersion of v̄i 360.54 94.59 4.79 4.74 299.81 15.87

Dispersion of p⇤j 221.88 12.41 2.20 1.60 46.21 6.02

Table 16: Periods 30-50
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�
⇡

= 1.5

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 7.98 9.38 8.60 8.26 7.28

MSE: p⇤ 0.00 20.08 30.27 24.85 20.25 14.71

Mean: v̄ 1.03 -0.21 0.73 0.24 -0.39 0.21

Mean: p⇤ 4.89 2.33 6.69 5.61 2.01 5.16

MSD from REE: v̄ 7.43 1.28 2.13 0.91 3887.46 2.50

MSD from REE: p⇤ 21.57 2.13 31.00 20.67 10401.91 15.23

Standard deviation: v̄ 2.08 0.28 0.10 0.00 0.99 1.14

Standard deviation: p⇤ 2.69 0.42 0.15 0.62 1.42 1.11

Individuals

MSE: v̄i 0.00 2733.86 2697.88 2707.14 2926.50 2693.71

MSE: p⇤j 0.00 24.61 35.19 28.59 25.59 19.16

MSD from REE: v̄i 2734.91 47.30 35.52 33.76 9610.66 102.91

MSD from REE: p⇤j 27.13 2.66 36.03 23.25 10307.62 23.00

Dispersion of v̄i 35.15 6.20 6.25 6.18 27.24 8.84

Dispersion of p⇤j 2.29 0.62 1.97 1.43 1.08 1.99

Table 17: Periods 30-50
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�
⇡

= 3.0

Measures Data HSM OLS CG Reinforcement Noisy

Aggregates

MSE: v̄ 0.00 0.34 1.01 0.70 0.32 0.84

MSE: p⇤ 0.00 0.55 0.66 0.73 0.59 0.43

Mean: v̄ 0.10 -0.06 -0.69 -0.46 -0.05 -0.54

Mean: p⇤ 2.37 1.99 2.02 1.85 1.97 2.20

MSD from REE: v̄ 0.31 0.03 0.53 0.26 2.04 1.08

MSD from REE: p⇤ 0.55 0.02 0.11 0.09 4.65 0.69

Standard deviation: v̄ 0.50 0.09 0.04 0.00 0.35 0.70

Standard deviation: p⇤ 0.49 0.10 0.06 0.12 0.38 0.60

Individuals

MSE: v̄i 0.00 2384.65 2388.01 2387.24 2239.73 2415.66

MSE: p⇤j 0.00 2.35 6.79 4.80 2.51 3.99

MSD from REE: v̄i 2408.98 27.34 18.33 17.87 20902.58 85.68

MSD from REE: p⇤j 2.55 0.17 5.21 2.90 5.88 4.35

Dispersion of v̄i 17.97 5.00 4.58 4.54 25.59 7.18

Dispersion of p⇤j 1.00 0.31 1.99 1.45 0.52 1.64

Table 18: Periods 30-50
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