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Abstract
We consider triangular models with a discrete endogenous variable and an instru-

mental variable (IV) taking on fewer values. Addressing the failure of the order con-
dition, we develop the first approach to restore identification for both separable and
nonseparable models in this case by supplementing the IV with covariates, allowed to
enter the model in an arbitrary way. For the separable model, we show that it satisfies
a system of linear equations, yielding a simple identification condition and a closed-
form estimator. For the nonseparable model, we develop a new identification argument
by exploiting its continuity and monotonicity, leading to weak sufficient conditions for
global identification. Built on it, we propose a uniformly consistent and asymptoti-
cally normal sieve estimator. We apply our approach to an empirical application of
the return to education with a binary IV. Though under-identified by the IV alone, we
obtain results consistent with the literature using our approach. We also illustrate the
applicability of our approach via an application of preschool program selection where
the supplementation procedure fails.
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1 Introduction

This paper considers identification and estimation of the outcome function g∗ ≡ (g∗d)d in
a triangular model:

Y =
∑
d

1(D = d) · g∗d(X, U)

D = h(X, Z,V )

where both the endogenous variable D and the instrumental variable (IV) Z are discrete, X

is a vector of covariates, and the disturbances U and V are correlated (see also Newey, Powell
and Vella (1999), Chesher (2003), Matzkin (2003), Newey and Powell (2003), Chernozhukov
and Hansen (2005), Das (2005), Imbens and Newey (2009), etc.)

It is well-known that in general, g∗ is not identified if Z takes on fewer values than D

does. In many applications, however, IVs do have very small support while endogenous
variables may take on more values.

Let us consider an example of the return to education. Suppose the log wage (Y ) is
determined by unobserved earning ability U and functions of covariates (X) such as parents’
education. These functions are heterogeneous in the level of education d: completing high
school (d = 1), having some college education (d = 2), and at least completing college
(d = 3). The available IV may be only binary. For instance, in Card (1995), Z indicates
whether an individual lived near a 4-year college or not.

To see why identification may fail, suppose the unknown function is separable in ability:
g∗d(X, U) = m∗d(X) + U . Then the model can be rewritten as Y = α(X) + m∗2(X)1(D =
2) +m∗3(X)1(D = 3) + U . The classical order condition thus does not hold: conditional on
X, there are two endogenous variables, 1(D = 2) and 1(D = 3), but only one binary IV.

Under the standard validity assumptions for the IV, it can be shown that the outcome
function m∗ satisfies the moment condition ∑3

d=1 pd(x0, Z)m∗d(x0) = E(Y |X = x0, Z) for
some x0 where pd(·, ·) is the generalized propensity score (e.g. Newey and Powell (2003)).
With a binary Z, we obtain two equations by conditioning on each value that Z can take,
but there are three unknowns. To the best of the author’s knowledge, no existing method
achieves point-identification in such a case.

This paper develops the first approach that obtains point-identification of g∗ when the
IV takes on fewer values than the discrete endogenous variable. This is achieved by supple-
menting the IV with variation in X. We show that for a fixed x0, there may exist a matching
point xm such that the difference between g∗(x0, ·) and g∗(xm, ·) is identified. Controlling for
the difference, moment equations like the example above can be evaluated at xm in addition
to x0 without introducing new unknowns. In this way, the effective support set of the IV is
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enlarged via the matching points, making identification possible.
To see why such outcome function differences may be identified before the outcome

functions themselves are, note that in the triangular model, endogeneity is generally due to
the dependency between U and V . Suppose X and Z generate partitions in the space of
V (for instance in an ordered choice model). Selecting into a value of D is determined by
which partition V falls into. Hence, if for some z 6= z′, (x0, z) and (xm, z

′) generate exactly
the same partitions, then the same selection choices would be made across the two schemes
for any realization of the latent V . The unknown selection biases at these two points would
thus be equal and could be canceled out. The relationship between g∗(x0, ·) and g∗(xm, ·)
can thus be traced out from the distribution of the observed outcomes at (x0, z) and (xm, z

′).
Let us go back to the return to education example. Suppose we have a single covariate

X, the average of parents’ years of schooling. Let X and Z enter h via a linear single index
kZ + X. It implies that k more years of the parents’ schooling compensate for not living
near a 4-year college (Z = 0) in terms of educational attainment choices. For any realization
of V , individuals with (X,Z) = (x0, 0) and with (X,Z) = (x0 − k, 1) would select into the
same level of education. These two groups of individuals are equivalent in terms of selection,
so their selection biases are presumably the same. Comparing their (average or distributions
of) observed log wages, the biases may be differenced out.

To find the matching points of a given x0, we do not restrict the dimension of V and no
notion of monotonicity is imposed. We propose a condition called propensity score coherence.
Under it, the matching points can be found by matching the generalized propensity scores at
different values of X and Z without specifying the selection model h. We provide examples
to illustrate that many widely used discrete choice models satisfy this condition.

Given the matching points, we derive the exact forms of the outcome function differences
for two particular models of g∗: additively separable in U , and nonseparable and strictly
increasing in U . For each model, we provide sufficient conditions for identification and
construct consistent and asymptotically normal estimators.

For the separable model, we show that the outcome function solves a system of linear
equations, preserving a similar structure as in the standard IV approach. We thus obtain a
closed-form estimator which is easy to implement in practice. We apply it to examine the
return to education example using the same extract from 1979 National Longitudinal Surveys
(NLS) as in Card (1995). We adopt the proximity-to-college IV and find that living near
a four-year college and parents’ years of schooling are indeed close substitutes in terms of
children’s educational attainment. Using the matching points generated from this covariate,
we find that the return to education is (a) increasing in the level of schooling with slightly
diminishing marginal return, and (b) heterogeneous in parents’ education; individuals with
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less educated parents enjoy higher potential returns. In contrast, the two-stage-least-squares
(2SLS) estimates of parametric models using the interaction of parents’ years of schooling
and the proximity-to-college IV as an extra instrument leads to misleading results.

For the nonseparable model, we develop a new identification argument by exploiting
continuity and monotonicity of g∗(X, ·). We show that global identification of g∗(X, ·) is
achieved in the space of monotonic functions if g∗(X, u) is only locally identified for each
u. This new result also applies to the standard IV approach when the IV has large support.
Based on our identification strategy, we construct a sieve estimator. We show that its large
sample properties are guaranteed by simple low-level conditions, thanks to the nice properties
of the monotonic function space.

It is worth noting that the success of our approach hinges on the covariates that are able
to offset the impact of Z. For applications where the IV has the dominant effect, covariates
may not have comparable effects on the selection so the matching points may not exist.
This is testable in some cases. As an illustration, we consider another empirical application
on the preschool program selection. We use the administrated Head Start Impact Study
(HSIS) dataset following Kline and Walters (2016). The endogenous variable considered also
takes on three values: participating in Head Start, in an alternative preschool program, and
not participating in any programs. The binary IV indicates whether an individual won a
lottery granting access to Head Start. The IV has very large effect on the choice of preschool
programs. From the tests we develop, we find that no available covariate in the sample is
able to generate a matching point.

We defer a detailed comparison of our method to the existing literature until Section 8.
Here we highlight some major differences. Precursory methods that circumvent the problem
of having an IV with small support include imposing homogeneity between adjacent levels
of D when D is ordered, or specifying a parametric form for g∗ and using interactions
between Z and X as a second IV by assuming X is exogenous. Torgovitsky (2015, 2017)
and D’Haultfœuille and Février (2015) show a binary IV is able to identify nonseparable
models with a continuous endogenous variable. Continuity is crucial in their approach and
they require the selection function strictly increasing in the scalar unobservable. Similar
to this paper, Caetano and Escanciano (2018) also use covariates to identify models when
the instruments do not have enough variation. Their approach does not rely on the first
stage, but they need the covariates used for identification purpose to be "separable" in the
model in a way that the model can be "inverted" and become free of them. In contrast,
the covariates in our approach can enter the model in an arbitrary way. Huang, Khalil and
Yıldız (2019) consider identification of separable models with multiple endogenous variable
but a single instrument. They focus on a partial linear model and one of the endogenous
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variable needs to be continuous to apply the control function technique. Ichimura and Taber
(2000) and Vytlacil and Yıldız (2007) use shifts in some observables that compensate for a
shift in a target variable to facilitate identification of different parameters than this paper.
The shifting variables and the target variable are different from ours. Vuong and Xu (2017)
and Feng, Vuong and Xu (2019) in the study of the individual treatment effect of a binary
D develop a concept called the counterfactual mapping. It is also an identifiable function
linking two outcome functions but at different values of D and the same value of X by
exploiting the compliers’ information.

The rest of the paper is organized as follows. In Section 2, we introduce the model,
discuss the preliminary assumptions, and introduce the matching points. We also preview
the basic idea of the new identification strategy. In Section 3, we discuss the existence of the
matching points and provide sufficient conditions for identification of the matching points
and the outcome functions. In Section 4, we propose estimators for them and discuss some
implementation issues. Section 5 presents results of two empirical applications. Section 6
shows the estimators’ asymptotic properties. Section 7 provides Monte Carlo simulations
to illustrate the estimator’s finite sample performance. Section 8 discusses the relation of
our approach to the related work. Section 9 concludes. Appendix A discusses general
cases including models with multiple discrete endogenous variables. Appendix B contains
proofs of the results in Sections 2 and 3. Appendix C illustrates the propensity coherence
condition via various discrete choice models for a single or multiple endogenous variables.
In the supplementary appendices, Appendix D provides additional simulation results, and
Appendix E collects proofs of the asymptotic results.

Notation

We use upper-case Latin letters for random variables and the corresponding lower-cases
for their realizations. Bold Latin letters denote vectors or matrices. For two generic random
variables A and B, denote the conditional expectation of A given B = b by EA|B(b), with
similar notation for conditional distribution functions, densities and variances. Denote the
support set of A by S(A), and the support of A given B = b by S(A|B = b), or simply
S(A|b) when it does not cause confusion. For a finite set H, |H| denotes the number of
elements in it, while for a generic vector c, |c| denotes its Euclidean norm. For two generic
sets H1 and H2, H1\H2 denotes the set difference H1 ∩ Hc

2. Throughout, we assume all
the random variables involved are in a common probability space with the measure function
P . Whenever we say almost surely (a.s.) and measurable, we refer to almost surely and
measurable with respect to P .
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2 The Model

To highlight the key features of our approach, we focus on a simple case where the
endogenous D takes on three values (|S(D)| = 3) and Z is binary (|S(Z)| = 2). We will
also discuss the usefulness of the approach when |S(D)| = |S(Z)| = 2. The general cases for
arbitrary |S(D)| ≥ |S(Z)| and multiple Ds will be discussed in Appendix A.1.

We study the separable model and the nonseparable model respectively:

Y =
∑

d∈S(D)
1(D = d) ·

(
m∗d(X) + U

)
(SP)

and
Y =

∑
d∈S(D)

1(D = d) · g∗d(X, U) (NSP)

where S(D) ≡ {1, 2, 3}, X is a vector of covariates, and U is a scalar unobservable. The
goal of this paper is to identify and estimate the outcome functions at a fixed value of X:
m∗(x0) ≡ (m∗d(x0))d and g∗(x0, ·) ≡ (g∗d(x0, ·))d. Note the choice of S(D) is without loss of
generality because any set of three element can be one-to-one mapped onto it.

We rewrite the selection model for D as follows:

D = d if and only if hd(X, Z,V ) = 1 (SL)

where for all d ∈ SD, the selection function hd(X, Z,V ) ∈ {0, 1}, and ∑3
d=1 hd(X, Z,V ) = 1

a.s. V is a vector of unobservables that is correlated with U . We assume that for every
(x, z) ∈ S(X, Z), hd(x, z, ·) is measurable on S(V ).

In the rest of this section, we introduce and discuss preliminary assumptions for each
model. We also illustrate why a binary Z in general fails to identify the outcome functions.
Finally, we introduce the key idea to restore identification.

2.1 The Separable Model

Let us begin with the assumption for the separable model-SP:

Assumption E-SP (Exogeneity). EU |X(x0) = 0, EU |V XZ(V ,x0, Z) = EU |V X(V ,x0) a.s.,
and Z ⊥⊥ V |X = x0.

The first condition in Assumption E-SP is a normalization without which m∗(x0) can
only be identified up to an additive constant. The second and the third conditions are
standard in the literature of triangular models (e.g. Newey, Powell and Vella (1999)).
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Remark 2.1. Note that the unobservable U is not d-dependent, so our model is more restric-
tive than many models in the treatment effects literature, for example Heckman and Vytlacil
(2005) and Lee and Salanié (2018). However, in these works, the methods usually need much
richer variation in the instruments (continuous and multidimensional). In our setup, we can
allow U to be d-dependent by making extra assumptions. For example, we can show that our
results still hold if EUd|DXZ(D,x0, Z) = EUd′ |DXZ(D,x0, Z) for any d 6= d′. This assumption
allows Ud for each d to have different conditional distributions so long as they have the same
mean dependence of the endogenous variable.

Proposition 1 (Newey and Powell (2003) equation (2.2); Das (2005) equation (2.5)). Under
Assumptions E-SP, the following equation holds for all z ∈ S(Z),

3∑
d=1

pd(x0, z) ·m∗d(x0) =
3∑
d=1

pd(x0, z) · EY |DXZ(d,x0, z) (2.1)

where pd(x0, z) ≡ P(D = d|X = x0, Z = z).

Since all the terms in equation (2.1) are directly identified from the population except
for m∗(x0), we have two linear equations by letting z = 0, 1 but three knowns: m∗(x0) is
not identified without additional information.

2.2 The Nonseparable Model

Compared to the separable model, assumptions for the nonseparable model-NSP are more
stringent.

Assumption E-NSP (Exogeneity). (U |X = x0) ∼ Unif[0, 1] and (U,V ) ⊥⊥ Z|X = x0.

Assumption FS (Full Support). (U,V )|x0 is continuously distributed and S(U |V ,x0) =
S(U |x0).

Assumption CM (Continuity and Monotonicity). For all (d,x) ∈ S(D,X), g∗d(x, ·) is
continuous and strictly increasing on [0, 1].

Assumption E-NSP is the counterpart of Assumption E-SP for the nonseparable outcome
functions; the first part is a popular normalization for identification of nonseparable models,
while the second part is the same as in Imbens and Newey (2009) which is standard for
triangular models. Similar to Model-SP, U is invariant with respect to d. We can relax it
by adopting the rank similarity condition in Chernozhukov and Hansen (2005).
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Assumption FS guarantees that the range of g∗d(x, z, ·) on [0, 1] is equal to the conditional
support S(Y |d,x)1. The same assumption can be found in related work that also focuses
on identification of g∗(x0, ·) on the entire domain as this paper, for instance D’Haultfœuille
and Février (2015), Torgovitsky (2015) and Vuong and Xu (2017).

Assumption CM regulates the behavior of the NSP-outcome function g∗(x, ·). Continuity
on [0, 1] and Assumption FS (a) imply that Y |d,x, z is continuously distributed and that
S(Y |d,x, z) is compact. Continuity and strict monotonicity are two standard requirements
in the literature of nonseparable models when the unobservable is a scalar. In addition to
using these properties to construct moment conditions as in the related literature, in this
paper we show that they deliver nice results for identification and for deriving the large
sample properties of the estimator we propose.

Under these assumptions, we have the following result:

Proposition 2 (Chernozhukov and Hansen (2005), Theorem 1). Under Assumptions E-NSP,
FS and CM, the following equation holds for all z ∈ {0, 1} and u ∈ [0, 1],

3∑
d=1

pd(x0, z) · FY |DXZ(g∗d(x0, u)|d,x0, z) = u (2.2)

Similar to Model-SP, again we have two equations but three unknowns for a fixed u.
Global uniqueness of the solution is in general not guaranteed.

2.3 The Selection Model and the Matching Points

Now we show how to use covariates X to supplement the binary Z to restore identification
when the order condition fails.

The major challenge for identification by varying the conditioning value of X is that
it results in unknown changes in the outcome function: while more moment conditions
are generated, even more unknowns are introduced into the new system of equations. For
instance, consider equation (2.1) for Model-SP. Suppose Assumptions E-SP also holds for
x′ 6= x0. Similar to (2.1), we have

3∑
d=1

pd(x′, z) ·m∗d(x′) =
3∑
d=1

pd(x′, z) · EY |DXZ(d,x′, z)

for z ∈ {0, 1}. We then have 4 equations in total: two conditional on X = x0 and two on x′,
yet the number of the unknowns is increased to 6 at the same time. Therefore, an arbitrarily

1This is because S(Y |d,x) = S(g∗d(x, U)|hd(x, Z,V ) = 1,x) = S(g∗d(x, U)|hd(x, z,V ) = 1,x, z) =
S(g∗d(x, U)|hd(x, z,V ) = 1,x) = S(g∗d(x, U)), which is the range of g∗d(x, ·) on [0,1].
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chosen x′ does not help identification.
Instead, we look for a point, denoted by xm, such that the difference between m∗(x0) and

m∗(xm) can be identified first. To see this is possible, let us take conditional expectation
on both sides of equation (SP). For all d,x, z in their support,

m∗d(x) + EU |DXZ(d,x, z) = EY |DXZ(d,x, z).

The term EU |DXZ(d,x, z) captures the selection bias due to endogeneity of D. Then for
xm 6= x0, the difference between m∗d(xm) and m∗d(x0) satisfies:

m∗d(xm)−m∗d(x0) =
(
EY |DXZ(d,xm, z

′)− EY |DXZ(d,x0, z)
)

︸ ︷︷ ︸
Difference in the Observed Outcomes

−
(
EU |DXZ(d,xm, z

′)− EU |DXZ(d,x0, z)
)

︸ ︷︷ ︸
Difference in the Biases

When the two unknown bias terms are equal, they cancel out and the change in the
outcome function is identified.

Let us consider the following example for illustration.

Example OC (Ordered Choice). Suppose D is ordered and there is only one covariate.
Let h1(X,Z, V ) = 1(V < κ1 + βX + αZ), h3(X,Z, V ) = 1(V ≥ κ2 + βX + αZ), and
h2 = 1 − h1 − h3. Assume α · β 6= 0, κ1 < κ2, and (X,Z) ⊥⊥ V where V is continuously
distributed on R. Fix x0, it is straightforward to see that (x0, 0) and (x0 − α

β
, 1) generate

exactly the same partitions on R. Then taking d = 1 as an example, we have

EU |DXZ(1, x0 −
α

β
, 1) = EU |VXZ(V < κ1 + βx0, x0 −

α

β
, 1)

EU |DXZ(1, x0, 0) = EU |VXZ(V < κ1 + βx0, x0, 0)

When the dependency of (U, V ) on (X,Z) = (x0, 0) and (x0 − α
β
, 1) are identical, the two

bias terms are equal.

From the example, we can see that in order to difference out the bias, (xm, z
′) and (x0, z)

should (a) generate the same partitions of S(V ), and (b) have the same level of dependency
with respect to the unobservables. The following conditions formally characterize these ideas.

Definition MP (Matching Points and Matching Pairs). A point xm ∈ S(X) is a matching
point of x0 ∈ S(X) if there exist z 6= z′ ∈ S(Z) such that for all d ∈ S(D),

hd(x0, z,V ) = hd(xm, z
′,V ) a.s., (2.3)
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and for Model-SP,

EU |V XZ(V ,xm, Z) = EU |V XZ(V ,x0, Z) a.s. and (V |xm, Z) ∼ (V |x0, Z), (2.4)

or for Model-NSP,
((U,V )|xm, Z) ∼ ((U,V )|x0, Z). (2.5)

(x0, z) and (xm, z
′) are called a matching pair.

Equation (2.3) guarantees that the matching pair generate exactly the same partitions
on S(V ). Equation (2.4) and (2.5) imply that U and V have the same level of dependence
given X = x0 or xm. A sufficient condition for these two equations is that (Z,X) are jointly
exogenous. This assumption is actually commonly made in practice, for instance Carneiro,
Heckman and Vytlacil (2011). Also, it only needs to be satisfied by the covariates that are
used to generate the matching points. Finally, all these conditions are indirectly testable
under over-identification, as will be seen in the next section.

From Definition MP, it can be verified that if Assumptions E-SP or Assumptions E-NSP
and FS hold at x0, they would also hold at the matching points of x0. The following
theorem thus shows that the changes in the outcome functions from x0 to a matching point
are identified:

Theorem MEQ (Matching Equation). Suppose xm ∈ S(X) is a matching point for x0 ∈
S(X), then the following claims hold for all d ∈ S(D):

(a) Model-SP. Under Assumptions E-SP, pd(xm, z
′) = pd(x0, z) and

m∗d(xm) = m∗d(x0) +
(
EY |DXZ(d,xm, z

′)− EY |DXZ(d,x0, z)
)
. (2.6)

(b) Model-NSP. Under Assumptions E-NSP, FS and CM, pd(xm, z
′) = pd(x0, z) and

FY |DXZ(g∗d(xm, u)|d,xm, z
′) = FY |DXZ(g∗d(x0, u)|d,x0, z). (2.7)

The matching equation (2.6) directly establishes an identified one-to-one mapping from
m∗(x0) to m∗(xm).

For the matching equation (2.7), by strict motononicity of the conditional CDFs of Y
(implied by Assumptions FS and CM), we have

g∗d(xm, u) = QY |DXZ

(
FY |DXZ(g∗d(x0, u)|d,x0, z)

∣∣∣d,xm, z
′
)
≡ ϕd(g∗d(x0, u); xm, z

′) (2.8)

where ϕd(·; xm, z
′) : S(Y |d,x0) 7→ S(Y |d,xm) is continuous and strictly increasing. Later
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we may use the shorthand notation ϕd(·) for brevity.
Theorem MEQ allows us to condition on X = xm to help identify m∗(x0) and g∗(x0, u).

We use Model-SP as an example for illustration. By Proposition 2,

3∑
d=1

pd(x0, z) ·m∗d(x0) =
3∑
d=1

pd(x0, z) · E(Y |d,x0, z) (2.9)

3∑
d=1

pd(x0, z
′) ·m∗d(x0) =

3∑
d=1

pd(x0, z
′) · E(Y |d,x0, z

′) (2.10)

3∑
d=1

pd(xm, z) ·m∗d(xm) =
3∑
d=1

pd(xm, z) · E(Y |d,xm, z) (2.11)

3∑
d=1

pd(xm, z
′) ·m∗d(xm) =

3∑
d=1

pd(xm, z
′) · E(Y |d,xm, z

′) (2.12)

Substitute equation (2.6) into equations (2.11) and (2.12) for all d. Then (2.12) is redundant
with (2.9) as they become identical. With the extra equation (2.11), we end up with three
equations and three unknowns; identification becomes possible.

Further, the augmentation of the moment conditions does not necessarily end here. Given
xm, one would expect that if it also has a matching point x′m 6= x0, then the mapping between
the outcome functions at x′m and xm is identified. Consequently, the mapping between those
at x′m and x0 is identified, too. The following example illustrates this possibility.

Example OC Cont’d. Under the setup in Example OC, for any fixed x0 ∈ S(X), it has
the following two matching points by equation (2.3) if they are in S(X):

(z = 0, z′ = 1) : βxm1 + α · 1 = βx0 + α · 0 =⇒ xm1 = x0 −
α

β
(2.13)

(z = 1, z′ = 0) : βxm2 + α · 0 = βx0 + α · 1 =⇒ xm2 = x0 + α

β
(2.14)

Similarly, for xm1 and xm2, each of them also has two matching points: One is x0, and the
other is x0− 2α

β
and x0 + 2α

β
respectively. This process can be continued until the boundaries

of S(X) are reached, illustrated by the following figure:

Figure 1: The Pyramid of Matching Points
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The horizontal axis is the value of the single index xβ + zα. Starting from (x0, 0) and
(x0, 1), we obtain xm1 and xm2 by solving the equations below the horizontal axis. Then
we repeat this procedure to match (xm1, 0) with (xm3, 1) and match (xm2, 1) with (xm4, 0).
Continuing the process, one can expect to see that the dotted points on this axis extend to
both directions, until they reach the boundaries of S(X).

These additional points in Example OC Cont’d are not the matching points of x0. But
by recursively applying Theorem MEQ, the outcome functions at these points and at x0

are still linked by identified one-to-one mappings. To formalize this idea, we introduce the
following concepts.

Definition MC (M-Connected Set). A set XMC(x0) ⊆ S(X) is called the m-connected set
of x0 if x0 ∈ XMC(x0) and for any x ∈ XMC(x0), there exists x1,x2, ...,xk(x) ∈ XMC(x0)
such that xj is a matching point of xj−1, j = 1, ..., k(x), and x is a matching point of xk(x).
Any two points in the m-connected set are said to be m-connected.

By definition, the m-connected set is the largest subset of S(X) such that the outcome
functions’ relationship at any two elements in it is identified by recursively applying Theorem
MEQ. Coupled with S(Z), the set Z(x0) ≡ XMC(x0) × S(Z) contains every possible value
of (X, Z) that may be conditioned on to identify m∗(x0) or g∗(x0, ·).

3 Identification

In this section we first discuss the existence and identification of the matching points
of a given x0. A similar argument holds for other points in x0’s m-connected set. Then
we provide sufficient conditions under which the SP- and the NSP-outcome functions are
identified.

3.1 The Existence and Identification of the Matching Points

The existence and identification of the matching points are closely related to the selection
function h and features of X, for example its dimensionality and support. Different ways to
find them are available depending on how much we know about h,

When the form of h or some of its structures are known, the matching points xm may be
obtained by directly applying the definition: hd(xm, z

′,v)−hd(x0, z,v) = 0 for all v ∈ S(V ).
For instance, in Example OC Cont’d, we know D is determined by a single-index ordered
choice model. Then the matching points are obtained via equations (2.13) and (2.14) when
α and β are identified (up to a multiplicative constant).
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When the model that determines D is unknown, as is common in many economic appli-
cations, solving equation (2.3) is infeasible. On the other hand, the generalized propensity
scores are usually directly identified from the population. Under the exogeneity assumption
for Z, a matching point xm necessarily solves the following equation for z′ 6= z ∈ S(Z):

(
p1(x, z′)− p1(x0, z)

)2
+
(
p2(x, z′)− p2(x0, z)

)2
= 0 (3.1)

If the converse is also true, the solutions to equation (3.1) are then the matching points of
x0.

Definition PSC (Propensity Score Coherence, PSC). Suppose p(x, z) = p(x′, z′). The
selection model is said to be propensity score coherent at (x, z) and (x′, z′) if h(x, z,V ) =
h(x′, z′,V ) a.s.

Note that if h is identified by propensity scores at (x0, z), that is, there does not exist
(x′, z′) such that p(x′, z′) = p(x0, z) but h(x′, z′,V ) 6= h(x, z,V ) with positive probability,
then PSC holds at (x0, z) and (x, z′) for any x that solves equation (3.1). Many familiar
discrete choice models satisfy PSC. We present examples in Appendix C.

In principle, the existence of a solution to equation (3.1) depends on how much X, within
its support, can affect the propensity scores at z′ ∈ S(Z). For example if the propensity
scores at z′ have full support, i.e., (p1(·, z′), p2(·, z′)) : S(X|z′) 7→ [0, 1] × [0, 1] is surjective,
then a solution always exists. In general, the higher the dimension of X is, the larger its
effect on the propensity score, and the larger its support is, the more likely a solution is to
exist. For instance, in Example OC, x0 ± α

β
∈ S(X) if S(X) is large and/or α/β, i.e., the

relative effect of Z with respect to X, is small.
As for the rest of the points in the m-connected set, since each of them is a matching

point of some other point, a similar argument applies. In principle, the larger S(X) is, the
larger the m-connected set is. Recall Figure 1 in Example OC Cont’d, if S(X) = R and
(U, V ) ⊥⊥ (X,Z), then the m-connected set of x0 is countably infinite.

3.2 Identification of the SP-Outcome Functions

Given the m-connected set of x0, we are ready to study the identification of the outcome
functions. We begin with the separable model-SP.

For illustrative purposes, let us only consider one matching point xm of x0 first. Sub-
stituting the matching equation (2.6) into (2.11) and (2.12) for each d and deleting the
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redundant equation, we can see m∗(x0) satisfies the following system of equations:

ΠSP ·m∗(x0)

=



∑3
d=1 EY |DXZ(d,x0, z)pd(x0, z)∑3
d=1 EY |DXZ(d,x0, z

′)pd(x0, z
′)

3∑
d=1

EY |DXZ(d,xm, z)pd(xm, z)︸ ︷︷ ︸
=
∑3

d=1 m
∗
d
(xm)pd(xm,z)

+∑3
d=1

[
EY |DXZ(d,x0, z)− EY |DXZ(d,xm, z

′)︸ ︷︷ ︸
m∗
d
(x0)−m∗

d
(xm)

]
pd(xm, z)


(3.2)

where ΠSP =


p1(x0, z) p2(x0, z) p3(x0, z)
p1(x0, z

′) p2(x0, z
′) p3(x0, z

′)
p1(xm, z) p2(xm, z) p3(xm, z)

.
The first two equations in the system are directly from Proposition 1. In the third

equation, we condition on xm instead of x0; the first term on the right hand side again
follows from Proposition 1. The second term, obtained from Theorem MEQ, then accounts
for the difference sending m∗(xm) back to m∗(x0). Since the system of equations (3.2) is
linear in m∗(x0), it is identified if ΠSP is full rank.

More generally, recall the augmented set of conditioning points Z(x0) ≡ XMC(x0)×S(Z)
introduced in Section 2.3. The equation system (3.2) can be easily adapted for any point
in Z(x0). Then m∗(x0) is identified if ΠSP constructed by any three points in Z(x0) is
full rank. Further, once m∗(x0) is identified, m∗(·) at any other points in XMC(x0) is also
identified.

Theorem ID-SP. Under Assumptions E-SP, if there exists z̃1, z̃2, z̃3 ∈ Z(x0) such that

ΠSP =


p1(z̃1) p2(z̃1) p3(z̃1)
p1(z̃2) p2(z̃2) p3(z̃2)
p1(z̃3) p2(z̃3) p3(z̃3)

 is full rank,

then m∗(x) is identified for all x ∈ XMC(x0).

Remark 3.2. Note that the conditioning values in the theorem does not necessarily include
(x0, z) and (x0, z

′). For instance, in Example OC Cont’d, they can be any three of the dotted
points in Figure 1.

Since ΠSP does not contain any components of m∗, whether the full-rank condition
holds or not solely depends on the selection model. In what follows, we provide sufficient
and necessary conditions for ΠSP to be full-rank.
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The Full Rank Condition

For simplicity, we go back to the case in the beginning of this section and consider one
matching point xm such that p(xm, z

′) = p(x0, z). Recall that in this case,

ΠSP =


p1(x0, z) p2(x0, z) p3(x0, z)
p1(x0, z

′) p2(x0, z
′) p3(x0, z

′)
p1(xm, z) p2(xm, z) p3(xm, z)


Using the facts that the sum of the three columns in ΠSP is equal to vector 1, it can be

shown that ΠSP is full rank if and only if

(
p1(xm, z)−p1(x0, z)

)(
p3(x0, z)−p3(x0, z

′)
)
6=
(
p1(x0, z)−p1(x0, z

′)
)(
p3(xm, z)−p3(x0, z)

)
(3.3)

Inequality (3.3) does not hold if both sides are simultaneously zero. This is the case when
Z has no effect on p at X = x0 or X has no effect on p at Z = z. Both can be ruled out
by a local relevance condition saying that X and Z have nonzero effects on the propensity
scores at (x0, z).

Now suppose neither side is 0. By p(x0, z) = p(xm, z
′), inequality (3.3) can be rewritten

as
p1(xm, z)− p1(x0, z)
p3(xm, z)− p3(x0, z)

6= p1(xm, z
′)− p1(x0, z

′)
p3(xm, z′)− p3(x0, z′)

(3.4)

The inequality generally holds unless the propensity score differences are locally uniform.
For example, one can verify that the inequality is satisfied in the ordered choice model in
Example OC for almost all x0 in its support unless V is (locally) uniformly distributed.
In particular, it holds for widely applied Logit and Probit models. The following example
provides sufficient and necessary conditions for inequality (3.4) in an ordered choice model
with multi-dimensional unobservables.

Example OC Cont’d 2. Suppose now there are two unobservables in the ordered choice
model: h1(X,Z,V ) = 1(V1 ≤ κ1 + αZ + βX), h3(X,Z,V ) = 1(V2 > κ2 + αZ + βX), and
h2(X,Z,V ) = 1−h1(X,Z,V )−h3(X,Z,V ).To guarantee V1 < V2 a.s., we assume both are
continuously distributed on S(V1) ≡ (−∞, c] and S(V2) ≡ [c,∞) respectively where c ∈ R.
Finally, assume α · β 6= 0 and we only consider the matching point xm = x0 − α

β
.

Theorem ID-OC (Identification under Example OC Cont’d 2). Under the setup in Example
OC Cont’d 2, ΠSP is full rank if and only if the single index Xβ + Zα evaluated at (x0, 0),
(x0, 1) and (xm, 0) do not all fall into S(V1) or S(V2) at the same time.
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3.3 Identification of the NSP-Outcome Functions

As before, let us start from one matching point xm such that, p(xm, z
′) = p(x0, z).

Similar to Section 3.2, we can substitute equation (2.8) into equation (2.2) for (xm, z). Then
g∗(x0, u) solves the following system of equations for every u ∈ [0, 1]:

3∑
d=1

pd(x0, z) · FY |DXZ(g∗d(x0, u)|d,x0, z) = u (3.5)

3∑
d=1

pd(x0, z
′) · FY |DXZ(g∗d(x0, u)|d,x0, z

′) = u (3.6)

3∑
d=1

pd(xm, z) · FY |DXZ(ϕd(g∗d(x0, u); xm,z
′)|d,xm, z) = u (3.7)

Unlike identification of nonseparable models with a continuous D (e.g. Chernozhukov,
Imbens and Newey (2007), Chen et al. (2014)), here we do not face the ill-posed problem
due to the discreteness of D.

As the system is nonlinear in finite dimensional unknowns for a fixed u, it is well-known
that the Jacobian of the system being full-rank at g∗(x0, u) only implies local identification
of g∗(x0, u) (see Chernozhukov and Hansen (2005) and Chen et al. (2014) for examples). In
what follows, we show that by continuity and monotonicity of g∗(x0, ·), local identification
at all u ∈ [0, 1] actually implies global identification of g∗(x0, ·) in the class of monotonic
functions.

Let us first define a solution path, a concept widely adopted in differential equations.

Definition SolP (Solution Paths). For a system of equations M (y, u) = 0, where y is a
real vector and u ∈ U , a solution path y∗(·) is a function on U such that M(y∗(u), u) = 0
for all u ∈ U .

Stack the left hand side of equations (3.5) to (3.7) into a vector denoted by Ψ(g∗(x0, u)).
Denote the vector (u, u, u)′ by u. Then g∗(x0, ·) is one solution path to M (y,u) ≡ Ψ(y)−
u = 0. The pathwise approach we propose focuses on the uniqueness of g∗(x0, ·) in a class of
admissible solution paths G. By Assumption CM, g∗(x0, ·) is continuous and each component
is strictly increasing on [0, 1]. We thus set G to be the closure of the set of all such functions:

G ≡ {g : [0, 1] 7→ R3 and is weakly increasing}.

Recall that Z(x0) ≡ XMC(x0)×S(Z) contains all the points that can be conditioned on
to identify g∗(x0, ·). Let Ψ(·; z̃1, z̃2, z̃3) be the moment equations adapted from equations
(3.5) to (3.7) by conditioning on z̃1, z̃2, z̃3 ∈ Z(x0). For example, the k-th component in
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Ψ is ∑3
d=1 pd(z̃d) · FY |DXZ(ϕd(·)|d, z̃k). The following theorem provides sufficient conditions

that guarantee global identification of g∗(x0, ·) on G.

Theorem ID-NSP. Under Assumptions E-NSP, FS,and CM, if there exist z̃1, z̃2, z̃3 ∈
Z(x0) such that Ψ(·; z̃1, z̃2, z̃3) is continuously differentiable on ∏3

d=1 S(Y |d,x0), and that
its Jacobian matrix at g∗(x0, u), ΠNSP (g∗(x0, u)), is full-rank for all u ∈ [0, 1], then g∗(x0, ·)
is the unique solution path (up to u = 0, 1) to Ψ(·; z̃1, z̃2, z̃3)− u = 0 in G.

By "unique up to u = 0, 1", we mean that if there is another solution path g̃ ∈ G, it has
to equal g∗(x0, ·) for all u ∈ (0, 1). Indeterminacy in the end points arises naturally from the
fact that at u = 0, 1, any point that lies outside the range of g∗(x0, ·), i.e.,

∏
d S(Y |d,x0),

trivially satisfies the moment equations. If we restrict the parameter space G to only contain
functions whose ranges are contained in ∏d S(Y |d,x0), then uniqueness holds on [0, 1].

Remark 3.3. By definition, ϕd(g∗d(x0, ·); x0, z) = g∗d(x0, ·). So Theorem ID-NSP also ap-
plies to the standard IV approach when D is discrete with |S(Z)| ≥ |S(D)|, for example,
Chernozhukov and Hansen (2005).

Let us sketch the proof to see how monotonicity and continuity of g∗(x0, ·) convert local
identification pointwise in u to global identification. For illustrative purpose, we focus on
the subspace G∗ ⊆ G: The range of every function in G∗ is contained in ∏3

d=1 S(Y |d,x0).
The proof for the larger G is in Appendix B.

Note that the functions in G∗ may be continuous or discontinuous. We rule out the
existence of a hypothetical solution path g̃(·) 6= g(x0, ·) of each type respectively.

First, suppose there exists a continuous g̃(·) 6= g∗(x0, ·) ∈ G0. By Assumption CM,∏
d S(Y |d,x0) is bounded. Thus, g̃(·) and g∗(x0, ·) must intersect at u = 0 and u = 1,

equal to the lower or the upper bound of ∏d S(Y |d,x0). Hence, the equation ∆(u) ≡
g̃(u) − g∗(x0, u) = 0 has at least one solution. Let ū = supu′{u′ : ∆(u) = 0,∀u ≤ u′}. By
g̃(·) 6= g∗(x0, ·), we have ū < 1. At ū, by the full-rank Jacobian, there exists a neighborhood
around g∗(x0, ū) = g̃(ū) in which Ψ(·) is injective. However, by continuity, g̃(·) must enter
this neighborhood from the right of ū. Once it enters the neighborhood, for any u′′ > ū,
Ψ(·) = u′′ has two different solutions: g̃(u′′) 6= g∗(x0, u

′′), contradicting injectivity.2 See
Figure 2 for illustration. The solid curve is g∗d(x0, ·) and the dashed curve is the hypothetical
g̃d(·). The shaded region is where Ψ is injective. The dashed line must enter the shaded
region by continuity, and thus local uniqueness is violated.

2A similar argument can also be found in Ortega and Rheinboldt (1970), pp. 133-134, Ambrosetti and
Prodi (1995), pp. 48-49, and De Marco, Gorni and Zampieri (2014), as an intermediate step to show variants
of the Hadamard Theorem.
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Figure 2: ∆(u) Continuous at ū

Second, suppose g̃(·) is discontinuous at ū. As g̃(·) is increasing, it has to jump up at
ū. By construction, since the conditional CDFs and the ϕds in Ψ(·) are all continuous and
strictly increasing, Ψ is continuous and strictly increasing in each argument too. Therefore, Ψ
also jumps up at ū. However, the right hand side of the moment conditions, u, is continuous
at ū, so the equation does not hold. Alternatively, to make the equation hold, there must
be a component in g̃ jumping down at ū, but this violates monotonicity. See Figure 3. The
two solid curves are g∗d(x0, ·) and g∗d′(x0, ·) for d′ 6= d. The dashed curves are hypothetical
g̃d and g̃d′ after the jump.

Figure 3: ∆(u) Not Continuous at ū

Before we close this section, let us emphasize that the identification notion in Theorem
ID-NSP is in terms of the uniqueness of monotonic solution path. It does not rule out
the possibility that at certain u, the solution to Ψ(·) = u is not unique. This is expected
because the conditions we require are much weaker than the sufficient conditions for global
invertibility of Ψ(·) on its entire domain Π3

d=1S(Y |d,x0) (see variants of Hadamard’s theorem,
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e.g. Ambrosetti and Prodi (1995)). Under this weaker notion of identification, estimation
cannot be conducted for a fixed u; as will be seen in the next section, we will estimate
g∗(x0, ·) at multiple nodes jointly by imposing monotonicity and assuming the number of
the nodes grows to infinity with the sample size.

4 Estimation

In this section, we propose estimators for the matching points and the outcome functions
given an independently and identically distributed sample (Yi, Di,Xi, Zi)ni=1. We also discuss
some practical issues for implementation.

The estimation strategy follows our constructive identification. From Section 3, the
matching points can be obtained by either matching the propensity scores or matching the
selection functions, depending on the assumptions made on h. Meanwhile, the moment
conditions for m∗(x0) and g∗(x0, u) essentially can be constructed by conditioning on any
three values in Z(x0). For illustrative purpose, we focus on the following benchmark case to
highlight the key features of the estimation procedure.

1. X is one-dimensional, denoted by X.

2. Two matching pairs exist: (x0, 0), (xm1, 1) and (x0, 1), (xm2, 0). PSC holds at each
pair.

The benchmark conditions setup the simplest scenario while both the matching points
(due to Condition 1) and the outcome functions (due to Condition 2) are over-identified,
allowing us to construct over-identification tests. Extending Condition 1 to multivariate X

is straightforward. Condition 2 is testable by the over-identification test.

The Matching Points

Let p̂(·, z), z = 0, 1, be a consistent estimator of p(·, z) uniformly on S0(X), a compact
interior subset of S(X). We assume both matching points are in it. Let ∆p̂(x1, x2) ≡(
p̂1(x1, 1)− p̂1(x0, 0), p̂2(x1, 1)− p̂2(x0, 0), p̂1(x2, 0)− p̂1(x0, 1), p̂2(x2, 0)− p̂2(x0, 1)

)′
. Finally

for some weighting matrix Wxn with positive definite probability limit, let Q̂x(x1, x2) ≡
∆p̂(x1, x2)′Wxn∆p̂(x1, x2). Under PSC, the estimator (x̂m1, x̂m2) we propose are points in
S2

0(X) such that for some an = o(1),

Q̂x(x̂m1, x̂m2) ≤ inf
S2

0(X)
Q̂x(x1, x2) + an (4.1)
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When an = 0, (x̂m1, x̂m2) is the minimizer of Q̂x(x1, x2). In general, the minimizer
of Q̂x(x1, x2) is consistent of (xm1, xm2) only if the latter is the unique minimizer of the
population objective function Qx. When Qx(·, ·) has multiple minima, which is allowed for
the purpose of identification, the set of the minimizers of Q̂x tends to be smaller than the
true set, and its probability limit may not exist. For example, suppose Qx has two global
minima on S2

0(X) but Q̂x may only have one. As n → ∞, the minimum of Q̂x may jump
across the neighborhoods of the two minima of Qx. The probability limit of being in any
one particular neighborhood may thus be strictly smaller than one. To handle the general
multiple minima case, we let an > 0 and converge to 0 at an appropriate rate similar to
Chernozhukov, Hong and Tamer (2007). We discuss the general case in Appendix A.2. For
simplicity, here we focus on the case where (xm1, xm2) is unique and let an = 0.

For concreteness, we consider the following kernel estimator for the propensity scores.
We can use other nonparametric estimators for conditional probability too.

p̂d(x, z) =
∑N
i=1 1(Di = d)K(Xi−x

hx
)1(Zi = z)∑N

i=1K(Xi−x
hx

)1(Zi = z)
(4.2)

where K(·) is a kernel function and hx is the bandwidth converging to 0. Regularity condi-
tions for K and the convergence rate of hx will be given in Section 6.

The SP-Outcome Functions

For the SP-outcome functions, by linearity of the moment conditions (3.2), we obtain the
following closed-form estimator by inverting the estimated ΠSP matrix (weighted by Wmn):

m̂(x0) = (Π̂′SPWmnΠ̂SP )−1 · Π̂′SPWmnΦ̂(x̂m1, x̂m2) (4.3)

where in this case Π̂SP =


p̂1(x0, 0) p̂2(x0, 0) p̂3(x0, 0)
p̂1(x0, 1) p̂2(x0, 1) p̂3(x0, 1)
p̂1(x̂m1, 0) p̂2(x̂m1, 0) p̂3(x̂m1, 0)
p̂1(x̂m2, 1) p̂2(x̂m2, 1) p̂3(x̂m2, 1)

 and

Φ̂(x̂m1, x̂m2) =



∑3
d=1 ÊY |DXZ(d, x0, 0)p̂d(x0, 0)∑3
d=1 ÊY |DXZ(d, x0, 1)p̂d(x0, 1)∑3

d=1

[
ÊY |DXZ(d, x̂m1, 0) + ÊY |DXZ(d, x0, 0)− ÊY |DXZ(d, x̂m1, 1)

]
p̂d(x̂m1, 0)∑3

d=1

[
ÊY |DXZ(d, x̂m2, 1) + ÊY |DXZ(d, x0, 1)− ÊY |DXZ(d, x̂m2, 0)

]
p̂d(x̂m2, 1)

 .
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The estimated propensity scores in Π̂SP and Φ̂ follow equation (4.2). The conditional ex-
pectations are estimated by the standard Nadaraya-Waston estimator:

ÊY |DXZ(d, x, z) =
∑N
i=1 Yi1(Di = d)K(Xi−x

hm
)1(Zi = z)∑N

i=1 1(Di = d)K(Xi−x
hm

)1(Zi = z)
(4.4)

The NSP-Outcome Functions

In the benchmark case, we have the following moment functions:

Ψ(g(u)) =



∑3
d=1 pd(x0, 0) · FY |DXZ(gd(u)|d, x0, 0)∑3
d=1 pd(x0, 1) · FY |DXZ(gd(u)|d, x0, 1)∑3

d=1 pd(xm1, 0) · FY |DXZ(ϕd(gd(u);xm1, 1)|d, xm1, 0)∑3
d=1 pd(xm2, 1) · FY |DXZ(ϕd(g̃d(u);xm2, 0)|d, xm2, 1)

 .

Let u = (u, u, u)′ and QNSP (g, u) ≡
[(

Ψ(g(u))− u
)′

Wg(u)
(
Ψ(g(u))− u

)]
for any positive

definite matrix Wg(u). Our identification result for g∗(x0, ·) implies that it is the unique
minimizer (up to u = 0, 1) to the following minimization problem:

min
g∈G0

∫ 1

0
QNSP (g(u), u)du (4.5)

where G0 ⊆ G contains increasing functions on [0, 1] with ranges contained in ∏3
d=1 S(Y |d).

Construct Q̂NSP (g, u) by plugging in estimators of Ψ and Wg(u). Let uj = j
J
where

1 ≤ j ≤ J and J → ∞. We estimate g∗(x0, ·) by solving the following minimization
problem:

min
y≤g(u1)≤...≤g(uJ )≤ȳ

1
J

J∑
j=1

Q̂NSP (g(uj), uj) + λ
J∑
j=2

(
g(uj)− g(uj−1)

)′(
g(uj)− g(uj−1)

)
(4.6)

Let us begin with the constraint. By connecting g at adjacent nodes with line seg-
ment, the constraint induces a finite dimensional sieve space Ĝ of piecewise affine increasing
functions defined on [0, 1]. By sending J → ∞, elements in the sieve space are able to ap-
proximate any continuous and increasing functions that are bounded by y and ȳ, the lower
and upper bounds of ∏d S(Y |d). As D is discrete, for each d the bounds can be estimated by
y
d

= min(Yi|Di = d) and ȳd = max(Yi|Di = d). We treat the bounds as known parameters
as these estimators converge faster than the nonparametric rate3.

3Alternatively, we could shrink G0 so that only functions bounded within
∏

d S(Y |d, x0) are included and
y and ȳ are boundaries estimators for this smaller support set. In this space g∗(x0, ·) is unqiue including at
the end points. Also, as will be seen in Section 6.3, nicer boundary properties can be obtained. However,
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The second term in equation (4.6) is a penalty making the estimator smoother in finite
samples. We let λ → 0 fast enough so the the penalty does not affect the estimator’s
asymptotic behavior.

As for Ψ̂, the conditional CDFs are estimated by the following smoothed kernel estimator
(e.g. Hansen (2004) and Li and Racine (2008)):

F̂Y |DXZ(y|d, x, z) =
∑N
i=1 L(y−Yi

h0
)1(Di = d)K(Xi−x

hg
)1(Zi = z)∑N

i=1 1(Di = d)K(Xi−x
hg

)1(Zi = z)
(4.7)

where L(·) is a smooth CDF supported on a bounded interval and h0 7→ 0 faster than hg.
Another component in Ψ̂ is the function ϕ̂d:

ϕ̂d(y;xm, z′) = arg min
y′∈[y

d
,ȳd]

(
F̂Y |DXZ(y′|d, x̂m, z′)− F̂Y |DXZ(y|d, x0, z)

)2
(4.8)

Remark 4.1. Under pointwise identification, estimation can be simplified; one can minimize
Q̂NSP (g(u), u) at each u of interest separately (e.g. Lewbel (2007)). The inequality con-
straints can be dropped. The dimension of each individual minimization problem is smaller.
Computation is thus made easier. Under pathwise identification, joint estimation under the
constraint of monotonicity is necessary because it is possible that g∗(x0, u) is not the unique
solution to the moment equations for some u. The minimizers of Q̂NSP (g(u), u) at these u
are then inconsistent.

5 Empirical Applications

Before we move into the asymptotic theory of the estimators, we consider two applications
to illustrate the usefulness and limitation of our approach. The first application is the return
to education example we discussed earlier. The second studies preschool program selection
using the administrated Head Start Impact Study (HSIS) dataset.

5.1 The Return to Schooling: A Binary D

We use the same extract from the 1979 NLS as in Card (1995). The outcome variable
Y is the log wage. We adopt the same IV which indicates whether an individual grew up
near an accredited four-year college. In this subsection, we assume that the latent selection
mechanism yields two outcomes: D = 1 if the years of schooling is greater than 12 and

since X is continuous, boundary estimators of
∏

d S(Y |d, x0) (e.g. Guerre, Perrigne and Vuong (2000))
involve extra tuning parameters. For simplicity, we do not adopt this approach.
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D = 0 otherwise. We will consider a three-valued D in the next subsection. We use the
average across parents’ years of schooling as the matching covariate X. Finally, we drop the
observations who were still enrolled in a school at the time of the survey. The remaining
sample size is 2000.

We assume the log wage is determined by Model-SP. As m∗ is identified by the standard
IV approach with the binary Z, we can compare the results using the standard IV method
and our approach.

No Covariates

Let us first consider the following case assuming no covariates are in the outcome func-
tions:

Y =
1∑
d=0

1(D = d)m∗d + U.

This model sets up a clean benchmark because m∗0 and m∗1 are identified by Z so no extra
steps for propensity score matching are needed. In fact they can be estimated by the simple
Wald estimator. The results provide us with references about the magnitudes of the outcome
function and the effects. As shown in Table 1 (standard errors in parentheses), the return to
education is increasing in D. The wage for individuals receiving post-high school education
is on average 1.35% higher than those with at most high school education.

Table 1: IV Estimates

m̂0 5.58
(0.18)

m̂1 6.93
(0.16)

Covariates and Matching

Let us first illustrate the process of finding a matching point. Figure 4 depicts p̂0(x, 0)
and p̂0(x, 1). The black dashed lines illustrate the how we find x̂m1: For the fixed x0 in the
left panel, we find the value of the propensity score p̂0(x0, 0), and find x̂m1 in the right panel
such that p̂0(x̂m1, 1) = p̂0(x0, 0). Similarly, the blue dash-dot line starts from x0 in the right
panel for Z = 1, and the second matching point x̂m2 is found in the left panel. In Figure 5,
the red solid curves in the left and right panels are p̂0(x, 1)− p̂0(12, 0) and p̂0(x, 0)− p̂0(12, 1)
respectively. These propensity score differences clearly intersect with zero. The intersection
points are the estimated matching points. The patterns for other values of x0 we consider
are similar and are thus omitted.
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Figure 4: Propensity Scores: |S(D)| = 2

Figures 4 and 5 imply that individuals whose parents have more years of schooling are
more likely to attain post-high school education. Also, from the values of the matching
points, living close to a four-year college and parents education are close substitutes. At
X = 12, an increase of about half a year in parents’ education compensates for not living
near a college.

Now let us turn to the outcome function estimates at x0 = 10, 11, 12, shown in Table
2. The second row "Matching" indicates whether the matching points are estimated and
used. When not using the matching points, we estimate (m∗0(x0),m∗0(x1)) by inverting the
following moment conditions:p̂0(x0, 0), p̂1(x0, 0)
p̂0(x0, 1), p̂1(x0, 1)

m̂0(x0)
m̂1(x0)

 =
p̂0(x0, 0)ÊY |DXZ(0, x0, 0) + p̂1(x0, 0)ÊY |DXZ(1, x0, 0)
p̂0(x0, 1)ÊY |DXZ(0, x0, 1) + p̂1(x0, 1)ÊY |DXZ(1, x0, 1)

 .
When we use our approach, we first estimate the matching points by grid search over 500
nodes. The standard errors in parentheses are computed using the asymptotic variance
estimators derived in the next section. Note that with the matching points, the model is
over-identified because we have four moment conditions and two unknowns. Hence, we can
perform the over-identification test with the null hypothesis that all the moment conditions
are valid. The test is as in the standard GMM framework and we will provide details in
Section 6.2. The p-values of the test results are in the last row.
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Figure 5: Propensity Score Differences: x0 = 12, |S(D)| = 2

Table 2: Binary D with X

x0 = 10 x0 = 11 x0 = 12
Matching: 7 3 7 3 7 3

m̂0(x0) 5.63 5.64 5.59 5.56 5.35 5.37
(0.28) (0.17) (0.33) (0.20) (0.60) (0.33)

m̂1(x0) 7.15 7.13 6.90 6.92 6.90 6.89
(0.31) (0.19) (0.25) (0.15) (0.32) (0.18)

Over-Id p value N.A. 0.98 N.A. 0.99 N.A. 0.80

From Table 2, we can make three observations. First, the estimates using the two ap-
proaches are very close, but the variances are lower using our approach. Similar point esti-
mates provide extra evidence in addition to the insignificant over-identification test statistics
that the extra moment conditions brought in by the matching points are valid. Variance
reduction is due to the use of more moment conditions. Consequently, the estimated effects
are more significant. For instance, it can be computed that m̂1(12)− m̂0(12) is significant at
10% level using the IV approach, but is significant at 1% level using our approach. Second,
the outcome function is increasing in the level of education and heterogeneous in parents’
education. Individuals with less educated parents have higher returns of education at both
levels. Finally, for each level of education, the range of the heterogeneous estimates cover
the results in Table 1, indicating the results in Table 2 are in a reasonable range.
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5.2 The Return to Schooling: A Three-Valued D

In this subsection, we assume the underlying selection model yields three outcomes; we
recode high school education byD = 1 and divide post-high school education into two groups:
D = 2 if 12 < years of schooling ≤ 15 (some college), and D = 3 if years of schooling > 15
(college and above). In this case, no existing method can identify and estimate m∗(x0)
without imposing extra structures on it.

Again, let us first illustrate the finding of a matching point. Figure 6 depicts the propen-
sity score functions at Z = 0 and Z = 1. Starting from x0 on the left panel, we need to
match both p̂1(x0, 0) and p̂3(x0, 0) with p̂1(x, 1) and p̂3(x, 1) at the same x. If such x exists, it
is the estimated matching point x̂m1. Evidently, with a scalar X, xm1 is over-identified, so in
the finite sample, it is very likely that we cannot exactly match both propensity scores, but
we need the difference to be small enough. In Section 6.1, we propose an over-identification
test to see whether all the propensity scores can be indeed matched with a single covariate.
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Figure 6: Propensity Scores: |S(D)| = 3

Figure 7 illustrates the matching points for x0 = 12. Again we omit other values of
x0 as the patterns are similar. The solid red curves in the two panels in Figure 7 are
p̂1(x, 1)−p̂1(x0, 0) and p̂1(x, 0)−p̂1(x0, 1), while the dashed blue curves are p̂3(x, 1)−p̂3(x0, 0)
and p̂3(x, 0)−p̂3(x0, 1). Matching is successful if the solid curve and the dashed curve intersect
with the horizontal line of zero at the same point. From the figure, the intersection points
are indeed very close in both panels. This is also supported by the over-identification tests;
Jx1 and Jx2 on top are insignificant in both cases. Finally, since the baseline level here
(years of schooling ≤ 12) is the same as that in the previous case, the propensity scores at
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the baseline level of D are equal. Hence, the estimated matching points in these two cases
should be similar. Here the estimates are 11.54 and 12.34, indeed very close to those when
D is binary (11.47 and 12.37).
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Figure 7: Propensity Score Differences: x0 = 12, |S(D)| = 3

Next, let us turn to the estimates of the outcome function shown in Table 3. Since both
the outcome function and the matching points are over-identified in this case, we present the
p-values for each over-identification test in the bottom panel. First, we can see that none of
the over-identification test statistics m∗(x0) are significant at any reasonable level, similar
to Table 2 in the binary case. Also, the joint over-identification tests for the matching points
are also insignificant, confirming that all the propensity scores are matched. Second, the
return to education is monotonic and the marginal return is slightly decreasing. Third, the
returns are heterogeneous in parents education; similar to the binary case, individuals whose
parents are less educated have slightly higher returns of education at almost all levels.
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Table 3: Three-valued D

x0 = 10 x0 = 11 x0 = 12
m̂1(x0) 5.62 5.56 5.33

(0.23) (0.22) (0.38)
m̂2(x0) 7.03 6.47 6.39

(3.18) (1.39) (1.45)
m̂3(x0) 7.28 7.32 7.31

(2.72) (1.09) (1.00)
Over-Id p-value

m∗(x0) 0.89 0.87 0.58
xm 0.54 0.36 0.41

5.3 Validity of the Exogeneity Assumption

In this subsection, we continue with this empirical example to show that in fact the
covariate we choose may not be exogenous in the sense of EU |XZ(X,Z) 6= 0, so methods such
as 2SLS using for example ZX as an extra instrument may not deliver correct estimates,
even though they do not rely on the selection model. In contrast, our approach only imposes
local exogeneity assumptions with respect to U and V ; though stronger than the standard
nonparametric IV approach, we can still obtain informative results.

The conditional mean independence EU |XZ(X,Z) = 0 requires that EU |XZ(x0, Z) = 0
for almost all x0 ∈ S(X). Since the latter equation is also required by our approach for
fixed x0, we can use our over-identification test to check if there are values of x0 such that
the condition may not hold. Specifically, we re-estimate the outcome function at x0 = 8
and x0 = 14, for both the binary D and the three-valued D. In each case, we conduct the
over-identification test for the outcome function, and for three-valued D, we also conduct
the test for the matching points as they are also over-identified then. The results are in
Table 4.

Table 4: Values of x0 Where Exogeneity May Fail

Over-Id x0 = 8 x0 = 14
p-value |S(D)| = 2 |S(D)| = 3 |S(D)| = 2 |S(D)| = 3
m∗(x0) 0.05 0.01 0.01 0.00

xm N.A. 0.23 N.A. 0.14

The results imply that not all the moment conditions are valid at these two values of X,
although matching is still successful. It suggests that the invalidity of the moment conditions
is more likely to be driven by violations of the exogeneity assumption at these choices of x0.
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For verification, now let us turn to the 2SLS estimates under the conditional mean inde-
pendence assumption. We consider the following two specifications:

Setup 1: Y = β0 + 1(D = 2)β1 + 1(D = 3)β2 +Xβ3 + U

Setup 2: Y = β0 + 1(D = 2)β1 + 1(D = 3)β2 +Xβ3 + 1(D = 2)Xβ4 + 1(D = 3)Xβ5 + U

Under EU |XZ(X,Z) = 0, polynomials of X and their interactions with Z are all valid IVs
by the law of iterated expectation. We present the results for x0 = 12 in Table 5. The
estimates in Column (1) are obtained using our approach. Note that we do not utilize the
parametric form, so they are the same as in Table 5. Columns (2)-(5) contain the fitted
values for x0 = 12 using the 2SLS estimates. Estimates under Setup 1 are in Columns (2)-
(4), using (Z,ZX), (Z,ZX,X2) and (Z,ZX,X2, ZX2) as instruments respectively. Column
(5) contains results under Setup 2, using (Z,ZX,X2, ZX2) as instruments. The last row
reports the p-values of the over-identification tests for our approach and for the standard
2SLS.

Table 5: Comparison with 2SLS

MP 2SLS
(1) (2) (3) (4) (5)

m̂1(12) 5.33 4.87 5.63 5.76 5.35
(0.38) (0.71) (0.37) (0.29) (0.80)

m̂2(12) 6.39 7.24 7.56 7.34 5.20
(1.45) (0.73) (0.54) (0.41) (2.10)

m̂3(12) 7.31 7.08 6.24 6.26 8.24
(1.00) (0.63) (0.17) (0.14) (2.00)

Over-Id p-value 0.58 N.A. 0.07 0.07 N.A.

Table 5 shows that the 2SLS over-identification tests, when available, are indeed signif-
icant at 10% level, rejecting the null hypothesis that all these instruments are valid, which
in turn rejects the conditional mean independence assumption EU |XZ(X,Z) = 0. From the
estimates, the results from the 2SLS are misleading: they suggest that the return to edu-
cation is not monotonic. In Columns (2)-(4), it first increases then decreases in the level
of education. In Column (5), it decreases first and then increases to a level that is outside
the range of Y in the sample (max(Yi) = 7.78). In contrast, the over-identification test is
insignificant in our approach because we only need it to hold locally in x0, and our results
are consistent with the literature of return to education.

This example shows that although our approach relies on stronger assumptions than the
standard IV approach, when the latter is not possible due to the failure of the order condition,
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our approach may still obtain informative results. By contrast, alternative approaches that
make stronger assumptions on exogeneity with respect to the outcome heterogeneity may
not work well in some applications.

5.4 When Does Matching Fail?

In this section we illustrate two possibilities where a matching point does not exist. The
first case is that the covariate only matches one propensity score at a time. We use the IQ
score in place of parents’ education for illustration. The second possibility is that the IV
has dominant effects on the propensity scores such that the covariates cannot compensate
for the shift in the IV. Using the HSIS dataset, we illustrate it by examining the impact of
a randomly assigned lottery granting access to the Head Start preschool program compared
to the impacts of other covariates.

Covariates Too Few

Recall that when D is three-valued, there are two propensity scores to be matched. One
covariate may fail to match both even if it has large effects on each of them.

For illustration, we keep the setup in Section 5.2 but replace parents’ education with
the IQ score; IQ is a reasonable candidate for the matching point because it is likely to
affect both an individual’s educational attainment and her wage. However, as shown in the
following figure, it is unable to generate a matching point that match all the propensity
scores.
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Figure 8: Propensity Score Differences: X = IQ, x0 = med(IQ)

In Figure 8, the solid red curves are p̂1(x, 1)− p̂1(x0, 0) and p̂1(x, 0)− p̂1(x0, 1), and the
dashed blue curves are p̂3(x, 1)− p̂3(x0, 0) and p̂3(x, 0)− p̂3(x0, 1). All the four curves indeed
intersect with 0, so a solution does exist for each propensity score matching equation. The
problem is that the intersection points do not coincide, so the two propensity score differences
cannot be 0 at the same time. Indeed, the individual over-identification test statistics reject
the null that both propensity scores are matched at 1% and 5% level. This type of matching
failure is likely to be resolved by using more covariates that also have large effects on the
propensity scores for matching.

Covariates Too Weak

Another reason for matching failure is that the effects of Z on the propensity scores
dominate those of X, making it difficult for the covariate to compensate the change in Z

within its support. The extreme of this scenario is that no covariates enter the selection
model, and matching points obviously do not exist. For illustration, let us consider an
application on preschool program selection, following Kline and Walters (2016) using the
HSIS dataset. D takes on three values: participating in Head Start (h), participating in
another competing preschool program (c), and not participating in any preschool programs
(n). The binary instrument Z is a lottery granting access to Head Start. Available candidates
for X are family income, baseline test scores and the centers’ quality index.

Figure 9 shows that the propensity scores with X = the baseline test score and x0= the
sample median. Patterns for other values of X and other covariates are similar. We see that
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when an individual won the lottery, the probability attending the Head Start program is
very high, and not much affected by the baseline scores. On the contrary, when not winning
the lottery, she would most likely not participate in any programs, and in particular, the
probability of attending the Head Start is lowest for almost any baseline scores. Apparently a
matching point does not exist in this example because varying X never offsets the dominant
effect of Z on the propensity scores.
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Figure 9: Propensity Scores of Different Preschool Program Choices

6 Asymptotic Properties

In this section we present the asymptotic properties of the estimators. We also discuss
inference procedures and develop some specification tests.

6.1 The Matching Points

We start with consistency and asymptotic normality of (x̂m1, x̂m2). Recall that we focus
on the simple benchmark case where (xm1, xm2) is unique and an = 0 in equation (4.1).
The asymptotic property for the general case is presented in Appendix A.2. We make the
following regularity conditions.

Assumption Reg-MP. For every d ∈ S(D) and z ∈ {0, 1}, pd(·, z) is twice continuously
differentiable on S0(X) with bounded derivatives. The density of X exists and is bounded
away from 0 on S0(X).
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Assumption Reg-K. The kernel K(·) is symmetric at 0 with finite second moment and
twice continuously bounded derivatives on [−1, 1].

Under the regularity conditions, Q̂x is uniformly consistent for Qx. Consistency and
asymptotic normality follow from the standard argument for GMM estimators.

Theorem Cons-MP. Under Assumptions Reg-MP, Reg-K and the benchmark conditions,
|(x̂m1, x̂m2)− (xm1, xm2)| = op(1).

Denote the gradient of ∆p(x1, x2) evaluated at xm1 and xm2 by ∂x′∆p(xm1, xm2). Let
z̃1, ..., z̃4 be (x0, 0), (x0, 1), (xm1, 1) and (xm2, 0) respectively.

Theorem AsymDist-MP. Under the conditions in Theorem Cons-MP, if (xm1, xm2) is
in the interior of S0(X), Πx ≡ ∂x′∆p(xm1, xm2)Wx∂x∆p(xm1, xm2) is nonsingular, and h2

x ·√
nhx = o(1), we have

√
nhx

x̂m1 − xm1

x̂m2 − xm2

 d→ N (0,Π−1
x ∂x′∆p(xm1, xm2)WxΣxWx∂x∆p(xm1, xm2)Π−1

x ) (6.1)

where Σx = κ

Σx1 0
0 Σx2

, κ ≡ ∫ v2K(v)dv, and

Σx1 =


p1(z̃3)(1−p1(z̃3))

fXZ(z̃3) + p1(z̃1)(1−p1(z̃1))
fXZ(z̃1) −p1(z̃3)p2(z̃3)

fXZ(z̃3) −
p1(z̃1)p2(z̃1)
fXZ(z̃1)

−p1(z̃3)p2(z̃3)
fXZ(z̃3) −

p1(z̃1)p2(z̃1)
fXZ(z̃1)

p2(z̃3)(1−p2(z̃3))
fXZ(z̃3) + p2(z̃1)(1−p2(z̃1))

fXZ(z̃1)

 ,

Σx2 =


p1(z̃4)(1−p1(z̃4))

fXZ(z̃4) + p1(z̃2)(1−p1(z̃2))
fXZ(z̃2) −p1(z̃4)p2(z̃4)

fXZ(z̃4) −
p1(z̃2)p2(z̃2)
fXZ(z̃2)

−p1(z̃4)p2(z̃4)
fXZ(z̃4) −

p1(z̃2)p2(z̃2)
fXZ(z̃2)

p2(z̃4)(1−p2(z̃4))
fXZ(z̃4) + p2(z̃2)(1−p2(z̃2))

fXZ(z̃2)

 .
It is easy to verify that the optimal weighting matrix that achieves the smallest asymptotic

variance given (6.1) is W ∗
x = Σ−1

x . It can be estimated by adopting the standard two-step or
multiple-step GMM approach. Denote the estimator using the estimated optimal weighting
matrix by (x̂∗m1, x̂

∗
m2), it is straightforward that

√
nhx

x̂∗m1 − xm1

x̂∗m2 − xm2

 d→ N
(
0, (∂x′∆p(xm1, xm2)Σ−1

x ∂x∆p(xm1, xm2))−1
)

(6.2)

Note that in this benchmark case, only a single covariate is present, so (xm1, xm2) is over-
identified. The null hypothesis H0 : ∆p(xm1, xm2) = 0 can be tested by an over-identification
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test. For example, consider J-test Jx = nhx∆p̂(x̂∗m1, x̂
∗
m2)′Σ̂−1

x ∆p̂(x̂∗m1, x̂
∗
m2). Under the null,

it can be verified that Jx d→ χ2
2.

In addition to jointly testing whether (xm1, xm2) solves the propensity score matching
equations, we can separately test either one of them if needed. By block-diagonality of the
asymptotic variance in equation (6.2), x̂∗m1 and x̂∗m2 are asymptotically independent, and
thus it is equivalent to estimate them separately. In each separate problem the matching
point is still over-identified, so let

Jx1 = nhx∆p̂(x̂∗m1)′Σ̂−1
x1 ∆p̂(x̂∗m1), (6.3)

and
Jx2 = nhx∆p̂(x̂∗m2)′Σ̂−1

x2 ∆p̂(x̂∗m2), (6.4)

Under the null, each of two test statistics converges in distribution to χ2
1.

6.2 The SP-Outcome Functions

From equation (4.3), consistency of m̂(x0) directly follows from consistency of each com-
ponent in its formula, guaranteed by the following regularity conditions.

Assumption Reg-SP. For every d, z, x, Y |d, x, z has finite second moment. EY |DXZ(d, ·, z)
is twice continuously differentiable on S(X) with bounded derivatives.

Theorem Cons-SP. Under the conditions in Theorem ID-SP, Assumptions Reg-MP, Reg-
SP, Reg-K, and the benchmark conditions, m̂(x0)−m∗(x0) = op(1).

For the asymptotic distribution, we let hm/hx → 0 so that the impacts of estimating
(xm1, xm2) and the propensity scores are negligible. Let z̃1, ..., z̃6 be (x0, 0), (xm1, 0), (xm1, 1),
(x0, 1), (xm2, 1) and (xm2, 0). We have

Theorem AsymDist-SP. Under the conditions in Theorem Cons-SP, suppose hm/hx → 0
where hx satisfies the conditions in Theorem AsymDist-MP, then
√
nhm(m̂(x0)−m(x0)) d→ N (0, (Π′SPWmΠSP )−1Π′SPWmΣSPW ′

mΠSP (Π′SPWmΠSP )−1)
(6.5)

where ΣSP = κ(ΣSP,1 + ΣSP,2 + ΣSP,3) and ΣSP,d (d = 1, 2, 3) equals


pd(z̃1)2VY |DXZ(d,z̃1)
fDXZ(d,z̃1) 0 pd(z̃1)pd(z̃2)VY |DXZ(d,z̃1)

fDXZ(d,z̃1) 0
0 pd(z̃4)2VY |DXZ(d,z̃4)

fDXZ(d,z̃4) 0 pd(z̃4)pd(z̃5)VY |DXZ(d,z̃4)
fDXZ(d,z̃4)

pd(z̃1)pd(z̃2)VY |DXZ(d,z̃1)
fDXZ(d,z̃1) 0 ∑3

k=1
pd(z̃2)2VY |DXZ(d,z̃k)

fDXZ(d,z̃k) 0
0 pd(z̃4)pd(z̃5)VY |DXZ(d,z̃4)

fDXZ(d,z̃4) 0 ∑6
k=4

pd(z̃5)2VY |DXZ(d,z̃k)
fDXZ(d,z̃k)


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Again, the optimal weighting matrix is W ∗
m = Σ−1

SP . Note that ΣSP does not depend
on m∗(x0), so it can be directly estimated by plugging in the estimated matching points
and consistent estimators for the conditional variances and densities. Denote the estimator
under the estimated optimal weighting matrix by m̂∗(x0), then

√
nhm(m̂∗(x0)−m∗(x0)) d→ N

(
0, (Π′SPΣ−1

SPΠSP )−1
)

(6.6)

A consistent estimator of the asymptotic variance in equation (6.6) is straightforward to
compute. Alternatively, bootstrap inference can be implemented by fixing x̂m1, x̂m2 and p̂

and only re-estimate the conditional expectations in each bootstrap sample.
As with the matching points, the over-identifying restrictions can be tested; construct

the test statistic:

JSP = nhm
(
Π̂SP (x̂m1, x̂m2)m̂∗(x0)−Φ̂SP (x̂m1, x̂m2)

)′
Σ̂−1
m

(
Π̂SP (x̂m1, x̂m2)m̂∗(x0)−Φ̂SP (x̂m1, x̂m2)

)
Under the null that all the moment conditions hold, JSP d→ χ2

1.
It is worth noting that the test in our approach not only examines exogeneity of Z, but

also jointly tests whether PSC holds at the selected conditioning points and whether all the
conditions in Definition MP are satisfied.

6.3 The NSP-Outcome Functions

In this subsection, we provide sufficient conditions that deliver uniform consistency and
asymptotic normality of ĝ(x0, u). It turns out that monotonicity of g∗(x0, ·) and the struc-
ture of our estimator simplify the general theory of sieve estimators (e.g. Chen and Pouzo
(2012, 2015)); simple low level conditions suffice.

Let us begin by establishing the following key condition for consistency: For any closed
interval U0 in the interior of [0, 1],

inf
g∈G0:

supu∈U0 |g(u)−g∗(x0,u)|≥δ

∣∣∣ ∫ 1

0
QNSP (g(u), u)du−

∫ 1

0
QNSP (g∗(x0, u), u)du

∣∣∣ > 0 (6.7)

When g∗ is the unique solution to QNSP (·) = 0, inequality (6.7) holds if G is compact in
sup-norm (see for instance Newey and McFadden (1994)). It is common that function spaces
are not compact. Thus for sieve estimators, zero on the right hand side of equation (6.7) is
usually replaced by a positive sequence that converges to zero. We show that for the space
G0 of uniformly bounded monotonic functions on a compact domain, inequality (6.7) does
hold under Theorem ID-NSP.
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Theorem ID-Sup. Under the conditions in Theorem ID-NSP, inequality (6.7) is true.

Proof. Denote G−0 = G0\{g : supu∈U0 |g(u) − g∗(x0, u)| ≥ δ}. Suppose inequality (6.7) does
not hold. Then there exists a sequence gk ∈ G−0 such that

lim
k→∞

( ∫ 1

0
QNSP (gk(u), u)du−

∫ 1

0
QNSP (g∗(x0, u), u)du

)
= 0

As the sequence {gk} are uniformly bounded monotonic functions on a compact interval,
by Helly’s Selection Theorem there exists a pointwise convergent subsequence g̃kl . Denote its
limit by g̃. Note the equation above also holds for this subsequence. Then by the Dominated
Convergence Theorem, we can change the order of the limit and the integral operators:

∫ 1

0
lim
kl→∞

QNSP (gkl(u), u)du =
∫ 1

0
QNSP (g∗(x0, u), u)du = 0

=⇒
∫ 1

0
QNSP (g̃(u), u)du =

∫ 1

0
QNSP (g∗(x0, u), u)du = 0

where the last equation follows from continuity of QNSP .
As G0 is closed, g̃ ∈ G0. By Theorem ID-NSP, g̃(·) = g∗(x0, ·) on U0. Since pointwise

convergence of a sequence of monotonic functions on a compact domain implies uniform
convergence if the limiting function is continuous, by continuity of g∗(x0, u),

lim
kl→∞

sup
u∈U0

|g∗(x0, u)− gkl(u)| → 0,

contradicting gkl ∈ G−0 .

From the last step in the proof, U0 in the theorem can be replaced by [0, 1] if uniqueness
of g∗(x0, ·) holds on the entire interval [0, 1]. As discussed in Section 3.3, this would be the
case when the codomain in G0 was set to be ∏d S(Y |d, x0) instead of ∏d S(Y |d).

Consistency of ĝ in sup-norm then follows from the uniform convergence of Q̂NSP and
the existence of an element in the sieve space Ĝ that converges to g∗(x0, ·) in sup-norm (see
Chen (2007), Chen and Pouzo (2012, 2015), etc). The latter is straightforward because any
continuous increasing functions can be approximated by piecewise affine increasing functions
arbitrarily well provided that the number of the nodes are sufficiently large. The former
holds if the proposed CDF estimators are uniformly consistent, guaranteed by the following
regularity assumptions.

Assumption Reg-NSP. For every d ∈ S(D) and z ∈ {0, 1}, FY |DXZ(·|d, ·, z) is twice
continuously differentiable on the support with bounded derivatives. The conditional density
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fY |DXZ(·|d, ·, z) is continuous and uniformly bounded away from 0 over the support for all d
and z.

Assumption Reg-L. L(·) is a continuously differentiable CDF supported on [−1, 1] with
bounded derivatives.

Theorem Cons-NSP. Under the conditions in Theorem ID-NSP, Assumptions Reg-L, Reg-
K, Reg-MP, Reg-NSP and the benchmark conditions, if J →∞ and λ · J → 0,

sup
u∈U0

∣∣∣ĝ(x0, u)− g∗(x0, u)
∣∣∣ = op(1). (6.8)

In particular, if S(Y |d, x) = S(Y |d) for x = x0, xm1, xm2, equation (6.8) holds for U0 = [0, 1].

Now let us derive the asymptotic distribution of ĝ(x0, u0) − g∗(x0, u0) for a fixed u0.
Recall that by construction, y ≤ ĝ(x0, u1) ≤ ĝ(x0, u2) ≤ ... ≤ ĝ(x0, uJ) ≤ ȳ. If all these
inequalities are strict, the estimator at each node satisfies the first order condition due to
the smoothness of the CDF estimators and the penalty function.

Theorem Cons-NSP implies that for large enough n, ĝ(x0, uj) for all uj ∈ U0 are uniformly
close to the true function values at the corresponding nodes. Meanwhile, the differences
between g∗(x0, ·) at adjacent nodes converge to 0 because |g∗(x0, u) − g∗(x0, u ± 1/J)| =
O(1/J) if g∗(x0, ·) is differentiable and its derivative is bounded away from 0. Therefore, for
any node u ∈ U0, by the triangle inequality, if ĝ(x0, u) converges to g(x0, u) faster than 1/J ,
for large enough n, ĝ(x0, u) is strictly greater than ĝ(x0, u− 1/J) and strictly smaller than
ĝ(x0, u + 1/J). The following theorem provides the uniform rate of convergence of ĝ(x0, ·)
at each node in U0.

Theorem RoC-NSP (Rate of Convergence). Let rn =
√

log(n)/nhg+hg. Suppose hg/hx →
0, h0/hg → 0, and λ = o(r2

n). Under all the conditions in Theorem Cons-NSP,

max
uj∈U0

|ĝ(x0, uj)− g∗(x0, uj)| = Op(
√
Jrn) (6.9)

Corollary RoC-NSP. Under the conditions in Theorem RoC-NSP, suppose J ·
√
Jrn → 0.

If the derivative of g∗d(x0, ·) is bounded away from 0 on U0 for all d, then ĝ(x0, ·) on the nodes
in U0 are strictly increasing with probability approaching one.

Remark 5.1. The order in equation (6.9) the square root of the uniform convergence rate of
JQ̂NSP . Note that the bias is of the order of hg, instead of h2

g in the standard case. This is
because of the nonsmoothness of FY |DXZ(·|d, x, z) at the boundaries; symmetry of the kernel
function cannot be utilized because of such nonsmoothness, slowing down the uniform rate.
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Note that under Corollary RoC-NSP, none of the inequality constraints are binding.
ĝ(x0, ·) at the nodes are thus asymptotically equivalent as the unconstrained pointwise esti-
mator described in Section 4 under global identification pointwise at each node.

Let z̃1, ..., z̃6 be (x0, 0), (xm1, 0), (xm1, 1), (x0, 1), (xm2, 1) and (xm2, 0). Let δ = 1(Y ≤
g∗D(X, u0)), φd1 = fY |DXZ(g∗d(xm1,u0)|d,xm1,0)

fY |DXZ(g∗
d
(xm1,u0)|d,xm1,1) , and φd2 = fY |DXZ(g∗d(xm2,u0)|d,xm2,1)

fY |DXZ(g∗
d
(xm2,u0)|d,xm2,0) .

Theorem AsymDist-NSP. Under all the conditions in Corollary RoC-NSP, if J3/2rn → 0,
h2
g = o(1/nhg) and h0 = o(1/nhg), then for any node u0 ∈ U0,

√
nhg(ĝ(u0)− g∗(u0)) d→

N
(
0, (Π′NSPWg(u0)ΠNSP )−1Π′NSPWg(u0)ΣNSPWg(u0)′ΠNSP (Π′NSPWg(u0)ΠNSP )−1

)
(6.10)

where ΣNSP = κ(ΣNSP,1 + ΣNSP,2 + ΣNSP,3) and ΣNSP,d (d = 1, 2, 3) equals


pd(z̃1)2Vδ|DXZ(d,z̃1)
fDXZ(d,z̃1) 0 pd(z̃1)pd(z̃2)Vδ|DXZ(d,z̃1)

fDXZ(d,z̃1) 0
0 pd(z̃4)2Vδ|DXZ(d,z̃4)

fDXZ(d,z̃4) 0 pd(z̃4)pd(z̃5)Vδ|DXZ(d,z̃4)
fDXZ(d,z̃4)

pd(z̃1)pd(z̃2)Vδ|DXZ(d,z̃1)
fDXZ(d,z̃1) 0 ∑3

k=1
φ2
d1pd(z̃2)2Vδ|DXZ(d,z̃k)

fDXZ(d,z̃k) 0
0 pd(z̃4)pd(z̃5)Vδ|DXZ(d,z̃4)

fDXZ(d,z̃4) 0 ∑6
k=4

φ2
d2pd(z̃5)2Vδ|DXZ(d,z̃k)

fDXZ(d,z̃k)


The asymptotic variance has similar form as in Theorem AsymDist-SP for m̂(x0). In

particular, entries in ΣNSP,d are similar to those in ΣSP,d with only two distinctions: In
ΣNSP,d, the conditional variances are with respect to the indicator function δ instead of Y ,
and there are additional factors φd1 and φd2 in the last two diagonal elements. The first
distinction is analogous to the comparison of the variance formulas for mean regression and
quantile regression. The second one is also expected due to nonlinearity in ϕd.

Similar to previous sections, the optimal weighting matrix that achieves the smallest
asymptotic variance under equation (6.10) is Wg(u0) = Σ−1

NSP , and a consistent estimator
can be obtained by plugging in ĝ(x0, ·) into the CDF and density estimators.

Now let us discuss how to obtain the second-step estimator using the feasible optimal
weighting matrix. Although we can plug the optimal weighting matrix at each node into
Q̂NSP and solve the joint minimization problem again, in terms of computation, joint min-
imization is less favorable than individual minimization due to its high dimensionality. We
adopt it because only local identification holds pointwise at each u. However, this is no longer
a problem once we obtain a uniformly consistent first-step estimator ĝ using any weighting
matrix. Uniform consistency guarantees that at any interior u0, ĝ(x0, u0) is arbitrarily close
to g∗(x0, u0). Therefore, if we focus on a new parameter space that is shrinking towards
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ĝ(u0), identification at u0 holds in that space for large enough n:

ĝ∗(x0, u0) = arg min
[ĝ(x0,u0)− 1

J
,ĝ(x0,u0)+ 1

J
]
Q̂∗NSP (g(x0, u0), u0) (6.11)

where Q̂∗NSP (g(u0), u0) =
(
Ψ̂(g(u0))− u0

)′
Σ̂−1
NSP

(
Ψ̂(g(u0))− u0

)
.

Theorem AsymDist-Op-NSP. Under all the conditions in Theorem AsymDist-NSP,

√
nhg(ĝ∗(x0, u0)− g∗(x0, u0)) d→ N (0, (Π′NSPΣ−1

NSPΠNSP )−1) (6.12)

Like m̂∗(x0), the asymptotic variance of ĝ∗(x0, u0) is straightforward to estimate. Boot-
strap inference would also work. It would be computationally intensive if we computed ĝ∗

in every bootstrap sample. Instead, we only solve the minimization problem once, then es-
timate the linear expansion of Q̂∗NSP (ĝ∗(x0, u0), u0) in each bootstrap sample. The resulting
distribution approximates that of ĝ∗(x0, u0)− g∗(x0, u0).

Finally, over-identification test can be constructed by JNSP = nhgQ̂
∗
NSP (ĝ∗(u0), u0).

Under the null that all the moment conditions hold jointly, JNSP d→ χ2
1.

7 Monte Carlo Simulations

This section illustrates the finite sample performance of the estimator for two separable
models similar to the return to education example. The first model we consider has a three-
valued D and a binary Z. In the second model, D is binary too. It enables us to compare
our approach and the standard IV approach. We find that the extra moment conditions do
not increase finite sample bias by much but largely reduce variances.

7.1 A Three-Valued D

Let D follow the ordered choice model in Example OC. Let the outcome variable Y be
determined by the following model:

Y = [γ11(D = 1)+γ21(D = 2) + γ31(D = 3)] · (X + 1) + U

where X ∼ Unif[−3, 3], Z ∼ Ber(0.5), [U, V ] ∼ N
(

0,
1 ρ

ρ 1

) and X ⊥⊥ Z ⊥⊥ (U, V ).

For the parameters, we fix (γ1, γ2, γ3, κ1, κ2) = (1.5, 3, 3.5,−0.7, 0.1). The parameters
(α, β) govern the strength of the instrument and the covariate. In this section we present
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Table 6: x0 = 0. m∗(0) = (1.5, 3, 3.5).

N Average Bias2 Variance MSE 90% 95% 99%

m̂1(0)

1000 1.49 2e-4 0.12 0.12 90.2%
(86.8%)

95.4%
(92.6%)

99%
(97.6%)

2000 1.51 3e-5 0.06 0.06 91.6%
(88.4%)

96%
(94%)

99%
(99%)

3000 1.49 4e-5 0.04 0.04 88.4%
(88%)

94.4%
(93.8%)

99%
(97.6%)

m̂2(0)

1000 2.89 0.01 0.78 0.79 93.2%
(88.8%)

96.2%
(92.6%)

99%
(96.6%)

2000 2.88 0.01 0.37 0.39 89.6%
(88.2%)

95%
(93.6%)

99%
(98.4%)

3000 2.92 0.01 0.25 0.26 89.2%
(88.6%)

95.6%
(93.2%)

99.8%
(98.4%)

m̂3(0)

1000 3.47 0.001 0.22 0.22 92.8%
(88.2%)

97%
(93.4%)

98.6%
(96.8%)

2000 3.49 2e-4 0.12 0.12 92.2%
(90.4%)

97.2%
(95.8%)

98.8%
(98.8%)

3000 3.49 1e-4 0.07 0.07 92.6%
(89.6%)

97.2%
(95%)

99.4%
(98.6%)

Jx
1000 90% 95% 99.2%
2000 91.6% 95.8% 99.6%
3000 92.6% 96.8% 99.2%

JSP
1000 91.6% 94.8% 98.2%
2000 93.6% 96.4% 98.4%
3000 91.6% 96.2% 98.8%

the results for the cases (α, β) = (0.8, 0.4). The value is selected for two reasons: (a) all the
propensity scores are far away from 0 so that in the simulated sample, there are sufficient
observations to estimate each conditional expectation and propensity score; (b) X and Z

have large effects on the propensity scores. Finally, we set ρ = 0.5 and x0 = 0. Additional
simulation results for small (α, β), different ρ and different x0 are provided in Appendix D.

Table 6 contains the results for samples of size 1000, 2000 and 3000. The number of
simulation replications is set at 500. In each replication, we estimate xm1 and xm2 using
grid search with 500 grid nodes. The propensity scores are estimated using the biweight
kernel. The bandwidth is equal to 1.6 times the Silverman’s rule of thumb. The conditional
expectations are estimated using the same kernel with a smaller bandwidth. Finally, we
compute the actual coverage probabilities of the confidence intervals for m∗(x0) based on
both the asymptotic variance estimator (the top value in each cell in the last three columns)
and 500 bootstrap samples (the bottom value in parentheses). The coverage probabilities of
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Table 7: Binary D

x0 Matching Bias2 Variance MSE 90% 95% 99%

0
m̂0(x0) No 8e-4 0.07 0.07 91% 96% 99.2%

Yes 6e-4 0.03 0.03 88% 94.4% 99.2%

m̂1(x0) No 0.001 0.03 0.04 90.8% 95.6% 99.8%
Yes 0.002 0.02 0.02 90.4% 94.8% 99.4%

−0.3
m̂0(x0) No 0.001 0.09 0.09 92.6% 95.8% 99.6%

Yes 7e-4 0.04 0.04 89.6% 95.2% 99%

m̂1(x0) No 8e-4 0.03 0.03 90% 95.6% 99.6%
Yes 0.001 0.02 0.02 90% 94.6% 99.2%

0.3
m̂0(x0) No 5e-4 0.05 0.05 91.4% 96% 99.4%

Yes 2e-4 0.03 0.03 90.4% 94.6% 99.4%

m̂1(x0) No 0.002 0.03 0.04 92% 97% 99.6%
Yes 0.002 0.02 0.02 90.4% 94.8% 99.2%

over-identification tests for (xm1, xm2) and for m∗(x0) are also reported.
As is shown in Table 6, the variance of the estimator dominates in mean squared error

(MSE) due to undersmoothing. The actual coverage probabilities are overall close to the
nominal values. Bootstrap confidence intervals tend to undercover the true parameters while
the asymptotic confidence intervals tend to be conservative.

7.2 A Binary D

We modify the data generating process in Section 7.1 to make D binary:

Y = [γ11(D = 0) + γ21(D = 1)] · (X + 1) + U

D =1(V ≥ κ+ αZ + βX)

The distribution of (X,Z, U, V ) is the same as in Section 7.1. Similarly, we set (γ1, γ2, κ, α, β) =
(1.5, 3,−0.7, 0.8, 0.4). The correlation coefficient of U and V is 0.5.

The results are presented in Table 7. The third column indicates whether the matching
points are estimated and used. We can see that adding more moment conditions from the
matching points does not have much impact on the bias, but reduces the variance of the
estimator. Meanwhile, the coverage probabilities are close to the nominal ones in all cases.

40



8 Relation to the Existing Literature

We discuss the most relevant approaches to identify nonparametric models with endo-
geneity in this section. The discussion is based on whether a selection model is explicitly
exploited for identification of the outcome function.

8.1 Triangular Models

Triangular models are widely employed in the control function approach (e.g. Newey,
Powell and Vella (1999), Chesher (2003) and Imbens and Newey (2009), etc.). This approach
allows the outcome heterogeneity U to be multidimensional. On the other hand, D has to be
continuous; these papers assume that V in the selection function is a scalar and h(X, Z, ·) is
strictly increasing. Inverting h(X, Z, ·), the distribution of V can be traced out by FD|XZ .
A "control variable" can be constructed, conditional on which endogeneity is eliminated.

Like this paper, D’Haultfœuille and Février (2015) and Torgovitsky (2015) study non-
parametric identification in triangular models with a binary Z. As with the control function
approach, they require D to be continuous and h(X, Z, ·) are strictly increasing. On the
other hand, due to the small variation of the IV, they do not allow the unobservable in the
outcome function to be multidimensional. This is more restrictive than the typical control
function approach and the same as our paper. Gunsilius (2018) extends the model to allow
for multidimensional heterogeneity, but the endogenous variable still has to be continuous.

Huang, Khalil and Yıldız (2019) consider a special additively separable triangular model
where there are endogenous variables, denoted by D1 and D2, and a single IV Z. The
triangular structure is with respect to one of the endogenous variables, for example D1, in
the sense thatD1 has a first stage as a function of Z and a scalar unobservable V . Specifically,
the outcome variable Y is determined by Y = m∗(D1, D2) +U , and D1 follows the equation
D1 = h(Z, V ). The benchmark case they focus on is that m∗(D1, D2) = m∗0(D1) + γD2.
They follow the control function approach to construct a control variable for V , so h(Z, ·) is
assumed to be strictly increasing and D1 needs to be continuously distributed (at least on a
subset of its support).

One of the main contributions in this paper is that we allow for discrete D and dispense
with monotonicity in the selection model. Although we are unable to trace out the entire
distribution of V to construct a "control variable", the propensity scores provide useful
information on the partitions of S(V ). Based on this, we find the matching points xm

that have the same level of endogeneity as x0. Endogeneity is eliminated by comparing the
distribution or the mean of their outcomes.
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8.2 Single Equation Approaches

Single equation approaches refer to methods that achieve identification without relying
on the structures of the first stage. Perhaps the most important example is the standard IV
approach for nonparametric identification (e.g. Newey and Powell (2003), Chesher (2004),
Das (2005), Matzkin (2003), Chernozhukov and Hansen (2005), Chernozhukov, Imbens and
Newey (2007), Chen et al. (2014), etc.). As in this paper, the outcome function is usually
assumed to be strictly increasing in the scalar unobservable. Typically, this approach requires
Z to have large support.

Caetano and Escanciano (2018) develops a new identification strategy that achieves iden-
tification using small-support Z when D is multivalued. Their method does not rely on
selection models. Similar to this paper, they utilize the variation in X for identification.
But the strategy is different from this paper. Taking the nonseparable model as an example,
their model essentially has a single index structure: Y = g∗D(U) and U = φ(X, U0). φ is
a real-valued function and g∗D(·) is strictly increasing a.s. Note that differently from our
approach, they restrict the way in which the covariates enter the model. By contrast, we
allow all the covariates to enter the model in arbitrary ways, but we need a selection model.
Hence, their approach and ours are complementary.

9 Concluding Remarks

In this paper, we develop a novel approach to use covariates to identify separable and
nonseparable models in a triangular system when the discrete endogenous variable takes on
more values than the IV. This paper illustrates that information on endogenous selection
has large identifying power. By tracing out the selection patterns across different values of
the covariates and the IV, individuals that differ in observables but have the same selection
patters may then be identified. Extrapolations can thus be made across them as they have
the same degree of endogeneity, supplementing the insufficient information from the IV.

Moving forward, it would be of interest to extend the approach in this paper to other
topics. In practice, the outcome variable is often limited, for example censored or truncated.
Generalizing the approach to allow for such outcome variables would have a wide applica-
tion. Another direction is to generalize the outcome function by allowing multidimensional
heterogeneity, especially for the nonseparable model. For estimation, it would be interesting
to investigate the optimal selection of matching points when they are uncountably infinite.
It would also be useful to derive the optimal bandwidth choice for the multi-step local GMM
or sieve estimation procedures proposed in this paper.
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Appendix A General Cases

A.1 |S(D)| > |S(Z)| and Multiple Endogenous Variables

Let us first discuss the general case of |S(D)| > |S(Z)|. For a given x0, at least
|S(D)| − |S(Z)| m-connected points are needed for identification. The size difference is
not as formidable as it appears: When |S(Z)| increases, the size of the m-connected points
may increase at a faster rate. Recall Figure 1, each value of z ∈ S(Z) induces an arm to
grow m-connected points. Then, for instance, if |S(Z)| = 3, two matching points may be
obtained by solving the following two equations:

p(x, z′) = p(x0, z) and p(x, z′′) = p(x0, z)

Since z takes on 3 values, up to 6 matching points may be obtained even if each propensity
score matching equation has only one solution. By induction, the number of matching points
can be as many as |S(Z)| · (|S(Z)| − 1). With the variation in Z itself, a discrete IV taking
on |S(Z)| values may be able to identify a nonparametric model with an endogenous D with
|S(D)| = |S(Z)|2, instead of |S(Z)| using the standard IV approach. For the m-connected
points, the number can be even larger.

Example A1. Consider an ordered choice model where Z ∈ {0, 1, 2}. Equivalently, define
Z1 ≥ Z2 ∈ {0, 1} such that Z = 0 if and only if Z1 = Z2 = 0, Z = 1 if and only if
Z1 = 1 and Z2 = 0, and Z = 2 if and only if Z1 = Z2 = 1. Let the linear single index be
Xβ + Z1α1 + Z2α2, then we have the following six matching points:

(z = 0) :βxm1 + α1 · 1 + α2 · 0 = x0β + α1 · 0 + α2 · 0 =⇒ xm1 = x0 −
α1

β

βxm2 + α1 · 1 + α2 · 1 = x0β + α1 · 0 + α2 · 0 =⇒ xm2 = x0 −
α1 + α2

β

(z = 1) :βxm3 + α1 · 0 + α2 · 0 = x0β + α1 · 1 + α2 · 0 =⇒ xm3 = x0 + α1

β

βxm4 + α1 · 1 + α2 · 1 = x0β + α1 · 1 + α2 · 0 =⇒ xm4 = x0 −
α2

β

(z = 2) :βxm5 + α1 · 0 + α2 · 0 = x0β + α1 · 1 + α2 · 1 =⇒ xm5 = x0 + α1 + α2

β

βxm6 + α1 · 1 + α2 · 0 = x0β + α1 · 1 + α2 · 1 =⇒ xm6 = x0 + α2

β

Remark A1. Note that the nonlinearity of Z’s effect is needed to generate six matching
points. If α1 = α2, then xm1 = xm4 and xm3 = xm6; only four matching points are generated.

We can further generalize our approach to the case of multiple discrete endogenous vari-
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ables. Suppose there areM discrete endogenous variables D1, ..., DM in a model. It is equiv-
alent to recode them as one single endogenous variable D0. For instance, if S(D1, ..., DM) =
S(D1) × · · · × S(DM), then let S(D0) = {1, 2, ...,ΠM

m=1|S(D)m|}. By construction, there
exists a one-to-one mapping from (D1, ..., DM) to D0, so the two models are equivalent.

The matching points can still be found by propensity score matching. Yet it is worth
noting that since each Dm may be determined by different mechanisms, they may be affected
by different components in X. Therefore, the dimension of X needed tends to be larger
than the case of a single endogenous variable. An example illustrating PSC for multiple Ds
can be found in Appendix C in the supplement.

A.2 Multiple Solutions to p(x, z′) = p(x0, z)

In this section we adapt the estimator (x̂m1, x̂m2) to the general case where the solution
to p(x, z′) = p(x0, z) is not unique.

Recall equation (4.1) in Section 4, we define the estimator to be any x̂m ≡ (x̂m1, x̂m2)
that satisfies the following inequality:

Q̂x(x̂m) ≤ inf
S2

0(X)
Q̂x(x) + an

Let Xm be the set of all solutions to Q(x) = 0. The estimator is consistent when an = 0
if Xm is a singleton. In general, we need an > 0 to consistently estimate Xm in Hausdorff
distance4.

Theorem Cons-MP-Set. Let an = C (log(n))2

nhx
for C > 0. Under Assumptions Reg-K and

Reg-MP, ρH(X̂m,Xm) = Op( log(n)√
nhx

).

Remark A2. The rate of convergence is slower than that in the case of unique solution
( 1√

nhx
). This is because of the bias introduced by an; the convergence of the boundaries of X̂m

is determined by the rate of an, and as an converges to 0 slower than Q̂x, the overall rate is
slowed down.

Once X̂m is obtained, one can select an element in it as the estimator of a matching point
and use it to estimate m∗(x0) and g∗(x0, ·). However, in order to conduct the overiden-
tification test, xm has to be locally unique, i.e., an isolated solution, so that the Jacobian
of Qx(xm) is full rank and the asymptotic distribution in Theorem AsymDist-MP holds.

4The Hausdorff distance ρH between two generic subsets A and B of a metric space endowed with metric
ρ is defined as ρH(A,B) = max{supa∈A infb∈B ρ(a, b), supb∈B infa∈A ρ(a, b)}. Intuitively, if the Hausdorff
distance between two sets are small, for any point in either of the set, there exists a point close to it from
the closure of the other set.
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Therefore, we need to (a) find the isolated xm and (b) reestimate the isolated matching
point to obtain the optimal rate and the asymptotic distribution. We impose the following
assumption.

Assumption ISO. Let XISO ⊆ Xm be the set of all isolated solutions. Suppose the following
hold:

(a) All the isolated solutions are in the interior of S2
0(X).

(b) There exists ν > 0 such that:

inf
x′∈Xm\XISO,,x∈Xm

|x− x′| > ν > 0.

(c) The Jacobian Πx defined in Theorem AsymDist-MP is full rank at every isolated
matching point.

Assumption ISO guarantees that each isolated solution is well separated from any other
solutions. Under it, we now propose the following post-estimation procedure to estimate the
isolated matching points:

• Step 0. Obtain X̂m by equation (4.1) with an = C (log(n))2

nhx
.

• Step 1 (Isolated solution selection). Cover X̂m with squares {Ik} of side bn = log(n)
√
an.

Select Ik if it fully covers a cluster of solutions.

• Step 2 (Reestimation). Minimize Q̂x(x) on each selected Ik.

The rationale behind the procedure is as follows. From Theorem Cons-MP-Set and
Assumption ISO, X̂m consists of isolated clusters of solutions with probability approaching
one, and the diameter of a cluster converging in probability to an isolated solutions shrinks
to zero at the rate of √an. Therefore, each of these cluster can be contained in one square
Ik with probability approaching one since bn >

√
an. For the reestimation step, again

as bn/
√
an → ∞ , by the rate in Theorem Cons-MP-Set, the true matching point is in

the interior of the square with probability approaching 1. Therefore, the minimizer of Q̂x

satisfies the first order condition. By Assumption ISO, Theorem AsymDist-MP thus holds
at this estimated matching point.
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Appendix B Proofs of Results in Sections 2 and 3

Proof of Theorem MEQ. We first show that p(x0, z) = p(xm, z
′). For any d ∈ S(D),

pd(x0, z) =
∫
hd(x0,z,v)=1

dP(V = v|X = x0, Z = z)

=
∫
hd(x0,z,v)=1

dP(V = v|X = x0)

=
∫
hd(xm,z′,v)=1

dP(V = v|X = xm)

=
∫
hd(xm,z′,v)=1

dP(V = v|X = xm, Z = z′)

=pd(xm, z
′)

where the second inequality is from Assumption E-SP or E-NSP and the third inequality is
from Definition MP

Next we prove equation (2.6). For all d ∈ S(D),

EY |DXZ(d,x0, z)−m∗d(x0, z) =EU |DXZ(d,x0, z)

=EU |V XZ(hd(x0, z,V ) = 1,x0, z)

=
∫
hd(x0,z,v)=1 EU |V XZ(v,x0, z)dP(V = v|X = x0, Z = z)

pd(x0, z)

=
∫
hd(xm,z′,v)=1 EU |V X(v,x0)dP(V = v|X = x0)

pd(xm, z′)

=
∫
hd(xm,z′,v)=1 EU |V X(v,xm)dP(V = v|X = xm)

pd(xm, z′)

=
∫
hd(xm,z′,v)=1 EU |V XZ(v,xm, z

′)dP(V = v|X = xm, z
′)

pd(xm, z′)
=EU |V XZ(hd(xm, z

′,V ) = 1,xm, z
′)

=EU |DXZ(d,xm, z
′)

=EY |DXZ(d,xm, z
′)−m∗d(xm, z

′)

where the fourth inequality follows Assumption E-SP. The fifth inequality is from Definition
MP. For the sixth equality, Definition MP implies the exogeneity assumption also holds at
xm.

46



Finally we show equation (2.7). For all d ∈ S(D),

FY |DXZ(g∗d(x0, u)|d,x0, z) =FU |DXZ(u|d,x0, z)

=
∫
hd(x0,z,v)=1 FU |V XZ(u|v,x0, z)dP(V = v|X = x0, Z = z)

pd(x0, z)

=
∫
hd(xm,z′,v)=1 FU |V XZ(u|v,xm, z

′)dP(V = v|X = xm, Z = z′)
pd(xm, z′)

=FU |V XZ(u|hd(xm, z
′,V ) = 1,xm, z

′)

=FU |DXZ(u|d,xm, z
′)

=FY |DXZ(g∗d(xm, u)|d,xm, z
′)

where the first equality follows from Assumptions FS and CM. The third and the fourth
equalities are from Definitions MP and Assumption E-NSP. For the third and the last equal-
ity, by Definition of MP, the exogeneity and the full support assumptions also hold at xm.

Proof of Theorem ID-OC. Under the model setup, inequality (3.3) holds if

(
FV1(x0β)− FV1(x0β − α)

)(
FV2(x0β)− FV2(x0β + α)

)
6=
(
FV1(x0β)− FV1(x0β + α)

)(
FV2(x0β)− FV2(x0β − α)

)
(B.1)

Without loss of generality, assume α > 0. Then there are four cases.

• x0β − α < x0β < x0β + α ≤ c. Then FV2(x0β − α) = FV2(x0β) = FV2(x0β + α) = 0.
Inequality (B.1) does not hold.

• x0β − α < x0β ≤ c < x0β + α. The left hand side is negative but the right hand side
is zero because FV2(x0β − α) = FV2(x0β) = 0. Inequality (B.1) holds.

• x0β − α < c < x0β < x0β + α. The left hand side is still negative but the right hand
side is again zero because FV1(x0β) = FV1(x0β + α) = 1.

• c ≤ x0β−α < x0β < x0β+α. Both sides are zero because FV1(x0β) = FV1(x0β−α) =
FV1(x0β + α) = 1.

Therefore, inequality (B.1) holds if there are two elements from {(x0, 0), (x0, 1), (xm, 0)}
making the single indices located left and right to c respectively.

Proof of Theorem ID-NSP. We prove the theorem in two steps. In the first step, we formalize
the sketch of the proof in Section 3.3, which only considers the uniqueness of g∗(x0, ·) in
G∗ ⊆ G. In the second step, we extend the result to G.
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Step 1. Recall that the ranges of functions in G∗ are contained in ∏3
d=1 S(Y |d,x0). This

set is compact under Assumptions CM and Assumption FS. For each d ∈ S(D), denote the
lower and the upper bounds of S(Y |d,x0) by y

dx0
and ȳdx0 . By Assumption FS,

g∗d(x0, 0) = y
dx0

and g∗d(x0, 1) = ȳdx0 ,∀d ∈ S(D)

Suppose g∗ is not the unique solution path in G0, then any other solution path g̃ ≡
(g̃1, g̃2, g̃3) must also satisfy

g̃d(0) = y
dx0

and g̃d(1) = ȳdx0 ,∀d ∈ S(D)

Therefore, the set {u′ : g̃(u) = g∗(x0, u), 0 ≤ u ≤ u′} is nonempty and its supremum,
denoted by ū, is well-defined. By continuity of g∗(x0, ·), ū is in the set.

If ū = 1, we are done.
If ū < 1, by monotonicity, g̃(u) has at most countable discontinuities. Thus, there

exists an interval (ū, ū′) where ū′ < 1 such that on the interval, g̃(u) is continuous and
g̃(u) 6= g∗(x0, u) for u ∈ (ū, ū′). Then there are the following two cases depending on
whether g̃ is continuous at ū.

Case 1. g̃(·) is continuous at ū. Since the Jacobian of Ψ(·) at g∗(x0, ū) is full rank,
there exists a neighborhood N around g∗(x0, ū) on which Ψ(·) is one-to-one. However, by
continuity, there exists u′′ such that u′′ ∈ (ū, ū′) and g̃(u′′) ∈ N . Then g̃(u′′) 6= g∗(x0, u

′′)
but Ψ(g̃(u′′)) = Ψ(g∗(x0, u

′′)) = u′′, a contradiction. As in footnote 2, a similar argument
can also be found in proofs of the Hadamard Theorem in Ortega and Rheinboldt (1970),
Ambrosetti and Prodi (1995), De Marco, Gorni and Zampieri (2014).

Case 2. g̃(·) is not continuous at ū. By monotonicity, there is at least one d ∈ S(D) such
that limu↘ū g̃d(u) > limu↗ū g̃d(u), i.e., g̃d(·) jumps up at ū. However, as both FY |DXZ and
ϕd are continuous and strictly increasing, to make limu↘ū Ψ(g̃d(u)) = limu↗ū Ψ(g̃d(u)) = u,
there must exist d′ 6= d such that limu↘ū g̃d(u) < limu↗ū g̃d(u). A contradiction with that
g̃d′(·) is increasing.

Therefore, g∗(x0, ·) is the unique solution path in G0 to Ψ(g(u)) = u.
Step 2. Now we consider the general case: G contains functions whose ranges contain

sets that are out of the support set ∏3
d=1 S(Y |d,x0).

Suppose there exists another solution path ğ : [0, 1] ∈ G. Construct g† as follows: For
each d ∈ S(D), let

g†d(u) =


y
dx0
, if ğd(u) < y

dx0

ğd(u), if ğd(u) ∈ S(Y |d,x0)
ȳdx0 , if ğd(u) > ȳdx0
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Clearly, g† ∈ G∗. From Step 1, g† = g∗, so ğ(u) = g(x, u) for all u ∈ (0, 1). For u = 0, 1,
ğd(u) can take any value smaller than y

dx0
or ȳdx0 respectively for all d.

Appendix C Examples for Propensity Score Coherence

Example OC Cont’d 3. In this example we generalize the ordered choice model in Example
OC Cont’d 2.

Let h1(X, Z, V ) = 1(V1 ≤ γ1(X, Z)), h3(X, Z, V ) = 1(V2 > γ2(X, Z)), and h2 =
1 − h1 − h3 where V1 < V2 a.s. are two scalar random variables that are continuously
distributed on R. Also, assume γ1(X, Z) < γ2(X, Z) a.s. This model nests parametric
ordered choice models and also some nonparametric models with more complicated structures,
for instance the general ordered choice model in Cunha, Heckman and Navarro (2007).

The matching points are identified by propensity score matching (3.1): By strict mono-
tonicity of FV1 and FV2, it is straightforward that for any (x, z) and (x′, z′), p1(x, z) =
p1(x′, z′) implies γ1(x, z) = γ1(x′, z′), and p3(x, z) = p3(x′, z′) implies γ2(x, z) = γ2(x′, z′).

Example MC (Multinomial Choice). In this model we consider a nonparametric multino-
mial choice model. Variants of it are considered in Matzkin (1993), Heckman, Urzua and
Vytlacil (2008), and Lee and Salanié (2018). Let Rd(X, Z) + Ṽd be the indirect utility of
choosing treatment d where Ṽd is an unobservable continuous random variable. Alternative d
is selected if Rd(X, Z)+Ṽd > R−d(X, Z)+Ṽ−d where the subscript −d refers to any selection
other than d. Reparameterize the model by letting V1 = Ṽ2− Ṽ1, V2 = Ṽ3− Ṽ1, V3 = Ṽ3− Ṽ2,
γ1(X, Z) = R1(X, Z) − R2(X, Z) and γ2(X, Z) = R1(X, Z) − R3(X, Z). The model can
be rewritten as

D = 1 ⇐⇒ V1 < γ1(X, Z), V2 < γ2(X, Z)

D = 2 ⇐⇒ V1 > γ1(X, Z), V3 < γ2(X, Z)− γ1(X, Z)

D = 3 ⇐⇒ V2 > γ2(X, Z), V3 < γ2(X, Z)− γ1(X, Z)

If 0 < pd(x0, z) < 1 for all d, it can be verified that the solutions to equation (3.1) are
matching points of x0.

Example TWF (Two-Way Flow). This example is adapted from the two-way flow model
in Lee and Salanié (2018).

Let h1(X, Z, V ) = 1

(
V1 ≤ γ1(X, Z), V2 ≤ γ2(X, Z)

)
, h2(X, Z, V ) = 1

(
V1 ≥ γ1(X, Z), V2 ≥

γ2(X, Z)
)
, and h3 = 1 − h1 − h2. V1 and V2 are two scalar random variables that are con-

tinuously distributed.
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The benefit of this double-threshold structure is that it breaks the traditional notion of
monotonicity (in selection), allowing for richer selection patterns. The cost is that stronger
assumptions are needed to identify γ1(X, Z) and γ2(X, Z). The key assumption in Lee
and Salanié (2018) is that there exist covariates that are only in γ1 and covariates only in
γ2. Then they show that γ1 and γ2 are identified up to an additive constant (see Theorem
4.1 in Lee and Salanié (2018), pp. 1551-1552), that is, γ1(X, Z) = γ̃1(X, Z) + c and
γ2(X, Z) = γ̃2(X, Z)−c, where γ̃1 and γ̃2 are known functions but c is an unknown constant.
Therefore, the matching points of x0 can be directly identified by solving γ̃d(x, z′)− γ̃d(x0, z)
for all d.

It is straightforward to see that PSC does not hold for all (x, z). For example, it is
possible that there exists (x′, z′) such that γ1(x′, z′) < γ1(x0, z), γ2(x′, z′) > γ2(x0, z) and
FV1V2(γ1(x′, z′), γ2(x′, z′)) = FV1V2(γ1(x0, z), γ2(x0, z)).

However, under the following conditions there are subsets of S(X, Z) where PSC holds.
For simplicity, let X = (X1, X2). Let γ1 depend on Z and X1 only, and γ2 depend on Z

and X2. Suppose the support of V1 and V2 are bounded, say from above by c. If there exist
x̄1 and x̄2 such that γ1(x̄1) > c and γ2(x̄2) > c, then fixing x̄2 and x̄1, the matching points of
(x1, x̄2) and of (x̄1, x2) for any x1 ∈ S(X1) and x2 ∈ S(X2) can be identified by propensity
score matching; at x̄2 or x̄1, only one threshold is effective and the model becomes equivalent
to the ordered choice model in Example OC Cont’d 3.

Example Two Endogenous Variables. In this example, we have two dummy endogenous
variables. We show that PSC still holds in this model. Let D1, D2 ∈ {0, 1} be two endogenous
variables. Suppose they are determined by the following model:

D1 = 1(γ1(X,Z) ≤ V1)

D2 = 1(γ2(X,Z) ≤ V2)

where V1 and V2 are unobservables continuously distributed on R2. Let D0 = 1, 2, 3, 4, corre-
sponding to (D1, D2) = (0, 0), (0, 1), (1, 0), (1, 1) respectively. Then the model can be rewritten
with our notation:

h1(X,Z, V1, V2) =
(
1− 1(γ1(X,Z) ≤ V1)

)
·
(
1− 1(γ2(X,Z) ≤ V2)

)
h2(X,Z, V1, V2) =

(
1− 1(γ1(X,Z) ≤ V1)

)
· 1(γ2(X,Z) ≤ V2)

h3(X,Z, V1, V2) = 1(γ1(X,Z) ≤ V1) ·
(
1− 1(γ2(X,Z) ≤ V2)

)
h4(X,Z, V1, V2) = 1(γ1(X,Z) ≤ V1) · 1(γ2(X,Z) ≤ V2)

It is clear that ∑d hd(X,Z) = 1. Let us now verify that PSC holds for this model. Suppose
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p(x0, z) = p(xm, z′). Then

P
(
V1 < γ1(x0, z), V2 < γ2(x0, z)

)
= P

(
V1 < γ1(xm, z′), V2 < γ2(xm, z′)

)
Suppose γ1(x0, z) 6= γ1(xm, z′). Without loss of generality, let γ1(x0, z) < γ1(xm, z′). Then
γ2(x0, z) > γ2(xm, z′). Consequently,

P
(
V1 ≥ γ1(x0, z), V2 < γ2(x0, z)

)
> P

(
V1 ≥ γ1(xm, z′), V2 < γ2(xm, z′)

)
But this implies p3(x0, z) > p3(xm, z′), a contradiction.
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Appendix D Additional Simulation Results

In this section, we present the simulation results under different parameters in the model
in Section 7.1. Table D1 and Table D2 present the results for x0 = ±0.3 with parameters
the same as in Table 6. We can see the results are similar to those in Table 6. Table D3
shows the results for weaker IV: (α, β) = (0.16, 0.08). These parameters are one fifth of the
benchmark one, while the smallest eigenvalue of the matrix Π′SPΠSP is 1/200 of the original.
The variances blow up, but the biases are still very small like in the benchmark case. Table
D4 shows the results for different correlation coefficients ρ = 0.3, 0.7. The results are again
very similar to the benchmark case ρ = 0.5.

Table D1: x0 = −0.3,m∗(−0.3) = (1.05, 2.1, 2.45)

N Average Bias2 Variance MSE 90% 95% 99%

m̂1(−0.3)

1000 1.02 0.001 0.14 0.14 93%
(87.2%)

97%
(92%)

99.2%
(98%)

2000 1.04 2e-4 0.07 0.07 91%
(88.6%)

96.4%
(94.8%)

99.2%
(98.6%)

3000 1.04 1e-4 0.05 0.05 89.8%
(88.6%)

94.4%
(93.2%)

99%
(98.8%)

m̂2(−0.3)

1000 2.09 1e-4 0.85 0.85 93.8%
(88%)

96.8%
(94.8%)

99%
(98.2%)

2000 2.04 0.003 0.34 0.35 92.8%
(90.2%)

96.8%
(95.4%)

99.6%
(99.4%)

3000 2.04 0.004 0.25 0.26 90%
(88.2%)

95.8%
(93.2%)

99.4%
(97.8%)

m̂3(−0.3)

1000 2.36 0.01 0.21 0.22 91.4%
(88.6%)

96%
(93.4%)

98.4%
(97.4%)

2000 2.41 0.002 0.10 0.10 93.2%
(90.6%)

96.6%
(95.4%)

98.6%
(99.4%)

3000 2.43 3e-4 0.07 0.07 89.2%
(88.4%)

94.4%
(94.4%)

99.2%
(98.8%)

Jx
1000 88.6% 94.6% 99%
2000 90.4% 95.2% 99.2%
3000 91.2% 97% 99.4%

JSP
1000 93.4% 96.6% 99.2%
2000 92.2% 96.4% 99.2%
3000 91% 94.2% 99.2%
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Table D2: x0 = 0.3,m∗(0.3) = (1.95, 3.9, 4.55)

N Average Bias2 Variance MSE 90% 95% 99%

m̂1(0.3)

1000 1.95 2e-5 0.11 0.11 89.4%
(85%)

93.4%
(90.4%)

97.2%
(96.2%)

2000 1.98 8e-4 0.05 0.05 90.2%
(89.8%)

95%
(94.2%)

98.6%
(98.2%)

3000 1.95 2e-6 0.04 0.04 89%
(88.8%)

94.2%
(92.8%)

99%
(98.6%)

m̂2(0.3)

1000 3.73 0.03 0.87 0.90 90.2%
(85%)

93.8%
(90.2%)

97%
(95.6%)

2000 3.72 0.03 0.38 0.41 92%
(86.8%)

95.2%
(94%)

99%
(98.8%)

3000 3.81 0.01 0.27 0.28 89.6%
(89.4%)

95.6%
(95.6%)

99.6%
(98.4%)

m̂3(0.3)

1000 4.55 1e-5 0.27 0.27 92.4%
(86.2%)

95.4%
(91%)

97.6%
(95.4%)

2000 4.56 2e-4 0.13 0.13 93.8%
(89%)

97.4%
(94.2%)

99.2%
(97.8%)

3000 4.53 3e-4 0.08 0.08 93%
(90.6%)

97.8%
(95.6%)

99.2%
(98.8%)

Jx
1000 88.6% 94.6% 99%
2000 88.8% 95.2% 99.2%
3000 92% 95.6% 99%

JSP
1000 90.2% 94.2% 97.4%
2000 91.4% 96.8% 99%
3000 90.8% 96.2% 99.2%

Table D3: Different Strengths of (Z,X)

(α, β) min.
eig. Average Bias2 Variance MSE 90% 95% 99%

(0.8,0.4) 0.02

m̂1(0) 1.51 3e-5 0.06 0.06 91.6%
(88.4%)

96%
(94%)

99%
(99%)

m̂2(0) 2.88 0.01 0.37 0.39 89.6%
(88.2%)

95%
(93.6%)

99%
(98.4%)

m̂3(0) 3.49 2e-4 0.12 0.12 92.2%
(90.4%)

97.2%
(95.8%)

98.8%
(98.8%)

(0.16,0.08) 1e-4

m̂1(0) 1.48 3e-4 13.10 13.10 93%
(90.6%)

96.4%
(95.6%)

99.2%
(99%)

m̂2(0) 3.11 0.01 50.82 50.83 93.2%
(89.2%)

95.6%
(94.6%)

99.4%
(98%)

m̂3(0) 3.44 0.004 11.04 11.05 91.8%
(90.6%)

95.2%
(96%)

99.2%
(99%)
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Table D4: Different Degree of Endogeneity

ρ Average Bias2 Variance MSE 90% 95% 99%

m̂1(0)

0.3 1.50 2e-5 0.06 0.06 92.4%
(89.8%)

96.8%
(95.4%)

99.6%
(99%)

0.5 1.51 3e-5 0.06 0.06 91.6%
(88.4%)

96%
(94%)

99%
(99%)

0.7 1.51 4e-5 0.05 0.05 91.2%
(89.2%)

95.4%
(93.8%)

99.6%
(97.6%)

m̂2(0)

0.3 2.88 0.01 0.38 0.39 91.8%
(86.4%)

96.4%
(93.4%)

99.4%
(97.4%)

0.5 2.88 0.01 0.37 0.39 89.6%
(88.2%)

95%
(93.6%)

99%
(98.4%)

0.7 2.88 0.01 0.35 0.37 91%
(87.6%)

96.2%
(93.6%)

99%
(98%)

m̂3(0)

0.3 3.49 5e-5 0.12 0.12 93%
(90.8%)

96.8%
(95.2%)

99.2%
(98.6%)

0.5 3.49 2e-4 0.12 0.12 92.2%
(90.4%)

97.2%
(95.8%)

98.8%
(98.8%)

0.7 3.49 2e-4 0.11 0.11 92%
(89.8%)

96.8%
(95.6%)

99.4%
(98.8%)

Appendix E Proofs of Results in Section 6

In Section E.1 we prove some of the asymptotic results in Section 6. As the results of
the matching point (the unique solution case) and of the separable model are standard, we
only include proofs for the multiple matching points case (Theorem Cons-MP-Set) and the
results of the nonseparable model estimator. Section E.2 contains used in Section E.1.

E.1 Asymptotic Properties

Let us first introduce the following lemmas. It will be needed in deriving the asymptotic
properties for all the estimators.

Lemma E1. Suppose h0/hg → 0. Let S0(Y |d, x) be an interior set of S(Y |d, x). Under
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Assumptions Reg-K, Reg-L, Reg-MP, Reg-SP, and Reg-NSP,

sup
x∈S0(X)

∣∣∣p̂d(x, z)− pd(x, z))∣∣∣ = Op

(√ log(n)
nhx

+ h2
x

)
(E.1)

sup
x∈S0(X)

∣∣∣ÊY |DXZ(d, x, z)− EY |XZ(d, x, z)
∣∣∣ = Op

(√ log(n)
nhm

+ h2
m

)
(E.2)

sup
y∈S(Y |d)
x∈S0(X)

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣ = Op

(√√√√ log(n)
nhg

+ hg
)

(E.3)

sup
x∈S0(X)

∣∣∣∂xp̂d(x, z)− ∂xpd(x, z)∣∣∣ = op(1) (E.4)

sup
x∈S0(X)

∣∣∣∂xÊY |DXZ(d, x, z)− ∂xEY |XZ(d, x, z)
∣∣∣ = op(1) (E.5)

sup
y∈S0(Y |d,x)
x∈S0(X)

∣∣∣∂yF̂Y |DXZ(y|d, x, z)− fY |DXZ(y|d, x, z)
∣∣∣ = op(1) (E.6)

sup
y∈S0(Y |d,x)
x∈S0(X)

∣∣∣∂xF̂Y |DXZ(y|d, x, z)− ∂xFY |DXZ(y|d, x, z)
∣∣∣ = op(1) (E.7)

The first three results are needed for consistency and the rate of convergence for each
estimator proposed in the paper. The last four are needed to derive the rate of convergence
as well and the asymptotic distributions. Tthese results are standard except equation (E.3).
The bias term is Op(hg) instead of the standard O(h2

g). This is due to the nonsmoothness of
FY |DXZ(·|d, x, z) at the boundaries. We prove it in Appendix E.2.

The Matching Points

Proof of Theorem Cons-MP-Set. As the estimator is identical to Chernozhukov, Hong and
Tamer (2007), we prove the theorem by verifying the conditions needed for their Theo-
rem 3.1. Specifically, let Q̃x(x) ≡ Q̂x(x) − infx∈S2

0(X) Q̂x(x). We need to verify that (a)
supx∈S2

0(X) |Q̃x(x)−Qx(x)| = Op

(
log(n)
nhx

)
and (b) there exist positive (δ, κ) such that for any

ε ∈ (0, 1) there are (κε, nε) such that for all n > nε, Q̃x(x) ≥ κ[ρ(x,Xm) ∧ δ]2 uniformly on
∆ ≡ {x ∈ S2

0(X) : ρ(x,Xm) ≥
√

κε log(n)
nhx

} with probability at least 1− ε.
We first derive the uniform rate of convergence for Q̃x(x). Let xmn be such that
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Q̂x(xmn) = infS2
0(X) Q̂x(x). Then

sup
x∈S2

0(X)

∣∣∣Q̂x(x)− Q̂x(xmn)−Qx(x)
∣∣∣ ≤ sup

x∈S2
0(X)

∣∣∣Q̂x(x)−Qx(x)
∣∣∣+ ∣∣∣Q̂x(xmn)−Qx(xm)

∣∣∣
≤ sup

x∈S2
0(X)

∣∣∣Q̂x(x)−Qx(x)
∣∣∣+ Q̂x(xm)−Qx(xm)

≤2 sup
x∈S2

0(X)

∣∣∣Q̂x(x)−Qx(x)
∣∣∣

=Op

( log(n)
nhx

)

where we used the definition of xmn, nonnegativity of Q̂x and Qx(xm) = 0. The last
inequality is a consequence of Lemma E1 and the choice of hm.

For (b), note that by Assumption Reg-MP, there exists C > 0 such that Qx(x) ≥
Cκ[ρ(x,Xm) ∧ δ]2 uniformly on ∆ by continuity of Qx and compactness of S2

0(X) ∩∆.

inf
x∈∆

Q̃x(x) = inf
x∈∆
|Q̃x(x)−Qx(x) +Qx(x)|

≥ inf
x∈∆
|Qx(x)| − sup

x∈∆
|Q̃x(x)−Qx(x)|

≥Cκ[ρ(x,Xm) ∧ δ]2 −Op(
log(n)
nhx

)

Therefore, we can choose (κε, nε) large enough so that the desired inequality holds uniformly
on ∆.

The Nonseparable Model-NSP

Let us begin with Theorem Cons-NSP. We need the following lemmas. Let xm be a
generic matching point.

Lemma E2. Let rn = Op

(√
log(n)
nhg

+hg
)
. Suppose |x̂m−xm| = Op(an). Under the conditions

in Theorem Cons-NSP and Lemma E1, we have the following for all d ∈ S(D):

sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣ = Op(rn + an)

The main challenge to show this lemma is that the supremum is taken on S(Y |d) ≡
[y
d
, ȳd], which contains the support set S(Y |d, x0) and S(Y |d, xm) as two subsets. By def-

inition, ϕd(y;xm, z′) is not unique when y is outside S(Y |d, x0), so it is not valid to show
uniform consistent of ϕ̂d. The key lies in the fact that when ϕd(y;xm, z′) is not unique,
FY |DXZ(ϕd(y;xm, z′)|d, xm, z) is still unique (equal to 0 or 1). So instead of showing it by
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establishing uniform convergence for F̂Y |DXZ and ϕ̂d separately, we treat it as one object.
Under Lemma E2, it is straightforward that supy∈

∏
d
S(Y |d) |Q̂NSP (y, u)−QNSP (y, u)| =

op(1). Then we have the following lemmas.

Lemma E3. Under all the conditions in Lemma E2, the following holds:

sup
g∈Ĝ

∣∣∣ 1
J

J∑
j=1

Q̂NSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣ = op(1)

Lemma E4. There exists g0 ∈ Ĝ such that |g0(u)− g∗(x0, u)| = o(1) for all u ∈ (0, 1).

Proof of Theorem Cons-NSP. Suppose there exists δ > 0 such that supu∈U0 |ĝ(x0, u)−g∗(x0, u)| >
δ. By construction, ĝ ∈ G0. By Theorem ID-Sup, there exists ε > 0 such that

( ∫ 1

0
QNSP (ĝ(x0, u), u)du−

∫ 1

0
QNSP (g∗(x0, u), u)du

)
> ε

For simplicity, denote the sample objective function by L̂. By Lemma E3 and the rate of λ,
supg∈Ĝ |L̂(g(u))−

∫ 1
0 QNSP (g(u), u)du| = op(1). Then

( ∫ 1

0
QNSP (ĝ(x0, u), u)du−

∫ 1

0
QNSP (g∗(x0, u), u)du

)
≤L̂(ĝ(x0, u))−

∫ 1

0
QNSP (g∗(x0, u), u)du

+
∫ 1

0
QNSP (ĝ(x0, u), u)du− L̂(ĝ(x0, u))

≤L̂(g0(u))−
∫ 1

0
QNSP (g0(u), u)du

+
∫ 1

0
QNSP (g0(u), u)du−

∫ 1

0
QNSP (g∗(x0, u), u)du

+ sup
g∈Ĝ
|L̂(g(u))−

∫ 1

0
QNSP (g(u), u)du|

≤2 sup
g∈Ĝ
|L̂(g(u))−

∫ 1

0
QNSP (g(u), u)du|+

∫ 1

0
(QNSP (g0(u), u)−QNSP (g∗(x0, u), u))du

=op(1)

where g0 is defined in Lemma E4. The last inequality follows from Lemma E4 and the
dominated convergence theorem.

Proof of Theorem RoC-NSP. It is straightforward that

max
uj∈U0

|ĝ(x0, uj)− g∗(x0, uj)| ≤
√ ∑
uj∈U0

(|ĝ(x0, uj)− g∗(x0, uj)|)′(|ĝ(x0, uj)− g∗(x0, uj)|)

6



We derive the rate of convergence for the right hand side.
By Theorem Cons-NSP, ĝ(·) on U0 in the interior of S(Y |d, x0) with probability ap-

proaching one. Under this event, Ψ(·) is differentiable at ĝ(x0, uj) and thus

Ψ(ĝ(x0, uj))−Ψ(g∗(x0, uj)) = Π̃NSP (uj) · (ĝ(x0, uj)− g∗(x0, uj)) (E.8)

where Π̃NSP (uj) is the Jacobian evaluated at the mean value. Again, by uniform convergence
and the full rank condition in Theorem ID-NSP, Π̃NSP (uj) is full rank uniformly in uj ∈ U0.
Then,

ĝ(x0, uj)− g∗(x0, uj) =
(
Π̃′NSP (uj)Π̃NSP (uj)

)−1
Π̃′NSP (uj) ·

(
Ψ(ĝ(x0, uj))−Ψ(g∗(x0, uj)

)
Therefore, by boundedness of all the conditional densities, there exists a constant C > 0
such that

∑
uj∈U0

(ĝ(x0, uj)− g∗(x0, uj))′(ĝ(x0, uj)− g∗(x0, uj))

≤C
∑
uj∈U0

(
Ψ(ĝ(x0, uj))−Ψ(g∗(x0, uj)

)′
Wg(uj)

(
Ψ(ĝ(x0, uj))−Ψ(g∗(x0, uj)

)
(E.9)

Add and subtract Ψ̂(ĝ(x0, uj)), the right hands side of inequality (E.9) can be expanded to
the sum of the following three terms for some C ′, C ′′, C ′′′ > 0:

(A) :
∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)
≤C ′J sup

y∈S(Y |d)3

(
Ψ̂(y)−Ψ(y)

)′(
Ψ̂(y)−Ψ(y)

)
=O(Jr2

n) (E.10)

7



where the last inequality is from Lemma E2 and the rate condition hg/hx → 0.

(B) :
∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(g∗(x0, uj))

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))−Ψ(g∗(x0, uj))

)
=

∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))− uj)

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))− uj

)

≤
J∑
j=1

(
Ψ̂(ĝ(x0, uj))− uj)

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))− uj

)

+ λ
J∑
j=2

(
ĝ(x0, uj)− ĝ(x0, uj−1)

)′(
ĝ(x0, uj)− ĝ(x0, uj−1)

)

≤
J∑
j=1

(
Ψ̂(g0(uj))− uj)

)′
Wg(uj)

(
Ψ̂(g0(uj))− uj

)

+ λ
J∑
j=2

(
g0(uj))− g0(uj−1))

)′(
g0(uj))− g0(uj−1))

)

where the first inequality is due to non-negativity of the penalty. The second inequality
is by the definition of the estimator. g0 is the same as in Lemma E4. In particular, let
g0(uj) = g∗(x0, uj). Then the right hand side of the last inequality is

C ′′J sup
y∈S(Y |d)3

(
Ψ̂(y)−Ψ(y)

)′(
Ψ̂(y)−Ψ(y)

)
+ λ/J = O(Jr2

n) (E.11)

(C) : 2
∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))−Ψ(g∗(x0, uj))

)
=2

∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)′
Wg(uj)

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)
+ 2

∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)′
Wg(uj)

(
Ψ(ĝ(x0, uj))−Ψ(g∗(x0, uj))

)
=2 · (A) + 2

∑
uj∈U0

(
Ψ̂(ĝ(x0, uj))−Ψ(ĝ(x0, uj))

)′
Wg(uj)Π̃NSP ·

(
ĝ(x0, uj)− g∗(x0, uj)

)

≤2 · (A) + 2

√√√√√ J∑
j=1

C ′′′ · (A) ·
√ ∑
uj∈U0

(ĝ(x0, uj)− g∗(x0, uj))′(ĝ(x0, uj)− g∗(x0, uj))

=Op(Jr2
n) +Op(

√
Jrn)

√ ∑
uj∈U0

(ĝ(x0, uj)− g∗(x0, uj))′(ĝ(x0, uj)− g∗(x0, uj)) (E.12)

where the inequality follows from the Cauchy-Schwartz inequality.
Combining equations (E.8), (E.9), (E.10), (E.11) and (E.12), we have the desired result.
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Proof of Theorem AsymDist-NSP. Fix u0 ∈ U0. By Corollary RoC-NSP, ĝ(x0, u0) is in the
interior so satisfies the first order condition. Under the rates of the bandwidths, the estimated
propensity scores, the matching points and the penalty converge faster than 1/

√
nhg. By

Lemma E1, under some manipulation, we obtain the following expansion for ĝ(x0, u0) −
g∗(x0, u0):

ĝ(x0, u0)− g∗(x0, u0) = −
(
Π′NSPWg(u0)ΠNSP

)−1
· Π′NSPWg(u0) ·

[(
Ψ̂NSP

(
g∗(x0, u0)

)
− u

)
+

0
0∑3

d=1 φd1
(
F̂Y |DXZ(g∗d(x0, u0)|d, x0, 0)− F̂Y |DXZ(g∗d(xm1, u0)|d, xm1, 1)

)
∑3
d=1 φd2

(
F̂Y |DXZ(g∗d(x0, u0)|d, x0, 1)− F̂Y |DXZ(g∗d(xm2, u0)|d, xm2, 0)

)

+ op
( 1√

Nhg

)]

where ΠNSP , φd1, and φd2 are as defined in Section 6.3. Recall that ΨNSP

(
g∗(x0, u0)

)
= u,

FY |DXZ(g∗d(x0, u0)|d, x0, 0) = FY |DXZ(g∗d(xm1, u0)|d, xm1, 1) and FY |DXZ(g∗d(x0, u0)|d, x0, 1) =
FY |DXZ(g∗d(xm2, u0)|d, xm2, 0). Also, by Lemma E1, the denominator of F̂Y DXZ(y, d, x, z)
converges in probability to fY |DXZ(d, x, z). Let

Gd(y, x, z) ≡ F̂Y DXZ(y, d, x, z)− FY |DXZ(y|d, x, z)f̂DXZ(d, x, z).

Then the asymptotic distribution is determined by the following vector:


∑3
d=1

Gd(g∗d(x0, u0), x0, 0)
fDXZ(d, x0, 0)

∑3
d=1

Gd(g∗d(x0, u0), x0, 1)
fDXZ(d, x0, 1)

∑3
d=1

[Gd(g∗d(xm1, u0), xm1, 0)
fDXZ(d, xm1, 0) + φd1

Gd(g∗d(x0, u0), x0, 0)
fDXZ(d, x0, 0) − φd1

Gd(g∗d(xm1, u0), xm1, 1)
fDXZ(d, xm1, 1)

]

∑3
d=1

[Gd(g∗d(xm2, u0), xm2, 1)
fDXZ(d, xm2, 1) + φd1

Gd(g∗d(x0, u0), x0, 1)
fDXZ(d, x0, 1) − φd1

Gd(g∗d(xm2, u0), xm2, 0)
fDXZ(d, xm2, 0)

]


The variance of each Gd follows Theorem 2.2 in Li and Racine (2008):

V(Gd(y, x, z)) = κfDXZ(d, x, z)FY |DXZ(y|d, x, z) · (1− FY |DXZ(y|d, x, z))
nhg

+ o( 1
nhg

)

Now let us derive the covariances: C
(
Gd(y, x, z),Gd′(y′, x′, z′)

)
. By i.i.d., the covariance is
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equal to

1
nh2

g

E
[
L(y − Yi

h0
)L(y

′ − Yi
h0

)K(Xi − x
hg

)K(Xi − x′

hg
)1(Di = d)1(Di = d′)1(Zi = z)1(Zi = z′)

]
+Op(

1
n

)

where the Op( 1
n
) term arises because the bias is of the order h2

g by Lemma A.2 in Li and
Racine (2008). It is clear that when z′ 6= z or d′ 6= d, the leading term is 0. When x 6= x′, for
large enough n, |x′ − x| > 2hg, and thus

∣∣∣∣∣∣Xi−x
hg

∣∣∣− ∣∣∣Xi−x′
hg

∣∣∣∣∣∣ > 2. As K(·) = 0 outside [−1, 1],
for any Xi, one of the K functions must be 0. Therefore, all the covariances are of the order
of Op( 1

n
) which is op( 1

nhg
).

By Lyapunov’s Central Limit Theorem and the delta method, we obtain the asymptotic
distribution in the theorem.

E.2 Proofs of Lemmas

Lemma E1

We only show equation (E.3) as others are standard in the literature of kernel estimation
(e.g. Mack and Silverman (1982), Silverman (1986), Härdle, Marron and Wand (1990),
Masry (1996)), etc.). Let us first prove the following lemma which generalizes Lemma A.5
in Li and Racine (2008) to a bounded Y .

Lemma E5. Under the conditions in Lemma E1, we have the following equations for all d
and z:

sup
y∈[y

dx
,ȳdx]

x∈S0(X)

∣∣∣E(L(y − Yi
h0

)|Di = d,Xi = x, Zi = z
)
− FY |DXZ(y|d, x, z)

∣∣∣ = O(h0) (E.13)

Proof of Lemma E5. By definition,

E
(
L(y − Yi

h0
)|Di = d,Xi = x, Zi = z

)
=
∫ ȳdx

y
dx

L(y − y
′

h0
)dFY |DXZ(y′|d, x, z)

Let ν = y−y′
h0

, by the rule of change-of-variable and integration by part, the right hand side
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can be rewritten as

−
∫ y−y

dx
h0

y−ȳdx
h0

L(ν)dFY |DXZ(y − νh0|d, x, z)

=L(y − ȳdx
h0

) +
∫ y−y

dx
h0

y−ȳdx
h0

L′(ν)FY |DXZ(y − νh0|d.x, z)dν

=L(y − ȳdx
h0

) + FY |DXZ(y|d, x, z)
(
L(
y − y

dx

h0
)− L(y − ȳdx

h0
)
)

+ h0

∫ y−y
dx

h0
y−ȳdx

h0

νfY |DXZ(y − ν̃h0|d, x, z)L′(ν)dν

where ν̃ is a mean value between 0 and ν. Rearrange the terms, we obtain

∣∣∣E(L(y − Yi
h0

)|Di = d,Xi = x, Zi = z
)
− FY |DXZ(y|d, x, z)

∣∣∣
≤
∣∣∣L(y − ȳdx

h0
)
(
1− FY |DXZ(y|d, x, z)

)
−
(
1− L(

y − y
dx

h0
)
)
FY |DXZ(y|d, x, z)

∣∣∣
+ h0 sup

(y,x)∈S(Y,X|d)
fY |DXZ(y|d, x, z)

∫ 1

0
νL′(ν)du

where the last term is O(h0). For the first term, if y
dx

+h0 < y < ȳdx−h0, then L(y−Yi

h0
) = 0

and
(
1 − L(y−ydx

h0
)
)

= 0. Now we consider the remaining cases. For y
dx
≤ y ≤ y

dx
+ h0,

L(y−Yi

h0
) = 0. Then the first term is bounded by FY |DXZ(y

dx
+ h0|dxz), which is O(h0) by

the mean value theorem. Similarly, if ȳdx − h0 ≤ y ≤ ȳdx, then the same term is bounded
by 1− FY |DXZ(ȳdx − h0|dxz), which is again O(h0). As Y ’s conditional density is uniformly
bounded, these bounds are uniform on S(Y,X|d)

Remark E1. The rate in Li and Racine (2008) is O(h2
0), faster than the rate here. Intu-

itively, this is because at the boundaries, L systematically overestimate (at the lower bound)
or underestimate (at the upper bound) the CDF, thus introducing larger bias.

Now we are ready to show equation (E.3).

Proof of Equation (E.3) in Lemma E1. By construction, F̂Y |DXZ(·|d, x, z) ∈ [0, 1] and is in-
creasing. Therefore,

11



sup
y∈S(Y |d)
x∈S0(X)

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

≤ sup
x∈S0(X)

sup
y≤y

dx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

+ sup
x∈S0(X)

sup
y≥ȳdx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

+ sup
x∈S0(X)

sup
y

dx
≤y≤ȳdx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

= sup
x∈S0(X)

sup
y≤y

dx

F̂Y |DXZ(y|d, x, z) + sup
x∈S0(X)

sup
y≥ȳdx

(
1− F̂Y |DXZ(y|d, x, z)

)
+ sup

x∈S0(X)
sup

y
dx
≤y≤ȳdx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

≤ sup
x∈S0(X)

F̂Y |DXZ(y
dx
|d, x, z) + sup

x∈S0(X)

(
1− F̂Y |DXZ(ȳdx|d, x, z)

)
+ sup

x∈S0(X)
sup

y
dx
≤y≤ȳdx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

≤3 sup
x∈S0(X)

sup
y

dx
≤y≤ȳdx

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

=3 sup
x∈S0(X)

sup
y

dx
≤y≤ȳdx

∣∣∣ F̂Y DXZ(y, d, x, z)− FY |DXZ(y|d, x, z)f̂DXZ(d, x, z)
f̂DXZ(d, x, z)

∣∣∣
We now show that the right hand side of the last inequality has the desired rate. As

the denominator is independent of y, and it’s uniformly consistent for fDXZ(d, x, z) on the
interior set S0(X) under the regularity conditions, it’s infimum is bounded away from 0.

For the numerator, denote q̂(y, x) ≡ F̂Y DXZ(y, d, x, z) − FY |DXZ(y|d, x, z)f̂DXZ(d, x, z),
then

sup
x∈S0(X)

sup
y

dx
≤y≤ȳdx

∣∣∣q̂(y, x)
∣∣∣ ≤ sup

x∈S0(X)
sup

y
dx
≤y≤ȳdx

∣∣∣E(q̂(y, x))
∣∣∣+ sup

x∈S0(X)
sup

y
dx
≤y≤ȳdx

∣∣∣q̂(y, x)− E(q̂(y, x))
∣∣∣

We derive the rate of convergence for each of the two terms.
By the law of iterated expectation,

∣∣∣E(q̂(y, x))
∣∣∣ =

∣∣∣ 1
hg

∫ [
EY |DXZ

(
L(y − Yi

h0
)|d, x′, z

)
− FY |DXZ(y|d, x, z)

]
K(x

′ − x
hg

)fX(x′)dx′
∣∣∣

By Lemma E5, EY |DXZ
(
L(y−Yi

h0
)|d, x′, z

)
= FY |DXZ(y|d, x′, z) +O(h0) uniformly. Therefore,
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∣∣∣E(q̂(y, x))
∣∣∣ is uniformly bounded by

∣∣∣ 1
hg

∫ [
FY |DXZ(y|d, x′, z)− FY |DXZ(y|d, x, z)

]
K(x

′ − x
hg

)fX(x′)dx′
∣∣∣+O(h0)

Recall the supremum is taken on [y
dx
, ȳdx], note that it may be the case that y is outside

the support for some x′′ in between of x and x′. Then FY |DXZ(y|d, ·, z) is nondifferentiable,
making the second order Taylor expansion invalid at x. However, by Lipschitz continuity of
FY |DXZ(y|d, ·, z), we can still bound the CDF difference:

sup
x∈S0(X)

sup
y

dx
≤y≤ȳdx

∣∣∣ 1
hg

∫ [
FY |DXZ(y|d, x′, z)− FY |DXZ(y|d, x, z)

]
K(x

′ − x
hg

)fX(x′)dx′
∣∣∣

≤C sup
x∈S0(X)

∫ ∣∣∣x′ − x
hg

∣∣∣ ·K(x
′ − x
hg

)fX(x′)dx′

≤hgC ′
∫ 1

0
νK(ν)dν

=O(hg)

for some C,C ′ > 0.
Next let us derive the rate of sup(x,y)∈S0(X,Y |d)

∣∣∣q̂(y, x)− E(q̂(y, x))
∣∣∣ where for the ease of

notation, S0(X, Y |d) ≡ {(x, y) : x ∈ S0(X), y
dx
≤ y ≤ ȳdx}. As S0(X, Y |d) is compact, it

can be covered by Tn < ∞ squares I1, I2, ..., ITn with length τn where τn ∝ O(
√

1/Tn). Let
the center in each square be (yk, xk) (k = 1, 2, ..., Tn), then

sup
(x,y)∈S0(X,Y |d)

∣∣∣q̂(y, x)− E(q̂(y, x))
∣∣∣

≤ max
1≤k≤Tn

sup
S0(X,Y |d)∩Ik

∣∣∣q̂(y, x)− q̂(yk, xk)
∣∣∣

+ max
1≤k≤Tn

sup
S0(X,Y |d)∩Ik

∣∣∣E(q̂(y, x))− E(q̂(yk, xk))
∣∣∣

+ max
1≤k≤Tn

∣∣∣q̂(yk, xk)− E(q̂(yk, xk))
∣∣∣

Consider the first and the second terms. For the first term,

q̂(y, x)− q̂(yk, xk) = 1
nhg

n∑
i=1

1(Di = d)1(Zi = d)
(
L(y − Yi

h0
)K(Xi − x

hg
)− L(yk − Yi

h0
)K(Xi − xk

hg
)
)

By Lipschitz continuity of L(·) andK(·), the right hand side is bounded by Cτn

hgh0
given h0 < hg

uniformly in k. Similarly the second term is also bounded by Cτn

hgh0
.
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For the third term, let

Wi(y, x) = 1
nhg

[(
L(y − Yi

h0
)− FY |DXZ(y|dxz)

)
1(Di = d)1(Zi = z)K(x−Xi

hg
)

− E
((
L(y − Yi

h0
)− FY |DXZ(y|dxz)

)
1(Di = d)1(Zi = z)K(x−Xi

hg
)
)]

We consider the probability P
(

max1≤k≤Tn

∣∣∣∑n
i=1Wi(yk, xk)

∣∣∣ > C1

√
log(n)
nhg

)
.

P
(

max
1≤k≤Tn

∣∣∣ n∑
i=1

Wi(yk, xk)
∣∣∣ > C1

√√√√ log(n)
nhg

)

≤
Tn∑
k=1

P
(∣∣∣ n∑

i=1
Wi(yk, xk)

∣∣∣ > C1

√√√√ log(n)
nhg

)

≤Tn sup
(y,x)∈S0(Y,X|d)

P
(∣∣∣ n∑

i=1
Wi(y, x)

∣∣∣ > C1

√√√√ log(n)
nhg

)

≤Tn sup
(y,x)∈S0(Y,X|d)

(
P
( n∑
i=1

Wi(y, x) > C1

√√√√ log(n)
nhg

)
+ P

( n∑
i=1

Wi(y, x) < C1

√√√√ log(n)
nhg

))

≤Tn sup
(y,x)∈S0(Y,X|d)

E
(

exp(an
∑
iWi(y, x))

)
+ E

(
exp(−an

∑
iWi(y, x))

)
exp

(
anC1

√
log(n)
nhg

)
where the last inequality follows from the Markov inequality for some an > 0. Since K
and L are bounded, |Wi(y, x)| is bounded. Let an =

√
log(n)nhg, then for large enough n,

an|Wi(y, x)| < 1/2. Therefore, by the inequality exp(c) ≤ 1 + c + c2 for any c ∈ [−1/2, 1/2]
and 1 + c ≤ exp(c) for c ≥ 0, we have

E
(

exp(±anWi(y, x))
)
≤1± E(anWi(y, x)) + E(a2

nW
2
i (y, x)))

≤ exp(Ea2
nW

2
i (y, x)))

since E(Wi(y, x)) by construction. Therefore,

Tn sup
(y,x)∈S0(Y,X|d)

E
(

exp(an
∑
iWi(y, x))

)
+ E

(
exp(−an

∑
iWi(y, x))

)
exp

(
anC1

√
log(n)
nhg

)
≤2Tn
nC1
· sup

(y,x)∈S0(Y,X|d)
exp(log(n)nhg

∑
i

EW 2
i (y, x)))
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For EW 2
i (y, x), since L(·) ∈ [0, 1], we have

EW 2
i (y, x) ≤ 1

n2h2
g

E
[(
L(y − Yi

h0
)− FY |DXZ(y|dxz)

)
1(Di = d)1(Zi = z)K(x−Xi

hg
)
]2

≤ 1
n2h2

g

E
[
K2(x−Xi

hg
)
]

≤C2
1

n2hg

for some C2 > 0. Therefore,

2Tn
nC1
· sup

(y,x)∈S0(Y,X|d)
exp(log(n)nhg

∑
EW 2

i (y, x))) ≤ 2Tn
nC1−C2

Let Tn = n
log(n)h2

0hg
. Then for large enough C1, there exists α ≥ 2,

n∑
i=1

P
(

max
1≤k≤Tn

∣∣∣q̂(yk, xk)− E(q̂(yk, xk))
∣∣∣ > C1

√√√√ log(n)
nhg

)
≤
∑
n

1
nα

<∞

Therefore, by the Borel-Cantelli lemma, max1≤k≤Tn

∣∣∣q̂(yk, xk)− E(q̂(yk, xk))
∣∣∣ = Op(

√
log(n)
nhg

).

With this choice of Tn, τn = O(
√

log(n)hgh0√
n

), so the first two terms are Op(
√

log(n)
nhg

) as
well.
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Lemma E2

Proof. By the triangle inequality,

sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)− FY |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)
∣∣∣

+ sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

x∈S0(X)

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

+ sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

x∈S0(X)

∣∣∣F̂Y |DXZ(y|d, x, z)− FY |DXZ(y|d, x, z)
∣∣∣

+ sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣+Op(an)

where the last inequality holds because of Lipschitz continuity of FY |DXZ(·|d, ·, z). Note the
first term on the right hand side is Op(rn) by Lemma E1. Now we only need to show that

sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣ = Op(rn + an)

This is straightforward if ϕ̂d(y) is uniformly consistent at that rate. However, as [y
d
, ȳd]

is larger than [y
dx0
, ȳdx0 ], ϕ̂d(y) is not consistent when y is outside [y

dx0
, ȳdx0 ] because then

ϕd(y) is not unique. Let us prove the following equation first:

sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z′)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z′)
∣∣∣ = Op(rn + an)
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By adding and subtracting F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z′),

sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y;xm, z′)|d, x̂m, z′)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z′)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z′)− FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z′)
∣∣∣

+ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z′)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z′)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z′)− FY |DXZ(y|d, x0, z)
∣∣∣+Op(rn + an)

where we use FY |DXZ(ϕd(y;xm, z′)|d, xm, z′) = FY |DXZ(y|d, x0, z) for the last inequality by
Theorem MEQ. By adding and subtracting F̂Y |DXZ(y|d, x0, z),

sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z′)− FY |DXZ(y|d, x0, z)
∣∣∣

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕ̂d(y; x̂m, z′)|d, x̂m, z′)− F̂Y |DXZ(y|d, x0, z)
∣∣∣+Op(rn)

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕd(y;xm, z′)|d, x̂m, z′)− F̂Y |DXZ(y|d, x0, z)
∣∣∣+Op(rn)

= sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕd(y;xm, z′)|d, x̂m, z′)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z′)
∣∣∣+Op(rn)

≤ sup
y∈[y

d
,ȳd]

∣∣∣F̂Y |DXZ(ϕd(y;xm, z′)|d, x̂m, z′)− FY |DXZ(ϕd(y;xm, z′)|d, x̂m, z′)
∣∣∣+Op(rn + an)

=Op(rn + an)

where the third line follows from the definition of ϕ̂d(y; x̂m, z′). Finally, let us estab-
lish the relation between FY |DXZ(y′|d, x, z) − FY |DXZ(y|d, x, z) and FY |DXZ(y′|d, x, z′) −
FY |DXZ(y|d, x, z′) for any y, y′ ∈ [y

d
, ȳd]. By the exogeneity condition of Z in Assump-

tion E-NSP, S(Y |d, x, z) = S(Y |d, x, z′) = S(Y |d). Therefore, we have the following two
equations:

FY |DXZ(y′|d, x, z)−FY |DXZ(y|d, x, z) = fY |DXZ(ỹ1|d, x, z)
[(
y
dx
∨(y′∧ȳdx)

)
−
(
y
dx
∨(y∧ȳdx)

)]
,

and

FY |DXZ(y′|d, x, z′)−FY |DXZ(y|d, x, z′) = fY |DXZ(ỹ2|d, x, z′)
[(
y
dx
∨(y′∧ȳdx)

)
−
(
y
dx
∨(y∧ȳdx)

)]
.

where ỹ1 and ỹ2 are the mean values between
(
y
dx
∨ (y′ ∧ ȳdx)

)
and

(
y
dx
∨ (y ∧ ȳdx)

)
.

By Assumption Reg-NSP, fY |DXZ(ỹ1|d,x,z)
fY |DXZ(ỹ2|d,x,z′) is uniformly bounded from above on S(Y |d)×

17



S(Y |d). Therefore, there exists a constant C > 0 such that

sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z′)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z′)
∣∣∣

≤C sup
y∈[y

d
,ȳd]

∣∣∣FY |DXZ(ϕ̂d(y; x̂m, z′)|d, xm, z)− FY |DXZ(ϕd(y;xm, z′)|d, xm, z)
∣∣∣

This completes the proof.

Lemma E3

Proof of Lemma E3. By the triangle inequality,

sup
g∈Ĝ

∣∣∣ 1
J

J∑
j=1

Q̂NSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣
≤ sup

g∈Ĝ

∣∣∣ 1
J

J∑
j=1

Q̂NSP (g(uj), uj)−
1
J

J∑
j=1

QNSP (g(uj), uj)
∣∣∣

+ sup
g∈Ĝ

∣∣∣ 1
J

J∑
j=1

QNSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣
≤ sup

y∈
∏

d
S(Y |d)

∣∣∣Q̂NSP (y, uj)−QNSP (y, uj)
∣∣∣

+ sup
g∈Ĝ

∣∣∣ 1
J

J∑
j=1

QNSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣
= sup

g∈Ĝ

∣∣∣ 1
J

J∑
j=1

QNSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣+ op(1)

18



where the op(1) in the last inequality follows from Lemma E2. We now show the remaining
term is also op(1).

sup
g∈Ĝ

∣∣∣ 1
J

J∑
j=1

QNSP (g(uj), uj)−
∫ 1

0
QNSP (g(u), u)du

∣∣∣
= sup

g∈Ĝ

∣∣∣ 1
J

J∑
j=1

QNSP (g(uj), uj)−
J∑
j=1

∫ j
J

j−1
J

QNSP (g(u), u)du
∣∣∣

= sup
g∈G∗

∣∣∣ J∑
j=1

( 1
J
QNSP (g(uj), uj)−

∫ j
J

j−1
J

QNSP (g(u), u)du
)∣∣∣

= sup
g∈G∗

∣∣∣ J∑
j=1

( ∫ 1
J

j−1
J

QNSP (g(uj), uj)du−
∫ j

J

j−1
J

QNSP (g(u), u)du
)∣∣∣

≤ sup
g∈G∗

∣∣∣ J∑
j=1

( ∫ 1
J

j−1
J

C · (g(uj)− g(uj−1))du
)∣∣∣

≤ 1
J
C ·

J∑
j=1

∣∣∣g(uj)− g(uj−1)
∣∣∣

where in the second equality, Ĝ is changed to G∗ because for any g(u) that is outside∏
d S(Y |d, x0) gives the same value of QNSP as that at the boundaries of ∏d S(Y |d, x0). The

third equality is due to the fact thatQNSP (g(uj), uj) is a constant so
∫ j

J
j−1

J

QNSP (g(uj), uj)du =
1
J
QNSP (g(uj), uj). The first inequality holds because for all values in ∏d S(Y |d, x0), QNSP

is differentiable and the derivative is uniformly bounded. Finally, by monotonicity, g(uj)−
g(uj−1) > 0. Hence

1
J
C ·

J∑
j=1

∣∣∣g(uj)− g(uj−1)
∣∣∣ ≤ 1

J
C
∑
d

(ȳdx0 − ydx0
) = O( 1

J
) = o(1)

Lemma E4

Proof of Lemma E4. For each uj, let g0(uj) = g∗(x0, uj). Then for any u between nodes
uj−1 and uj, by monotonicity,

|g0(u)− g∗(x0, u)| ≤ g∗(x0, uj)− g∗(x0, uj−1) = O( 1
J

) = o(1).
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