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Abstract
Strategic mistakes by applicants make it challenging to infer their preferences from school choice data.

We propose a novel approach to address this issue in a deferred-acceptance matching environment.

The key idea is to exploit the uncertainties applicants face, such as those arising from tie-breaking

lotteries, which can incentivize the revelation of their true preferences. The proposed approach infers

all preferences that can be robustly inferred in the presence of payoff-insignificant mistakes. We apply

the approach to the school-choice data from Staten Island, NYC. Counterfactual analysis suggests that

the effects of proposed desegregation reforms would be underestimated if applicants’ mistakes were

not accounted for. Still, the effects remain modest even under our proposed method, raising doubt

about the reforms’ effectiveness.
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1 Introduction
The design of school choice as a policy tool, particularly for promoting diversity and desegregation,

remains a subject of ongoing debate.
1

The effectiveness of such policies hinges critically on understanding
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For instance, nearly 80% of NYC’s Black or Hispanic public high school students are concentrated in just half of the high

schools, and in response, various desegregation policies have been proposed, including the elimination of admissions based on

academic qualifications or residence locations (Shapiro, 2021).
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student preferences. The ability to accurately infer and estimate these preferences from data is essential

for evaluating the potential impact of policy changes.

In principle, preference inference should be straightforward in strategy-proof mechanisms like the

widely used deferred acceptance (DA) algorithm, where applicants have a dominant strategy to report

their preferences truthfully. However, recent studies have found that applicants often deviate from truthful

reporting even in these settings. These “strategic mistakes” have been observed in lab settings (Chen and

Sönmez, 2006; Li, 2017)
2

and high-stake real-world contexts such as school applications (Larroucau and

Rios, 2020; Artemov, Che, and He, 2021; Hassidim, Romm, and Shorrer, 2021; Arteaga, Kapor, Neilson, and

Zimmerman, 2022; Shorrer and Sóvágó, 2023), and medical resident matching (Rees-Jones, 2017; Rees-

Jones and Skowronek, 2018).
3

Most of these mistakes are payoff-irrelevant, typically involving applicants

omitting or mis-ranking highly sought-after schools that are beyond their reach. However, even these

seemingly minor mistakes can lead to biased preference estimates and inaccurate policy predictions if

applicant rankings are interpreted naively. For instance, the Weak Truth-Telling (WTT) hypothesis, which

assumes students truthfully report their most preferred choices, might incorrectly infer that disadvantaged

students have low preference for elite schools simply because they perceive these schools as unattainable

and don’t include them in their rankings. This could lead to underestimating the potential impact of policy

reforms aimed at increasing access to such schools.

A common approach to address such mistakes in preference inference is to invoke a weaker assumption

called Stability. The stability hypothesis posits that each student is assigned her most preferred school

among those feasible for her, given her priority standings. Fack, Grenet, and He (2019) and Artemov, Che,

and He (2023) justify this hypothesis by arguing that in a large economy, the uncertainty about schools’

cutoffs vanishes, allowing students—even those prone to minor mistakes—to “recognize” feasible schools

and secure their stable assignments (i.e., their favorite feasible schools). The stability hypothesis is less

restrictive than WTT, as the latter implies the former under DA but not vice versa. It is also more robust

to mistakes since it doesn’t make assumptions about student preferences for unattainable schools. The

stability hypothesis has been widely adopted in various studies.
4

2
We follow the existing literature and refer to such non-truthful reporting of preferences in strategy-proof environments

as mistakes.

3
For instance, Hassidim, Romm, and Shorrer (2021) find that 19% of Israeli postgraduate psychology program applicants

either did not list a scholarship position for a program or ranked a non-scholarship position higher than the corresponding

scholarship position against their interests. Artemov, Che, and He (2021) and Shorrer and Sóvágó (2023) find similar findings in

college admissions in Australia and Hungary, respectively. Rees-Jones (2017) reports that 17% of the 579 surveyed US medical

seniors indicate misrepresenting their preferences in the National Resident Matching Program.

4
They include Aue, Klein, and Ortega (2020); Bertoni, Gibbons, and Silva (2020); Ngo and Dustan (2021); Otero, Barahona,

and Dobbin (2021); Combe, Tercieux, and Terrier (2022); Combe, Dur, Tercieux, Terrier, and Ünver (2022); Hahm and Park
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However, the preceding justification for stability crucially rests on the assumption that students face

no uncertainties about their priorities. In reality, students often face priority uncertainties stemming from

various sources. The widespread use of lotteries for tie-breaking in US public school districts introduces

randomness in students’ priorities. Even when lotteries are not used, priorities may not be known at the

time of application, as seen in the NYC Specialized High School admissions.
5

Finally, uncertainties may

also arise from students not knowing others’ priorities or preferences. Table 1 lists a few examples of

DA-based school assignments and college admission systems where students face priority uncertainties.
6

The presence of uncertainties raises questions about the generalizability of the stability hypothesis.

Moreover, it is unclear whether the previously discussed payoff-irrelevant mistakes would even occur

when uncertainties are present. The uncertainty surrounding feasible school options generally makes

mistakes more costly, prompting applicants to be more cautious. However, not all mistakes become

costly in the presence of uncertainties. Some schools might remain out of reach for students due to

factors like geographic zoning, regardless of lottery outcomes. Additionally, certain lottery mechanisms,

such as Single-Tie-Breaking (STB), can still allow for payoff-irrelevant mistakes even when all schools

are potentially within reach, as we illustrate below in Example 1. Therefore, even with uncertainties,

payoff-irrelevant mistakes can persist and need to be accounted for.

Uncertainties also create opportunities for researchers to learn about student preferences. By making

certain mistakes costly, uncertainties can incentivize applicants to reveal some preferences more accu-

rately.
11

For example, a lottery system might bring previously unattainable elite schools within reach for

some students. In such cases, neglecting to rank these schools becomes a costly mistake, as it could mean

missing out on admission. Such a lottery would likely lead students to reveal their preferences for these

schools more truthfully. The key question then becomes: how can we systematically identify and leverage

the information revealed by the specific uncertainties present in a given school choice environment?

To systematically address this question, we employ the concept of robust equilibrium developed by

Artemov, Che, and He (2023). This concept allows for the possibility that applicants might make mistakes

(2022); Chrisander and Bjerre-Nielsen (2023); Andersson, Kessel, Lager, Olme, and Reese (2024); Yang (2024).

5
These schools use test scores for assignment, but students submit ROLs before knowing their scores. Similar uncertainty

is present some Chinese provinces, where college applications precede entrance exams or occur before score release (Chen and

Kesten, 2017).

6
Online Appendix A provides many more examples of DA with and without priority uncertainties.

7
https://www.bostonpublicschools.org

8
https://www.cps.edu/gocps/high-school/hs-selection/

9
https://www.schools.nyc.gov/enrollment

10
https://enrolldcps.dc.gov/

11
Example 1 also illustrates this point.
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Table 1: Selected Examples of Deferred-Acceptance Mechanisms with Priority Uncertainties

Education System Priority Details Sources

Panel A: Primary and Secondary Education
Boston (Open Enrollment High

Schools)

Distance, other factors, random tie-breaking Boston Public Schools
7

Chicago (Non-selective Choice High

Schools)

Distance, other factors, random tie-breaking Chicago Public Schools
8

NYC (Specialized High Schools) Test score (unknown) Abdulkadiroglu, Angrist, and

Pathak (2014), NYC Public

Schools portal
9

NYC (Open High Schools) Coarse priorities and random tie-breaking Abdulkadiroğlu, Pathak, Schel-

lenberg, and Walters (2020),

NYC Public Schools
8

Washington DC Distance, siblings, other factors, random tie-

breaking

Abdulkadiroğlu and Andersson

(2023), DC Public Schools
10

Chile (Schools with high-achieving

student quota)

Coarse priorities (test result + siblings +

working parents + former student) and ran-

dom tie-breaking

Arteaga, Kapor, Neilson, and

Zimmerman (2022)

Chile (Other schools) Siblings, working parents, former student

and random tie-breaking

Arteaga, Kapor, Neilson, and

Zimmerman (2022)

Finland Composite score (unknown): academic

records (known) + exam score + other crite-

ria

Salonen (2014)

France Composite score (unknown): GPA + other

factors

Hiller and Tercieux (2014);

Grenet (2022)

Ghana Nationwide test score (unknown) Ajayi (2022)

Panel B: Higher Education
Chile Composite score (unknown): GPA (known)

+ standardized test (known)

Hastings, Neilson, and Zimmer-

man (2013)

France Composite score (unknown): GPA (known)

+ other criteria

Hakimov, Schmacker, and Ter-

rier (2023)

Norway Composite score (unknown): GPA + other

factors

Kirkeboen, Leuven, and

Mogstad (2016)

Tunisia Nationwide test score (known) Luflade (2019)

but requires that the expected losses from mistakes become negligible as the market size increases.
12

We

formally define a robust equilibrium and introduce an additional refinement requiring a small probability

of truthful reporting. The main implication of this solution concept for DA is asymptotic ex-post stability:

as the market size grows, with high probability, almost all students receive their most preferred feasible

schools in every possible realization of uncertainty (see Theorem 1).
13

12
The robustness concept can be interpreted as applicants’ inattention to low-probability options, although we remain

agnostic about the specific reasons for such mistakes.

13
This implicitly assumes that the underlying mechanism is strategy-proof and stable (under truthful reporting), which

holds under a DA mechanism with unconstrained choice or with constraints that are unbinding for the vast majority of students.
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The asymptotic ex-post stability result forms the basis for a new preference inference method called

the Transitive Extension of Preferences from Stability (TEPS). TEPS applies to a wide range of DA-based

assignment systems, both with and without priority uncertainties (including those listed in Table 1 and

Table A.1). The method involves simulating the underlying priority uncertainty structure; for instance, in

the DA-STB system, one can conduct the STB lottery and run the DA algorithm as in the actual assignment

process. By invoking asymptotic ex-post stability, we infer that the assigned school is preferred to all

other feasible schools under a given lottery realization. This process is repeated for multiple lottery draws

to obtain preference relations for each draw. The final step connects these preference relations using

the transitivity axiom, creating a transitive closure of all preference relations derived from the pairs of

assigned and feasible schools.

The prediction of stable assignments for all uncertainty realizations holds primarily in large economies.

In real-world scenarios, participants might make payoff-relevant mistakes, leading to deviations from

stability.
14

To account for this, we introduce a generalized version of TEPS, denoted as TEPS
τ
, which

incorporates an attention parameter τ ∈ [0, 100]. This parameter restricts preference inference to only the

most likely uncertainty realizations (or feasible sets), up to a cumulative probability of τ%. The remaining

less likely uncertainties are disregarded due to their potential unreliability.

The choice of the attention parameter τ is inherently an empirical question that depends on the specific

context and characteristics of the participants. To address this, we develop a data-driven testing procedure

to select the most appropriate attention level, ranging from the WTT assumption to various levels of

tolerance for mistakes within the TEPS
τ

framework. Monte Carlo simulations confirm the potential for

biased estimation when participant mistakes are ignored and demonstrate the effectiveness of our selection

procedure in identifying the optimal level of tolerance.

To demonstrate the practical implications of our approach, we apply our methods to public high

school choice data from Staten Island, NYC, where lotteries are used as tie-breakers, creating priority

uncertainties. We evaluate the performance of various hypotheses in explaining the observed data and

conduct counterfactual analyses to compare the predicted effects of several desegregation policies under

different preference estimation assumptions. The accuracy of these predictions is crucial for assessing the

effectiveness of policy reforms aimed at addressing school segregation, a pressing concern in large urban

districts like NYC. The counterfactual analysis of such reforms necessitates estimating student preferences

Our empirical setting corresponds to the latter. A choice setting with binding constraints introduces strategic behavior, which

is beyond the scope of the current paper.

14
Payoff relevant mistakes are observed for a significant minority of applicants (e.g., Artemov, Che, and He, 2021).
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for schools currently inaccessible due to priority restrictions. If student inattention towards these schools

is not accounted for, the potential impact of these reforms could be significantly underestimated.

Our analysis reveals that the effects of desegregation policies are underestimated when the WTT

hypothesis is used for preference inference. The WTT-based estimates predict a smaller decrease in the

racial gap in the quality of assigned schools compared to the estimates derived from the TEPS method

(selected from our procedure). Intuitively, WTT disregards student mistakes and assumes low preferences

for unranked out-of-reach schools, leading to an underestimation of the potential impact of policies that

make such schools more accessible. The underestimation is substantial; for example, WTT predicts only

half the reduction in the racial gap in the proportion of Black or Hispanic students in assigned programs

compared to the TEPS-based prediction.

The predicted effects of removing academic and geographic priorities on desegregation are relatively

small, even under the TEPS estimates. This suggests that factors beyond school priorities, such as residential

segregation, might play a more significant role in school segregation. The study provides descriptive

evidence supporting this explanation, showing high residential segregation in Staten Island, with Black

and Hispanic students concentrated in areas with schools that have higher proportions of Black/Hispanic,

low-income, and lower-performing students. The preference estimates also indicate that minority students

have a stronger aversion to commuting compared to non-minority students. The combination of residential

segregation and varying commuting preferences could explain why school choice reforms focused solely

on equalizing school access might not lead to substantial desegregation unless residential segregation is

also addressed.

Related Literature. The current paper contributes to the growing body of research on robust preference

inference from school choice data generated by the DA algorithm. The proposed TEPS procedure, while

building upon the stability hypothesis of Fack, Grenet, and He (2019) and Artemov, Che, and He (2023),

generalizes it to accommodate uncertainties arising from tie-breaking lotteries and other factors. This

generalization, supported by Theorem 1, is crucial given the prevalence of lotteries and the inherent

uncertainties in real-world school choice settings. The TEPS procedure, with its novel justification and

tractable algorithm, offers a significant advancement in preference inference methodology.
15

Kapor, Karnani, and Neilson (2024) propose an approach that assumes truthful reporting for a subset

of programs on the ROL: those feasible under some lottery realizations and those ranked above the best

clearly-feasible program. This approach, while motivated by robustness, differs from TEPS, which takes

15
For example, one may be tempted to “implement” the stability hypothesis using the actual (if observed) or a single

simulated lottery. However, such an approach lacks theoretical justification in an environment with uncertain priorities.
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no stance on relative rankings within ROLs. The theoretical basis for their approach remains unclear;

for example, the robust equilibrium concept cannot rationalize it. Further, their assumption does not

accommodate certain types of mistakes observed in practice, such as “flips” among feasible schools

(Hassidim, Romm, and Shorrer, 2021) or the mistakes arising from STB lotteries (e.g., Example 1), although

they are are consistent with robust equilibria and thus accommodated by TEPS.

The current paper also connects with the literature that interprets an applicant’s rank-order list (ROL)

as an optimal portfolio choice under non-strategyproof mechanisms (see, as early examples, He, 2017;

Agarwal and Somaini, 2018; Calsamiglia, Fu, and Güell, 2020). Notably, the approach by Agarwal and

Somaini (2018), when applied to DA, exhibits robustness to payoff-irrelevant mistakes. However, it doesn’t

account for mistakes with minor but positive payoff consequences. Moreover, the practical implementation

of this approach faces challenges due to the curse of dimensionality as the number of schools increases. In

contrast, our proposed empirical method is computationally efficient and robust to the strategic mistakes

commonly observed in real-world settings.

Several papers have sought to address the computational challenges associated with the portfolio

choice approach. Larroucau and Rios (2020) demonstrate that considering a subset of ROLs (“one-shot

swaps”) can mitigate the curse of dimensionality, but their result is limited to settings where cutoffs

(and thus admission probabilities) are independent across schools (e.g., Multiple Tie-Breaking, or MTB).

Idoux (2022) modifies Agarwal and Somaini (2018) approach by incorporating application costs, limited

rationality,
16

and behavioral heuristics into applicant decision-making. This modification circumvents the

curse of dimensionality and allows for some payoff-insignificant mistakes. However, it still doesn’t account

for other common mistakes, such as mis-ranking schools with low admission probabilities (Hassidim,

Romm, and Shorrer (2021)) or ranking schools that are irrelevant under STB (as illustrated in Example 1),

even those with high admission probabilities. In contrast, TEPS is robust to a wider range of mistakes, as

long as their impact on payoffs remains limited.

The concept of stability has played a crucial role in identifying preferences in the two-sided matching

literature (see Chiappori and Salanié, 2016, for a survey). In this context, the preferences of both sides

of the market (e.g., students and schools) are unknown to the researcher. This scenario encompasses

decentralized school choice systems, like the one in Chile (He, Sinha, and Sun, 2021), where private schools’

preferences are unobserved. In contrast, our framework focuses on centralized school choice systems

where school priorities are observed.

16
Relatedly, Lee and Son (2023) consider a model where applicants may hold inaccurate beliefs about admission probabilities

and consider only a limited subset of schools during the application process.
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2 Theoretical Analysis
We consider a large matching market under the Deferred Acceptance (DA) algorithm. We first illustrate

how payoff-irrelevant mistakes can persist even in lottery-based assignments and how uncertainty can

help uncover student preferences.

Example 1. Consider three schools, a, b, and c, using a Single Tie-Breaking (STB) lottery system that uses

a single lottery number for each student across all schools.
17

The schools’ cutoffs consistently follow the

order pa > pb > pc. Now consider a student with the preference order b > a > c. For such a student,

school a is never pivotal. Whenever a is feasible, b is also feasible, and the student prefers b. Thus, omitting

a or misplacing it in the ROL (e.g., b-c or b-c-a) does not impact the student’s assignment. This illustrates

that even under STB, payoff-irrelevant mistakes can occur.

However, uncertainty aids in preference revelation and, thus, inference. In Example 1, the student

must rank b above a and c in their ROL, or else risk payoff loss. This contrasts with a scenario without

uncertainty, where if the student “knows” only c is feasible, the stability hypothesis reveals no further

preferences as any ROL listing c results in the same assignment.

2.1 Model Primitives
We begin with a continuum economy, which will serve as a benchmark for finite economies—the

object of our central interest.

Continuum Economy. The continuum economy, denoted by E, comprises a finite set of schools C

and a unit mass of students with types θ̃ ∈ Θ̃. We use C to represent both the set of schools and its

cardinality. Let C̃ := C∪{ø}, where ø denotes the outside option. The schools have capacities represented

by S = (S1, ..., SC), where Sj ∈ (0, 1] and Sø = ∞.

Each student has an ex-ante type θ̃ = (u, t), where uθ̃ = (uθ̃
1, ..., u

θ̃
C) ∈ [u, u]C represents their von

Neumann-Morgenstern utilities for attending schools in C, with u < 0 < u. We normalize uθ̃
ø = 0. The

ex-ante priority type, t, reflects the student’s “intrinsic” priority or perceived merit. The set of all ex-ante

priority types is denoted by T . Students know their ex-ante type (u, t) before applying.

Given t ∈ T , a student’s scores s ∈ [0, 1]C are drawn from a distribution function Φt ∈ ∆([0, 1]C),

which may depend on t. These scores determine the student’s ex-post priorities used for school assignments.

Students do not observe these scores when submitting applications.
18

The randomness in scores stems

17
Hence, all schools are ‘within reach’, and the usual reason for mistakes—clearly out of reach schools—does not apply.

18
In NYC school district, lottery draws have been recently disclosed to the families upon request before their application (see

here). However, this practice remains an exception rather than the norm. Moreover, such score revelation does not invalidate

our assumption, as these revealed scores can be incorporated into the ex-ante priority type t.

8
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from tie-breaking lotteries or test score uncertainty. Let St :=
∏

c[s
t
c, s

t
c] be the support of scores for type

t, where stc and stc are the infimum and supremum scores, respectively. The pair θ = (u, s) constitutes a

student’s ex-post type. The measure η̃ of ex-ante types, along with (Φt)t, induces a probability measure

η on the ex-post type (u, s) ∈ Θ := [u, u]C × [0, 1]C . We assume η is atomless.
19

(By contrast, η̃ can, and

typically will, have atoms.) The continuum economy is summarized by E = [η̃, S, (Φt)t].

While our main result is established under a general priority structure in Appendix A, we focus on

a specific structure for clarity. The schools in C are partitioned into three types: C1, C2, and C3, each

with distinct priority rules. We assume T = T1 × T2 × T3, where schools in Ci apply priorities in Ti, for

i = 1, 2, 3.

(a) Priority structure T1–Non-lottery-based assignment with known scores: Here, T1 = [0, 1]|C1|
, and for each

t ∈ T1, ϕt is degenerate with stc = stc = tc for all c. This represents scenarios where priorities are

determined by merit scores known to students at the time of application, such as in Australian college

admissions and Paris high school assignments. This case was studied by Artemov, Che, and He (2023).

(b) Priority structure T2–Coarse priorities: The set T2 is finite, and ties are broken by lotteries. Each school

c ∈ C2 has a finite number nc of intrinsic priorities Tc = {0, 1
nc
, ..., nc−1

nc
}. A student’s ex-ante type is

a profile t = (tc)c∈C2 ∈ T2 =
∏

c∈C2
Tc. The student’s score for school c is sc = tc + λc

1
nc

, where λc is

the lottery score for tie-breaking. The lottery scores (λc)c∈C2 are either uniform on [0, 1]|C2|
(MTB) or

λc = λ for all c ∈ C2 with λ uniform on [0, 1] (STB). This structure is commonly used in US public

schools.

(c) Priority structure T3–Non-lottery-based assignment with unknown scores: Here, T3 = [0, 1], and for

each t ∈ T3, Φ
t

is absolutely continuous with a strictly positive density over scores s ∈ [0, 1]. This

corresponds to scenarios like NYC’s Specialized High School assignment, which uses a serial dictatorship

based on applicants’ SHSAT scores (unknown at application time). The ex-ante type t ∈ [0, 1] represents

the student’s belief about their score.

If C = C1, the model reduces to that of Artemov, Che, and He (2023), with no student uncertainty.

The other extreme is full-support uncertainty, where Φt
has full support [0, 1]C for all t, which occurs

when there are no priorities and MTB lotteries are used.

Finite Economies. We consider a sequence of finite random economies, F k
, converging to the con-

tinuum economy E. Each k-economy, F k
, consists of k students with types drawn independently from

19
This assumption ensures that indifferences either in student preferences or in schools’ scores arise only for a measure

zero set of students.
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η̃k, and normalized capacities Sk = [k · S]/k, where [x] rounds x to the nearest integer vector (rounding

down in case of ties). The distributions η̃k and ηk represent the empirical measures of ex-ante and ex-post

types, respectively.

Matching and Mechanism. A matching is a mapping µ : C ∪Θ → 2Θ ∪ (C ∪Θ), describing student

assignments to schools based on their ex-post types. It satisfies standard two-sidedness, consistency, and

“open on the right” as defined in Azevedo and Leshno (2016) (henceforth AL, see p. 1241). Stability is a

central concept defined as follows. Consider an economy, either the continuum economy E or a realization

of a finite k-economy. Fix any profile p ∈ [0, 1]C , interpreted as cutoffs of schools. We say a school c is

ex-post feasible for type θ = (u, s) if sc > pc. Demand for c, Dc(p), is then the measure of students for

whom c is the most preferred feasible school. An ex-post stable matching assigns all students their best

feasible school at market-clearing cutoffs p, namely the p such that Dc(p) ≤ (=)Sc for all c (if pc > 0).
20

In finite economies, cutoffs and assignments are random, so stability requires this condition to hold with

probability one.

The student-proposing deferred acceptance (DA) algorithm takes students’ reported ROLs and scores

as input and produces a student-optimal stable matching. The resulting cutoffs are referred to as DA
cutoffs.21

While DA incentivizes truthful ROLs, we allow for dominated strategies in line with our focus

on student mistakes.

2.2 Robust Equilibria
For each k-economy, F k

, we let i = 1, ..., k index a student present in that economy. Each student i

observes her own ex-ante type θ̃ but not others’. A student i’s (mixed) strategy maps her ex-ante type to a

probability distribution over all possible ROLs R of C̃. The truthful reporting strategy (TRS), ρ, ranks

schools strictly according to the student’s preferences.
22

We focus on robust equilibria developed by Artemov, Che, and He (2023), which permits domi-

nated strategies (mistakes) but requires that their payoff losses vanish in large economies. This concept

encompasses common mistakes like omitting or mis-ranking out-of-reach schools.

The concept of robust equilibria captures applicant inattention, akin to rational inattention (Matějka

20
Equivalently, a stable matching is defined by two properties: individual rationality and no blocking. In priority structure

T2, the scores may result from tie-breaking, so no blocking, and therefore stability, should ideally be defined based on ex-ante

type θ̃. Nevertheless, we focus on ex-post stability since it, and not the stability, directly underpins our empirical preference

inference method. Moreover, (asymptotic) ex-post stability implies (asymptotic) ex-ante stability, so establishing the former will

deliver the latter.

21
More precisely, they are the lowest market-clearing cutoffs, which are well-defined by the well-known lattice property.

22
How ρ breaks a tie is immaterial since η is assumed to be atomless, so a tie will occur with zero probability. Hence, we

leave this unspecified.
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and McKay, 2015) and quantile response equilibria (Goeree, Holt, and Palfrey, 2002). Individuals may

rationally allocate less attention to choices with lower payoff consequences, leading to more mistakes.

However, unlike those theories, such inattention diminishes as the economy grows.

To operationalize this, we consider an infinite strategy profile σ = (σi)i∈N, with the interpretation

that the participatants of each k-economy F k
use its k-truncation σk = (σ1, ..., σk) as their strategies.

This framework allows for asymmetric strategies; i.e., students with the same ex-ante type may submit

different ROLs. The solution concept is defined as follows:

Definition 1. An infinite profile σ is a robust equilibrium if, for any ϵ > 0, there exists K ∈ N such that

for all k > K, the k-truncation σk is an interim ε-Bayes Nash equilibrium. That is, for each student i, σi

yields a payoff within ϵ of her highest possible payoff, given that all other students employ σk
−i.

The concept of robust equilibrium does not require exact optimality for the strategies but their near

optimality in a sufficiently large economy. For our main result, we introduce a slight refinement:

Definition 2. For any γ ∈ (0, 1), a strategy is γ-regular if it coincides with TRS with probability at least

γ. A profile σ is a regular robust equilibrium if it is robust and there exists a γ ∈ (0, 1) such that σi is

γ-regular for all i ∈ N.23

2.3 Analysis of Robust Equilibria
As illustrated in Example 1, applicants may not use TRS in a regular robust equilibrium.

24
Hence,

one cannot use truth-telling as a behavioral restriction. Instead, we establish that the outcome of a

regular robust equilibrium is asymptotically ex-post stable, which will give rise to a method for inferring

preferences under the robust equilibrium.

We introduce a few concepts. For any deterministic cutoffs p ∈ [0, 1]C , a strategy σi is a stable-
response strategy (SRS) against p if student i receives her best feasible school for all ex-ante types,

with probability one. The probabilistic qualification accounts for potential randomization in σi and the

randomness of the ex-post type (e.g., due to lotteries). A strategy is non-SRS against p if it is not an

SRS against p, meaning the student might not receive her most-preferred feasible school with positive

probability given p.

The SRS requirement, ensuring stable assignments for almost all uncertainty realizations, is stringent.

However, TRS is an SRS against all p. The existence of non-TRS strategies as SRS hinges on the degree of

23
This does not mean that all students randomize on TRS. The play of TRS could equivalently be encoded as a student’s

ex-ante type: namely, a measure γ of students in the continuum economy is honest and plays TRS.

24
While the example in Example 1 suggests only one preference type who may deviate from TRS, it is not difficult to

imagine that there is a significant fraction of applicants with the same preference type.
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uncertainty students face. In the extreme case of full-support uncertainty, TRS is the only SRS against any

interior cutoffs.

Lemma 1 (Full-support uncertainty). Under full-support uncertainty (Φt has support [0, 1]C for all t), any

SRS against interior cutoffs p ∈ (0, 1)C must be the TRS.

However, full-support uncertainty is rare in school choice. Schools often have priorities and/or use

STB lotteries, leading to uncertainties without full support. In such cases, multiple non-TRS can be SRS

against deterministic cutoffs. Recall Example 1, where for any pa > pb > pc, reporting b-c or b-c-a (when

true preferences are b-a-c) always yields a stable assignment, despite the random assignment due to the

lottery.
25

In finite economies, DA cutoffs are random. Thus, even an SRS against the deterministic limit cutoffs

p̄ (shown to be well-defined later) may not be an SRS against the random DA cutoffs, unless it is the

TRS. The fraction of applicants playing SRS against DA cutoffs is then random. However, if this fraction

converges to 1 in probability, then in large economies, almost all students receive their most preferred

feasible school under DA cutoffs with high probability. The formal definition follows:

Definition 3. A profile σ is asymptotically ex-post stable if the fraction of students who employ SRS

against DA cutoffs in each σk converges to 1 in probability as k → ∞.

Asymptotic ex-post stability enables preference inference from DA choice data. Theorem 1 below

justifies this, stating that under certain conditions, any regular robust equilibrium is asymptotically ex-post

stable.

Artemov, Che, and He (2023) established this result when students face no score uncertainty (C = C1),

and the measure η has full support. The full support assumption, crucial for guaranteeing a unique stable

matching in their proof, must be relaxed to accommodate scenarios like STB without priorities and coarse

priorities with STB. We introduce a weaker condition:

Assumption 1 (Marginal Full Support). For each ordinal preference r ∈ R and for each school c ∈ C,

the marginal density for score sc

η̄(sc, r) :=

∫
ρ(u)=r,s−c

η(u, sc, s−c)duds−c

is strictly positive for all sc ∈ [0, 1].

This condition is weaker than the full support assumption and allows for low-dimensional score

support. For example, Marginal Full Support holds in the case of STB without priorities; the support of the

25
It is important that an SRS is defined only in conjunction with some deterministic cutoffs p, interpreted either as the

cutoffs of the limit continuum economy (which will be shown to be deterministic) or as realizations of random cutoffs.
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uncertainty/lottery is then diagonal and one-dimensional, yet the marginal of its lottery has full support.

With nontrivial priorities, the condition states that each ordinal preference type has fully supported

priorities. We can generalize the uniqueness result by Azevedo and Leshno (2016) and Azevedo (2014)

under this weaker condition:
26

Lemma 2. If η satisfies Marginal Full Support, then E = [η, S] admits a unique stable matching.

We are now ready to state the main result.

Theorem 1. Suppose η satisfies Marginal Full Support. Then, any regular robust equilibrium is asymptotically

ex-post stable.

This theorem implies that we can invoke stability for almost all uncertainty realizations in a large

enough market; this is precisely what we will do in our TEPS procedure.

The theorem’s key insight is that in sufficiently large economies, almost all students play SRS against

the unique stable cutoffs of the limit continuum economy (well-defined by Lemma 2). We prove the theorem

by contradiction. Assuming a regular robust equilibrium that is not asymptotically ex-post stable, we

identify a subsequence of economies where DA cutoffs converge, and a non-vanishing fraction of students

play non-SRS against these cutoffs. We then show that some of these students would gain significantly by

deviating to TRS, even in large economies. This contradicts the robustness of the equilibrium.

While this argument builds on the proof of Artemov, Che, and He (2023), the ex-ante uncertainty

presents a novel challenge of ensuring that the deviation from non-SRS yields discrete changes in assign-

ment probabilities even in large economies. The proof is highly nontrivial,
27

and also requires assumptions

on priority structure (those embodied by T1, T2, T3 in Section 2.1). In Appendix A, we prove the theorem

under weaker conditions.

Recall that a robust equilibrium, despite Theorem 1, is consistent with multiple behaviors regarding

students’ ROLs. This multiplicity raises the question of how to conduct counterfactual analysis. The

next corollary of Theorem 1 addresses this, justifying the assumption of truth-telling in counterfactual

scenarios for predicting assignment outcomes.

Corollary 1. Suppose η satisfies Marginal Full Support. Then, in any regular robust equilibrium, the fraction

of students whose assigned schools coincide with the ones that would arise if everyone employs TRS converges

to one in probability as k → ∞.

26
Relatedly, Agarwal and Somaini (2018) and Grigoryan (2022) provide other weak conditions for guaranteeing the uniqueness

of stable matching in the continuum economy.

27
See Lemma 4 and its subsequent use in the proof of Theorem 1

′
.
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3 Inferring Student Preferences from ROLs: Transitive Extension of Pref-
erences from Stability

Building upon Theorem 1, we introduce the Transitive Extension of Preferences from Stability (TEPS)

procedure to infer students’ ordinal preferences from school choice data. We will show that TEPS extracts

the maximal information about preferences that is consistent with our theoretical framework.

Consider a standard dataset from a centralized DA assignment system, in which the analyst has access

to applicants’ submitted ROLs, their intrinsic priorities, and school capacities.

3.1 Preference Relations Inferred by Stability and Transitivity
As preference inference is conducted individually for each applicant, we can focus on a single applicant

without loss of generality. Assume the applicant submits a ROL R and has priorities t. We will simplify

the notation by omitting R and t when the context is clear. For now, we will assume no outside option

exists, though incorporating outside options is straightforward.
28

Let Ω represent the set of all assignment-

relevant states, essentially, all possible profiles of priorities for all applicants at all schools. Practically, each

state ω ∈ Ω encompasses lottery draws, entrance exam scores, and other uncertainties affecting school

cutoffs.

Our objective is to utilize the data and Theorem 1 to make an inference about the set of preference

relations P := {(x, y) ∈ C2 : x ∈ C is inferred more preferred to y ∈ C} for the applicant. The

interpretation of Theorem 1 depends on market size and the payoff relevance of mistakes. To simplify

the initial explanation, we initially assume stable matching outcomes for all uncertainty realizations ω,

implying no payoff-relevant mistakes. While this strictly holds only in the limit continuum economy, it is

a useful starting point to explain our method. We will relax this assumption later in Section 3.2.

The TEPS procedure comprises three steps to generate preference relationsP . We will use the following

example to illustrate the procedure.

Example 2. There are six schools, {c0, c1, c2, c3, c4, c5}. A student has submitted ROL, R = c4-c3-c2-c1.

Random priorities facing her then entail four possible feasible sets: (a) {c3, c4} with probability 0.4; (b)

{c0, c1} with probability 0.3; (c) {c0, c1, c2} with probability 0.25; (d) {c1, c4} with probability 0.05.

Step 1. Simulating uncertainties and compiling choice data:
We first simulate all possible priority profiles by simulating uncertainties. For instance, in lottery-

based systems, uncertainties can be simulated by conducting lotteries and executing DA, mirroring the

28
The procedure can be easily extended to include an outside option (ø), representing non-assignment or other always-feasible

alternatives, by redefining the set of schools as C̃ = C ∪ {ø}.
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actual mechanism.
29

Each simulated state ω ∈ Ω captures the students’ realized priorities, allowing us to

determine school cutoffs based on their submitted ROLs. From this, we can identify the feasible schools,

B(ω), and the assigned schools, α(ω),30
for each student in each state. Since multiple ω’s can lead to the

same feasible set, we next partition Ω so that any two ω, ω′
giving rise to the same feasible set belongs

to the same partition cell. Let PΩ denote the resulting partition and W ∈ PΩ a typical partition cell. In

the example, we have four partition cells, W1,W2,W3,W4 with distinct feasible sets, BW1 = {c4, c3},

BW2 = {c1, c0}, BW3 = {c2, c1, c0}, and BW4 = {c4, c1}, and the assigned schools αW1 = c4, αW2 = c1,

αW3 = c2, and αW4 = c4. The resulting pairs (BW , αW )W∈PΩ
form the choice data for the student, visually

represented in Figure 1(a).
31

c4 c1 c2 c4

c3 c0 c1 c0 c1

BW1 BW2 BW3 BW4

(a) Step 1

c4

c3 c1

c2

c1 c0

c1

c0

P̃1 P̃2 P̃3

(b) Step 2

c4

c3

c0

c1

c2

c1

c0

P
(c) Step 3

Figure 1: An Example of TEPS

Step 2. Inferring preference relations in each realized uncertainty:
Theorem 1 states that in the limit economy, almost all students are stably assigned for every state

ω ∈ Ω. This implies that, for each partition cell W , the assigned school αW is the student’s most preferred

choice among the feasible schools BW . This yields preference relations P̃W ⊂ C2
for each W ∈ PΩ.

32

The collection of all these inferred preference relations is denoted as P̃ := ∪W∈PΩ
P̃W . We then partition

P̃ into ordered sets {P̃1, P̃2, ...., P̃m} , ensuring that within each set, the same school is assigned, and

across sets, the assigned schools follow the order they appear in the student’s ROL.
33

In our example,

this step produces P̃1 = {(c4, c3), (c4, c1)}, P̃2 = {(c2, c1), (c2, c0)}, and P̃3 = {(c1, c0)}. In Figure 1(b),

those are represented by three ordered trees with one length, where the roots correspond to the schools

the student may be assigned in some realizations of the uncertainties.

29
To simulate the student composition uncertainty, we may bootstrap from the observed ROL to create multiple

economies/applicant compositions. For uncertainties arising from other sources, like unknown test scores, an empirical

model can be built to simulate the score distribution based on observable factors (e.g., academic performance measures).

30
The highest-ranked choice within B(ω) according to the student’s ROL.

31
Since we do not consider outside options, we omit (αW , BW ) if αW = ø, a non-assignment. If we include an outside

option, we should include (αW , BW ), where αW = ø and BW is the set of (unranked) schools that were feasible when the

student was not assigned.

32
Recall that each element in P̃ is an ordered pair of schools, (c, c′), where c is inferred preferred to c′.

33
More precisely, for any (c, d) ∈ P̃i and (c′, d′) ∈ P̃j , (i) c = c′ if i = j, and (ii) c is ranked ahead of c′ on the ROL if

i < j.

15



Step 3. Extending preference relations by transitivity axiom:
The last step employs the transitivity axiom to connect the preference relations P̃ derived in Step 2. The

algorithm begins with the preference sets associated with the worst-ranked assigned schools and progres-

sively incorporates any preferences implied by transitivity.
34

Starting with P̃m and P̃m−1 (where m is the

highest index), a new setPm−1 is constructed by including P̃m∪P̃m−1 and adding preferences relations im-

plied by transitivity: If (y, z) ∈ P̃m and (x, y) ∈ P̃m−1 then, we infer that x is revealed preferred to z and

add (x, z) to Pm−1. This process is repeated with Pm−1 and P̃m−2 to obtain Pm−2, and so forth, until the fi-

nal output P := P1 is obtained. In our example, P = {(c1, c0), (c2, c1), (c2, c0), (c4, c1), (c4, c3), (c4, c0)},

depicted in Figure 1(c) as a collection of trees.

Importantly, TEPS procedure does not infer all preference rankings stated in a student’s ROL. In our

example, TEPS procedure does not establish a relationship between c4 and c2 despite the ROL listing

c4-c3-c2-c1. This is because these two schools are never feasible simultaneously,
35

so their relative ranking

is neither directly revealed, nor are they indirectly revealed by transitivity. Thus, TEPS deems this part of

the ROL unreliable for inferring true preferences. Additionally, the unranked schools c5 is never feasible

(i.e., out of reach) under any uncertainty realizations, and thus, arbitrarily ranking or omitting it has no

impact on the student’s assignment. Consequently, TEPS does not infer any preference relation involving

c5. In essence, TEPS extracts a subset of preference relations of what the submitted ROL (or WTT, as will

be seen later) states, focusing on those supported by stability and transitivity.

Nevertheless, TEPS infers the maximum preference relations that are consistent with Theorem 1.

More generally, consider any Ω′ ⊂ Ω, and let PST(Ω′) denote the preference relations inferred by applying

stability to all uncertainties in Ω′
and the transitivity axiom. In practice, Ω′

is the set of uncertainties the

analyst considers “relevant.” We will elaborate on how Ω′
is selected from simulated uncertainties later.

The following result holds:

Proposition 1. Fix a student’s ROL R and her observable priorities t. Suppose Ω′ ⊂ Ω is used in TEPS, then

34
Alternative fast algorithms for computing transitive closures exist, often based on shortest path or breadth-/depth-first

search, with polynomial time complexity in the number of choices (see https://en.wikipedia.org/wiki/Transitive closure.) The

computational burden is further reduced in practice as the number of schools on a student’s ROL is typically much smaller

than the total number of available schools. This is because only schools ranked on the ROL and revealed to be preferred to

other ranked schools are involved in the transitive closure procedure.

35
Such cases occur under MTB, which uses distinct lotteries to break ties at different schools. Even with STB, such cases may

occur if the cutoffs are not degenerate (e.g., in a finite economy) as the relative ranking of school cutoffs may vary across STB

lottery realizations. Practically, applicants may struggle to identify simultaneously feasible schools. We adopt a conservative

approach, avoiding inferences about non-simultaneously feasible schools to prevent potential reliance on unreliable preference

information.
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P = PST(Ω′). That is, the TEPS procedure infers the preference relations if and only if they can be inferred by

the stability conditions on possible uncertainties in Ω′ ⊂ Ω and transitivity.

3.2 Allowing Violations of Stability in TEPS
In principle, Step 1 of TEPS could simulate all uncertainties by setting Ω′ = Ω. This amounts to

requiring ex-post stability for all uncertainties, which is justified when the applicant makes no payoff-

relevant mistakes. Theorem 1 guarantees this in a robust equilibrium only for the infinite economy. In any

finite economy, a robust equilibrium allows for some payoff-relevant mistakes that lead to deviations from

ex-post stability, as long as the payoff loss is minor. To allow for such mistakes, we define “sufficiently

likely” states Ω′ ⊂ Ω such that TEPS is applied only to Ω′
. The modified procedure is as follows.

Recall in Step 1, we partitioned Ω into cells based on the applicant’s feasible sets BW . Now, we

order these feasible sets in descending order of likelihood. In our example, the four feasible sets are

already indexed this way, with BW1 being the most likely and BW4 being the least likely. We consider

the cumulative likelihood of these sets, starting from the most likely. We then introduce an “attention

parameter” τ ∈ [0, 100], which acts as a cumulative likelihood threshold (in percentage) for including

feasible sets in our TEPS procedure. In our example, setting τ = 95 includes only BW1, BW2 , and BW3 , as

their combined likelihood reaches 95%. TEPS inference is then focused solely onΩ′ = {BW1, BW2, BW3}.
36

We call the adjusted procedure TEPS
τ
, and let Pτ

denote the resulting preference relations. We label

TEPS
100

and P100
as TEPS

all
and Pall

, respectively, as they utilize all feasible set realizations.
37

Decreasing

the attention parameter τ makes TEPS
τ

more tolerant of stability violations. At τ = 0, TEPS
0

infers

student preferences solely based on the most likely feasible set, amounting to her considering only the

most likely feasible set. Thus, TEPS
0

is also referred to as TEPS
top

.

The rationale for the attention parameter is straightforward. Students may not fully consider low-

probability feasible sets such as BW4 when forming their ROLs, potentially leading to unreliable inferences

from these sets. TEPS
τ

mitigates this by focusing only on the most likely feasible sets. In our example,

TEPS
95

produces preference relations P95
(Figure 2) which is a subset of P100

(Figure 1(c)).

3.3 Comparison of TEPS withWTT and Stability
The Weak Truth-Telling (WTT) assumption has traditionally been used to infer student preferences

(e.g., Abdulkadiroglu, Agarwal, and Pathak, 2017; Laverde, 2022). WTT involves two assumptions: (a) the

36
Formally, Step 1 of TEPS with threshold τ always includes the most likely feasible set BW1 , and additionally includes the

feasible set up to BWT̄
such that

∑T̄
t=1 Prob(Wt) ≤ τ% and

∑T̄+1
t=1 Prob(Wt) > τ%.

37
Using this notation, the TEPS procedure and the resulting preference relations in Section 3.1 correspond to TEPS

all
and

Pall
, respectively.
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Figure 2: An Example of Allowing Violations of Stability in TEPS: TEPS
95

number of choices ranked in any ROL is exogenous to student preferences, and (b) students rank their

top choices truthfully but may omit some least preferred schools. Let PWTT
represent the preferences of

a student inferred by WTT. In Example 2, for the student with R=c4-c3-c2-c1, WTT infers uc4 > uc3 >

uc2 > uc1 > uc0, uc5 , or PWTT = {(c4, c3), (c4, c2), (c4, c1), (c4, c0), (c4, c5), (c3, c2), (c3, c1), (c3, c0), (c3,
c5), (c2, c1), (c2, c0), (c2, c5), (c1, c0), (c1, c5)}. Notably, unranked schools, c0 and c5 are inferred as less

preferred to all ranked schools in R.

WTT remains justifiable by asymptotic ex-post stability of robust equilibria if applicants face full-

support uncertainty (Lemma 1). In this case, uncertainty makes mistakes costly, discouraging them in any

robust equilibrium (in a large market). However, mistakes can persist in a robust equilibrium without

full-support uncertainty, potentially leading to biased preference estimates under WTT, as have been

argued in Fack, Grenet, and He (2019) and Artemov, Che, and He (2023). TEPS
τ
, for τ ∈ [0, 100], addresses

this issue by offering a flexible range of methods for identifying preferences from ROL data, even with

uncertainties and potential mistakes. Importantly, TEPS does not inherently contradict WTT; rather, it

focuses on extracting more reliable information from ROLs. WTT and TEPS
τ

with varying τ form a

nesting structure:

Proposition 2. Fix any student with a ROL R and intrinsic priority t. We have P top ⊆ Pτ ⊆ Pτ ′ ⊆
Pall = PST(Ω) ⊆ PWTT for any 0 < τ < τ ′ < 100.

To account for strategic mistakes, Fack, Grenet, and He (2019) and Artemov, Che, and He (2023)

suggested stability as an alternative to WTT. However, this approach assumes no uncertainties in ex-post

cutoffs or applicants’ priorities/scores, which is often unrealistic. Moreover, their method is not even

defined for the uncertain priority structure.
38

Our method generalizes the stability-based approach to

38
A naive approach to extend the method could be to impose stability using ex-post cutoff obtained from a single, arbitrary

lottery draw. While seemingly similar to TEPS
top

, this approach has two key problems. First, this ad-hoc adaptation of stability

lacks theoretical grounding from Theorem 1. The ex-post cutoffs from a single lottery draw could very well be an outlier,

a very low-probability event neglected by the applicant, making the “inferred” preference potentially unreliable about the

applicant’s true preference. Second, if the actual lottery results are not observed, researchers must simulate them, introducing

the possibility of researchers selectively choosing lottery realizations that support desired conclusions. In contrast, TEPS
top

is
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accommodate uncertainties.

3.4 Identification and Estimation
The assumptions of stability and transitivity underlying TEPS do not uniquely pin down a student’s

best response or the ROL she submits. This may raise concerns about the completeness of our model as

defined by Tamer (2003), where the mapping from a student’s type, (u, t), to TEPS inferred preferences

could be a correspondence, potentially hindering the point identification of the distribution of u. These

concerns, however, do not apply to our method. As formally proven in Online Appendix C, TEPS ensures

a unique mapping from each student type to a preference—i.e., a set of inferred preference relations.

The intuition is that TEPS, by considering all uncertainties, derives a unique distribution of assignment

outcomes using stability and transitivity. TEPS is complete since it relies solely on this unique distribution,

even though multiple best-response ROLs may be consistent with it.

Once preferences are inferred, a parametric utility function can be fitted for parameter estimation. A

common approach involves using random utility models (e.g., with EVT1 or normal errors) and estimating

parameters via maximum likelihood estimation, Markov Chain Monte Carlo methods (e.g., Gibbs sampling),

or Expectation-Maximization algorithms. We recommend a multinomial probit model (with or without

random coefficients) estimated via Gibbs sampling for its flexibility in drawing cardinal utilities consistent

with inferred preferences. For example, with the inferred preferences c1 ≻ c2 and c1 ≻ c3 ≻ c4, writing

the exact likelihood function is challenging even with EVT1 errors. However, the inferred preferences

provide utility bounds for each school, which can be easily incorporated into the Gibbs sampler.
39

3.5 Selecting from among Alternative Preference Hypotheses
Proposition 2 presents a nested family of preference inference hypotheses, each offering a tradeoff

between utilizing more data and being robust to potential mistakes. The optimal method depends on the

extent and the payoff-significance of these mistakes, which is an empirical question. Thus, we devise a

data-driven testing procedure using Wald tests to select the most suitable method, ranging from WTT

to various tolerance levels for mistakes within the TEPS
τ

framework. We assume that TEPS
top

, the

most robust inference, yields consistent parameter estimates, serving as the alternative hypothesis to

sequentially test the consistency of more informationally demanding models, starting with WTT and then

TEPS
τ

in the descending order of τ ’s.

both well-founded from theoretical justification (Theorem 1) and is ex-post verifiable.

39
In the example, assuming no outside options, the bounds are given by u1 ∈ (max{c2, c3},∞), u2 ∈ (−∞, u1), u3 ∈

(u4, u1), u4 ∈ (−∞, u3). Each Gibbs sampler iteration sequentially draws school utilities for each student, subject to these

bounds. The detailed procedure is outlined in Online Appendix E.
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Concretely, suppose we wish to estimate a parameter vector β in a parametric model. Each method

produces an estimator for β: the WTT-based estimator (β̂WTT
) and the TEPS

τ
-based estimator (β̂τ

). As

an example, consider TEPS
top

and 10 other τ values, τ1 = 10, τ2 = 20, . . . , τ9 = 90, τ10 = 100 (note that

TEPS
τ10

=TEPS
all

). The following procedure selects the consistent and efficient estimator among those

considered.
40

Step 1: Test TEPStop vs. WTT. We formulate two hypotheses:

• HWTT

0 : β̂WTT
and β̂top

are both consistent, while β̂WTT
is efficient.

• HWTT

1 : only β̂top
is consistent.

Since WTT leads to an efficient estimator under the null, we conduct a Wald test based on the statistic,(
β̂top − β̂WTT

)′ (
V (β̂top)− V (β̂WTT)

)−1 (
β̂top − β̂WTT

)
where V (·) denotes the covariance matrix of its argument. Under the null, the test statistic follows a

χ2
|β| distribution. Justified by the nesting structure (Proposition 2) and the maintained assumption

on TEPS
top

, if HWTT

0 is not rejected, we select β̂WTT
and exit the procedure; otherwise, we perform the

next test.

Step 2: Test TEPStop vs. TEPSτ . We start with the largest τ , τ10 = 100.

• Hτ
0 : β̂τ

and β̂top
are both consistent, while β̂τ

is efficient;

• Hτ
1 : only β̂top

is consistent.

We conduct a Wald test based on the statistic,(
β̂top − β̂τ

)′ (
V (β̂top)− V (β̂τ)

)−1 (
β̂top − β̂τ

)
.

Under the null, the test statistic follows a χ2
|β| distribution. If Hτ

0 is not rejected, we select β̂τ
; otherwise,

we proceed to test the next largest τ , τ9. We continue until we reach a value of τ such that Hτ
0 is not

rejected, in which case we select β̂τ
, or we reject Hτ1

0 , in which case we select β̂top
.

The order of these steps guarantees the desired size of the tests and makes it appropriate to use the

Hausman-type test statistics.
41

40
One drawback of the testing procedure is its reliance on correct parametric model specification, potentially susceptible to

misspecification. In such cases, nonparametric tests for nested models may offer a more general approach, if one is willing to

consider nonparametric models.

41
The power of the testing procedure, however, is affected by the number of τ values considered. The sequential nature of

the tests precludes the use of multiple hypotheses testing corrections like Bonferroni or Benjamini and Hochberg (1995).
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3.6 Performance of TEPS: Monte Carlo Simulations
We use Monte Carlo simulations to evaluate the performance of TEPS (see Online Appendix D for

details.)
42

We simulate 100 finite economies with 1,000 students applying to 12 schools under a student-

proposing DA algorithm with coarse priorities and single tie-breaking, similar to the NYC public school

choice (T2 in Section 2.1). Each economy contains independently randomly generated priorities and

preferences following a parametric random utility model. We consider three data generating processes

(DGP); (i) Truth-telling (TT) where students submit truthful ROLs; (ii) Payoff Irrelevant Mistakes (MIS-IRR)

where students may skip or flip (i.e., arbitrarily rank) out-of-reach schools, and (iii) Payoff Relevant

Mistakes (MIS-REL) where students may additionally skip schools with small but positive admission

chances.
43

Table 2 summarizes these scenarios. The fraction of students making mistakes rises from 0% in

TT to 74.4% in MIS-IRR and MIS-REL, resulting in only 27.0% and 28.8% WTT-consistent preferences in

MIS-IRR and MIS-REL, respectively. Stability holds for all students in TT and MIS-IRR, but not in MIS-REL,

as some students skip schools within potential reach.

Table 2: Mistakes in Monte Carlo Simulations (%)

Scenarios: DGP w/ Different Student Strategies

Truth-Telling Payoff Irrelevant Mistakes Payoff Relevant Mistakes

TT MIS-IRR MIS-REL

Average length of submitted ROLs 12 6.1 5.0

WTT: Weak-Truth-Telling 100 27.0 28.8

Matched w/ favorite feasible school 100 100 96.2

Make Mistakes 0 74.4 74.4

Note: Each entry reported is a percentage that is averaged over the 100 estimation samples. A student is WTT if 1) ROL is in the true preference order, and 2)

all ranked schools are more preferred to all unranked schools.

For each of 300 scenarios (3 DGPs × 100 copies), we estimate preference parameters using a Gibbs

sampler, based on WTT and TEPS with attention parameters τ = 0, 20, 40, 60, 80, 100. After estimation,

we apply the testing procedure from Section 3.5 to choose the optimal estimate, referred to as the “selected”

estimate.

Figure 3 summarizes the results. First, under the TT DGP, all estimates are consistent, while the

WTT-based estimator has the smallest variance since it utilizes the maximum possible information from

the observed ROLs, even though some of this information might be potentially unreliable due to mistakes.

Second, with payoff-irrelevant or -relevant mistakes (MIS-IRR, MIS-REL), WTT shows significant bias due

42
Online Appendix D additionally presents results from TEPS incorporating finite market uncertainty. These results closely

resemble those reported in this section.

43
Specifically, students may omit schools with admission probabilities below 10%.
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(a) Distribution of Estimates

(b) Test Results: Fraction of Each Method Being Selected

Data Generating Process: TT MIS-IRR MIS-REL

Estimation method

WTT 0.94 0 0

TEPS
top

0.01 0 0

TEPS
20

0 0 0

TEPS
40

0 0 0.01

TEPS
60

0 0.01 0.14

TEPS
80

0.03 0.12 0.68
TEPS

all
0.01 0.87 0.17

Figure 3: Monte Carlo Simulations: Performance of TEPS and WTT

Note: See Online Appendix D for the exact description of our Monte Carlo simulation. In panel (a), we plot the kernel density plots of one parameter estimate

(β2 in Equation (D.4)) from 100 Monte Carlo samples. The left subfigure corresponds to TT DGP, the center subfigure corresponds to MIS-IRR DGP, and the

right subfigure corresponds to MIS-REL DGP. The black vertical line at 2 denotes the true value of the parameter. We depict only WTT, TEPS
top

, TEPS
all

, and

the Selected estimates for conciseness. In panel (b), we report the fraction of each estimate being chosen as the ‘Selected’ estimate among 100 Monte Carlo

samples, according to the testing procedure in Section 3.5.

to its susceptibility to mistakes. In contrast, TEPS-based estimators are robust to payoff-irrelevant mistakes.

A two-sided two-sample Kolmogorov-Smirnov (KS) test confirms this, rejecting the null hypotheses of

identical distributions for WTT and TEPS
top

/TEPS
all

estimates (p <0.001), but not rejecting it for TEPS
top

and TEPS
all

(p =0.193). Third, with payoff-relevant mistakes (MIS-REL), TEPS
all

becomes inconsistent as

it does not account for such mistakes. However, TEPS
top

and other TEPS
τ

with τ < 100 remain consistent

(see Online Appendix D.) In this case, the KS test rejects the null hypothesis of identical distributions for

TEPS
top

and TEPS
all

(p <0.001).

Aligned with these findings, our testing procedure selects WTT-based estimates 94% of the time under

the TT DGP but never under MIS-IRR or MIS-REL. With no payoff-relevant mistakes (MIS-IRR), the

procedure selects TEPS
all

87% of the time, as it utilizes the maximal information and hence has the smallest

variance among TEPS-based methods robust to payoff-irrelevant mistakes (Proposition 2). Finally, with

payoff-relevant mistakes (MIS-REL), TEPS
80

is selected 68% of the time, as TEPS
all

may no longer be

robust to such mistakes.
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4 High School Choice in Staten Island, New York City
We now apply our framework to high school choice in NYC with two purposes. First, we showcase

the practical implementation of our methodology on real-world data. We will estimate preferences under

various assumptions about student behavior and let our testing procedure select the most appropriate one.

Second, we highlight the importance of choosing the right assumption for preference inference by com-

paring predicted effects of desegregation policies under different assumptions on mistakes, demonstrating

how these assumptions can lead to different policy predictions.
44

NYC public high school admissions use the student-proposing DA (Abdulkadiroglu, Pathak, and Roth,

2005). Students apply to up to 12 programs, each with its own capacity and independent admissions

process. Eligible students are grouped into priority groups, with ties broken by a single lottery draw across

all programs (STB). This random tie-breaking generates priority uncertainties (of type T2 in Section 2.1),

making NYC public high school admissions a suitable candidate for our methodology.
45

We focus on Staten Island (SI) students and programs participating in Round 1 (the main round) of

NYC public high school choice in the 2016–17 academic year. SI is one of the five boroughs of NYC, and

its geographic isolation arguably makes it an independent matching market of a typical medium-sized US

city.
46

Further details on the institutional background and data are in the Online Appendix F.
47

Column (1) of Table 3 provides summary statistics of the students, and Table 4 describes the programs

and schools. Most students participate in Round 1 and enroll in their assigned school. Our data covers

3,731 students and 50 programs at nine schools. The ROL length limitation is not binding in SI, with an

average length of 4.05 and only about 3% of the students exhausting the list. Nearly all middle school

students residing in SI attend SI middle schools (about 95%) and apply only to SI high schools (see panel D

of Table 3). Compared to NYC overall, SI is wealthier and has a higher proportion of white students, with

median household income of $74,580 vs. $55,191 and 53% vs. 15% white students, respectively.

44
There is a substantive interest among the public and policymakers in diversifying and desegregating student bodies of

NYC schools. The NYC DOE recently proposed eliminating test-based screening and geographic preferences in admissions

(Shapiro, 2021). Some versions of these proposals were implemented but later reversed (Closson, 2022).

45
In the 2016-17 academic year, approximately 63% of the 769 NYC programs used lotteries for tie-breaking, while others

employed non-random tie-breakers (e.g., test or audition scores). In our main sample from SI, about 68% of programs utilized

lotteries.

46
SI is connected with the rest of the city only by the Staten Island Ferry or the Verrazzano-Narrow Bridge. While direct

policy implications for NYC may be limited, SI’s demographics and size better reflect those of typical medium-sized US cities,

enhancing the relevance of our findings for other urban areas.

47
We do not model students’ preferences for 9 specialized high schools (e.g., Stuyvesant, Bronx Science, etc.) in NYC, as

they use a separate admission procedure using SHSAT.
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Table 3: Summary Statistics: Sample Means across Students

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8

Panel A. Cell characteristics
Female 0.49 no yes no yes no yes no yes

Free or reduced-price lunch (FRPL) 0.53 no no yes yes no no yes yes

Black/Hispanic 0.36 no no no no yes yes yes yes

Panel B. Student characteristics
Asian 0.10 0.10 0.09 0.25 0.22 0.00 0.00 0.00 0.00

White 0.53 0.90 0.90 0.73 0.75 0.00 0.00 0.00 0.00

Black 0.12 0.00 0.00 0.00 0.00 0.30 0.27 0.33 0.34

Hispanic 0.25 0.00 0.00 0.00 0.00 0.70 0.74 0.67 0.66

Median Income ($1,000) 74.58 85.21 86.09 77.72 78.42 65.97 66.56 59.55 57.32

Grade 7 ELA 310.87 317.38 326.83 306.23 316.91 299.04 319.93 289.67 301.48

Grade 7 Math 310.21 326.72 326.11 313.36 315.34 296.88 308.43 285.54 287.27

Panel C. Admission outcomes
Matched with top choice 0.57 0.61 0.60 0.56 0.55 0.55 0.54 0.54 0.56

Unassigned 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

Panel D. Submitted ROLs
# of SI Choices 4.05 4.03 3.97 4.01 4.06 4.14 3.69 4.11 4.20

# of Choices (all) 4.06 4.05 3.98 4.02 4.07 4.16 3.70 4.12 4.21

Observations 3731 710 743 471 455 178 136 545 493

Table 4: Summary Statistics: Sample Means across Programs/Schools

Program School

Mean Std. Dev. Mean Std. Dev.

Capacity 134.06 (215.47) 744.78 (551.49)

9th Grade Size 71.30 (108.79) 396.78 (293.48)

% High Performer (ELA) 31.08 (26.82) 34.12 (15.01)

% High Performer (Math) 26.21 (25.46) 25.83 (12.19)

% White 36.32 (22.14) 43.93 (21.80)

% Asian 7.94 (7.39) 7.61 (3.40)

% Black 19.93 (13.82) 17.51 (12.79)

% Hispanic 34.45 (16.76) 29.57 (12.72)

% Free or Reduced-Price Lunch (FRPL) 63.40 (18.08) 60.50 (13.65)

1(STEM) 0.20 (0.40)

Observations 50 9

Note: Programs that are ‘For Continuing 8th Graders’ and zoned do not have capacity restrictions. We count the total number of students who are eligible for

those programs and report that as their capacity.

4.1 Preference Estimation
We use a random utility model to represent student preferences over programs.

48
The sample is

divided into eight mutually exclusive cells based on gender, free or reduced-price lunch (FRPL) status, and

48
We do not model outside options. Our data shows nearly all students (3,724 out of 3,731) received assignments (Table 3),

with less than 2% declining enrollment.
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Black/Hispanic ethnicity, allowing model parameters to vary freely across these cells à la Abdulkadiroğlu,

Pathak, Schellenberg, and Walters (2020). Columns (2)–(9) of Table 3 present the summary statistics for

each cell.

Let uicps denote the utility of student i in cell c when matched with program p at school s. The utility

is parameterized as follows:

uicps = αcs + β1,cDis + β2,cNearestis + β3,czp +
∑
l

γl
cx

l
iZ

l
s +
∑
k

δkcx
k
i z

k
p + στ(p),cϵicps, (1)

where αcs’s are cell-specific school fixed effects; Dis is the distance from student i’s residence to school

s;
49 Nearestis is a binary variable which equals 1 if Dis is the smallest for i among all schools and 0

otherwise; xi is a vector of student characteristics to be interacted with program characteristics zp and

school characteristics Zs. Specifically, xi includes 7th grade standardized ELA and Math scores, their

average, and median neighborhood income. zp and Zs include the proportions of high performers in 7th

grade standardized ELA and Math (a high performer is defined as being above the 75th percentile), the

size of the 9th grade, the proportion of each race/ethnicity group, the proportion of students on FRPL,

and a STEM program indicator. ϵicps is i.i.d. standard normal conditional on the above observables. στ(p),c

allows for heterogeneous variances of the unobserved idiosyncratic preference shocks based on program

type τ(p) (STEM, or others), with σ2
others,c normalized to 1 for all c.

We estimate equation (1) separately for the eight cells, which exhibit substantial heterogeneity in

observables (Table 3). For example, median neighborhood income is $85,207 for Cell 1 (male, non-FRPL,

non-Black/Hispanic) versus $57,321 for Cell 8 (female, FRPL, Black/Hispanic). For each cell, we employ

a Gibbs sampling procedure for Hierarchical Bayesian estimation, detailed in Online Appendix E. Full

preference estimates are reported in Online Appendix H.1. For TEPS, we consider TEPS
top

, TEPS
10

, TEPS
20

,

· · · , TEPS
90

, and TEPS
all

.
50

Test Results: Selected Estimates. Table 5 presents the student behavior assumptions chosen by our

testing procedure. WTT is consistently rejected, implying that students in our data across all the cells tend

to make some, possibly payoff-insignificant, mistakes. The selected version ranges from TEPS
20

to TEPS
all

across the cells, indicating heterogeneity in the degree to which such mistakes are made across students’

observable characteristics. Notably, mistakes seem more pronounced for low SES and minority students.
51

49
We use the exact address for schools. For students, the centroid of their residential census tract serves as their residence.

The Haversine formula is employed to calculate the straight-line distance between these points.

50
As stated in Section 3.3, we do not consider the existing stability method (Fack, Grenet, and He, 2019), due to its

inapplicability under priority uncertainties.

51
Using the Least Absolute Shrinkage and Selection Operator (LASSO), we find that among the cell characteristics that are

used to define the cells, FRPL status has the most predictive of the selected τ .
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Table 5: Test Results: Selected Estimates

Cells 1 2 3 4 5 6 7 8

Selected Estimates TEPS
70

TEPS
all

TEPS
40

TEPS
20

TEPS
70

TEPS
80

TEPS
50

TEPS
20

Descriptive Analysis. TEPS differentiates unranked programs based on feasibility, whereas WTT treats

all unranked schools as less preferred than all ranked schools regardless of their feasibility. To see which

approach fits the data better, we examine if program characteristics systematically vary with feasibility

status. Figure 4 presents the percentage of high-performing students (by average score) for each program

type, categorized by feasibility.
52

Figure 4: Characteristics of Ranked and Unranked Programs by Feasibility Status

Note: For each student, we classify the programs into three types—ever-feasible-unranked, never-feasible-unranked, and ranked. Ranked programs are

those included in the student’s ROL, and Step 1 of TEPS
all

procedure determines the feasibility of each unranked program. We focus on the fraction of

high-performing students (measured by the average of ELA and math scores) in a program. In Online Appendix H.3, we report results on additional program

characteristics. The figure reports the average across all students for each type of program.

There is a clear order among the three types of programs: ever-feasible unranked programs have

the lowest percentage of high-performing students, never-feasible unranked programs have the highest,

and ranked programs fall in between. The lower percentage in ever-feasible programs likely stems from

feasibility itself—highly competitive programs with higher cutoffs are less likely to be feasible. Nevertheless,

this observation aligns with TEPS being selected over WTT in all cells.
53

Model Fit. To assess the model fit of different estimation methods, we predict matching outcomes and

calculate average assigned program characteristics. Using each estimate set, we simulate student ordinal

preferences (assuming truthful reporting, supported by Corollary 1 in analyzing matching outcomes),

and obtain a matching for each lottery draw. We then calculate the average of each program characteristic

over 40,000 simulations for each set of estimates and compare it to the actual data. Table 6 reports how

close the average is to the data, using estimates from all eight cells combined.

52
A ’high performer’ is defined as a student whose average 8th-grade statewide standardized ELA and math scores exceeds

the citywide 75th percentile.

53
We obtain the same conclusion when we look at other program characteristics, such as the percentages of high performers

in ELA and math separately and the proportion of non-FRPL students (see Online Appendix H.3.)
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Table 6: Model Fit: Average Characteristics of Assigned Programs

Black and Hispanic Students White, Asian, and Other Students

Data

Difference b/t model prediction & data

Data

Difference b/t model prediction & data

WTT TEPS
all

TEPS
top

Selected WTT TEPS
all

TEPS
top

Selected

% High Performer (ELA) 27.66 -1.12 0.24 0.01 0.11 46.00 -0.36 -0.25 -0.39 -0.33

(0.46) (0.49) (0.51) (0.52) (0.26) (0.24) (0.27) (0.28)

% High Performer (Math) 20.66 -0.76 0.30 0.09 0.21 39.68 -0.56 -0.49 -0.44 -0.51

(0.43) (0.43) (0.47) (0.49) (0.27) (0.23) (0.25) (0.27)

% FRPL (Program Level) 67.06 1.33 0.55 0.75 0.86 49.86 1.02 0.63 0.68 0.62

(0.31) (0.36) (0.43) (0.40) (0.23) (0.17) (0.21) (0.19)

% White 34.19 -2.58 -0.88 -1.27 -1.30 58.41 -1.06 -0.58 -0.89 -0.65

(0.45) (0.48) (0.57) (0.55) (0.33) (0.26) (0.29) (0.26)

% Asian 7.29 0.16 0.47 0.48 0.52 9.27 -0.09 -0.05 -0.13 -0.12

(0.15) (0.17) (0.17) (0.16) (0.08) (0.09) (0.09) (0.09)

% Black 21.40 0.82 -0.04 0.13 0.23 9.75 0.23 0.20 0.46 0.30

(0.29) (0.32) (0.36) (0.34) (0.16) (0.17) (0.18) (0.16)

% Hispanic 35.91 1.59 0.42 0.63 0.53 21.61 0.83 0.36 0.49 0.41

(0.33) (0.34) (0.39) (0.38) (0.22) (0.17) (0.19) (0.18)

Size of 9th Grade 135.54 -15.89 -3.08 2.69 1.38 287.77 -13.32 -3.18 -7.57 -5.98

(4.50) (4.75) (5.16) (5.02) (3.96) (2.70) (2.93) (2.79)

1(STEM) 15.67 -0.89 -1.89 -2.81 -1.73 14.56 0.77 0.84 1.13 0.84

(0.98) (1.76) (3.28) (1.98) (0.56) (0.79) (1.39) (0.96)

Average Standardized Difference 3.03 1.16 1.16 1.28 2.47 2.18 1.67 1.93

Notes: We sample 200 draws from the posterior distribution of each parameter and, for each draw, draw 200 sets of lotteries and run DA 200× 200 = 40, 000
times. The mean and standard deviations across the preference estimates draws are reported. The last row calculates the average standardized differences, i.e.,

the absolute value of the mean difference divided by the standard deviation, across all rows.

We report the model fit based on WTT, TEPS
all

, TEPS
top

, and the selected estimates. We observe

two key patterns. First, WTT-based estimates fit the data poorly, while the TEPS-based and the selected

estimates closely match the actual data. This is reflected in the average standardized differences reported

in the last row of the table, suggesting WTT’s vulnerability to payoff-insignificant mistakes and its

potential unreliability in preference inference. Second, TEPS
top

predictions tend to be less precise (i.e.,

have higher standard deviations) than TEPS
all

or the selected estimates (recall that TEPS
τ

with large

enough attention parameter τ were selected in Table 5). This is because TEPS
top

uses less information

about student preferences than other TEPS-based estimates, leading to less precise preference estimates

(Tables H.6-H.9).

4.2 Counterfactual Analysis
We proceed to evaluate the desegregation effects of three counterfactual policies based on alternative

preference estimates, motivated by recent debates and policy implementations by the NYC DOE:
54

(i) No screening: tie-breaking is solely lottery-based, eliminating academic screening.

54
Idoux (2022); Hahm and Park (2022) study similar policies in the context of middle schools and a dynamic setting,

respectively.
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(ii) No zoning: no programs prioritize students based on their residence. This amounts to removing zone

priorities at zoned programs in SI.

(iii) No priorities: all priority rules are eliminated, leaving only the tie-breaking lottery

We assess each scenario’s desegregation effects compared to the status quo.
55

For each set of estimates

(WTT; TEPS
τ

with τ = top, 10, · · · , 90, all; or selected), we randomly sample 200 draws of uicps for each

(i, c, p, s) from its respective posterior distribution and simulate student ROLs based on their true ordinal

preferences per Corollary 1. We then draw 200 sets of random lotteries, construct students’ priority

scores under each scenario, and run DA to obtain counterfactual outcomes. We report the average of each

measure we consider across 40,000 simulation results for each scenario and each set of estimates, focusing

on WTT, TEPS
top

, and the selected estimates for conciseness.

Figure 5: Racial Gap in Characteristics of Assigned Programs

We assess the effects of the three policies on the racial gap between Black or Hispanic students and

others, focusing on average assigned program characteristics (Figure 5).
56

The current system exhibits a

significant gap. Black or Hispanic students are assigned to programs with 57% Black or Hispanic students

on average, compared to 31% for others, resulting in a gap of −26 percentage points (panel a). Similar

gaps exist in the proportion of FRPL students (panel b) and high performers (panel c).

We find two prominent patterns in the predicted policy effects. Firstly, WTT-based estimates con-

sistently underestimate the desegregation impact of the policies. For example, WTT predicts only a 1

percentage point reduction in the racial gap for Black or Hispanic student proportions, compared to a 2

percentage point reduction predicted by the selected estimates. These differences, though seemingly small,

55
Throughout the simulations, we assume that the characteristics of schools and programs remain unchanged at their

baseline values (as measured in 2015-16). Thus, reported results represent the policies’ short-term impacts.

56
For each racial group, we calculate the mean of three assigned program characteristics—proportion of Black and Hispanic

students, proportion of FRPL students, and average 7th-grade standardized test score—, and report them in Figure 5. The full

table, along with the standard deviations of the predictions, is available in Table H.5.
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are statistically significant due to the high precision of our predictions (see Table H.5). This underestima-

tion is expected as WTT disregards students’ mistakes/inattention, assuming that students do not prefer

unranked, out-of-reach schools, even when they become within reach.

Second, even under our selected estimates, the predicted effects appear relatively small given the

substantial nature of the policies. While removing all priorities reduces racial gaps, the magnitude is modest,

suggesting factors beyond school priorities (e.g., residential segregation) may significantly contribute to

segregation. This raises doubts about the effectiveness of solely removing priorities for desegregation.

Figure 6: Percentage of Black or Hispanic: Census Tracts and High Schools

Source: 2017 American Community Survey: 5-Year Data, US Census TIGER/Line Shapefiles.

Descriptive evidence supports the role of residential segregation in explaining the limited impact of

policy changes (Monarrez, 2020; Laverde, 2022; Park and Hahm, 2022). Figure 6 illustrates high residential

segregation in Staten Island, with Black and Hispanic students concentrated in areas with schools serving

higher proportions of Black/Hispanic, low-income, and lower-performing students. Furthermore, our

estimates indicate a stronger aversion to commuting among minority students. For instance, our selected

estimates indicate that the willingness to travel for a 10 pp increase in the proportion of high performers

in math is 0.45 miles for Cell 1 (male/non-FRPL/White or Asian) students but only 0.10 miles for Cell

7 (male/FRPL/Black or Hispanic) students (see Appendix Tables H.6-H.9).
57

This interplay of residential

segregation and varying commuting preferences underscores the limitations of school choice reforms in

achieving desegregation without addressing residential patterns. A more holistic approach encompassing

both school and residential choices is necessary, as explored in Park and Hahm (2022); Agostinelli, Luflade,

57
The average commuting distance of SI students is 2.3 miles. The willingness to travel for school/program characteristics

X is calculated by dividing the coefficient on X (the marginal utility of X) by the negative of the coefficient on commuting

distance (the marginal utility of traveling) in the estimated utility function.
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and Martellini (2024).

5 Conclusion
This paper explores how to leverage uncertainties faced by applicants to infer their preferences in the

presence of payoff-insignificant mistakes. We study a general DA matching market in which students

may face uncertainties about their priorities, and consider a robust equilibrium in which no applicant

makes payoff-significant mistakes. We show that a robust equilibrium is asymptotically ex-post stable—the

proportion of students assigned their favorite feasible schools converges to one in probability. Based on this

theoretical finding, we develop the Transitive Extension of Preferences from Stability, a novel, theoretically

grounded, and computationally efficient method that extracts robust preference information from observed

ROLs.

Our empirical application to NYC high school choice data confirms the importance of accounting

for student application mistakes in preference estimation and policy counterfactuals, and demonstrates

the effectiveness of TEPS as a remedy. Substantively, our counterfactual analysis calls into question the

effectiveness of removing geographic and academic priorities in achieving the City’s desegregation goals.
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Chiappori, P.-A., and B. Salanié (2016): “The Econometrics of Matching Models,” Journal of Economic

Literature, 54(3), 832–861.

Chrisander, E., and A. Bjerre-Nielsen (2023): “Why Do Students Lie and Should We Worry? An Analysis

of Non-truthful Reporting,” arXiv preprint arXiv:2302.13718.

Closson, T. (2022): “In a Reversal, New York City Tightens Admissions to Some Top Schools,” New York

Times.

Combe, J., U. M. Dur, O. Tercieux, C. Terrier, and M. U. Ünver (2022): “Market Design for Distributional
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Matějka, F., and A. McKay (2015): “Rational inattention to discrete choices: A new foundation for the

multinomial logit model,” American Economic Review, 105(1), 272–298.

Monarrez, T. E. (2020): “School Attendance Boundaries and the Segregation of Public Schools in the U.S.,”

American Economic Journal: Applied Economics.

Mora, R., and A. Romero-Medina (2001): “Understanding Preference Formation in a Matching Market,” .

Ngo, D., and A. Dustan (2021): “Preferences, access, and the STEM gender gap in centralized high school

assignment,” American Economic Journal: Applied Economics.

Otero, S., N. Barahona, and C. Dobbin (2021): “Affirmative action in centralized college admission

systems: Evidence from Brazil,” Discussion paper, Working paper.

Park, M., and D. W. Hahm (2022): “Location Choice, Commuting, and School Choice,” Working Paper.

Pathak, P. A., and T. Sönmez (2013): “School Admissions Reform in Chicago and England: Comparing

Mechanisms by Their Vulnerability to Manipulation,” American Economic Review, 103(1), 80–106.

34



Pop-Eleches, C., and M. Urqiola (2013): “Going to a Better School: Effects and Behavioral Responses,”

American Economic Review, 103(4), 1289–1324.

Rees-Jones, A. (2017): “Suboptimal behavior in strategy-proof mechanisms: Evidence from the residency

match,” Games and Economic Behavior.

Rees-Jones, A., and S. Skowronek (2018): “An experimental investigation of preference misrepresentation

in the residency match,” Proceedings of the National Academy of Sciences, 115(45), 11471–11476.

Salonen, M. A. (2014): “Matching Practices for Secondary Schools – Finland, MiP Country Profile 19,” .

Saygin, P. O. (2016): “Gender Differences in Preferences for Taking Risk in College Applications,” Economics

of Education Review, 52, 120–133.

Shapiro, E. (2021): “New York City Will Change Many Selective Schools to Address Segregation,” New

York Times.
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A Proofs from Sections 2 and 3
We first introduce a general priority structure that nests the priority structure assumed in the main

text as a special case. We then establish asymptotic ex-post stability using that general priority structure

in Theorem 1
′
below, which will in turn imply Theorem 1.
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A.1 A General Priority Structure
Here, we consider a more general priority structure than those consisting of T1, T2, and T3 assumed in

the text. Recall the ex-ante priority types T . Let Td := {t ∈ T : stc = stc,∀c} be the types whose scores

are all degenerate, and let Tn := T \ Td denote types whose scores for some schools are non-degenerate.

We assume that T is compact, that Tn is closed, and that there exists some κ > 0 such that stc − stc > κ if

stc − stc > 0. Further, for each t ∈ Tn, Φt
is absolutely continuous and admits density ϕt

on St
. As in the

text, let η̃ denote the probability measure of θ̃ ∈ Θ̃ := [u, u]C × T . In summary, the continuum economy

is summarized by E = [η̃, S, (Φt)t].

In addition to Marginal Full Support, we introduce two additional conditions, which will be later

shown to hold under the priority structure satisfying T2 and T3.

Assumption 2 (Finite Atoms [at Extremal Ex-post Scores]). The distribution of (stc, s
t
c)t, viewed as a

random function of t, has at most a finite number of atoms.

This assumption can be seen as weakening the assumption of AL model. First, for priority structure

T1, with no uncertainty on ex-post scores, we have T = Td, with stc = stc for all t ∈ T . In this case, the

atomlessness of ex-post measure η (which is also assumed in AL) implies that the infimum and supremum

scores have no point mass, so Finite Atoms will be trivially satisfied. However, this condition does allow

point mass for infimum and supremum scores but only finitely many of them; this is the case of coarse

priorities in priority structure T2. A mass of students belong to each of finitely many priorities, so there

will be a finite number of atoms in the infima and suprema of their ex-post scores. Last, in the priority

structure priority structure T3, the infimum and supremum of stc are 0 and 1, respectively, so the finite

atoms condition is clearly satisfied.

For the last condition, for any δ ∈ (0, 1), we say a school c is δ-feasible for type t given p if stc−δ > pc

and δ-infeasible for type t given p if stc + δ < pc. Plainly, δ-feasibility and δ-infeasibility mean feasibility

and infeasibility, respectively, with probabilities that are bounded away from zero.

Assumption 3 (Rich Uncertainty). Fix any p ∈ [0, 1]C . Then, for any δ < δ̄, for some δ̄ > 0, there exists

β(δ) > 0 such that, for any t ∈ T , for any δ-feasible schools a, b ∈ C, and for any set Ct ⊂ C \ {a, b} of

δ-infeasible schools,

Pr{stc < pc,∀c ∈ Ct, and sta > pa, s
t
b > pb} > β(δ), (A.1)

whenever Pr{stc < pc,∀c ∈ Ct, sta > pa} > 0 and Pr{stc < pc,∀c ∈ Ct, stb > pb} > 0.A-1

A-1
Rich Uncertainty is vacuously satisfied if schools with the specified restrictions do not exist. Also, if Ct = ∅, the required

condition reduces to Pr{sta > pa, s
t
b > pb} > β(δ) whenever Pr{sta > pa} > 0 and Pr{stb > pb} > 0.
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The last condition, which we argue is quite weak, is most technical and thus requires unpacking. In

words, the condition states that whenever school a is feasible or b is feasible, while all δ-infeasible schools

in Ct
are infeasible, each with positive probability, then a and b are both simultaneously feasible and Ct

are infeasible with probability at least of β(δ), for some β(δ) > 0.
A-2

Essentially, this rules out the case in

which a student’s scores for a and b are extremely negatively correlated. Hence, the condition is quite

weak and is satisfied in all realistic environments in the main text.
A-3

A.2 Proof of Lemma 1

Proof. Suppose a student i adopts a strategy σi ≠ ρ. Then, there exists an ex ante type θ̃ = (u, t) such

that σi(θ̃) ≠ ρ(θ̃) with positive probability. Let k ≥ 1 be the first rank at which σi(θ̃) differs from ρ(θ̃).

More precisely, the student ranks school b for her k-th rank, even though a ≠ b is her k-th best school.

Full support uncertainty means that with positive probability, her scores have sa > pa, sb < pb, and

sc < pc, for all c ≠ a, b. In that case, σi(θ̃) yields an assignment at b, differing from her stable assignment

a. Therefore, σi fails to be an SRS against p.

A.3 Proof of Lemma 2

Proof. We first show that the following condition, called strict gross substitutes, guarantees the uniqueness:

η is such that for any p, p′ ∈ [0, 1]C with p < p′,

(SGS)
∑
c∈J

Dc(p
′) <

∑
c∈J

Dc(p),

where J := {c ∈ C : pc < p′c}. Suppose to the contrary there are two stable matchings characterized by

two cutoffs p and p′. By the lattice property, we can assume without loss that p′ > p. Since both p and p′

clear the markets and since p′c > pc ≥ 0 for each c ∈ J , for each c ∈ J ,

Dc(p) ≤ Sc and Dc(p
′) = Sc.

Summing across c ∈ J , we get ∑
c∈J

Dc(p
′) ≥

∑
c∈J

Dc(p),

which contradicts (SGS).

To prove the statement, it now suffices to show that η satisfies (SGS). To this end, fix any p, p′ ∈ [0, 1]C

with p < p′ and the corresponding set J = {c ∈ C : pc < p′c}. Observe that any ex-post type θ who

demands a school in J at cutoffs p′ never switches its demand to a school in C \ J or to the outside option

A-2
One non-obvious condition is the existence of a lower bound probability β(δ) that is independent of t. The condition is

still reasonable given the compactness of T and Tn.

A-3
See Online Appendix B.1 for the formal proof.
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ø, when the cutoffs shift to p. Hence, any such type continues to demand a (possibly different) school

in J at cutoffs p. Next, consider the type (u, s) with uc > 0 > uc′ , c ∈ J , ∀c′ ≠ c, and sc ∈ (pc, p
′
c). By

Marginal Full Support, there is a positive mass of such types. These types could not demand any school at

p′ but now demand c at p. Collecting our observations, we conclude that Dc(p
′) < Dc(p). Since the same

result holds for each c ∈ J , (SGS) holds.

A.4 Proof of Asymptotic Ex-post Stability of Robust Equilibria
We now prove our main result under the general priority structure satisfying Marginal Full Support,

Finite Atoms, and Rich Uncertainty:

Theorem 1
′
. Suppose η satisfies Marginal Full Support, Finite Atoms, and Rich Uncertainty. Then, any regular

robust equilibrium is asymptotically ex-post stable.

Note that Theorem 1 follows from Theorem 1
′
in light of the fact that the priority structures in the

former satisfy Finite Atoms and Rich Uncertainty.

Before proceeding with the proof, we need to perform a few preliminary analyses. Specifically, for

each k-economy F k
, we study the strategy profile for that economy, or the k-truncation of σ, denoted

by σk := (σ1, ..., σk). A later analysis requires us to consider the consequence of an arbitrary student i

deviating to truthful reporting ρ. We denote the resulting profile by σ(i) := (ρ, σ−i) which is obtained

by replacing the i-th component of σ with ρ. Likewise, σk
(i) denotes the k-truncation of σ(i). Note that if

i > k, then σk
(i) = σk

. Let P k
(i) denote the cutoffs that would prevail if the students employ σk

(i). Finally,

let p be the unique, deterministic cutoff under the unique stable matching in the continuum economy E

(Lemma 2). We first establish a desirable limit behavior of (P k
(i))i∈N0 as k → ∞, where N0 := N ∪ {0}.

Lemma 3. Let σ be any γ-regular strategy profile. There exists a subsequence
{
F kℓ
}
ℓ

such that

sup
0≤i≤kℓ

∥P kℓ
(i) − p∥ p−→ 0 as ℓ → ∞.

Proof. The proof follows exactly the same argument as ACH, upon noting that the uniqueness of stable

matching follows from (SGS) (instead of ACH’s full support assumption).

Next, define a set

Θ̃δ :=

{
(u, t) ∈ Θ̃ : inf

c,c′∈C̃,c̸=c′
|uc − uc′| > δ; ∀c, stc = stc or stc ≠ p̄c ⇒ |stc − p̄c| > δ; stc ≠ p̄c ⇒ |stc − p̄c| > δ

}
.

The Finite Atoms condition, together with atomlessness of η, implies that η̃(Θ̃δ) → 1 as δ → 0.
A-4

A-4
We note that the limit set Θ̃− := Θ̃− ∪δ>0Θ̃

δ
contains no mass point. This is seen by the fact that the only possibility

of a point mass in Θ̃−
may arise from a point mass occurring at some stc = stc = ptc for some c. (Note that any type t with

stc > stc belongs to ∪δ>0Θ̃
δ
, so it does not belong to Θ̃−

.) But if there were such a point mass, then there must be a positive
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Further, we introduce a few notations. Define Bν(p) := {p′ ∈ [0, 1]C : ||p′ − p|| < ν}. Consider a

student θ̃ and fix any arbitrary economy with other students playing some arbitrary reporting strategies.

If she adopts any arbitrary reporting strategy σ′
i(θ̃), this induces set of assignment probability (X ′

c)c∈C̃ ,

where X ′
c is the probability of the student being assigned to a school that she weakly prefers to c. Suppose

she switches to TRS which induces assignment probability (X∗
c )c∈C̃ , where X∗

c represents the probability

of the student being assigned a school that she weakly prefers to c. The strategyproofness of DA implies

that TRS yields better assignment than any other strategy in the sense of first-order stochastic dominance:

Fact 1. For each c ∈ C̃, X∗
c −X ′

c ≥ 0.

Naturally, we define the probability gain from the switch to be maxc∈C̃(X
∗
c −X ′

c). The following

preliminary result is useful.

Lemma 4. Fix any p̄ ∈ [0, 1]C and any δ ∈ (0, 1
2
min{κ, ζ}), where ζ := infc,c′∈C∪{x,y},p̄c≠p̄c′

|p̄c − p̄c′ |.
Then, there exist ν(δ) > 0 and α(δ) > 0 such that deviating from any non-SRS against p̄, say σ′, to TRS

yields a probability gain of at least α(δ), and thus a payoff gain of at least δα(δ), for any student with type

θ̃ ∈ Θδ, provided that σ′ and TRS induce cutoffs p′ and p′′ both in Bν(δ)(p).

Proof. Let β(δ) be the probability lower bound defined in Rich Uncertainty. Set ν(δ) = min{ δ
4
, β(δ)

4υ
},

where υ := maxt∈Tn,s∈St ϕt(s). Fix a student with type θ̃ = (u, t) ∈ Θ̃δ
. Without loss, we index schools

C̃ = {1, ..., C + 1} (including the outside option ø) so that uj > uj′ if and only if j < j′. Let Cj denote

the set of schools that student θ̃ prefers to j. Let CF ⊂ C̃ be a set of feasible schools that the student

would get with positive probabilities when she plays SRS against p̄. It means that for each j ∈ CF
, we

have

Pr{sc < p̄c,∀c ∈ Cj, sj > p̄j} > 0. (A.2)

There could be a feasible, and less preferred, school outside CF
that she is not assigned but would have

been with positive probability if she had ranked it sufficiently favorably. Since θ̃ ∈ Θ̃δ
, all these feasible

schools are in fact δ-feasible.

Now take any non-SRS against p̄ for that student, say σ′
. σ′

must rank some less-preferred, feasible—

and thus δ-feasible—school b ahead of some school a ∈ CF
, where she prefers a to b, and let a be the

most preferred school in CF
that suffers from such a ranking-reversal by σ′

. Let Ca be the set of schools

that the student prefers to a among C̃. For the reversal to make a difference (which follows from σ′
being

non-SRS against p̄), we must have

Pr{sc < p̄c,∀c ∈ Ca, sb > p̄b} > 0. (A.3)

mass at score sc = ptc, which contradicts the atomlessness of η.
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Suppose as hypothesized that σ′
in the hypothesized economy induces a cutoff p′ ∈ Bν(δ). We wish to

compute the probability X ′
a of the student receiving a or better according to the true preferences. Let

C ′ ⊂ Ca be the set of schools among Ca that σ′
ranks ahead of a. Then,

X ′
a ≤Pr{∃c ∈ C ′

s.t. sc > p′c}+Pr{sc < p′c,∀c ∈ C ′, sb < p′b, sa > p′a}

≤Pr{∃c ∈ Ca s.t. sc > p′c}+Pr{sc < p′c,∀c ∈ Ca, sb < pb, sa > p′a}

≤Pr{∃c ∈ Ca s.t. sc > pc}+Pr{sc < p̄c,∀c ∈ Ca, sb < p̄b, sa > p̄a}+ υ∥p̄′ − p̄∥

≤Pr{∃c ∈ Ca s.t. sc > p̄c}+Pr{sc < p̄c,∀c ∈ Ca, sb < p̄b, sa > p̄a}+
β(δ)

4
,

where the first inequality holds since it is possible that σ′
ranks some other less preferred school other

than b ahead of a, the second follows from the fact that C ′ ⊂ Ca, the third follows from the fact that for

type θ̃ ∈ Θ̃δ
, Bδ/4(p̄) contains no point mass of scores and that p′, p ∈ Bν(δ)(p̄) ⊂ Bδ/4(p̄), and the last

inequality follows from the fact that ν(δ) ≤ β(δ)
4υ

and p′ ∈ Bν(δ)(p̄).

Suppose next the student switches to TRS and as a result faces p′′ ∈ Bν(δ)(p) as cutoffs. The probability

of getting a or better schools from the switch is given by:

X∗
a =Pr{∃c ∈ Ca s.t. sc > p′′c}+Pr{sc < p′′c ,∀c ∈ Ca, sa > p′′a}

≥Pr{∃c ∈ Ca s.t. sc > p̄c}+Pr{sc < p̄c,∀c ∈ Ca, sa > p̄a} − υ∥p′′ − p̄∥

≥Pr{∃c ∈ Ca s.t. sc > p̄c}+Pr{sc < p̄c,∀c ∈ Ca, sa > p̄a} −
β(δ)

4
.

Again, the second inequality follows from the fact that for type θ̃ ∈ Θ̃δ
, Bδ/4(p̄) contains no point mass of

scores and that p′′, p ∈ Bν(δ)(p̄) ⊂ Bδ/4(p̄), and the last inequality follows from the fact that ν(δ) ≤ β(δ)
4υ

and p′′ ∈ Bν(δ)(p̄).

Consequently, the probability gain from switching from σ′
to TRS is at least:

max
c∈C̃

(X∗
c −X ′

c) ≥X∗
a −X ′

a

≥Pr{sc < p̄c,∀c ∈ Ca, sa > p̄a} − Pr{sc < pc, ∀c ∈ Ca, sb < p̄b, sa > p̄a} −
β(δ)

2

=Pr{sc < p̄c,∀c ∈ Ca, sa > p̄a, sb > p̄b} −
β(δ)

2

≥β(δ)− β(δ)

2
=

β(δ)

2
.

The last inequality follows from Rich Uncertainty. To see this, note first that each school in Ca \ CF
is

infeasible at p to θ̃ = (u, t); then, since θ̃ ∈ Θ̃δ
, it is δ-infeasible at p for θ̃. Consider next any c ∈ CF ∩Ca.

The school is feasible given p to θ̃ = (u, t), but we must have stc < p̄; otherwise, the student would not
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have been assigned a with positive probability under SRS given p. Then, since θ̃ ∈ Θ̃δ
, sδc < p̄ − δ, so

it is δ-infeasible. Finally, recall that both a and b are feasible for θ̃; again since θ̃ ∈ Θ̃δ
, both a and b are

δ-feasible for θ̃. Therefore, (A.2) and (A.3) imply the inequality (A.1), leading to that last inequality.

Setting α(δ) = β(δ)
2

, we have established that the switch results in the probability gain of at least α.

Since θ̃ ∈ Θ̃δ
p, the associated payoff gain is∑

i

(X∗
i −X∗

i−1)u
θ̃
i −

[∑
i

(X ′
i −X ′

i−1)u
θ̃
i

]
≥
∑
i

(X∗
i −X ′

i)(u
θ̃
i −uθ̃

i+1) ≥ (X∗
a−X ′

a)(u
θ̃
a−uθ̃

a+1) > αδ,

where X∗
0 = X ′

0 ≡ 0. We note that this bound does not depend on θ̃ ∈ Θ̃δ
.

Proof of Theorem 1. For any sequence {F k} induced by E, fix any arbitrary regular robust equilibrium

{(σk
1≤i≤k)}k. The strategies induce a random ROL, Ri, for each player i. We prove that the fraction of

students who play non-SRS against (random) DA cutoffs in

{(
σk
i

)
1≤i≤k

}
k

converges in probability to

zero as k → ∞. Suppose not. Then, there exists ε > 0 and a subsequence of finite economies

{
F kj
}
j

such that

Pr
(
The fraction of students playing SRS against pkj is no less than 1− ε

)
< 1− ε. (∗)

By Lemma 3, there exists a sub-subsequence of economies

{
F kjℓ

}
ℓ
, such that the associated cutoffs

pkjℓ converge to p̄ in probability, where p̄ are the deterministic cutoffs stated in Lemma 3.

We choose δ > 0 small enough so that η(Θ̃δ) > (1− ε)1/3 (this can be done since η is absolutely

continuous). We then choose ν(δ) and α(δ) according to Lemma 4.

By WLLN, we know that ηkjℓ (Θ̃δ) converges to η(Θ̃δ) in probability, and therefore there exists L1

such that for all ℓ > L1 we have

Pr
(
ηkjℓ (Θ̃δ) ≥ (1− ε)1/2

)
≥ (1− ε)1/2 .

For each economy F kjℓ , consider the event

Akjℓ :=

{
sup

0≤i≤kjℓ

||P kjℓ
(i) − p̄|| < ν(δ)

}
.

Since P
kjℓ
(i)

p→ p̄ uniformly over i ∈ N0, there exists L2 such that, for all ℓ > L2 s.t. for all ℓ > L2 we

have

Pr
(
Akjℓ

)
≥ max

{
(1− ε)1/6 , 1− (1− ε)1/2

[
(1− ε)1/3 − (1− ε)1/2

]}
. (∗∗)

Because

{(
σk
i

)
1≤i≤k

}
k

is a robust equilibrium, there exists L3 s.t. for all ℓ > L3 the strategy profile

(σ
kjℓ
i )

kjℓ
i=1 is a δ · α(δ)

[
(1− ε)1/6 − (1− ε)1/3

]
-BNE for economy F kjℓ .
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By WLLN, there exists a sufficiently large L̂ such that L̂ i.i.d. Bernoulli random variables with

probability (1− ε)1/3 have a sample mean greater than (1− ε)1/2 with probability no less than (1− ε)1/3.

Define next L4 such that ℓ > L4 implies (1− ε)1/2 kjℓ > L̂.

Now we fix an arbitrary ℓ > max {L1, L2, L3, L4} and wish to show that in economy F kjℓ

Pr
(
The fraction of students playing SRS against pkjℓ is no less than 1− ε

)
≥ 1− ε,

which would contradict (∗) and complete the proof.

We first prove that in economy F kjℓ , a student with θ̃ ∈ Θ̃δ
plays SRS against p̄ with probability no

less than (1− ε)1/3. To see this, suppose to the contrary that there exists some student i and some type

θ̃ ∈ Θ̃δ
such that

Pr
(
σ
kjℓ
i (θ̃) plays SRS against p̄

)
< (1− ε)1/3 .

Then deviating to truthful reporting will give student i with type θ̃ ∈ Θ̃δ
at least a gain of

E
[
i’s gain from deviation

∣∣∣σkjl
i plays non-SRS against pkjℓ

]
Pr{σkjℓ

i plays non-SRS against pkjℓ}

≥E
[
i’s gain from deviation

∣∣∣{σkjl
i plays non-SRS against pkjℓ} ∧ Akjl

]
· Pr

(
σ
kjℓ
i (θ̃) plays non-SRS against pkjℓ and event Akjℓ

)
≥δα(δ) · Pr

(
σ
kjℓ
i (θ̃) plays non-SRS against pkjℓ and event Akjℓ

)
≥δα(δ) · Pr

(
σ
kjℓ
i (θ̃) plays non-SRS against p̄ and event Akjℓ

)
≥δα(δ)

[
Pr
(
Akjℓ

)
− Pr

(
σ
kjℓ
i (θ̃) plays SRS against p̄

)]
≥δα(δ)

[
(1− ε)1/6 − (1− ε)1/3

]
,

where the inequalities are explained as follows. The first inequality holds since the gains from the deviation

is nonnegative whether the event Akjℓ occurs or not. The second inequality results from Lemma 4, upon

noting that by Lemma 3 the cutoffs under the non-SRS against p̄ and those that would prevail if i deviates

to TRS are within ν(δ)-distance from p̄. The third inequality holds since, given our choice δ, conditional on

event Akjℓ , a non-SRS against p̄ is a non-SRS against pkjℓ . The above inequalities contradict ℓ > L3, which

implies that the strategy profile

(
σ
kjℓ
i

)kjℓ
i=1

is a δα(δ)
[
(1− ε)1/6 − (1− ε)1/3

]
-BNE for the economy

F kjℓ .

Therefore, in economy F kjℓ , for each student i = 1, . . . , kjℓ and each θ̃ ∈ Θ̃δ
, we have

Pr
(
σ
kjℓ
i (θ̃) plays SRS against p̄

∣∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

= Pr
(
σ
kjℓ
i (θ̃) plays SRS against p̄

)
≥ (1− ε)1/3 , (***)
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where the first equality holds because student i’s random report according to her mixed strategy is

independent of random draws of the students’ type.

Then we have

Pr

(
The fraction of students with θ̃ ∈ Θ̃δ

playing SRS against p̄ is no less than (1− ε)1/2

∣∣∣∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

≥ Pr

(
ηkjℓ (Θ̃δ) · kjℓ i.i.d. Bernoulli random variables with

probability (1− ε)1/3 have a sample mean no less than (1− ε)1/2

∣∣∣∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

≥ Pr

(
L̂ i.i.d. Bernoulli random variables with probability (1− ε)1/3

have a sample mean no less than (1− ε)1/2

)
≥ (1− ε)1/3 , (A.4)

where the first inequality follows from (***) and that σi’s are independent across students conditioning on

the event ηkjℓ (Θ̃δ) ≥ (1− ε)1/2, and the second inequality holds since, for ℓ > L4, η
kjℓ (Θ̃δ) ≥ (1− ε)1/2

implies that ηkjℓ (Θ̃δ) · kjl > L̂.

Comparing the finite economy random cutoff pkjℓ with the deterministic cutoff p̄, we have

Pr

(
The fraction of students with θ̃ ∈ Θ̃δ

playing SRS against pkjℓ is no less than (1− ε)1/2

∣∣∣∣∣ ηkjℓ (Θ̃δ ) ≥ (1− ε)1/2
)

≥ Pr


The fraction of students with θ̃ ∈ Θ̃δ

playing SRS against p̄ is no less than (1− ε)1/2 ,

and event Akjℓ

∣∣∣∣∣∣∣∣ η
kjℓ (Θ̃δ) ≥ (1− ε)1/2


≥ Pr

(
The fraction of students with θ̃ ∈ Θ̃δ

playing SRS against p̄ is no less than (1− ε)1/2

∣∣∣∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

− Pr
(
Akjℓ does not occur

∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

≥ (1− ε)1/3 −
1− Pr

(
Akjℓ

)
Pr
(
ηkjℓ (Θ̃δ) ≥ (1− ε)1/2

)
≥ (1− ε)1/3 −

(1− ε)1/2
[
(1− ε)1/3 − (1− ε)1/2

]
(1− ε)1/2

= (1− ε)1/2 .

The first inequality follows since in event Akjℓ , the strategy σi(θ) is SRS against P kjℓ if and only if σi(θ)

is SRS against p for type θ ∈ Θ̃δ
. The third inequality follows from (A.4). The fourth inequality follows
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from (**).

The construction of L1 implies Pr
(
ηkjℓ (Θ̃δ) ≥ (1− ε)1/2

)
≥ (1− ε)1/2, so finally we have in

economy F kjℓ ,

Pr
(
The fraction of students playing SRS against pkjℓ is no less than 1− ε

)
≥ Pr

(
At least (1− ε)1/2 of students with θ̃ ∈ Θ̃δ

play SRS against pkjℓ

and ηkjℓ (Θ̃δ) ≥ (1− ε)1/2

)

= Pr
(
ηkjℓ (Θ̃δ) ≥ (1− ε)1/2

)
· Pr

(
At least (1− ε)1/2 of students

with θ̃ ∈ Θ̃δ
play SRS against pkjℓ

∣∣∣∣∣ ηkjℓ (Θ̃δ) ≥ (1− ε)1/2
)

≥ (1− ε)1/2 · (1− ε)1/2

= 1− ε,

where the last inequality follows from the above string of inequalities. Therefore, we have obtained a

contradiction to (∗), and the statement of Theorem 1 follows.

A.5 Proof of Proposition 1

Proof. First, as TEPS only uses stability and transitivity to infer preferences, it must be that P ⊆ PST(Ω′).

Second, we show that for any (c, c′) ∈ PST(Ω′), (c, c′) ∈ P . As c′ is inferred worse than c by stability

and transitivity, there must be a sequence of schools, c1, . . . , cJ for 1 < J ≤ C with c1 = c and cJ = c′,

such that cj−1
and cj , for 1 < j ≤ J , are both feasible in some realized uncertainty in Ω′

when cj−1
is

the assigned school. Since TEPS uses all uncertainties in Ω′
in Stage 1, it must be that (cj−1, cj) ∈ P̃

for 1 < j ≤ J in Stage 2. By transitivity at Stage 3 of TEPS, (c, c′) = (c1, cJ) ∈ P . We thus have

P = PST(Ω′).

A.6 Proof of Proposition 2

Proof. First, for any 0 < τ < τ ′ < 100, P top ⊆ Pτ ⊆ Pτ ′ ⊆ Pall
directly follows from Stage 1 of each

TEPS
τ
, and Pall = PST(Ω) directly follows from Proposition 1 . We only need to prove that Pall ⊆ PWTT

.

Consider some (c, c′) ∈ Pall
. We show that (c, c′) ∈ PWTT

.

First, since TEPS
all

infers only an assigned school in some realized uncertainty is preferred to other

schools, and an unranked school can never be a student’s assigned school, c should be a ranked school

in R. Next, notice that Pall
can never include any (c, c′) such that c′ is ranked above c in R. To see this,

assume to the contrary that (c, c′) ∈ Pall
and that c′ is ranked above c in R. Then at Stage 1 of TEPS

all
,

there must be a sequence of schools, c1, . . . , cJ for 1 < J ≤ C with c1 = c and cJ = c′, such that cj−1
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and cj , for 1 < j ≤ J , are both feasible in some realized uncertainty when cj−1
is the assigned school.

Then, for each 1 < j ≤ J , it must be that cj−1
is ranked above cj , which implies that c1 = c is ranked

above cJ = c′ in R, a contradiction.

Hence, c′ is either (i) a school ranked lower than c on R, or (ii) an unranked school. Since WTT infers

that c is more preferable than every school ranked below c and every unranked school, it should be that

(c, c′) ∈ PWTT
. Therefore, Pall ⊆ PWTT

.
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A Priority Structures of Deferred-Acceptance Mechanism: Examples

Table A.1: Priority Structures of Deferred-Acceptance Mechanism: Examples

Education System Mechanism Priority
Structure

Priority Details Sources

Panel A: Primary and Secondary Education
Boston (Open Enrollment High

Schools)

Student-proposing DA T2 Distance, other factors, random

tie-breaking

Boston Public Schools
A-1

Boston (Exam Schools) Student-proposing DA T3 Composite score (unknown):

GPA (unknown when submitting

ROL) + test score (known)

Abdulkadiroglu, Angrist, and Pathak

(2014), Boston Public Schools
A-1

Chicago (Non-selective Choice

High Schools)

Student-proposing DA T2 Distance, other factors, random

tie-breaking

Chicago Public Schools
A-2

Chicago (Selective Enrollment

Programs)

DA (serial dictatorship) T3 Composite score (unknown):

GPA (known) + test score

(known)

Pathak and Sönmez (2013), Chicago Pub-

lic Schools
A-2

Denver Student-proposing DA T2 Distance, siblings, other factors,

random tie-breaking

Abdulkadiroğlu and Andersson (2023),

Denver Public Schools
A-3

NYC (Specialized High Schools) DA (serial dictatorship) T3 Test score (unknown) Abdulkadiroglu, Angrist, and Pathak

(2014), NYC Public Schools portal
A-4

NYC (Screened High Schools) Student-proposing DA T3 / T2
A-5

Coarse priorities (test results

+ distance) and random tie-

breaking

Abdulkadiroğlu, Pathak, Schellen-

berg, and Walters (2020), NYC Public

Schools
A-4

NYC (Open High Schools) Student-proposing DA T2 Coarse priorities and random tie-

breaking

Abdulkadiroğlu, Pathak, Schellen-

berg, and Walters (2020), NYC Public

Schools
A-4

Washington DC School-proposing DA T2 Distance, siblings, other factors,

random tie-breaking

Abdulkadiroğlu and Andersson (2023),

DC Public Schools
A-6

A-1
https://www.bostonpublicschools.org

A-2
https://www.cps.edu/gocps/high-school/hs-selection/

A-3
https://schoolchoice.dpsk12.org/o/schoolchoice

A-4
https://www.schools.nyc.gov/enrollment

A-5T3/T2 denotes the case in which an unknown merit-based measure is used by schools but does not lead to a strict ranking.

Random tie-breaking is thus used when several students have the same merit-based ranking.

A-6
https://enrolldcps.dc.gov/
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Chile (Schools with high-

achieving student quota)

Student-proposing DA T3 / T2
A-5

Coarse priorities (test result + sib-

lings + working parents + former

student) and random tie-breaking

Arteaga, Kapor, Neilson, and Zimmer-

man (2022)

Chile (Other schools) Student-proposing DA T2 Siblings, working parents, former

student and random tie-breaking

Arteaga, Kapor, Neilson, and Zimmer-

man (2022)

England: Non-selective state

schools

Student-proposing DA T2 Distance, siblings, other factors,

random tie-breaking

Carter, Pathak, and Terrier (2020), UK

School Choice Portal
A-7

England: Grammar schools Student-proposing DA T1 or T3 Test score only (known); or com-

posite score (unknown): test

score (known) + other factors

UK Department for Education (2021)

Estonia (Inter-district applica-

tions)

Decentralized school-

proposing DA

T3 School-specific test score (un-

known)

Lauri, Põder, and Veski (2014)

Finland School-proposing DA T3 Composite score (unknown): aca-

demic records (known) + exam

score + other criteria

Salonen (2014)

France School-proposing DA T3 Composite score (unknown):

GPA + other factors

Hiller and Tercieux (2014); Grenet (2022)

Ghana DA (serial dictatorship) T3 Nationwide test score (unknown) Ajayi (2022)

Hungary Student-proposing DA T1 or T3 Previous grades (known); or com-

posite score (unknown): grades +

test score + interview

Biró (2012)

Mexico City DA (serial dictatorship) T3 Nationwide test score (unknown) Chen and Sebastián Pereyra (2019)

Romania DA (serial dictatorship) T1 Composite score (known): GPA +

nationwide test result

Pop-Eleches and Urquiola (2013)

Singapore DA (serial dictatorship) T1 Nationwide test score (known) Teo, Sethuraman, and Tan (2001), Singa-

pore Ministry of Education
A-8

Panel B: Higher Education
Australia (Victoria) College-proposing DA T1 Nationwide test score (known) Artemov, Che, and He (2021)

Brazil (Last phase) DA (serial dictatorship) T1 Nationwide test score (known) Otero, Barahona, and Dobbin (2021)

Chile Student-proposing DA T3 Composite score (unknown):

GPA (known) + standardized test

(known)

Hastings, Neilson, and Zimmerman

(2013)

France Decentralized college-

proposing DA

T3 Composite score (unknown):

GPA (known) + other criteria

Hakimov, Schmacker, and Terrier (2023)

Germany (DoSV) College-proposing DA

A-9

T3(∼ T1)
A-10

Composite score: GPA (known,

main criterion) + other factors

Kübler (2019)

Hungary Student-proposing DA T3 Composite score (unknown):GPA

+ nationwide test score + other

factors

Biró (2011)

Ireland College-proposing DA T3 / T2
A-5

nationwide test score (unknown)

and random tie-breaking

Chen (2012)

Israel (Psychology Master’s

Match)

Student-proposing DA T3 Composite score (unknown): past

transcripts + test results + inter-

view results + recommendation

letters

Hassidim, Romm, and Shorrer (2021)

A-7
https://www.gov.uk/schools-admissions/admissions-criteria

A-8
https://www.moe.gov.sg/secondary/s1-posting

A-9
Implemented in 2 phases: A first decentralized phase, and a second centralized one.

A-10
Formally, DoSV is T3 because schools use a composite score that is unknown to the students. However, the grade to the

national end-of-high school test is the primary determinant of the final score and other factors only have a marginal effect on

the final score. Hence, DoSV is very close to T1.
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Norway College-proposing DA T3 Composite score (unknown):

GPA + other factors

Kirkeboen, Leuven, and Mogstad (2016)

Spain Student-proposing DA T3 Composite score (unknown): pre-

vious grades + test score (un-

known)

Mora and Romero-Medina (2001)

Taiwan (Individual Application

Process)

College-proposing DA T1 Composite score (known): nation-

wide test score + school-specific

evaluation

Hu and Wang (2024)

Tunisia College-proposing DA T3 Nationwide test score (known) Luflade (2019)

Turkey College-proposing DA T1 Nationwide test score (known) Saygin (2016)

Ukraine College-proposing DA

A-11

T1 Composite score (known): nation-

wide test score + previous grades

Kiselgof (2011)

B Supplementary Materials for Section 2
B.1 Rich Uncertainty Assumption

We show that Assumption 3, Rich Uncertainty, is satisfied in all realistic environments (a), (b), and (c)

in the main text.

Lemma B.1. Rich Uncertainty holds for priority structures, (a), (b), and (c).

Proof. For case (a), stc = stc for all t ∈ T , so the probability in the LHS of Equation (A.1) is equal to one.

Hence, Rich Uncertainty holds trivially. We thus focus on (b) and (c).

Structure (b): STB version. The cutoff pc for each school c corresponds to a lottery threshold ℓtc ∈ [0, 1],

possibly dependent on the type t of the student. To see this, the cutoff can be expressed as: pc = t̂c +
λc

nc
,

where the t̂c is the intrinsic priority level that one needs for admission at c and λc is the lottery cutoff

score for c. If stc − δ > pc for some δ > 0, either the student has an intrinsic priority level of t̂c or a higher

priority level. In the former, sc > pc amounts to having a lottery draw above λc, so ℓtc = λc. In the latter,

sc > pc regardless of the lottery draw, so ℓtc = 0. Similarly, if stc + δ < pc for some δ > 0, either the

student has an intrinsic priority level of t̂c,i or a lower priority level. In the former, sc < pc amounts to

having a lottery draw below λc, in which case ℓtc = λc. In the latter, sc < pc regardless of the lottery draw,

so ℓtc = 1.

Given the STB structure, the LHS of (A.1) then reduces to

Pr

{
max{ℓta, ℓtb} < λt < min

c∈Ct
ℓtc

}
, (B.1)

namely, the probability that the student draws an STB lottery number λt ∈ (max{ℓta, ℓtb},minc∈Ct ℓtc).

Further, if Pr{stc < pc,∀c ∈ Ct, sta > pa} > 0 and Pr{stc < pc,∀c ∈ Ct, stb > pb} > 0, it must be that

A-11
Only the first three phases of the DA mechanism are implemented.
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max{ℓta, ℓtb} < minc∈Ct ℓtc. Note that max{ℓta, ℓtb} = λi for some i ∈ {a, b, x} and minc∈Ct ℓtc = λj for

some j ∈ Ct ∪ {y} such that λi < λj , where λx := 0 and λy := 1. Hence, (B.1) equals

Pr

{
max{ℓta, ℓtb} < λt < min

c∈Ct
ℓtc

}
=Pr {λi < U < λj}

≥min
{
|λc − λc′| : c, c′ ∈ Ĉ, λc ≠ λc′

}
=: β(δ),

where U is uniform random variable on [0, 1] and Ĉ := C ∪ {x, y}. Importantly, this lower bound β(δ)

does not depend on t or the particular pair (a, b) or other c ∈ Ct
. It only depends on (λc)c, which is

determined uniquely by p.

Structure (b): MTB version. The approach is similar to that of STB. In particular, the first part (mapping

cutoffs p to lottery cutoffs λ = (λc)c) is exactly the same. The difference is that the LHS of (A.1) is now

equal to

Pr
{
λt
c < ℓtc,∀c ∈ Ct, ℓti < λt

i,∀i = a, b
}
, (B.2)

where λt
i is t’s MTB draw for school i. Clearly, given the hypothesis, this probability must be positive,

which implies that ℓti < 1 for i = a, b and ℓtc > 0 for c ∈ Ct
. Since each ℓtj = λj for some j ∈ C ∪ {x, y},

we have

Pr
{
λt
c < ℓtc,∀c ∈ Ct, ℓti < λt

i,∀i = a, b
}
≥ Pr

{
U (C−2:1) < λ∗ and U (2:2) > λ∗} =: β(δ),

where λ∗ := min{λi : i ∈ C ∪ {x, y}, λi > 0}, λ∗ := max{λi : i ∈ C ∪ {x, y}, λi < 1}, and U (n:m)
is

the m-th highest value of n independent draws of U [0, 1]. The proof is complete upon noting that the

lower bound β(δ) is independent of t and of particular pair (a, b) or other c ∈ Ct
.

Structure (c): The argument is similar to that of Structure (b).

We first consider a model similar to the NYC Specialized High Schools, where the ex-post score is

one-dimensional. The argument is similar to that of Structure (b): STB. In particular, one can show that

the LHS of (A.1) is lower bounded by the probability that one’s score lies within a certain interval:

Pr

{
max{pta, ptb} < st < min

c∈Ct
ptc

}
. (B.3)

Similarly to (b), if Pr{stc < pc,∀c ∈ Ct, sta > pa} > 0 and Pr{stc < pc, ∀c ∈ Ct, stb > pb} > 0, then we

must have max{pta, ptb} < minc∈Ct ptc. Hence, (B.3) is lower bounded by

β(δ) := ϱ ·min{δ ∧ |pc − pc′| : c, c′ ∈ Ĉ, pc ≠ pc′} > 0,
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where Ĉ := C ∪ {x, y} with px := 0, py := 1 and ϱ := mint∈T mins∈[stc,st] ϕ
t(s) > 0. The positivity of ϱ

follows from the full and compact support assumption for each t and the compactness of T . In words,

the probability lower bound is given by the shortest length of distinct score cutoffs or by δ, whichever is

smaller. The relevance of δ here comes from the fact that, due to the δ-rejectability or δ-acceptability of

the schools, the support of t’s score in the interval (max{pta, ptb},minc∈Ct ptc) spans at least the length of

δ, whenever that interval exceeds δ in length. The proof is complete upon noting that the lower bound

β(δ) is independent of t and of particular pair (a, b) or other c ∈ Ct
.

We next consider a model where ex-post scores are not perfectly correlated. The argument is similar

to that of Structure (b): MTB. Again, one can show that

Pr{stc < pc,∀c ∈ Ct, and sta > pa, s
t
b > pb}

≥Pr{stc < p∗,∀c ∈ Ct, and sta > p∗, stb > p∗}
≥ϱ̂C · (δ ∧ p∗)

C−2(δ ∧ (1− p∗))2 =: β(δ),

where p∗ := min{pi : i ∈ C ∪ {x, y}, pi > 0}, p∗ := max{pi : i ∈ C ∪ {x, y}, pi < 1}, and

ϱ̂ := mint∈T mins∈St ϕt(s) > 0. Again, the appearance of δ in the lower bound follows from the fact

that the support of t’s score for i = a, b in the interval [0, pi] and its scores for c ∈ Ct
in the interval

[pc, 1] each spans δ in length, whenever each interval exceeds δ in length, again due to the δ-acceptability

and δ-rejectability of these schools. The proof is complete upon noting that the lower bound β(δ) is

independent of t and of particular pair (a, b) or other c ∈ Ct
.

C Multiple Equilibria, Completeness, and Coherency
This appendix shows that our TEPS procedure does not suffer from incompleteness or incoherence in

the sense of Tamer (2003). Incompleteness in our context would mean that the mapping from a student’s

type, (u, t), to TEPS inferred preferences is a correspondence, which may cause the point identification

of the distribution of u to fail. Meanwhile, incoherency would imply that the model does not have a

well-defined likelihood for TEPS inferred preferences given exogenous variables, implying certain logical

inconsistency.

We start with some definitions. Recall that we consider a student with submitted ROL R and intrinsic

priorities t. We also make it explicit that the preferences inferred by TEPS depend on R and t, i.e., P (R, t).

We say ROL R′
is consistent with P (R, t) if R′

satisfies two conditions: (i) every ever-assigned school

c = αW for some W ⊆ Ω is included in R′
, and (ii) for any c′ ranked above c in R′

, c′ is not inferred

worse than than c, i.e., (c, c′) /∈ P (R, t). This implies that we may exclude a never-feasible school from

R′
or insert it in R′

at any position; however, for an ever-feasible school that is included in R′
, its position

in R′
must respect the inferred preferences. Let R∗(R, t) be the set of all ROLs that are consistent with

P (R, t). It can be verified that R∗(R, t) includes the student’s true preference order given the assumption
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of stability and transitivity.

Further, let U∗(R, t) ⊆ [u, u]C be all the utility types that are consistent with P (R, t). That is, if

u ∈ U∗(R, t), the associated true preference order ρ(u) is in R∗(R, t).

Proposition C.1. Assume that in every realized uncertainty, each student cannot change her own set of
feasible schools and that the stable matching is unique and achieved. Suppose that a student of type (u, t)
submits a ROL R. We have the following results:
(i) Equivalent class of ROLs. When her ROL R is replaced by R′, the student receives her stable assignment
in every realized uncertainty if and only if R′ ∈ R∗(R, t).
(ii) Completeness. P (R, t) = P (R′, t), ∀R′ ∈ R∗(R, t). That is, given stability, TEPS infers a unique set of
preference relations for the student even if she submitted any ROL in R∗(R, t).
(iii) Coherency. TEPS infers P (R, t) if and only if u ∈ U∗(R, t).

Proof. We prove the three statements one by one.

(i) We first prove sufficiency and then necessity.

Sufficiency. Suppose R′ ∈ R∗(R, t). In any given realized uncertainty, by the definition of R∗(R, t), R′

must rank the assigned school above any other simultaneously feasible schools, while the assigned school

is included in R′
. The student must be assigned the same school regardless of submitting R or R′

, because

she cannot change her set of feasible schools in this realized uncertainty. Hence, she always obtains her

stable assignment.

Necessity. Suppose thatR andR′
give the student the same stable assignment in every realized uncertainty.

We argue that R′
is in R∗(R, t). For any c that is the assigned school in a realized uncertainty, c must be

ranked in R′
. Therefore, to show R′ ∈ R∗(R, t), we only need to prove that for any c′ ranked above c in

R′
, c′ is not inferred worse than c, or (c, c′) ̸∈ P (R, t). Suppose on the contrary that c′ ranked above c in

R′
and (c, c′) ∈ P (R, t). For TEPS to infer that c′ is worse than c given that R is submitted, there must

exist c1, . . . , cJ for 1 < J ≤ C with c1 = c and cJ = c′ such that, for each 1 < j ≤ J , there exists a

realized uncertainty in which cj−1
is the assigned school while cj is feasible. This implies that c1, . . . , cJ−1

must be included in R′
. Since cJ = c′ is ranked above c1 = c in R′

, R′
must rank cj

∗
above cj

∗−1
for

some 1 < j∗ ≤ J . Because the student cannot influence her own feasible set, there must exist a realized

uncertainty in which the student’s assignment when submitting R′
is cj

∗
, in contrast to cj

∗−1
which is

the assignment when submitting R. This contradiction lets us conclude that R′
must be consistent with

P (R, t), or equivalently, R′ ∈ R∗(R, t).

(ii) By part (i), the set of ever-assigned schools is the same under R or R′
. Hence, for any c which

is never assigned to the student, there does not exist (c, c′),∀c′ ∈ C such that (c, c′) ∈ P (R, t) or

(c, c′) ∈ P (R′, t).
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Consider c′ such that (c, c′) ∈ P (R, t) for some c that is assigned to the student in some realization

of uncertainty. When R is submitted, there must exist c1, . . . , cJ for 1 < J ≤ C with c1 = c and cJ = c′

such that, for each 1 < j ≤ J , there exists a realized uncertainty in which cj−1
is the assigned school

while cj is feasible. Together with the assumption that i cannot change her own feasible set, part (i) implies

that in each of those same realized uncertainties associated with R, cj−1
remains the assigned school while

cj is still feasible for each 1 < j ≤ J even when R′
is submitted. Hence, (c, c′) ∈ P (R′, t). Similarly, we

can show that for any c′ such that (c, c′) ∈ P (R′, t) for some c that is assigned to the student in some

realization of uncertainty, (c, c′) ∈ P (R, t).

Taken together, P (R, t) = P (R′, t).

(iii) We first prove sufficiency and then necessity.

Sufficiency. For u ∈ U∗(R, t), to guarantee the unique stable matching in each realized uncertainty,

part (i) implies that the student must submit a ROL in R∗(R, t). By part (ii), TEPS infers P (R, t) for the

student.

Necessity. Suppose that TEPS infers P (R, t) for the student while u /∈ U∗(R, t). By the definition of

U∗(R, t), the student’s true preference order, ρ(u), is not in R∗(R, t). Part (i) implies that the student’s

assignment from submitting ρ(u) is not the same as her assignment from submitting R, while R gives her

the unique stable assignment. This implies that reporting truthfully leads to an unstable assignment for

her, contradicting the property of the DA mechanism.

The assumptions in Proposition C.1 are justified by our Theorem 1 in large markets. When the

market becomes large, a student’s impact on cutoffs and thus her own feasible sets becomes negligible

and the matching in any realized uncertainty is virtually stable and unique.

Part (i) implies that, although stability does not predict a unique ROL for every student, it predicts a

unique class of outcome-equivalent ROLs, R∗(R, t). Further, part (ii) shows that TEPS
all

maps a student’s

true preferences into a unique set of inferred preferences, regardless of which ROL from R∗(R, t) the

student submits. Finally, part (iii) indicates that our model is coherent and that the likelihood of a set

of TEPS
all

inferred preferences can be written as the likelihood of the student’s cardinal preferences

satisfying a set of conditions.

Figure C.1 illustrates the logic behind the proposition. Following part (i) of Proposition C.1, we divide

the action space into equivalent classes of ROLs that lead to the same distribution of stable assignments

(middle panel). As part (ii) implies, each equivalence class of ROLs uniquely maps into a set of preference

relations inferred by TEPS (right panel). Finally, although the mapping between the utility space and the

action space is a correspondence, the mapping between the utility space and the space of possible sets

7



Figure C.1: Completeness and Coherency

TEPS inferred preferences is a function as implied by part (iii).
A-12

D PerformanceofTransitiveExtensionofPreferences fromStability: Monte
Carlo Simulation

This section describes the Monte Carlo simulations that we perform to analyze the implications of our

theoretical results.

D.1 Model Specification
Consider a finite economy in which k = 1000 students apply to C = 12 schools for admission. The

vector of school capacities is specified as follows:

{Sc}12c=1 = {110, 50, 100, 100, 50, 100, 100, 50, 100, 100, 50, 100}

The total capacity is set to be larger than the total number of students by 10 in order to ensure all students

are matched to some school in the simulations.

The economy is located in an area within a circle of radius 1. Students are uniformly distributed in

the circle and schools are evenly located on another circle of radius 1/2 around the center. Denote the

Euclidean distance between student i and school c as di,c.

Students are matched with schools through a student-proposing DA algorithm with single tie-breaking

(DA-STB), similar to the NYC high school choice. Students submit a ROL of schools that can include any

number of available schools. We assume all schools are acceptable to all students; hence, student i submits

a ROL including all 12 schools if she truthfully reports her preferences.

A-12
In the version of TEPS that allows for ignoring small probability events, flips of near-indifferent preferences (i.e., flips that

are payoff-relevant schools) are ruled out by assumption. However, incorrectly ruling out flips of near-indifferent preferences

(e.g., $100 over $100.01) would not bias the estimation significantly.
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School priorities over students are coarse. Each school has 4 categories of school-specific (intrinsic)

priority groups 0, 1, 2, and 3, with a larger number indicating a higher priority. Denote the priority group

that student i belongs at school c as ti,c ∈ {0, 1, 2, 3}. Therefore, school c prioritizes student i over i′ if

ti,c > ti′,c. A student’s priority at a school is drawn independently and uniformly from the four groups.

All students are eligible/acceptable at each school. Each student knows her priority group at each school

at the time of submitting ROL.

To break ties in priorities, every student is assigned a random lottery number drawn from Uniform[0, 1],

li for all i. Lottery numbers are not known at the time of submitting ROL. The score of student i at school c

is si,c =
ti,c+li

4
∈ [0, 1]. School c prioritizes student i over i′ if and only if si,c > si′,c.

Student preferences over schools follow a random utility model without an outside option. Student i’s

utility from being matched with school c is specified as follows:

ui,c = β1 × c+ β2(Di × Ac) + β3di,c + β4Smallc + ϵi,c, ∀i, c (D.4)

where β1×c is school c’s baseline quality; di,c is the distance between student i’s and school c; Di = 1 or 0

is student i’s type (e.g., disadvantaged or not); Ac = 1 or 0 is school c’s type (e.g., known for resources for

disadvantaged students); Smallc = 1 if Sc = 50, 0 otherwise; and ϵi,c is distributed as N(0, σ2
c) where

σ2
c = 1 for c = 1, · · · , 6 and σ2

c = 2 for c = 7, · · · , 12. ϵi,c are independent across all i and c.

The type of school c, Ac, equals 1 if c is an odd number and otherwise 0. The type of student i, Di, is 1

with probability 2/3 among the lowest priority group of school 1 (ti,1 = 0); and Di = 0 for all students in

highest three priority groups (ti,1 ∈ {1, 2, 3}).

The coefficients of interest are (β1, β2, β3, β4) which are fixed at (0.3, 2,−1, 0) in the simulations. By

this specification, schools with larger indices are of higher quality, and Smallc does not play a role in

student preferences over schools. The purpose of estimation is to recover these coefficients and therefore

the distribution of preferences.

D.2 Data Generating Process
Each simulation sample contains an independent preference profile obtained by randomly drawing Di

and {ti,c, di,c, ϵi,c}c for all i from the distributions specified above. In all samples, school capacities and

school types (Ac and Smallc) are kept constant.

The first set of simulation samples, cutoff samples, are used to simulate the joint distribution of the 12

schools’ cutoffs (in terms of score, si,c) by letting every student submit a ROL ranking all schools according

to her true preferences. To do so, we simulate 100 samples each consisting of 12 schools and 1,000 students.

Each sample contains 1,000 sets of independent draws of tie-breaking lotteries li. After running the DA

algorithm, we calculate the cutoffs in each simulation sample with each draw of the lottery. Figure D.2

shows the marginal distribution of each school’s cutoff from 100×1000 = 100, 000 simulated realizations.
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Note that schools with smaller capacities tend to have higher cutoffs. For example, school 11 with 50 seats

often has the highest cutoff, although school 12 with 100 seats has the highest baseline quality. Since

every student is guaranteed a seat at some school, school 1 which has the lowest baseline quality has a

cutoff equal to 0 (not depicted in the graph).

Figure D.2: Simulated Cutoff Distribution

To generate data on student behavior and admission outcomes for preference estimation, we simulate

another 100 samples, the estimation samples, with new independent draws of Di and {ti,c, di,c, ϵi,c}c.
For each of the 100 estimation samples, we calculate the distribution of cutoffs which represents the

uncertainties in cutoffs that students face. By drawing a set of tie-breaking lotteries, we simulate the

uncertainty due to random tie-breaking.
A-13

The resulting cutoff distributions are used in the Transitive

Extension of Preferences from Stability procedure to determine the feasible sets for each realization of the

uncertainty. The estimation samples are used for the estimation, and in each of them, we consider three

types of data-generating processes (DGPs) with different student behaviors.

(i) TT (Truth-Telling) : Every student submits a ROL ranking all 12 schools according to her true

preferences.

(ii) MIS-IRR ((Almost) Payoff Irrelevant Mistakes): A fraction of students skip schools with which

they are never matched according to the simulated distribution of cutoffs. For a given student, a skipped

school can have a high (expected) cutoff and thus be “out of reach” (i.e., never feasible.) Alternatively,

the school may also have a low cutoff, but the student is always accepted by one of her more preferred

schools. To specify the fraction of skippers, we first randomly choose about 25.6% of the students to

be never-skippers who always rank all schools truthfully. All other students are potential skippers,

and we make all of them skip. Students with Ti = 1 are more likely to skip than those with Ti = 0, as

A-13
One may additionally simulate uncertainties in cutoffs due to the finiteness of the economy. To do so, we can randomly

generate economies in the spirit of the bootstrap by randomly resampling a set of students and then use a set of tie-breaking

lotteries for each resample.
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their scores tend to be lower: 95.6 percent of Ti = 1 are potential skippers, compared to 70.1 percent

of Ti = 0. Finally, we introduce flips by adding back the most preferred school (according to each

skipper’s true preference) at the end of the ROL if it is never-feasible and thus skipped. It is important

to note that some of the mistakes may turn out to be payoff-relevant, because a never-matched school

is determined by the simulated cutoff distributions (which may not exhaust all uncertainties in cutoffs).

(iii) MIS-REL (Payoff Relevant Mistakes): In addition to MIS-IRR, i.e., given all the potential skippers

have skipped the never-matched schools, we now let them make payoff-relevant mistakes. That is,

students skip some of the schools with which they have a small chance of being matched according to

the simulated distribution of cutoffs. Recall that the joint distribution of cutoffs is only simulated once

under the assumption that everyone is truth-telling. We specify a threshold and make the skippers omit

the schools at which they have an admission probability lower than the threshold, where the threshold

is equal to 10 percent. We allow for flips in the same fashion as in MIS-IRR.

In summary, for each of the 100 estimation samples, we simulate the matching games 3 times: TT, MIS-IRR,

and MIS-REL. Table 2 summarizes the scenarios under each DGP. The fraction of students who make

mistakes increases from 0% in TT to 74.4% in MIS-IRR and MIS-REL. As a result, the fraction of students

reporting preferences consistent with WTT is only 27.0% in MIS-IRR and 28.8% in MIS-REL. Also, note

that stability is satisfied for all students in TT and MIS-IRR, but not in MIS-REL since some students skip

schools that are not completely out-of-reach for them.

D.3 Estimation and Results
The random utility model described by Equation (D.4) is estimated under two methods, WTT and

TEPS using Gibbs Sampler, where the procedure is described in the Appendix E. For TEPS estimators, we

use TEPS
top

, TEPS
20

, TEPS
40

, TEPS
60

, TEPS
80

, and TEPS
all

. Table D.2 presents the mean and standard

deviation of the posterior mean of each parameter across the 100 samples.
A-14

We evaluate the performance of the two sets of estimators along two dimensions. The first is the

bias-variance tradeoff, focusing on β2 which measures how students of type Ti = 1 value schools of type

Ac = 1. The second dimension is the performance of the TEPS estimators relative to the TEPS estimators

that use smaller sets of inferred preferences, which are both robust to (some) strategic mistakes.

Bias-Variance Tradeoff Figure D.3 plots the distributions of the estimates of β2 given each DGP; the

true value of β2 is 2. The figures plot WTT, TEPS
top

, and TEPS
all

.

There are a few notable patterns. First, when the DGP is TT, all estimates are consistent, while the WTT-

based estimator has the smallest variance as shown in Panel (a). This is expected since no students make

strategic mistakes violating the WTT or stability assumptions. Furthermore, the WTT-based estimator

having the smallest variance is not only true under DGP TT but also under other DGPs. Intuitively, this is

A-14
We iterate through the MCMC 100,000 times and discard the first 75,000 for mixing. We calculated the Potential Scale

Reduction Factor (PSRF) (Gelman and Rubin (1992)) to ensure enough convergence of the posterior distributions.
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Table D.2: Estimation with Different Identifying Assumptions: Monte Carlo Results

DGPs

Identifying

Condition

Quality (β1 = 0.3) Interaction (β2 = 2) Distance (β3 = −1) Small (β4 = 0)

mean s.d.

√
MSE mean s.d.

√
MSE mean s.d.

√
MSE mean s.d.

√
MSE

TT

WTT 0.30 0.00 0.00 2.00 0.06 0.06 -1.00 0.03 0.03 0.00 0.02 0.02

TEPS
top

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
20

0.30 0.02 0.02 2.02 0.20 0.20 -1.02 0.11 0.12 0.00 0.07 0.07

TEPS
40

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.12 0.12 0.00 0.07 0.07

TEPS
60

0.30 0.02 0.02 2.03 0.20 0.20 -1.02 0.11 0.11 -0.01 0.07 0.07

TEPS
80

0.30 0.01 0.01 2.02 0.17 0.17 -1.02 0.10 0.10 0.00 0.06 0.06

TEPS
all

0.30 0.01 0.01 2.01 0.12 0.12 -1.01 0.07 0.07 0.00 0.04 0.04

Selected 0.30 0.01 0.01 2.00 0.07 0.07 -1.00 0.04 0.04 0.00 0.03 0.03

MIS-IRR

WTT 0.08 0.00 0.22 1.21 0.08 0.79 -0.49 0.04 0.51 -0.19 0.02 0.19

TEPS
top

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
20

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
40

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
60

0.30 0.02 0.02 2.03 0.20 0.20 -1.02 0.11 0.11 -0.01 0.07 0.07

TEPS
80

0.30 0.01 0.01 2.02 0.17 0.17 -1.02 0.09 0.10 0.00 0.06 0.06

TEPS
all

0.30 0.01 0.01 2.01 0.13 0.13 -1.01 0.07 0.07 0.00 0.04 0.04

Selected 0.30 0.01 0.01 2.01 0.13 0.13 -1.01 0.08 0.08 0.00 0.04 0.04

MIS-REL

WTT 0.13 0.00 0.17 0.99 0.07 1.01 -0.44 0.03 0.56 -0.11 0.02 0.11

TEPS
top

0.29 0.02 0.02 1.88 0.29 0.31 -0.98 0.14 0.14 0.01 0.09 0.09

TEPS
20

0.29 0.02 0.02 1.88 0.29 0.31 -0.97 0.14 0.14 0.01 0.09 0.09

TEPS
40

0.29 0.02 0.02 1.88 0.29 0.31 -0.97 0.14 0.14 0.01 0.09 0.09

TEPS
60

0.29 0.02 0.02 1.87 0.28 0.31 -0.96 0.13 0.14 0.01 0.09 0.09

TEPS
80

0.28 0.02 0.03 1.82 0.25 0.30 -0.92 0.12 0.14 0.00 0.10 0.10

TEPS
all

0.24 0.01 0.06 1.64 0.21 0.42 -0.77 0.08 0.24 -0.07 0.10 0.12

Selected 0.28 0.03 0.04 1.82 0.27 0.32 -0.91 0.13 0.16 -0.01 0.09 0.09

Note: The results are from the 100 Monte Carlo samples.

due to the fact that WTT uses the maximal (but possibly unreliable) information that one can infer from

observed ROLs.

Second, Panel (b) shows the results from MIS-IRR in which some students make (almost) payoff-

irrelevant mistakes. The WTT-based estimator is susceptible to strategic mistakes. For example, the

WTT-based estimates have a mean 1.21 (standard deviation 0.08). That is, the WTT-based estimator is no

longer consistent and the bias is sizable. On the other hand, the estimators based on TEPS are robust to

payoff-irrelevant mistakes.

Finally, Panel (c) show the results from MIS-REL in which some students make payoff-relevant mistakes.

Recall that when students make payoff-relevant mistakes, first, WTT is not satisfied and thus WTT-based

estimator is inconsistent, and second, stability is also not 100% satisfied, and thus TEPS
all

which does

not take care of payoff relevant mistakes is also inconsistent. However, the bias of TEPS
all

remains a lot

smaller than that of the WTT-based estimator since the violation of WTT (74.4%) is much more severe

than the violation of stability (3.8%) (see Table 2).

The bias-variance tradeoffs are summarized by the square root of the mean squared errors in Table
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(a) DGP: Truth-telling (b) DGP: MIS-IRR (c) DGP: MIS-REL

Figure D.3: Distribution of Estimates based on WTT and TEPS (β2 = 2)

Note: We plot the kernel density plots of the estimates of β2 from 100 Monte Carlo samples. The first column corresponds to when the data-generating process

is TT, the second column corresponds to when the data-generating process is MIS-IRR, and the third column corresponds to when the data-generating process

is MIS-REL. The black vertical line at 2 denotes the true value of the parameter.

D.2. In DGP TT, where all estimators are consistent, the WTT-based estimator attains the minimum mean

squared error, as it has the minimum variance where the biases of all estimators are close to zero. However,

in DGP MIS-IRR with payoff-irrelevant mistakes, the mean squared error of the WTT-based estimator is

larger than that of any other estimator. This is due to the fact that even though the WTT-based estimator

has the smallest variance, it is significantly inconsistent. The mean squared errors of the WTT-based

estimator are even larger with DGP MIS-REL with payoff-relevant mistakes.

Performance of the TEPS estimator. We now compare the relative performance among TEPS-based

estimators. As discussed earlier, to the extent that stability is satisfied, all TEPS-based estimators are

consistent. However, the procedures by which the TEPS estimators are constructed imply that TEPS
top

uses less (but potentially more reliable) information contained in the observed ROLs compared to other

TEPS-based estimators. Therefore, TEPS
τ
, τ = 20, 40, 60, 80, 100, should have higher precision compared

to TEPS
top

. Similarly, TEPS
τ

is expected to have higher precision compared to TEPS
τ ′

for all τ ′ < τ .

Figure D.3 shows the results, in which we only present TEPS
top

and TEPS
all

for clear comparison.

TEPS
all

is more precise than TEPS
top

, having a higher level of concentration around the true value β2 = 2.

As reported in Table D.2, TEPS
τ
, τ = 20, 40, 60, 80, 100 always have (weakly) smaller standard deviations

compared to TEPS
top

and TEPS
τ ′

for all τ ′ > τ . For example, in MIS-IRR in which approximately 74.4%
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students make payoff-irrelevant mistakes, the standard deviation of TEPS
top

is 0.20, while that of TEPS
all

is 0.13.

Next, in DGP MIS-REL where students skip some schools with a positive admission probability and

hence make payoff-relevant mistakes, the choice of TEPS threshold (i.e., how much payoff irrelevant

mistakes are to be tolerated) becomes important. The bias of TEPS
all

is larger than TEPS
top

, TEPS
20

,

TEPS
40

, TEPS
60

, and TEPS
80

. For example, for β2 = 2, the bias of TEPS
all

estimator is 0.36 where those of

TEPS
top

is 0.12 on average (Table D.2). As expected, the bias decreases as we tolerate fewer payoff-relevant

mistakes (i.e., as we decrease τ in TEPS
τ
).

Table D.3: Determining the Selected Estimator: Test Results (at the 5% significance level)

Data Generating Process: TT MIS-IRR MIS-REL

Estimation method

WTT 0.94 0 0

TEPS
top

0.01 0 0

TEPS
20

0 0 0

TEPS
40

0 0 0.01

TEPS
60

0 0.01 0.14

TEPS
80

0.03 0.12 0.68
TEPS

all
0.01 0.87 0.17

Note: The results are from the 100 estimation samples.

Choosing among the estimation methods. Recall the main motivation that led us to introduce

the TEPS-based estimator is to “correct” the strategic mistakes that students might make in a school

choice environment in order to obtain robust estimates. Without the information on how students make

mistakes, we follow the procedure described in Section 3.5 to determine the selected estimator that corrects

(almost) all the mistakes (thus consistent) and uses the maximum information from the data (thus has the

highest precision among all consistent estimators we consider.) Table D.3 reports the test results based

on the testing procedure with a size equal to 0.05, and the resulting ‘chosen’ estimates are reported in

the second row of Figure D.3 and ‘Selected’ rows of Table D.2. As expected, WTT is chosen 94% out

of 100 estimation samples when the DGP is TT since all estimators are consistent while WTT uses the

maximum information (Proposition 2). When the DGP is MIS-IRR, TEPS
all

is chosen 87%. Note that

TEPS
top

, TEPS
20

, TEPS
40

are never chosen since all TEPS-based estimators are consistent, and TEPS
τ
’s

with larger τ use more information relative to that with smaller τ ’s. Finally, when the DGP is MIS-REL,

TEPS
80

is chosen 68%. Note that the testing procedure selects TEPS
τ

with τ < 100 most of the time since

students make payoff-relevant mistakes in MIS-REL and TEPS
all

cannot handle payoff-relevant mistakes

and thus is inconsistent.

Accounting for Finite Market Uncertainty The previously reported Monte Carlo simulation results

do not consider finite market uncertainties. However, our TEPS procedure can naturally address this by
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adjusting its first step. We can calculate the cutoff distribution by bootstrapping from the observed ROL,

creating various economy/applicant compositions. Then, using the original economy’s applicant profile,

we compute the distribution of feasible sets against the cutoff distribution. The subsequent steps (2 and 3)

remain as described in the main text. Table D.4 presents results that are nearly identical to those shown in

Table D.2.

Table D.4: Estimation with Different Identifying Assumptions: Monte Carlo Results with Bootstrapping

DGPs

Identifying

Condition

Quality (β1 = 0.3) Interaction (β2 = 2) Distance (β3 = −1) Small (β4 = 0)

mean s.d.

√
MSE mean s.d.

√
MSE mean s.d.

√
MSE mean s.d.

√
MSE

TT

WTT 0.30 0.00 0.00 2.00 0.06 0.06 -1.00 0.03 0.03 0.00 0.02 0.02

TEPS
top

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
20

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
40

0.30 0.02 0.02 2.02 0.20 0.20 -1.03 0.11 0.12 0.00 0.07 0.07

TEPS
60

0.30 0.02 0.02 2.03 0.20 0.20 -1.02 0.11 0.11 -0.01 0.07 0.07

TEPS
80

0.30 0.01 0.01 2.02 0.17 0.17 -1.02 0.09 0.10 0.00 0.06 0.06

TEPS
all

0.30 0.01 0.01 2.01 0.12 0.12 -1.01 0.07 0.07 0.00 0.04 0.04

Selected 0.30 0.01 0.01 2.00 0.07 0.07 -1.01 0.05 0.05 0.00 0.03 0.03

MIS-IRR

WTT 0.08 0.00 0.22 1.21 0.08 0.79 -0.50 0.04 0.51 -0.19 0.02 0.19

TEPS
top

0.30 0.02 0.02 2.03 0.20 0.20 -1.03 0.11 0.11 0.00 0.07 0.07

TEPS
20

0.30 0.02 0.02 2.03 0.20 0.20 -1.02 0.11 0.11 0.00 0.07 0.07

TEPS
40

0.30 0.02 0.02 2.02 0.20 0.20 -1.02 0.11 0.11 0.00 0.07 0.07

TEPS
60

0.30 0.01 0.02 2.03 0.19 0.19 -1.02 0.11 0.11 0.00 0.07 0.06

TEPS
80

0.30 0.01 0.01 2.02 0.17 0.17 -1.02 0.09 0.09 0.00 0.06 0.06

TEPS
all

0.26 0.02 0.04 1.95 0.15 0.16 -0.92 0.07 0.10 0.04 0.06 0.08

Selected 0.30 0.01 0.01 2.00 0.16 0.16 -1.00 0.09 0.09 0.00 0.06 0.06

MIS-REL

WTT 0.13 0.00 0.17 0.99 0.07 1.01 -0.44 0.03 0.56 -0.11 0.02 0.11

TEPS
top

0.29 0.02 0.02 1.88 0.29 0.31 -0.98 0.14 0.14 0.01 0.09 0.09

TEPS
20

0.29 0.02 0.02 1.88 0.29 0.31 -0.97 0.14 0.14 0.01 0.09 0.09

TEPS
40

0.29 0.02 0.02 1.88 0.28 0.31 -0.97 0.14 0.14 0.01 0.09 0.09

TEPS
60

0.29 0.02 0.02 1.82 0.26 0.32 -0.94 0.12 0.14 0.01 0.09 0.09

TEPS
80

0.27 0.02 0.03 1.74 0.23 0.35 -0.87 0.11 0.17 -0.01 0.10 0.10

TEPS
all

0.19 0.01 0.11 1.25 0.14 0.76 -0.62 0.06 0.39 -0.09 0.07 0.11

Selected 0.28 0.02 0.03 1.79 0.25 0.32 -0.92 0.12 0.15 0.00 0.10 0.10

Note: The results are from the 100 Monte Carlo samples.

E Markov Chain Monte Carlo Procedure for Preference Estimation
E.1 Setup

There are k students competing for admissions to C schools/programs. Each school c has a type

τ(c) ∈ {1, · · · , T̄} where T̄ ≤ C. Denote the number of schools with type τ by Cτ . WLOG, let schools

be ordered in increasing order of type. Student i’s utility when being admitted to school c is given by,

Ui,c = Xi,cβ + ϵi,c, (E.5)
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where ϵi,c is i.i.d. N(0, σ2
τ(c)).

A-15
Then Σ ≡ V ar(ϵi) is a diagonal matrix with (σ2

1, · · · , σ2
1, · · · , σ2

T̄
,

· · · , σ2
T̄
) on the diagonal. We use Σ wherever possible for notational simplicity.

Let Pmethod
i be the set of all preference relations inferred by some method (for example, WTT, TEPS

top
,

or TEPS
τ

for some τ ∈ (0, 100]) for student i. The procedure we describe below applies to any method for

inferring preference relation from choice data. When there is no ambiguity, we simply use Pi. Denote the

schools that are inferred to be less preferred than c as Li,c and those are inferred to be preferred to c as

Mi,c:

Li,c = {c′ : (c, c′) ∈ Pi i.e., c′ is revealed to be less preferred than c}
Mi,c = {c′ : (c′, c) ∈ Pi i.e., c′ is revealed preferred to c}

E.2 A Gibbs sampling procedure
We specify the following diffuse priors:

β ∼ N(0, A−1)

σ2
τ ∼ IW (ντ , V0τ), τ = 1, 2, · · · , T̄ − 1

where

A−1 = 100 · Idim(β),

ντ = 3+ Cτ , V0τ = 3+ Cτ , ∀τ

We go through the following iterative process, a Gibbs sampler.

Initialization.

1. Draw Σ0
from its prior distribution.

2. Draw β0
from its prior distribution.

3. Draw U0
: Following the index of students, i = 1, . . . , k, we draw {U0

i,c}c sequentially as follows: for a

given i,

(a) start with c = 1. Draw U0
i,1 from N(Xi,1β

0,Σ0
1,1);

(b) for each c = 2, . . . , C, draw U0
i,c from N(Xi,cβ

0,Σ0
c,c) with truncations imposed by Pi. To be

specific, let

L̃i,c = {c′ : c′ < c and (c, c′) ∈ Pi i.e., c′ is revealed to be less preferred than c} ⊆ Li,c

A-15
Note that σ2

τ for some τ has to be normalized to 1 for identification. WLOG, we set σ2
T̄
= 1 for the following.
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M̃i,c = {c′ : c′ < c and (c′, c) ∈ Pi i.e., c′ is revealed preferred to c} ⊆ Mi,c

That is, L̃i,c (M̃i,c) is the set of schools whose utility is already drawn,
A-16

and at the same time less

(more) preferred than school c in Pi respectively. Then, we draw U0
i,c with truncations from below

at u0
c , and from above at ū0

c where

u0
c =

max{Ui,c′ : c
′ ∈ L̃i,c} if L̃i,c ≠ ∅

−∞ if L̃i,c = ∅
, ū0

c =

min{Ui,c′ : c
′ ∈ M̃i,c} if M̃i,c ≠ ∅

∞ if M̃i,c = ∅

Note that if both u0
c and ū0

c are finite, we draw from a two-sided truncated distribution, and if only

either one of them is finite, we draw from a one-sided truncated distribution, and if none of them is

finite, we draw from the untruncated distribution.

Iteration r ≥ 1.

1. Following the index of students, i = 1, . . . , k, we draw {U r
i,c}c sequentially as follows.

For a given i, for c = 1, . . . , C, draw U r
i,c from N(Xi,cβ

r−1,Σr−1
c,c ) with truncations imposed by Pi. To

be specific, we draw U r
i,c with truncations from below at ur

c , and from above at ūr
c where

ur
c =

max
{
{U r

i,c′ : c
′ ∈ L̃i,c} ∪ {U r−1

i,c′ : c′ ∈ Li,c \ L̃i,c}
}

if Li,c ≠ ∅

−∞ if Li,c = ∅

ūr
c =

min
{
{U r

i,c′ : c
′ ∈ M̃i,c} ∪ {U r−1

i,c′ : c′ ∈ Mi,c \ M̃i,c}
}

if Mi,c ≠ ∅

∞ if Mi,c = ∅

where Li,c, L̃i,c,Mi,c,M̃i,c are defined above. In words, for example, if c is revealed preferred to some

school by Pi (i.e., Li,c ≠ ∅), the lower bound ur
c is given by the maximum among the r-th draws

of utilities of schools that are less preferred than c and are already drawn in the current step (i.e.,

{U r
i,c′ : c

′ ∈ L̃i,c}) and the (r − 1)-th draws of utilities of schools that are less preferred than c but not

drawn in the current step yet (i.e., {U r−1
i,c′ : c′ ∈ Li,c \ L̃i,c}.) ūr

c is defined analogously but with schools

that are more preferred than c by Pi.

2. Draw βr
from the posterior distribution N(β̃, V )A-17

where

V = (X∗⊤X∗ +A)−1

β̃ = V X∗⊤U∗

A-16
Note that we draw c = 1, · · · , C sequentially so that U0

i,c′ , c
′ < c is already drawn in this step when drawing U0

i,c.

A-17
Note that β̃ is specific to the r-th iteration where we omit the dependence on r for notational simplicity.
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(Σr−1)−1 = Λ⊤Λ

X∗
i = Λ⊤Xi

U∗
i = Λ⊤U r

i

X =

X1

.

.

.

Xk

 , U r =

U
r
1
.
.
.

U r
k


and Xi is C by dim(β) matrix and Ui ∈ RC

.

This is a standard result for Bayesian regression with normal errors.

3. For each τ = 1, · · · , T̄ − 1, draw (σ2
τ)

r
from the posterior distributions IW (ντ + kC(τ), V0τ + Sτ)

where

Sτ =
∑

c:τ(c)=τ

k∑
i=1

εri,c(ε
r
i,c)

⊤

εri,c = U r
i,c −Xi,cβ

r

where εri,c, U
r
i,c and Xi,c denote the part of εri , U

r
i and Xi corresponding to school c.

4. Save and pass (βr,Σr, U r) to the next iteration.

F Data on NYC High School Choice
F.1 Institutional Background

NYC public high school system consists of two sectors: specialized high schools and regular high

schools. There are nine specialized high schools in NYC.
A-18

We do not consider nine specialized high

schools in our analysis because they use different admission methods from the regular high schools, and

students submit a separate ROL of specialized high schools.

Regular high schools are traditional public schools and have six types of programs differentiated in

their admission method: Unscreened, Limited unscreened, Screened, Audition, Educational option, and Zoned
programs. Multiple programs of different types may be offered by a single school. Unscreened programs

admit students by a random lottery number attached to each student. Limited unscreened programs operate

similarly as Unscreened programs but give higher priority to students who attended an information session

A-18
They are Stuyvesant High School; Brooklyn Technical High School; Bronx High School of Science; High School of

American Studies at Lehman College; The Brooklyn Latin School; High School for Mathematics, Science and Engineering at City

College; Queens High School for the Sciences at York College; Staten Island Technical High School; and Fiorello H. LaGuardia

High School of Music & Art and Performing Arts. These schools, except for Fiorello H. LaGuardia High School, use Specialized

High School Admission Test (SHSAT) as the sole criterion of admission, which is a required exam for students wanting to

attend any of the specialized high schools. Fiorello H. LaGuardia High School uses audition as its admission criterion.

18



or open houses. Screened programs as well as Audition programs rank students by individual assortment

of criteria. For example, Screened programs use several criteria such as final report-card grade, statewide

standardized test scores, and attendance and punctuality. Audition programs hold school/program-specific

auditions to admit students. Educational option is a mixture of unscreened and screened programs. They

have the purpose of serving students at diverse academic performance levels and divide students into high

(the highest 16%), middle (the middle 68%), and low (the lowest 16%) levels in terms of English Language

Arts (ELA) scores. 50% of the seats in each group are filled using school-specific criteria similarly as

a Screened program, and the other 50% are filled randomly similarly as an Unscreened program. Zoned
programs give priority or guarantee admission to students who apply and live in the zoned area of the

school.

Each program has its own eligibility and priority group criteria. For example, in the academic year

2016–17, Young Women’s Leadership School in Astoria opened its seats only to female students, i.e.,

being a female student was the eligibility criterion. Besides, they gave the highest admission priority to

continuing eighth graders, then to students or residents in Queens, and then to other NYC residents.

The number of priority groups is a lot smaller than the number of applicants to each program. Hence

students who apply to programs that do not actively rank students —Unscreened, Limited Unscreened,

Zoned and the unscreened part of Educational option—are often in the same priority group. Hence the ties

need to be broken for the SPDA algorithm to run. For this purpose, a random lottery number is drawn and

attached to each student, which is used to break ties at all programs that require tie-breaking in the same

fashion—single tie-breaking (STB) rule. The lottery number is unknown to the student at the moment of

application.

The timeline of the admission process is as follows (Corcoran and Levin (2011)). In October and

November, students may apply to specialized high schools for which they should take SHSAT or audition

at LaGuardia High School. In December, they are required to submit up to 12 ranked non-specialized high

school programs regardless of their application status to specialized high schools. In March, the SPDA

algorithms for specialized high schools (SHSAT takers) and non-specialized high schools (all students) are

separately run, which is called Round 1. The Department of Education sends each student a letter with an

offer from regular schools and an offer from specialized high schools, if any. If a student receives offers

from both regular and specialized high schools, he/she must choose one. All students who accept a Round

1 offer have a finalized admission decision. If a student did not submit an application in Round 1, did not

receive an offer in Round 1, or wants to apply to a program with availability, he/she can participate in

Round 2. Round 2 takes place in March and operates with students who submitted Round 2 applications

and programs that still have seat availability. Round 2 offers automatically replace Round 1 offers, if any.

Students who are unassigned in Rounds 1 and 2 or reject the assignment go to the administrative round in

which students are administratively assigned a school on a case-by-case basis.
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F.2 Data Source
The main data that we use is the administrative data from the New York City Department of Education

(NYC DOE) for the academic year 2016–17. There are four sets of data used to construct information

on the applicants. First, high school application (HSAP) data contains the submitted ROLs and student

information such as ELA and math standardized test scores, English-language Learner (ELL) status, and

student priorities at programs (including priority rank, priority criteria, and eligibility). Second, June

biographic data provides comprehensive student biographic information, including ethnicity, gender,

disability status, as well as information on attendance and punctuality. Third, standardized test data

contains more detailed information on statewide standardized exams. Fourth, zoned DBN data provides

information on the zoned school of each student, the census tract, and the school district of each student’s

residence. Finally, Middle School Course and Grade data contains all of the courses and information on

credits and grades for each student in a given year. There exists a unique scrambled student ID variable

that enables merging all NYC DOE datasets while personally identifying a student is impossible. Lastly,

we use the information on each census tract and zip code in NYC obtained from the 2016 American

Community Survey 5-Year Estimates from the US Census database.

School information is constructed using the NYC High School Directory which is published every

year before the application process starts. This includes each program’s capacity in the previous year,

the number of students who applied in the previous year, eligibility and priority criteria, accountability

data such as progress reports, graduation rate and college enrollment rate, and types of language classes

provided. Other variables about the current 9th graders, such as ethnicity composition and the fraction of

high-performing students, are constructed using the high school application data from the previous year,

the academic year 2015–2016.

F.3 Sample Restrictions
We focus on students from Staten Island. There are two different samples—one for tracing out the

uncertainties, the other for estimation of student preferences: Priority Construction sample and Estimation
sample. They differ because of missing values in some variables. Priority Construction sample is used to

reconstruct the priority scores of each student at each school/program. Estimation sample is a strict subset

of Priority Construction sample and is used for preference estimation and counterfactual simulations.

First, Priority Construction sample consists of students who applied to at least one Staten Island

school/program. Among such 4,824 students, 785 did not have information on variables needed to

reconstruct priority and were dropped leaving us 4,039 students. Next, Estimation sample consists of

students who applied to at least one Staten Island school/program, went to a middle school in Staten

Island, and resided in Staten Island at the point of application. Among such 4,480 students, 741 did not

have information on variables needed for priority reconstruction or estimation and were dropped. Finally,

8 students had invalid ROLs such as containing an invalid program code on their ROLs, and were dropped,
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leaving us 3,731 students.

Finally, we adjust the capacities of each school/program whenever we restrict our sample. Specifically,

we treat the Round 1 assignment in the data (or the Round 2 assignment if applicable) of each dropped

student as fixed whenever we resimulate DA using the restricted sample. This is in order to ensure that

we do not overestimate the probability of school/programs being feasible for each student in our TEPS

procedure.

G TEPS for NYC High School Choice
G.1 Constructing Priority Scores

Before describing how to simulate uncertainty, let us first specify the procedure we take to prepare

ingredients for the procedure. The main inputs for the SPDA algorithm are the capacities of programs,

students’ preferences, and programs’ preferences (priority scores). First, we use adjusted programs’

capacities as described in Appendix F. Next, we use students’ submitted ROL in the data as students’

preferences.

School preferences are a bit more involved than the other two inputs. As described in Appendix F,

NYC public high schools have coarse priority rules. First, for eligibility criteria and admission priority

groups which are publicly available before the admission process starts, we use the information listed on

the High School Directory.

Next, we estimate the priority ranks for Screened, Audition, and the screened part of Educational option
programs that actively rank students. While there is information on the priority rank of students in the

data set provided by NYC DOE, it is limited only to students who ranked that program. Furthermore,

how each program ranks its applicants is not public information, and each program has its individual

assortment of criteria. For our purposes to calculate the probability of each program being feasible to a

student regardless of whether she ranked it or not, we need to construct a priority rank for all students at

each program that actively ranks students. To do so, we assume that there exists a program-specific latent

variable vij for student i at actively ranking program j which determines the priority ranks:

vij = βjXi + εij and i ≻j i
′
if and only if vij > vi′j,

where Xi is a vector of student characteristics including 7th Standardized Math and ELA scores, middle

school Math, Social Studies, English, Science GPA, days absent and days late, and εij is independent and

identically distributed as extreme value type I conditional on Xi. We form a log-likelihood by considering

all possible pairs of applicants to each program j and estimate via MLE separately for each program. That

is for Ij , the set of applicants to program j,
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β̂j = argmax
βj

l(βj) ≡
∑

i>i′:i,i′∈Ij

log
(exp(vij)1{i ≻j i

′}+ exp(vi′j)1{i′ ≻j i}
exp(vij) + exp(vi′j)

)

With estimates β̂j , we predict v̂ij = β̂jXi for all students (not limited to applicants) and reconstruct

priority ranks based on v̂ij . The average rank correlation between reconstructed and actual priority ranks

at programs ranked by students is 0.72.

G.2 Simulation of Uncertainties
We describe how we simulate uncertainties present in the matching environment, the first step of TEPS.

After reconstructing priority scores for each student at each program, we simulate BL = 10, 000 lotteries

from a uniform distribution to break ties at non-actively ranking programs and run the SPDA 10,000

times. This procedure would give us an empirical distribution of cutoffs of all programs P = (P1, · · · , PC)

where the cutoff of a program is defined to be the lowest priority score of admitted students if the seats

are filled, and zero if the seats are not filled.

Next, we draw L number of lotteries (L = 5, 000) from a uniform distribution in order to account for

the fact that a student’s own ex-post score is uncertain due to the random tie-breaking rules. For each

lottery draw, we use the cutoff distribution simulated above to figure out the set of feasible schools and its

probability for each student in each realization of uncertainties. Together with the submitted ROLs, we

can also compute the assigned program in each realization of uncertainties.

H Analysis of the NYC High School Choice Data
H.1 Preference Estimates

Tables H.6–H.9 present preference estimates for each covariate cell. We report the mean and standard

deviation of the posterior distribution as the point estimate and the standard error. We iterate through

the MCMC 1 million times and discard the first 90% to ensure mixing. We calculate the Potential Scale

Reduction Factor (PSRF) using the draws that we keep following Gelman and Rubin (1992). For those that

did not converge, we additionally iterate 1 million times and keep the last 0.1 million. The resulting PSRFs

for all parameters for all cells are below 1.1 which ensures convergence.

H.2 Counterfactual Analysis
In Table H.5, we report the full table of the mean and standard deviations of the counterfactual policy

predictions reported in Figure 5. In particular, for TEPS
top

-based and the selected estimates, we calculate

the p-value for a two-sided mean comparison t-test which tests the null hypothesis that the prediction

based on each method is equal to that based on WTT. Due to the high precisions of the predictions (as

demonstrated by the low standard deviations), we largely confirm that the WTT-based estimates result in a

systematic underprediction of the effects of desegregation policies compared to our TEPS-based estimates.
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Table H.5: Racial Gap in Characteristics of Assigned Programs

Data No Screening No Zoning No Priority

Panel A: % Black/Hispanic
WTT -25.96 -25.20 -26.07 -24.64

(0.09) (0.15) (0.10)

TEPS
top

-24.70 -25.17 -23.25

(0.53) (0.55) (0.66)

p-value v.s. WTT <0.001 <0.001 <0.001

Selected -24.82 -25.92 -24.06

(0.39) (0.30) (0.43)

p-value v.s. WTT <0.001 <0.001 <0.001

Panel B: % FRPL
WTT -17.20 -16.52 -17.35 -16.15

(0.05) (0.10) (0.06)

TEPS
top

-16.41 -16.92 -15.58

(0.37) (0.35) (0.45)

p-value v.s. WTT <0.001 <0.001 <0.001

Selected -16.50 -17.45 -16.05

(0.27) (0.19) (0.29)

p-value v.s. WTT 0.303 <0.001 <0.001

Panel C: % High Performer
WTT 19.53 17.90 19.37 17.69

(0.07) (0.12) (0.07)

TEPS
top

16.92 18.88 16.39

(0.69) (0.33) (0.74)

p-value v.s. WTT <0.001 <0.001 <0.001

Selected 17.04 19.40 16.79

(0.60) (0.19) (0.60)

p-value v.s. WTT <0.001 0.059 <0.001

Note: We sample 200 draws from the posterior distribution of each parameter and, for each draw, draw 200 sets of lotteries and run DA 200× 200 = 40, 000
times. For each simulation, we calculate three observable characteristics of the assigned program—proportion of Black and Hispanic students, proportion of

FRPL students, and average 7th-grade standardized test score for each student in each racial group. We then calculate the mean across all students in each

racial group for each preference estimate draw. The mean and standard deviations across the preference estimate draws are reported. For TEPS
top

and the

selected estimates, we calculate the p-value for a two-sided mean comparison t-test testing the null hypothesis that the prediction based on each method is

equal to that based on WTT.

H.3 Additional Figures
H.3.1 Program Characteristics by Feasibility Status
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Figure H.4: Characteristics of Ranked and Unranked Programs by Feasibility Status

Notes: For each student, we classify the programs into three types—ever-feasible-unranked, never-feasible-unranked, and ranked. Ranked programs are those

included in the student’s ROL and Stages 1 and 2 of the TEPS procedure determine the feasibility of each unranked program. We use the fraction of

high-performing students (measured by ELA and math scores) and the fraction of those who are not eligible for free/reduced-price lunch in each program. The

figure reports the average across all students for each type of program.
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