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Abstract

High U.S. spending on health care is commonly attributed to its intensity of spe-

cialized, high-tech medical care. A growing body of research focuses on physicians

whose medical decisions shape treatment intensity, costs, and patient outcomes. Often

overlooked in this research is the assignment of physician skills to patient conditions,

which may strongly affect health outcomes and productivity. This matching may be

especially important in the case of hospital admissions as high-frequency fluctuations

in patient flow make it challenging to maintain effective matches between the best-

suited physicians and their patients. This paper focuses on hospitals’ responses to de-

mand shocks induced by unscheduled high-risk admissions. I show that these demand

shocks result in physician–patient mismatches when hospitals are congested. Specifi-

cally, highly specialized physicians who are brought in to treat unscheduled high-risk

admissions also treat previously admitted lower-risk patients. This leads to increased

treatment intensity for lower-risk patients, which I attribute to persistence in physician

practice style. Despite the greater treatment intensity, I find no detectable improvement

in health outcomes, which prima facie could be viewed as waste. However, the mis-

matches observed only at high congestion levels more likely reflect hospitals’ careful

assessment of costs and benefits when assigning physicians to patients – maintaining

preferred physician–patient matching can be particularly costly when congestion is

high. My findings highlight the need to consider both heterogeneity within patient

and physician type, and furthermore show how the common phenomenon of demand

uncertainty can promote mismatch between these types.
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1 Introduction

At 17.1% of its GDP, the United States spends twice the OECD average on health

care. Given its unsatisfactory average health outcomes, there is substantial interest in the

effectiveness of U.S. spending on health care and whether providers can reduce spending

without compromising quality and health outcomes. Existing research has yet to reach

a consensus on the magnitude and sources of waste (Fisher et al., 2003a,b; Skinner and

Fisher, 2010; Almond and Doyle, 2011; Chandra et al., 2011; Doyle et al., 2017). In part,

this is due to empirical challenges in measuring productivity and identifying unproductive

spending in the health care system.

Although payments to physicians only constitute a small fraction of the aggregate health

care spending, physicians’ medical decisions clearly shape care utilization and patient out-

comes (Phelps, 2016). A growing body of research shows that increasing specialization

leads to large variation in skills and practice styles among medical professionals, and that

specialized physicians tend to adopt more intensive practice styles.1 However, empirical

findings on whether physician specialists, or physicians with more intensive styles, provide

higher quality care are mixed (Doyle et al., 2010; Baicker and Chandra, 2004; Currie et al.,

2016; Currie and MacLeod, 2017; Molitor, 2018; Fadlon and Van Parys, 2019). Existing

studies usually evaluate productivity focusing on a constant, physician-specific measure. It

is often overlooked that productivity may vary within physicians, depending on the type of

patients they are treating. Therefore, the matching between physicians’ skills and patients’

conditions (“skill–task matching”) can affect both care utilization and patient outcomes.

This paper examines skill–task matching in hospital admissions. Assessing the impact

of physician–patient assignments is challenging. On the one hand, high levels of special-

ization and large variations in practice styles across medical professionals would increase

the gains from matching the best-suited physicians to patients. On the other hand, due

to the variability and unpredictability in patient flow, maintaining good physician–patient

matchings for every admission can be costly, and even outweigh the benefits of physicians’

specialized skills. Previous studies have recognized that fluctuations in patient flow incur

costs to both hospitals and patients, and policies have attempted to relieve congestion in or-

der to improve care quality (Hughes and McGuire, 2003; Evans and Kim, 2006; Hoot and

1In this study, I do not differentiate between physicians’ skills and practice styles due to the fact that they are
highly correlated. Therefore, I use the terms “practice style”, “skill”, and “expertise” interchangeably.
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Aronsky, 2008; Sharma et al., 2008; Shen and Hsia, 2015; Hoe, 2018; Marks and Choi,

2018). However, relatively unexplored is whether the need of matching physician type to

patients is an important source of costs. To my knowledge, this paper is the first to provide

empirical evidence on skill–task matching stemming from demand uncertainty in the health

care sector.

In particular, I analyze how short-term demand fluctuations induced by unscheduled

high-risk admissions affect health care production in hospitals. I pay special attention to

whether hospitals develop differential responses depending on the level of costs or difficul-

ties in achieving good physician–patient matchings, and how in turn these responses affect

health care production. The level of hospital congestion serves as a proxy for the costs of

matching in this study. Finding a physician who specializes in treating a certain condition

is relatively easy when many physicians are available. But when hospitals become con-

gested, achieving good matchings for every patient may become difficult: more physicians

are occupied and the skill range of available physicians becomes more limited.

Using New York City hospital discharge micro data, I focus on newborns. Childbirth

is the most common reason for hospitalization in the United States (HCUP, 2015) and at-

risk newborns disproportionately drive the high aggregate spending on neonatal care (Torio

and Moore, 2016). Hospital discharge records provide rich information on physicians and

patients, treatment decisions, and health outcomes. Additionally, patients’ arrivals and as-

signments to physicians are explicitly recorded in the high-frequency micro data, allowing

for a detailed study of skill–task matching and its effects on health care production. Fur-

thermore, effects on newborn health can lead to long term impacts later in life, such as

educational attainment, adult disability, and labor market outcomes (Currie, 2009; Bharad-

waj et al., 2013; Figlio et al., 2014; Elder et al., 2019).

Birth weight is the most commonly used metric of newborn health both in the litera-

ture and in medical practice. Newborns weighing less than 1500 grams (“very low birth

weight”) require immediate and intensive neonatal care. The precise timing of vaginal de-

liveries is hard for hospitals to predict. Hence, vaginally-delivered very low birth weight

births may serve as demand shocks to hospitals. In this study, I refer to vaginally-delivered

very low birth weight infants as “high-risk” unscheduled admissions. Using an event study

framework, I find that hospitals summon physicians with more intensive practice styles who

specialize in treating high-risk newborns upon unscheduled high-risk admissions. Critical

for my purpose, these highly specialized physicians who are called in also treat previously
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admitted newborns (“incumbent newborns”). This spillover effect is especially pronounced

when hospitals are congested, creating exogenous variation in the typical physician–patient

matching.

I demonstrate that newborns admitted prior to unscheduled high-risk admissions and

newborns not affected by any demand shocks do not differ in observables at admission,

which supports the exogeneity of my demand shocks. When hospitals are congested, lower-

risk newborns admitted just before unscheduled high-risk admissions are more likely to be

treated by highly specialized physicians, leading to increased treatment intensity. Despite

being treated more intensively, little improvement in patient outcomes is seen. This sug-

gests low, even zero, marginal returns to care utilization. Many studies have established

that specialists and their intensive practice styles can benefit high-risk patients (Currie et al.,

2016; Currie and MacLeod, 2017; Doyle, 2018). Results in this study, however, suggest that

physician productivity is patient-dependent: physicians who specialize in treating high-risk

patients may provide low-return care when treating lower-risk patients. Notably, this low

return is found for newborns weighing between 1500 - 2500 grams who are “mid-risk”, i.e.

excluding normal birth weight infants. These findings highlight the importance of matching

physicians’ skills to patients’ conditions in health care production and point to the potential

costs associated with physician experts beyond physician payments.

Prima facie, the low productivity resulting from physician–patient mismatch may ap-

pear purely wasteful. However, it is worth emphasizing that such low productivity is only

detectable when hospitals are congested and matching the best-suited physicians to pa-

tients is costly. This finding is consistent with predictions from a stylized model: optimal

decisions depend on the relative magnitudes of costs and benefits associated with achiev-

ing good matchings; allowing a degree of mismatch can be optimal if the matching costs

are high. Hence, the mismatch observed at high congestion levels may reflect hospitals’

careful assessment of costs and benefits when assigning physicians to patients. Analyses

of incumbent newborn characteristics also suggest that hospitals attempt to maintain good

physician–patient matchings given the availability of physicians: among mid-risk incum-

bent infants, newborns with worse health conditions (although still healthier than the high-

risk newborns) tend to be assigned to the highly specialized physicians. In more extreme

cases, I find that the highly specialized physicians do not treat any incumbent newborns

when the expected returns to their specialized skills are too low.

This paper contributes to the literature on physician productivity and health care pro-
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duction. The evidence on patient-dependent physician productivity presented in this pa-

per provides a possible explanation for the lack of research consensus on how physicians’

skills and treatment intensity affect patient outcomes: the productivity response is shaped

by which subpopulation of patients are treated. In addition, by restricting empirical com-

parisons to be within hospitals, this study helps isolate the effect of physician practice on

care utilization. This paper complements existing literature on regional or cross-hospital

variation in medical spending by arguing that physicians’ practice styles contribute to vari-

ations in spending among many other factors, such as differences in patient composition

or facility quality (Baicker and Chandra, 2004; Chandra and Staiger, 2007; Doyle, 2011;

Cutler et al., 2013; Doyle et al., 2015, 2017; Molitor, 2018).

This paper also contributes to non-health literature on production under specialization.

While theories on specialization and coordination in labor and organizational economics

exist, these studies mostly focus on the optimal level of specialization (Becker and Mur-

phy, 1992; Garicano, 2000; Dessein and Santos, 2006; Fuchs and Garicano, 2010). Little

is known about how firms respond to fluctuations in demand given the current level of spe-

cialization among their employees. This is a particularly common situation in day-to-day

production decisions where labor inputs are costly to constantly adjust. This study helps to

fill this gap in research by demonstrating empirically that hospitals evaluate carefully the

associated benefits and costs when making job assignments to specialists under demand

uncertainty.

The rest of the paper proceeds as follows. Section 2 provides background information

and discusses the relevant literature. Section 3 describes the empirical strategy and the

data. Section 4 presents results on hospitals’ responses to unscheduled high-risk admis-

sions. Section 5 reports the spillover effects of unscheduled high-risk admissions. Section

6 discusses potential mechanisms for the observed effects and their implications. Section 7

concludes.

2 Background

2.1 Physician Specialization and Practice Style

The expansion in human capital over time enables the increases in specialization. Along

with other highly-skilled occupations, physicians are increasingly specialized. The number
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of physician specialists grew six times faster than the number of primary care doctors from

2005 to 2015 (Barbey et al., 2017). By the end of 2017, more than two-thirds of physi-

cians had specialties outside primary care (AAMC, 2018). In the United States, highly

specialized physicians are required to take intensive training post M.D. in order to han-

dle complex patient conditions. For example, a physician needs to complete an additional

three-year residency to be certified as a pediatrician and a second three-year neonatology

fellowship to treat critically ill newborns as a neonatologist.

Physicians incorporate their own judgment and expertise when making medical deci-

sions. The lack of comprehensive medical guidelines and the complexity of patient con-

ditions lead to large variation in physicians’ practice styles (Phelps, 2016). Empirical ev-

idence has shown that specialists tend to utilize more intensive treatments (Doyle, 2018).

Style differences can arise from skill differences, differences in the assessment of treatment

efficacy and patient conditions that are shaped by past training and experiences, or other

factors (Chandra et al., 2011). In the case of neonatal care, it’s not hard to imagine that a

neonatologist’s practice style will differ from a general pediatrician’s because of the addi-

tional fellowship training, just as economics PhD students are likely to approach economics

questions differently from what they would do in college.

Previous studies usually measure physician practice styles using a physician-specific

“fixed effect”. It is challenging empirically to disentangle whether the high intensity prac-

tice observed among physician specialists is due to selection bias (i.e. highly specialized

physicians usually treat more severe patients) or due to something inherent to physicians

themselves. This paper utilizes a natural experiment to overcome selection bias and demon-

strates that highly specialized physicians also provide more intensive care when treating

lower-risk patients. Results in this paper provide evidence that physicians’ practice styles

indeed persist across patients and thereby influence the overall care utilization.

2.2 Productivity of Specialized Physicians

Specialists spend more. However, evidence on patient health impacts has been mixed.

Baicker and Chandra (2004) find that states with more specialists have higher costs and

lower care quality. Doyle (2018) provides evidence that heart failure patients receive more

intensive treatments and are more likely to survive at one year when more cardiologists are

available. Currie et al. (2016) show that physicians with better procedural skills provide
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more aggressive treatments, which benefits patients in the case of heart attacks. Currie

and MacLeod (2017) assess physician productivity in both decision making and proce-

dural skill. They show that improvement in each dimension can lead to better outcomes.

Doyle et al. (2010) consider physician human capital and find that physicians from a higher

ranking medical school have better decision making, which reduces costs without affecting

patient outcomes.

This paper considers a less studied subject: what happens when highly specialized

physicians treat lower-risk patients? I find that the more intensive treatments assigned by

specialists do not generate detectable health improvements. While there has been evidence

that high-risk patients are likely to benefit from specialists’ intensive treatments, this paper

adds to existing knowledge by showing that the productivity of highly specialized physi-

cians are not universal but instead task-dependent. It further highlights the importance of

considering skill–task matching in assessing physician productivity. Finally, it suggests a

mechanism by which the mixed evidence on specialists’ productivity may be reconciled.

2.3 Demand Fluctuation and Hospital Congestion

Hospitals face frequent demand fluctuations, which often result in congestion. Existing

studies find that variability in demand is costly to hospitals (Baker et al., 2004). Stud-

ies evaluating the effects of hospital congestion per se on patients often find lower care

quality and worse health outcomes (Evans and Kim, 2006; Bartel et al., 2011; Shen and

Hsia, 2015; Hoe, 2018). Among studies that examine fluctuations in patient flow, Freed-

man (2016) explores congestion levels in neonatal intensive care units (NICU) and shows

that physicians make NICU admission decisions based on bed availability: empty NICU

beds increase NICU admission for marginally sick infants but have little or no effect for the

sickest infants. Departing from Freedman (2016), I utilize fluctuations in NICU occupancy

as a proxy for the level of difficulty in achieving good matchings between physicians and

patients. In addition, this paper exploits fluctuations in hospital demand beyond generic

patient volume. By taking into account variation in patient acuity that results from un-

scheduled high-risk admissions, this paper suggests that demand fluctuations can affect

care utilization and patient outcomes through an under-recognized channel, i.e. by affect-

ing the assignment of physicians to patients. This yields new implications for policies

aiming at hospital congestion management.
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3 Research Design and Data

3.1 Research Design

This study analyzes the production process in the professional industry particularly fo-

cusing on the matching of skills to tasks. In the case of hospital admission, patients are

typically assigned to physicians based on perceived patient condition and physician exper-

tise. It is commonly observed that high-risk patients are assigned to highly specialized

physicians with intensive practice styles. Hence such selection bias usually impedes the

empirical evaluation of productivity in the health care sector, or in any industries where

better skills are overwhelmingly bundled with difficult tasks. This paper overcomes the

selection bias by exploiting an exogenous variation in physician–patient matching and care

utilization resulting from short-term demand fluctuations. When an unscheduled high-risk

patient is admitted, hospitals frequently need to adjust resource allocation among previ-

ously admitted patients, including physician assignment, to accommodate the unexpected

increases in care demand.

In this study, I investigate hospitals’ responses to temporary demand shocks in the

neonatal care sector. I first document the strategies hospitals adopt when an unexpected

high-risk patient is admitted under an event study framework. To utilize the variation in

resource allocation among previously admitted newborns induced by unexpected high-risk

admissions, I compare newborns admitted just prior to unscheduled high-risk admissions

(treated group) to those having little overlap with any unscheduled high-risk admissions

(control group). If the unexpected demand shocks are quasi-random in time, newborns

in the treated and control groups are expected to be comparable in all aspects upon birth

admission. In this case, any differences in subsequent outcomes can be attributed to dif-

ferences in changes of care provision induced by the unexpected high-risk newborn ad-

missions. Although some may argue that patients tend to choose their physicians in the

case of birth delivery, such selection happens mostly in the form of mothers choosing their

obstetricians. Since the focus of this study is on newborn infants whose physicians are

pediatricians, such selection is unlikely to occur. In the case of at-risk newborns who are

admitted to NICU upon their births, it is even less likely that the parents will have any

discretion to choose physicians.

I define unscheduled high-risk admissions to be vaginally-delivered very low birth
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weight newborns, noting first that birth weight has been shown as a good metric of newborn

acuity and expected care utilization. In the medical definition, low birth weight is defined

to be below 2,500 grams (5 pounds 8 ounces). Subcategories include very low birth weight,

which is less than 1500 grams (3 pounds 5 ounces), and extremely low birth weight, which

is less than 1000 grams (2 pounds 3 ounces). Medical diagnosis codes are assigned to each

low birth weight categories and physicians use these birth weight cutoffs to make differen-

tial treatment decisions. Very low birth weight newborns utilize an extremely high amount

of care resources, hence leading to large increases in demand at hospitals (Almond et al.,

2010).

The quasi-randomness of demand shocks in this study arises from the rareness of high-

risk admissions and the lack of predictability of vaginal delivery birth time. Very low

birth weight newborns are only 1.5% of total births and the median time gap between two

vaginally-delivered very low birth weight births in my sample is 14 days. The quartiles

of within-hospital median gaps are 13, 22.5, and 40.5 days, indicating that admissions of

vaginally-delivered very low birth weight newborns are not common events even in hospi-

tals handling high-risk births relatively frequently. C-section births can either be scheduled

or unscheduled (emergent). However, such information is absent in my data. Figure 1 and

B1 show time distributions of high-risk newborn admissions by delivery methods. The left

panels suggest that vaginal delivered high-risk admissions are evenly distributed in time

where we cannot reject the null hypothesis that the fraction of high-risk vaginal births on

each day of the week is uniformly distributed. The right panels show decreases in c-section

high-risk admissions on weekends and in early mornings. This non-smooth time pattern

indicates that at least some c-section high-risk births are scheduled.2

To further test for exogeneity, I implement LASSO with cross-validation to predict the

occurrence of vaginally-delivered and c-section high-risk newborn admissions. Lagged

hospital-day level covariates3, together with month and day of week indicators, are fed into

2There could also exist selection in delivery methods such as births on weekend are less likely to receive
c-section. However, if assuming the occurrence of very low birth weight is evenly distributed over time,
such hypothesis would predict increases in high-risk vaginal births on weekends and early mornings which
is not observed in the data. Furthermore, the attending physicians of newborns are pediatricians and neona-
tologists, who are expect to have limited coordination with obstetricians. Any endogenous decisions made
by obstetricians will not necessarily spillover to the pediatrician side.

3Lagged covariates include daily newborn admissions, faction of White/Black/female/low birth weight/very
low birth weight/c-section admissions, NICU occupancy, NICU congestion level, number of admitting
physicians, average physician experience with low birth weight/very low birth weight patients, and aver-
age physician practice style measures in the past three days.
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Figure 1: Distribution of High-risk Admissions: Day of Week
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the LASSO prediction model. Hospital-year fixed effects are included but not penalized in

the model estimation. None of the lagged covariates show prediction power in the LASSO

model for vaginally-delivered high-risk admissions. This provides evidence supporting the

hypothesis that the occurrence of vaginally-delivered high-risk admissions is quasi-random.

The LASSO model for c-section high-risk admissions, reported in Table A19, indicates that

some lagged patient and physician profile measures, as well as certain month and day of

week dummies, do show prediction power.

The quasi-random admission time of vaginally-delivered very low birth weight new-

borns allows me to analyze hospitals’ responses to unscheduled high-risk admissions un-

der an event study framework. It also provides a natural experimental setting to study the

spillover effects on incumbent newborn patients. Bt assessing the downstream effects on

care utilization and patient outcomes among incumbent newborns, I develop a measure of

productivity in medical care provision facing fluctuations in demand.

3.2 Hospital Discharge Data

This study utilizes patient admission information from the hospital discharge data col-

lected by the New York State Department of Health (NYSDOH) under the Statewide Plan-
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ning and Research Cooperative System (SPARCS). All facilities4 certified to provide inpa-

tient services, ambulatory surgery services, emergency department services or outpatient

services are required to submit data to SPARCS. SPARCS collect patient level details on

patient characteristics, diagnoses and treatments, services, and charges for each hospital

inpatient stay. Patient age is reported in days for patients younger than one year old. The

principal diagnosis codes for newborns provide information on multiple births and birth

delivery methods. I include all observations with a newborn principal diagnosis code and

an age zero day in my sample of birth admissions (“newborn sample” thereafter). Birth

weight is reported in grams for all newborn admissions. I assign a low birth weight (LBW)

indicator to newborns with birth weight between 1500 and 2500 grams and a very low birth

weight (VLBW) indicator to newborns with birth weight below 1500 grams. Patient ad-

mission and discharge time (date and hour) reported on the discharge records are used to

identify the time of unscheduled high-risk admissions and assign newborns to the treated

and control groups (more details described in Section 5.2).

Hospital discharge data provide a unique patient identifier (UPI) that can be used to

trace medical records of the same patient across hospitals over time. I construct a panel of

hospital admissions within one year after birth for each newborn in my sample. Two bi-

nary readmission variables are derived to measure patient outcomes. Neonatal readmission

is defined as having readmissions within 28 days after birth. One-year readmission is de-

fined as having readmissions within one year after birth. In addition, one-year cumulative

care utilization, i.e. length of stay, total charges, and number of treatment procedures, are

aggregated across all hospital admissions during the first year after birth, including one’s

birth admission. These outcome measures are matched to each newborn’s birth admis-

sion record. Only the birth admission record for each newborn is included in the analysis

sample.

3.3 Physician Characteristics

Each patient admission is assigned with an attending physician on the discharge record.

Physician license information from the New York State Education Department (NYSED)

Office of Professions is matched to patient admissions by a unique state physician license

identifier. The key physician license information used in this study is the date of licensure

4Different facility locations under the same operating hospital are regarded as separate facilities in the
SPARCS data.
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which is used to calculate physician tenure. A very small fraction of attending doctors

in the newborn sample are not licensed physicians or were licensed outside of New York

State, for whom no license profile can be matched. The missing rate is below 3%.

I allow attending physician characteristics to evolve over time. For each patient admis-

sion, physician tenure is computed as the number of years between the year of admission

and the year of physician licensure. Since physician specialty is not listed on the license,

I define a measure of “experience with high-risk newborns” as a proxy for physician ex-

pertise. For patients admitted on day t attended by physician p, the physician expertise is

measured by the fraction of newborn patients being VLBW among all newborn patients

attended by physician p up to day t − 1. In addition, I develop physician practice style

baseline measures using average total charges, length of stay, and number of procedures

among newborn patients discharged up to day t− 1 by physician p. The averages are only

measured up to the day before one’s admission, hence eliminating any influence from the

patient’s own admission or future admissions. These baseline measures allow physicians’

practice styles to evolve with the patient conditions they treated in the past.5 To account

for patient–physician selection, residual total charges, length of stay, and number of pro-

cedures are generated controlling for hospital-year fixed effects and patient observables.

These residual measures capture physician practice style conditional on patient observables

and hospital-year specific effects, hence may be interpreted as physician “intrinsic” styles.

However, due to the presence of patient–physician selection, the effects of patient observ-

ables cannot be well identified. This will result in biased physician residual measures.6

Therefore, I take raw averages as the preferred physician measures in this study.

3.4 NICU Daily Census and Congestion

I construct a NICU daily patient census to measure the level of congestion. The UB-04

revenue codes on hospital discharge records provide information on the type of accommo-

dation and the number of days of each accommodation one received during the hospital

stay. I follow Freedman (2016) and flag revenue codes of 1703 - Nursery Level III (“Inter-

mediate Care”) and 1704 - Nursery Level IV (“Intensive Care”) as NICU accommodations.

5A physician with high average in total charges could be due to spending more on an average patient or
treating more high-spending patients.

6To illustrate, if physicians with intensive practice styles always treat high-risk patients, then the effect of
practice style cannot be separated from the effect of patient condition.
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The accommodation types are listed in chronological order, which allows me to derive

the admission and discharge dates of each NICU patient. The daily NICU patient census

is derived based on the universe of patient admissions, regardless of whether they are in

my newborn sample. Using each patient’s NICU admission and discharge dates, I derive

the number of NICU admissions, NICU discharges, and NICU patient occupancy on each

hospital-day. Since the hospital discharge data in 2005 include patients who were admitted

in 2004 and discharged in 2005, the NICU daily occupancy measure is precise from the

first day of 2005.

Figure B3 shows the distribution of daily NICU occupancy in terms of a fraction of

the annual median occupancy in the same NICU (i.e. the variation reflects within hospital

fluctuations). Daily NICU congestion level is defined based on the quartiles of daily NICU

occupancy within each hospital-year. The top quartile hospital-days are coded as high

congestion level, the bottom quartile as low congestion level, and the middle two quartiles

as medium congestion level. This occupancy measure better captures the level of relative

congestion compared to using the daily number of empty NICU beds due to the following

reason: hospitals can frequently keep “temporary” NICU beds which usually are not shown

in official hospital facility reports. Hence, the actual capacity can go beyond the officially

reported bed capacity. This pattern is recognized by NYSDOH7 and empirically observed

in the hospital discharge data. I follow Freedman (2016) to obtain NICU bed counts from

hospital annual Institutional Cost Report (ICR). I also count NICU beds registered under

the Certificate of Need (CON) system to cross validate the NICU bed capacity. The NICU

bed counts reported by hospitals in their annual ICR differ from their CON registered NICU

bed counts. In addition, the daily NICU occupancy derived from the hospital discharge data

exceeds the reported NICU bed capacity on a frequent basis. This implies that hospitals

frequently adopt “temporary” NICU beds to expand their NICU capacity. In this case, using

a relative NICU congestion measure better identifies periods when hospitals indeed face

resource constraints relative to their normal patient volume accounting for any “temporary”

beds they may use.

7NYSDOH issued a letter in 2016 noting that "It has come to the New York
State Department of Health (Department)’s attention that bed capacity in New York
State neonatal intensive care units (NICU) is being exceeded on a frequent basis."
https://www.health.ny.gov/professionals/hospital_administrator/letters/2016/2016-09-27_dal_16-
14_nicu_vercrowding.htm
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3.5 Sample Description

This study focuses on newborn birth admissions to hospital facilities in the New York

City area8 during 2005 to 2009. There are 46 hospitals in the New York City area with

live birth admissions during the sample period. This study is limited to 36 hospitals with

non-zero annual NICU accommodations and further exclude 2 hospitals with fewer than

100 annual birth admissions. The resulting analysis sample consists of 489,635 newborn

birth admissions in 34 New York City area hospitals with NICU facilities.

Birth weight provides a good metric of newborn health and expected care utilization.

Figure B4 and B5 show the average total charges and the in-hospital mortality by birth

weight categories in the sample. VLBW newborns are only 1.5% of total births but demand

33% of total newborn care medical spending and have average in-hospital mortality as high

as 16.6%. LBW newborns constitute 7% of total births, consume 22% of newborn care

spending, and have higher in-hospital mortality compared to normal birth weight newborns.

I define newborns with birth weight below 1500 grams, i.e. VLBW newborns, as high-risk

admissions, newborns with birth weight between 1500 to 2500 grams, i.e. LBW newborns,

as mid-risk admissions, and newborns with birth weight of 2500 grams and above as low-

risk admissions.

The newborn sample consists of 7,448 high-risk admissions (2,273 vaginally-delivered

and 5,175 c-section), 33,158 total mid-risk admissions (17,105 vaginally-delivered and

16,053 c-section), and 449,029 total low-risk admissions (309,637 vaginally-delivered and

139,392 c-section). The birth weight distribution in the sample is shown in Figure B6. Fig-

ure B7 - B10 depict the distribution of attending physician characteristics over patient birth

weight. Newborns with lower birth weight are treated by physicians with longer tenure,

more experience with high-risk newborns, and higher care utilization. Attending physi-

cians of healthier newborns are more junior, less experienced with high-risk newborns, and

have less intensive practice styles. In addition, there is a clear decreasing trend in each

attending physician measure among mid-risk newborns when birth weight increases from

1500 grams to 2500 grams.

Table 1 reports summary statistics in the full newborn sample and in subsamples by

newborn birth weight categories. Care utilization increases dramatically with lower birth

weight. Low-risk newborns on average stay in hospital for 2.8 days (median 2 days), in-

8New York County, Bronx County, Kings County, Queens County, and Richmond County
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Table 1: Summary Statistics

(1) (2) (3) (4)
Samplea All Low-risk Mid-risk High-risk
Panel A: Care Utilization and Patient Outcomes
Length of Stay 3.917 2.791 8.887 49.709
(Median)b 2 2 4 45
Total Charges 12,272 6,050 40,118 263,435
(Median)b 3,813 3,638 11,940 180,016
Number of Procedures 1.693 1.528 2.706 7.114
NICU Admission 0.158 0.115 0.564 0.962
Death in Hospital 0.003 0.000 0.006 0.166
Hospital Transfer 0.004 0.002 0.013 0.091
28-Day Readmission 0.013 0.013 0.016 0.008
1-Year Readmission 0.043 0.040 0.068 0.141
Panel B: Attending Physician Characteristics
Physician Tenure 16.841 16.811 17.118 17.405
Physician Experience with VLBW 0.017 0.013 0.050 0.101
Physician Experience with LBW 0.072 0.065 0.136 0.204
Physician Average Length of Stay 3.796 3.512 6.314 9.773
(Median)b 2.709 2.668 4.134 7.968
Physician Average Total Charges 10,937 9,179 26,455 48,195
(Median)b 4,990 4,869 7,549 27,723
Physician Average Number of Procedures 1.582 1.521 2.132 2.808
Observations 489,635 449,029 33,158 7,448

a Low-risk sample consists of newborns with birth weight of 2500g and above. Mid-risk sample consists of
newborns with birth weight between [1500, 2500)g, i.e. LBW. High-risk sample consists of newborns with
birth weight below 1500g, i.e. VLBW.
b Median is reported for length of stay and total charges only because the distribution is heavily skewed.
Mean and median are close for other continuous variables.

cur total charges of $6.1k (median $3.6k), and have a NICU admission rate of 11.5% after

birth. Mid-risk newborns on average stay in hospital for 8.9 days (median 4 days), in-

cur total charges of $40.1k (median $11.9k), and have a NICU admission rate of 56.4%.

High-risk newborns demand intensive care after birth. They stay in hospital for 49.7 days

(median 45 days), incur total charges of $263.4k (median $180.0k), and have a NICU ad-

mission rate of 96.2%. Despite the highly skewed care utilization distribution, newborns

with lower birth weight still have worse health conditions upon discharge. In-hospital mor-

tality is extremely low among low-risk newborns, but rises to 0.6% among mid-risk and

16.6% among high-risk newborns. The average one-year readmission rate among low-risk
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newborns is 4%. This rate is 6.8% for mid-risk newborns and 14.1% for high-risk new-

borns. High-risk newborns have a low 28-day readmission rate because they are likely

not yet discharged on the 28th day. Table 1 Panel B reports average attending physician

characteristics. Physician tenure and experience with high-risk newborns increase with de-

creased birth weight. Attending physicians of lower birth weight newborns also have more

intensive practice styles, shown by longer length of stay, higher total charges, and higher

number of procedures.

4 Hospital Response to Unscheduled High-risk Admissions

Admissions of vaginally-delivered VLBW newborns are defined as unscheduled high-

risk admissions in this study and serve as demand shocks to hospitals. Section 3.1 and 3.5

provide empirical evidence that unscheduled high-risk admissions happen quasi-randomly

in time and result in high care utilization. In this section, I answer the question of how

hospitals respond to unscheduled high-risk newborn admissions and explore whether the

response varies by the level of congestion, measured by NICU patient occupancy. I find that

hospital capacity can be adjusted in certain extent to accommodate short-term fluctuations

in care demand. Instead of competing for or crowding out existing resources allocated

to previously admitted newborns, unscheduled high-risk admissions draw in additional

resources such as highly specialized physicians. This spills over to incumbent newborn

patients that the highly specialized physicians also treat previously admitted newborns, es-

pecially when hospitals are congested.

4.1 Event Study Specification

I study hospitals’ responses under an event study framework. Patient level data are ag-

gregated into hospital-day or hospital-physician-day panels. Any hospital-day or hospital-

physician-day with vaginally-delivered VLBW newborn admissions are defined as an event

and labeled as “day 0”. The 2,273 vaginally-delivered VLBW newborn admissions in the

sample constitute 2,156 events.9

The event study is implemented in a 5-day window centered at the day of unsched-

uled high-risk admissions. In the case of overlapping event windows, multiple event day

9Multiple VLBW newborns can be admitted to the same hospital on he same day, such as twin births.
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indicators are assigned to the same hospital-day.10

Yh,(p),t =
5∑

j=−5

φjDj
h,(p),t + (αp) + τh,y + τdow + τm + εh,(p),t (1)

• Yh,(p),t is the outcome of an admission in hospital h on day t (by physician p).

• Dj
h,(p),t are event time indicators: Dj

h,(p),t = 1 for being j days apart from an event.11

• D−1
h,t is excluded as the baseline event period and φ−1 is normalized to zero.

• τh,y, τm, τdow are fixed effects for admission hospital-year, month, and day of week.

• αp is physician fixed effect, included in analyses of hospital-physician-day panels.

The event study coefficient φj measures hospitals’ responses to an event j days from

the day of event. φ1 is normalized to zero with D1
h,(p),t omitted in the regression. Co-

efficient on the day of event, φ0, captures any spontaneous responses to the unscheduled

high-risk admission. Post-event coefficients φj , j > 0, measure any lasting effects or de-

layed adjustments. Pre-event coefficients φj , j < 0, provide a test on exogeneity: any

pre-event responses would suggest that the subsequent high-risk newborn admissions may

be expected or the high-risk admission decisions are made endogenously.

4.2 Graphical Evidence of Research Design

I start by presenting event study figures on patient flow, showing how admissions of un-

scheduled high-risk newborns affect daily NICU occupancy, admissions, and discharges.

Figure 2 plots event study coefficients on daily NICU occupancy. It shows that the num-

ber of NICU patients increases by 0.75 on the day of event and that this increase persists

throughout the 5 subsequent days. Such an increase indicates that the unscheduled high-

risk admissions lead to a sharp and persistent short-run increase in care demand. Figure

B11 demonstrates the time pattern of NICU admissions and discharges in the 5-day event

study window. The increase in NICU occupancy on the day of event is driven by an average

increase of 0.91 in NICU admission and an average increase of 0.16 in NICU discharge.

The magnitude of the increase in admission is consistent with the high NICU admission

10Consider two events 3 days away in the same hospital. In this case, the hospital-day before the first event
will be assigned with event day indicators -1 and -4. 39.5% of the event study sample is assigned with
multiple event day indicators.

11Dj
h,(p),t = 1 if Yh,(p),t is |j| days before an unscheduled high-risk admission in hospital h (treated by

physician h) for j < 0 and j days after the unscheduled high-risk admission for j > 0.
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rate for VLBW newborns: more than 90% of the high-risk newborns are directly admitted

to NICU upon birth.12 The increase in discharges on the day of event is entirely driven by

same-day discharges of the unscheduled high-risk newborns who are either transferred out

from NICU or do not survive.

Figure 2: Daily Census of NICU Patients
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Existing studies show that hospitals may discharge patients early or reduce subsequent

admissions to manage fluctuations in patient flow. Since the high-risk newborn admissions

increase both patient volume and average acuity in NICU, we might expect hospitals to

adopt similar managing strategies, especially when NICU occupancy is high. However, the

post-event coefficients in figure B11 show no such patterns. I further explore the effect

of NICU congestion by focusing on events when the NICU facilities are congested on the

day before unscheduled high-risk admissions. Analyses conditioning on NICU congestion

levels will mechanically induce mean reversion patterns in patient flow.13 To account for

this, I construct a control group by randomly sampling hospital-days with the same con-

gestion restriction as “placebo” events. Any mean reversion patterns are differenced out

and DD-event study coefficients are plotted in B12. The DD-event study coefficients show

neither increases in NICU discharges nor decreases in NICU admissions during post-event

periods, suggesting that hospitals do not face hard capacity constraints and attain some

flexibility in accommodating short-term demand shocks even when the occupancy level is

12High-risk newborns not admitted to NICU are either transfered to a different medical facility or too sick to
receive any NICU care.

13The mean reversion pattern will show an increase (decrease) in admission (discharge) prior to the event and
a decrease (increase) in admission (discharge) post to the event if we require NICU to be congested upon
the event.
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high. The event study figure on daily NICU census, combined with the empirical obser-

vation that NICU occupancy can frequently exceed their registered bed capacities, implies

that hospitals can increase facility resources by adding “temporary” beds to accommodate

fluctuations in patient flow.

Figure 3: Effects on in Physician Census and Profile

Physician Census Physician Experience with VLBW
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Switching from facility resources to physicians, I investigate how hospitals manage

physicians in response to unscheduled high-risk admissions. Figure 3 left panel points

to an average increase of 0.5 attending physicians when unscheduled high-risk newborns

are admitted. The increase in newborn patient volume is fully offset by the additional

physicians on the day of event, keeping the patient–physician ratio unaffected (Figure B13).

Figure 3 right panel presents the change in physician composition: the attending physicians

on the day of event are more experienced in treating high-risk newborns, which reflects

hospitals’ responses to the increase in patient acuity.14 The findings on physician census

and physician composition suggest that hospitals bring in additional physicians specialized

in treating high-risk newborns to accommodate the unexpected high-risk admissions.

The event study results indicate that hospital capacity can be adjusted to a certain ex-

tent to accommodate short-term fluctuations in care demand. Instead of competing for or

crowding out existing resources allocated to previously admitted newborns, unscheduled

high-risk admissions draw in additional resources such as highly specialized physicians.

The increase in available resources will not only be allocated to high-risk newborns which

usually produces health benefits (Almond et al., 2010; Chyn et al., 2019), but it may affect

14Figure B8 plots the distribution of physician experience in treating high-risk newborns over birth weight
and indicates that high-risk newborns are treated by physicians specialized in handling high-risk cases.
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incumbent newborns as well. To explore any potential spillovers, Figure 4 plots the frac-

tion of mid-risk newborn admissions attended by the attending physicians of unscheduled

high-risk newborns (“specialized physicians”) on each day in the 5-day window. 32.5%

of mid-risk newborn admissions admitted on the same day as the unscheduled high-risk

newborns are assigned to the specialized physicians. This fraction drops to 28% on the day

before or after the event.15 Figure 5 presents the same figures conditional on NICU conges-

tion levels on the day before unscheduled high-risk admissions (i.e. event day -1). When

NICUs are congested, the specialized physicians treat a higher fraction of previously ad-

mitted mid-risk newborns. On the contrary, such fraction is lower if NICU facilities are not

congested upon unscheduled high-risk admissions and the specialized physicians are more

likely to treat subsequent mid-risk newborn admissions. The changes in physician–patient

assignment among incumbent newborns implies further spillover effects on care utilization

and patient outcomes. These effects, with their implications for medical care productivity,

are presented in Section 5.

Figure 4: Fraction of Mid-risk Newborns Treated by Specialized Physicians
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The hypothesis that hospitals call in specialized physicians upon unscheduled high-risk

admissions which spills over to incumbent patients is well supported by the event study

findings. However, a data limitation prevents validating it with any direct evidence. In

the hospital discharge data, a physician can be observed only when being assigned as an

15A patient’s attending physician can be different from the admitting physician. The attending physician is
the one making most treatment decisions and can be assigned later during the stay. It is not unusual that a
physician gets in hospital and receives a patient admitted on the previous day.
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Figure 5: Fraction of Mid-risk Newborns Treated by Specialized Physicians
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attending physician. The time associated with physician presence is the admission time of

the patient, not the time when the physician actually treats the patient or starts working.

In the case that a specialized physician is in the hospital treating patients during pre-event

days and then gets assigned to the unscheduled high-risk patient on the day of event, it will

generate the same pattern as in Figure 4. Hence, this data limitation makes it difficult to

distinguish between physicians who are called in and physicians who have been on duty

at the event time. However, whether the specialized physicians are called in or have been

on duty, the research setting in this study stays valid as long as unscheduled high-risk

admissions create exogenous variation in physician–patient matching among previously

admitted newborns not associated with patient conditions.

To provide supporting evidence that hospitals call in specialized physicians upon un-

scheduled high-risk admissions, Figure B14 overlays two event study plots on daily admis-

sion census for the specialized physicians at a hospital-physician-day level.16 Comparing

events when a specialized physician treats the unscheduled high-risk newborns (high-risk

events) to events when the physician attends other newborn admissions (placebo events)17,

these physicians treat fewer patients on days prior to and following treating an unsched-

uled high-risk newborn compared to their usual admitting pattern. This indicates that some

physicians may be called in just upon unscheduled high-risk newborn admissions. Figure

B15 plots event study coefficients for high congestion events. When the NICU facilities are

16The number of patients attended includes both newborn patients and non-newborn patients. On average,
86% of the patients treated by the specialized physicians are newborn patients, and the average fraction of
under 5 years old is 95%.

17Placebo event dates are constructed under stratified random sampling which preserves the number of events
in each physician-hospital cell.
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congested, gaps on event day -2 and -3 are wider, the gap on event day -1 is slightly smaller,

and physicians attend more patients in general. This pattern is consistent with the hypoth-

esis that hospitals are more likely to call in specialized physicians when NICU facilities

are congested (larger gaps on event day -2 and -3) and these physicians treat more patients

admitted on the previous day (smaller gap on event day -1). Figure B16 provides support-

ing evidence that physicians on average attend fewer patients on days prior to attending an

unscheduled high-risk admission.

5 Spillover Effect of Unscheduled High-risk Admissions

Event study results in Section 4 indicate that unscheduled high-risk admissions can af-

fect attending physician assignment among previously admitted newborns, especially when

the NICU congestion level is high. This exogenous variation in physician–patient match-

ing provides a natural experimental setting to study the effect of physician practice on pa-

tient outcomes. In this section, I implement patient level regressions and report estimated

spillover effects on physician practice styles, care utilization, and patient outcomes. The

results indicate that incumbent newborns received more intensive treatments but show little

health improvement. The increase in care utilization is likely driven by physician practice

styles. I also present a stylized production model in Appendix Section A to rationalize

hospitals’ responses and discuss the implications for efficiency.

5.1 Spillover Effects Predicted by Hospital Response

Event study findings provide empirical evidence that hospitals respond to unexpected

increases in demand differently based on the level of congestion. The stylized hospital

production model in Appendix Section A helps rationalize the differential responses by

showing that the optimal matching decision depends on the relative magnitudes of a) the

productivity gains of matching physicians with suited skills to patients; and b) the incurred

costs of achieving good skill–task matching between physicians and patients.

Figure B17 lists four hypothetical hospitals’ responses. Assuming physician A, B, and

C are on site upon the admission of an unscheduled high-risk patient. Since the potential

cost of mistreatment is consequential on high-risk patients, hospitals are likely to prioritize

the unscheduled high-risk admissions when making physician assignments. According to
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the empirical patterns in Figure B7 - B10, we assume that the attending physician of the

high-risk patient has a more intensive practice style and is more experienced in treating

high-risk patients. Scenario 1 and 2 hypothesize that the high-risk patient is assigned to an

on-site physician and no new physician is called in. In scenario 3 and 4, a highly specialized

physician D is called in to treat the high-risk patient.

Whether hospitals call in any specialized physicians and whether specialized physicians

treat any incumbent patients lead to different predictions of spillover effects. Scenario 1

predicts that physicians treating incumbent patients will be less experienced in treating

high-risk patients and have less intensive styles. Scenario 4 predicts that incumbent patients

will be assigned to physicians with more intensive styles and more experienced in treating

high-risk patients. Scenario 2 and 3 predict relatively little or no spillover. If we believe that

hospitals are in higher need for additional physicians when they are congested and that the

called in physicians are also more likely to treat incumbent patients as shown in Figure 5 left

panel, we would expect to observe increased average level of physician specialization and

style intensity among incumbent newborns when NICU occupancy is high, as suggested in

Scenario 4. If we believe that hospitals are less likely to call in additional physicians or that

specialized physicians are less likely to treat incumbent patients as shown in Figure 5 right

panel, we would expect to observe reduced average level of physician specialization and

style intensity among incumbent newborns when NICU occupancy is low, as suggested in

Scenario 1.

5.2 Regression Specification

To estimate the spillover effects of high-risk admissions on previously admitted new-

born patients, I partition the newborn sample into four subsamples, listed in Table A1.

Following the definition in event study, vaginally-delivered VLBW newborn admissions

are defined as unexpected high-risk admissions. C-section VLBW newborn admissions

are excluded in the spillover analyses, because they are not smoothly distributed over time

as shown in Figure 1 and B1.18 I focus on mid-risk newborns in measuring the spillover

effects for two reasons: 1) mid-risk newborns demand medical care upon birth, and are

hence vulnerable to demand shocks; 2) mid-risk newborns have higher rate of NICU ad-

mission, and are hence more likely to share medical resources with high-risk newborns in

18I provide supplementary analyses using C-section VLBW newborn admissions as unscheduled high-risk
admissions in Appendix Section B
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the NICU. Low-risk newborns mostly stay in the regular nursery after birth and require

little medical care. They serve as a placebo group in this study since unscheduled high-risk

admissions are expected to have little impact on these healthy newborns. All multiple births

are excluded from the spillover analysis sample.

The mid-risk analysis sample consists of 23,791 newborn admissions with birth weight

between 1500 grams to 2500 grams. Newborns admitted within two days prior to an un-

scheduled high-risk admission are assigned to the treated group. The control group consists

of all newborns whose birth admission lies three or more days apart from any unscheduled

high-risk admissions. Newborns admitted on the same day or within the two days after

an unscheduled high-risk admission are studied separately in supplementary analyses in

Appendix Section B since these newborns may experience very different spillover effects

compared to incumbent newborns. Their admissions can also be endogenous to the un-

scheduled high-risk admissions.19

Adopting an admission time cutoff in assigning newborns to treated and control groups

is essential to this study. Using actual overlaps with unscheduled high-risk newborns would

lead to bias or fail to capture key effects for several reasons: 1) length of day is an outcome

which could be affected by the unscheduled high-risk admission hence is endogenous; 2)

newborns with longer length of stay tend to have worse health conditions and have higher

probability of encountering unscheduled high-risk admissions; 3) mid-risk newborns might

have reduced demand for care after several initial days, and are therefore expected to show

little effect if encountering unscheduled high-risk admissions too late during their hospital

stay. The admission time cutoff is chosen empirically to balance the actual rate of overlap

and care intensity demanded. Less than 2% of low birth weight newborns are discharged on

the day of birth or on the day after (Figure B18). Therefore, birth admissions within the two

days prior to an unscheduled high-risk admission almost surely have some overlap with the

high-risk newborn, shown in Figure 6. In addition, as shown in Figure B19, care intensity

is concentrated in the first three days during newborns’ hospital stays. To establish direct

evidence that unscheduled high-risk admissions lead to sharp increases in care demand,

Figure 7 counts the total number of procedures performed on NICU patients and plots the

fraction performed on the unscheduled high-risk patients. On the day of unscheduled high-

risk admission, the newly admitted high-risk patients take up more than 50% of total NICU

19Hospitals might be selective in admitting newborns after unscheduled high-risk admissions which will
result in endogeneity. Newborns admitted on the same day of and shortly after any unscheduled high-risk
admissions are exposed to such potential selection issue.
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procedures. This fraction decreases to approximately 10% on the 3rd day after birth and

further to below 5% on the 7th day and thereafter.

Figure 6: Identifying a Treated Group by Overlap with High-risk Admission
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Figure 7: Fraction of Procedures on High-risk Admissions
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The key identifying assumption is that encountering an unscheduled high-risk admis-

sion within two days after birth is as good as randomly assigned. Under such assumption,

newborns in the treated and control groups should be similar upon admission. Any dif-

ferences in care utilization or patient outcomes would serve as a measure of the spillover

effects of unscheduled high-risk admissions. A patient level regression is specified to cap-
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ture any differences between the treated and control groups:

Yi,h,t = α · Prei,h,t + βXi,h,t + τh,y + τdow + τm + εi,h,t (2)

• Yi,h,t is the outcome measure of newborn i admitted on day t in hospital h.

• Prei,h,t is the treated group indicator: Prei,h,t = 1 for newborns admitted within the

2 days prior to an unscheduled high-risk admission.

• Xi,h,t flexibly controls for patient observables, including dummies for birth delivery

method, insurance type, race, gender, and birth weight (250-gram bins).

• τhy, τm, τdow are hospital-year, birth month, and day of week fixed effects.

α is the coefficient of interest in this study, which captures any differences between the

treated and control groups. It provides a measure of the spillover effect if the outcome vari-

able is care utilization or patient outcome measures. When substituting patient observables

as outcome variables in the regression, coefficient α provides a direct test of the identifying

assumption.

To examine the effect heterogeneity across congestion levels, I interact the treated group

indicator with the congestion indicator following the following regression specification:

Yi,h,t =
∑
c

αc ·Prei,h,t× (Cgsth,t = c) + βXi,h,t +
∑
c

γc + τh,y + τdow + τm + εi,h,t (3)

• Cgsth,t is the NICU congestion indicator described in Section 3.4.20

• αc captures spillover effects at each congestion level.

• γc controls for base level differences by congestion levels.21

To allow flexibility, I implement an augmented regression model by interacting the con-

gestion indicator with all covariates and fixed effects. The augmented regression model is

equivalent to subsample regression by congestion levels following equation (2). Coefficient

estimates without covariates-congestion interactions from regression (3) and regression es-

timates from the augmented regression model are both reported for comparison.

Table 2 presents covariates balance in the sample, estimated under equation (2). Patient

20The congestion level is measured on the day before each newborn’s admission. The congestion level upon
newborn admissions in the treated group persists till the day of the unscheduled high-risk admission.

21Congestion level could affect hospital admission decisions. Patients admitted when hospitals are congested
can differ from patients admitted when hospitals are not congested. Hence, it is essential to match the
congestion level for the control and treated groups so that the treated–control differences are causally inter-
pretable.
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observables X are removed from the regressors and used as dependent variables. Columns

1 and 2 report covariate averages in the control and treated groups. Columns 3 - 6 re-

port average covariate differences between the treated and control groups, controlling for

hospital-year, month, and day of week fixed effects. We observe small and insignificant dif-

ferences between the treated and control groups across all measures in the overall sample

and at each congestion level. This provides strong support that the treated–control status is

as good as randomly assigned.

Table 2: Covariates Balance Table

(1) (2) (3) (4) (5) (6)
Control Treated Difference Difference Difference Difference

C-section 0.409 0.392 -0.0152 -0.0137 -0.0137 -0.0270
(0.0123) (0.0186) (0.0198) (0.0223)

Birth Weight 2197.2 2184.0 -5.043 -4.055 -0.625 -16.24
(6.373) (12.27) (10.03) (13.72)

White 0.258 0.295 -0.00481 -0.00684 -0.00138 -0.0229
(0.00957) (0.0148) (0.0129) (0.0185)

Black 0.333 0.321 -0.00363 -0.00826 -0.00342 0.00152
(0.0115) (0.0233) (0.0132) (0.0273)

Female 0.534 0.528 -0.00888 -0.0167 -0.0189 0.0270
(0.00822) (0.0187) (0.0130) (0.0261)

Medicaid 0.611 0.599 0.00387 -0.00344 0.00360 0.0135
(0.00760) (0.0166) (0.0117) (0.0191)

Observations 21629 2162 23791 7015 11790 4986
Congestion All All All Low Medium High

Standard errors in parentheses Standard errors are clustered at hospital level
a Hospital-year, month, and day of week fixed effects are included in measuring treated–control differences.

5.3 Impact Estimates

In this section, I report the estimates of spillover effects from regression equations

(2) and (3). Two sets of outcomes are analyzed: 1) attending physician profile and prac-

tice style; 2) care utilization and patient outcomes. In Table 3 - 6, regression coefficients

from equation (2) are reported in the top panel and regression coefficients at each conges-

tion level are reported in the bottom panel. The effect estimates attain similar magnitudes

with or without congestion-covariates interactions. Hence, I only report estimates with

congestion-covariates interactions from the subsample regression discussed in Section 5.2
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in alternative specifications and robustness checks.

5.3.1 Attending Physician Profile and Practice Styles

As motivated in Section 5.1, newborns admitted prior to unexpected high-risk admis-

sions may experience either positive or negative spillovers in terms of physician–patient

matching. This section summarizes the spillover effect on attending physician tenure, ex-

perience with sick newborns, and physician practice style measures.

Table 3 reports differences in attending physician profiles. Coefficients in the top panel

indicate no overall difference between the treated and control groups. The bottom panel

suggests that when NICUs are congested, newborns admitted within the two days prior to

unscheduled high-risk admissions are attended by physicians more experienced in treating

sick newborns. At high congestion levels, columns 3 - 6 indicate that treated group new-

borns are assigned to physicians with 6% more experience with high-risk newborns and

10% and more experience with mid-risk newborns. When the NICU occupancy is low,

columns 1 and 2 indicate that newborns admitted before unscheduled high-risk admissions

are treated by more junior physicians, shown by a decrease in tenure of more than 0.8 years.

These physicians are also marginally less specialized in treating sick newborns.

Table 3: Differences in Attending Physician Profile

(1) (2) (3) (4) (5) (6)
Congestion Physician Tenure Experience with VLBWa Experience with LBWa

All -0.234 0.00138 -0.0000981
(0.258) (0.00146) (0.00186)

Low -0.882** -0.824* -0.000221 -0.000908 -0.00448 -0.00619*
(0.380) (0.408) (0.00323) (0.00317) (0.00338) (0.00340)

Medium -0.114 -0.0789 0.000517 0.000225 -0.00161 -0.00177
(0.316) (0.352) (0.00279) (0.00295) (0.00221) (0.00221)

High 0.406 0.423 0.00594* 0.00606* 0.0101** 0.0117***
(0.427) (0.514) (0.00335) (0.00314) (0.00418) (0.00405)

Covariate x Cgst No Yes No Yes No Yes
Nb 23164 23164 23669 23669 23669 23669
Y-mean 17.13 17.13 0.0459 0.0459 0.130 0.130

Standard errors in parentheses Standard errors clustered at hospital level
a VLBW newborns=high-risk newborns; LBW newborns=mid-risk newborns.
b A small fraction of patients have no attending physician measures because of missing physician license informa-
tion or no previous admitted patients to construct experience measure.
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Table 4: Differences in Attending Physician Practice Stylea

(1) (2) (3) (4) (5) (6)
Congestion Avg. Length of Stay (log) Avg. Total Charges (log) Avg. # of Procedures
All 0.000803 0.00638 0.0326**

(0.00736) (0.0144) (0.0157)
Low -0.0172 -0.0277* -0.0304 -0.0502 0.0206 0.00142

(0.0170) (0.0161) (0.0324) (0.0304) (0.0283) (0.0282)
Medium -0.00335 -0.00342 0.00628 0.00531 0.0150 0.0140

(0.00934) (0.00952) (0.0202) (0.0209) (0.0202) (0.0210)
High 0.0364* 0.0409** 0.0597 0.0708** 0.0889** 0.0849**

(0.0203) (0.0188) (0.0377) (0.0346) (0.0373) (0.0348)
Covariate x Cgst No Yes No Yes No Yes
Nb 23535 23535 23535 23535 23535 23535
Y-mean 1.771 1.771 9.323 9.323 2.085 2.085

Standard errors in parentheses Standard errors clustered at hospital level
a For patients admitted on day t attended by physician p, physician practice style measures are defined to be average
total charges, length of stay, and number of procedures among newborn patients discharged up to day t-1 by physician
p.
b A small fraction of patients have missing physician practice measures because there is no previously discharged
patients by their attending physicians.

Table 4 reports differences in attending physician practice style baseline measures. The

top panel indicates an overall more intensive style shown by higher average number of pro-

cedures. Coefficients in the bottom panel indicate that this effect is driven by the effect at

high congestion levels. When NICU facilities are congested, newborns admitted just prior

to unscheduled high-risk admissions are treated by physicians who, on average, assigning

4% longer length of stay, 7% higher charges, and 4% (0.0849/2.085) more treatment proce-

dures. Table A2 reports estimated differences in attending physician practice style residual

measures. Despite the measurement issue discussed in Section 3.3, point estimates show a

similar pattern when compared to Table 4.

Linking the empirical estimates on physician measures to the predictions presented in

Section 5.1, Table 3 and 4 indicate that the differences in attending physician profile when

NICU congestion level is low are consistent with the prediction in scenario 1: shorter

tenure, less experience with LBW, and less intensive practice styles. When NICU con-

gestion level is high, the effect estimates are consistent with the prediction in scenario 4:

longer tenure, more experience with at-risk newborns, and more intensive practice styles.
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5.3.2 Care Utilization and Patient Outcomes

Section 5.3.1 provide evidence that unscheduled high-risk newborn admissions affect

the attending physician assignment among previously admitted newborns. Considering

the large influence physicians have on medical decisions, this section reports estimated

spillover effects on care utilization and patient outcomes. Table 5 summarizes coefficient

estimates on length of say, total charges, and number of treatment procedures. The top

panel indicates no overall difference between the treated and control group newborns.

When focusing on estimates at each congestion level, the bottom panel shows that un-

scheduled high-risk admissions lead to a 7% increase in length of stay, a 10% increase in

total charges, and an 8% (0.208/2.681) increase in number of procedures among incum-

bent newborns when NICU facilities are congested. To report the effects in levels, there is

an increase of 0.6 (8.063×0.0731) days in length of stay, $3653 ($34139×0.107) in total

charges, and 0.2 in number of procedures. When NICU congestion level is low, the point

estimates indicate a reduction in care utilization, although the effects are smaller and in-

significant. The results on care utilization, especially the heterogeneity across congestion

levels, are consistent with the findings on physician practice style. This implies that the

changes in treatment intensity could be mostly driven by physician practice styles. I return

to this point and discuss potential mechanisms in Section 6.

Table 5: Differences in Care Utilization during Hospital Stay

(1) (2) (3) (4) (5) (6)
Congestion Length of Stay (log) Total Charges (log) # of Procedures
All 0.00623 -0.00373 0.0177

(0.00984) (0.0155) (0.0472)
Low -0.0150 -0.0167 -0.0125 -0.0287 -0.0670 -0.0533

(0.0250) (0.0241) (0.0349) (0.0359) (0.0573) (0.0553)
Medium -0.00638 -0.00510 -0.0399* -0.0362 -0.00764 -0.0145

(0.0138) (0.0139) (0.0231) (0.0233) (0.0752) (0.0705)
High 0.0655*** 0.0731*** 0.0913** 0.107** 0.198* 0.208

(0.0225) (0.0264) (0.0435) (0.0444) (0.109) (0.125)
Covariate x Cgst No Yes No Yes No Yes
N 23791 23791 23791 23791 23791 23791
Y-mean 1.875 1.875 9.437 9.437 2.681 2.681

Standard errors in parentheses Standard errors clustered at hospital level

To further examine the spillover effects on care utilization, Table A3 reports effects on
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number of procedures performed on the 3rd day and later, on the 4th day and later, and

on the 5th day and later.22 Such estimates provide us with additional information of the

effect timing. Focusing on the estimates in the bottom panel when NICU is congested,

the increases in number of procedures persist over time and attenuate gradually, suggest-

ing that the additional procedures performed are spread out during the hospital stay. Table

A4 presents estimates on cumulative care utilization in the first year after birth.23 Coef-

ficient estimates show similar patterns and magnitudes compared to estimates in Table 5.

This indicates that the increase in care utilization upon birth does not reduce subsequent

utilization, and therefore is not a reallocation of care over time within the first year of life.

An important question to answer is whether increased care utilization leads to improve-

ment in patient outcomes which provides a measure of productivity. Table 6 summarizes

effect estimates on in-hospital mortality24, hospital transfer, and readmission measures.

None of the coefficients are significant, suggesting no clear improvement in patient out-

comes. One may criticize that these outcome measures are rare events and it might be

underpowered to capture any meaningful effects. However, this analysis focuses on mid-

risk newborns, who have higher likelihood of having adverse health conditions than an

average healthy newborn. The 1-year readmission measure reported in Table 6 has a sam-

ple average of 7%. The point estimates are insignificant and small in magnitudes. The

relatively narrow confident interval indicates that we can reasonably conclude with a zero

effect.

The findings of increased treatment intensity and lack of observable health benefits im-

ply a low or zero return to the additional care utilization among incumbent newborns. It is

likely that the level of care provision among mid-risk newborns has reached the “flat-of-the-

curve”. Therefore, the more intensive practice styles of highly specialized physicians do

not generate noticeable patient benefits. One may interpret that assigning highly specialized

physicians to previously admitted lower-risk newborns when hospitals are congested results

22Procedures performed on 3rd+ days after birth are performed after the day of unscheduled high-risk admis-
sions for all newborns in the treated group.

23For patients admitted in the last year in the sample, such cumulative measure is downward biased due to
sample period limitation. This issue is addressed by the time fixed effects included in the regressions.

24In-hospital mortality does not capture infant deaths outside hospitals. The 1-year in-hospital mortality is
computed by tracing all hospital admissions of a newborn during the first year after birth. The in-hospital
mortality is 0.7%, and the cumulative 1-year in-hospital mortality is 0.78% in my mid-risk sample. To
benchmark the mortality measures in this paper, the overall 28-day and 1-year infant mortality in 2005-
2009 U.S. Linked Birth/Infant Death Cohort Data is 0.45% and 1.4% among newborns with birth weight
between 1500g to 2500g.
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in wasteful medical spending. However, such a conclusion ignores the costs to achieve a

seemingly more efficient physician–patient matching. When hospitals are congested, ad-

ditional physicians will be needed to reduce waiting and ensure care quality. In the case

of no high-risk newborn admissions, hospitals may bring in additional physicians normally

treating mid-risk newborns. But with unexpected high-risk admissions, hospitals need to

call in highly specialized physicians regardless. Therefore, not letting the highly special-

ized physicians treat previously admitted lower-risk newborns and bringing in additional

physicians with better-suited practice styles will incur additional costs. Hence, when tak-

ing into account the costs in optimizing physician–patient assignment, the spillover effects

and hospitals’ responses may be interpreted as a constrained optimization to accommodate

fluctuations in care demand.

5.3.3 Effect Heterogeneity

Summary statistics in Table 1 and Figure B7 - B10 indicate that care utilization and

attending physician characteristics differ significantly across birth weight groups. If care

providers consider birth weight as an important metric in making medical decisions, spillover

effects of unscheduled high-risk admissions on incumbent newborns may also vary over

birth weight. To flexibly trace out the distribution of spillover effects over birth weight,

newborns with birth weight between 1500 grams and 3500 grams are grouped into 100-

gram birth weight categories. Spillover effects at high congestion levels are estimated for

each birth weight group.25

Figure B20 - B22 and Figure B23 - B25 present marginal treatment effects on physician

profile and care utilization. Although the estimates are less precise due to small sample

sizes for newborns with lower birth weight, all outcomes show similar patterns: the effects

appear when birth weight drops below 2300 grams. In addition, newborns with birth weight

near 1500 grams stay longer in the hospital and incur higher charges but do not experience

different attending physicians practice styles, possibly because they are always treated by

physicians specialized in high-risk cases. At the other end, higher birth weight groups have

larger sample sizes and generate more precise estimates. Newborns at the normal birth

weight range, i.e. above 2500 grams, are not affected by unscheduled high-risk admissions

25A regression similar to equation (3) replacing congestion indicators to birth weight group indicators is
implemented in the subsample of high congestion levels. Covariate coefficients are not set to vary by birth
weight groups.
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in all outcomes.

The distribution of spillover effects over birth weight implies that specialized physi-

cians do not treat the average incumbent newborn. To examine how physician–patient

assignment is affected among previously admitted newborns, I compare incumbent new-

borns treated by the specialized physicians to incumbent newborns assigned to other physi-

cians. If we assume newborns with relatively higher risks are assigned to the specialized

physicians, incumbent newborns treated by other physicians would be positively selected

in their health conditions. Table A5 top panel indicates that patient observables are similar

between the treated and control group newborns, the same as in Table 2. Coefficients on

interaction terms in panel B separate the overall differences by whether the newborns in the

treated group are attended by the physicians of unscheduled high-risk newborns or by other

physicians. Treated group newborns assigned to the specialized physicians have a higher c-

section rate, a lower fraction of females, and a significantly lower average birth weight. The

difference in female fraction is driven by the gender difference in birth weight distribution

that more male than female newborns are on the lower end of the birth weight distribution.

On the other hand, treated group newborns assigned to other physicians are positively se-

lected with a lower c-section rate and higher birth weight. Panel C reports treated–control

differences focusing on a subsample of newborns in the treated group when the attend-

ing physician of subsequent unscheduled high-risk admission treats no incumbent patients.

The coefficient estimates indicate that newborns in the treated group have better than av-

erage health conditions when the attending physician of subsequent unscheduled high-risk

admission does not treat any incumbent patients. These results suggest that hospitals are

aware of physician specialization and try to match physicians’ skills to suited patient con-

ditions to maximize productivity. In a more extreme case shown in panel C, it may be

hospitals’ consideration that incumbent patients are too healthy to benefit from the practice

styles of physicians specialized in treating high-risk cases.

5.3.4 Robustness Checks

This section presents effect estimates under alternative specifications. I first show that

estimated results are consistent and of similar magnitudes under different sets of covariates.

I then test alternative control groups and explore how the results change under different

definitions of treated groups. According to the baseline estimates, the spillover effects are

only significant in the subsample of high NICU congestion levels. Hence, I only report
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robustness analyses results for the high congestion subsample.

The baseline results under regression (2) include control variables of birth delivery

method, insurance type, race and gender, and birth weight. To present how patient observ-

ables affect effect estimates, Table A6 reports coefficients estimated from regression (2)

adding control variables one at a time. All regressions include hospital-year, birth month,

and birth day of week fixed effects. Comparing across column 1 - 5, effect estimates are

robust to different patient observable controls. R2 increases and standard errors are re-

duced, generating more precise point estimates. When newborn birth weight is controlled

for, comparing column 4 to column 5, coefficients show smaller magnitudes but are more

precisely estimated.26

The baseline specification categorizes newborns admitted three or more days apart from

unscheduled high-risk admissions as the control group. Shown in Figure 6, newborns under

this control group definition could experience hospital stays overlapped with unscheduled

high-risk newborns. To reduce the influence of unscheduled high-risk admissions on con-

trol group newborns, I adopt different time cutoffs in the control group definition to test for

robustness. Newborns admitted further away from unscheduled high-risk admissions (i.e.

4 or more days, 5 or more days, and 6 or more days apart from the high-risk admissions)

are included in three alternative control groups. The treated groups are held the same as

in the baseline specification. Table A7 summarizes effect estimates with different control

groups. Column 1 reports coefficients from the baseline specification. Columns 2 - 4 report

coefficients using control groups further away from the unscheduled high-risk admissions.

Comparing across columns, point estimates are of comparable magnitudes. Most coeffi-

cients remain significant despite of larger standard errors due to reduced sample sizes.26

To explore how effect magnitudes vary with the level of hospital stay overlap with the

high-risk newborns, alternative treated groups are defined to include newborn admissions

with different time gaps prior to unscheduled high-risk admissions: (1) within the two days

prior (baseline), (2) one day prior, (3) 0-12 hours prior,27 (4) 12-24 hours prior, (5) 24-

36 hours prior, and (6) 36-48 hours prior to unscheduled high-risk admissions. Treated

group (2) is a subgroup of the baseline treated group. All newborns in the treated group

26 Estimates on patient outcomes in Table 6 stay small and insignificant, robust to alternative specifications.
Results available upon request.

27Newborns born within 12 hours prior to unscheduled high-risk admissions are likely to have endogeneity
issues. Considering the time of labor, hospitals might be aware of the incoming high-risk newborns and
pre-respond to the demand shocks.
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(3) - (6) are admitted within two days prior to unscheduled high-risk admissions. However,

more than 70% of newborns in the treated group (3) and around 20% of newborns in the

treated group (4) are admitted on the same day of unscheduled high-risk admissions, hence

they are not included in the baseline analyses. The control group is held the same as in

the baseline specification. Table A8 column 1 reports the spillover effects from baseline

specification. Column 2 reports spillover effects among newborns admitted one day prior

to unscheduled high-risk admissions. The subgroup of mid-risk newborns admitted prior

but closer to unscheduled high-risk admissions shows similar effects across all outcomes.

Despite smaller treated group sample size, effects on care utilization attain similar preci-

sion levels but estimates on attending physician characteristics are less precisely estimated.

Columns 3 - 6 report effect estimates on incumbent newborns by their admission time in

four non-overlapping 12-hour intervals. Spillover effects on care utilization are concen-

trated among newborns admitted 12-24 hours prior to unscheduled high-risk admissions.

Effects on attending physicians are mainly driven by newborns admitted 12-36 hours prior,

but are less precisely estimated.26

Another possible source of variation in spillover effects is whether incumbent new-

borns stay inside or outside NICU. In this analysis, I focus on newborns who are directly

admitted to NICU after birth and newborns who are never admitted to NICU. Since un-

scheduled high-risk admission might affect the NICU admission decision, newborns ad-

mitted to NICU on days after the day of birth are excluded in the analysis. The same

sample definition is applied to the control group. To compare effects among NICU and

non-NICU newborns, I interact an inside-NICU indicator with the treated group indicator

in regression (2) and control for the baseline effect of staying inside NICU.28 Table A9

presents estimates among the entire sample and among NICU and non-NICU patients. Co-

efficients in the top row differ slightly from those under the baseline specification because

of the exclusion of newborns with non-immediate NICU admissions. The middle row re-

ports effects among NICU incumbent newborns and the bottom row reports effects among

non-NICU incumbent newborns. Comparing the middle and bottom rows, all spillover ef-

fects are concentrated among NICU incumbent newborns. No difference is seen in patient

outcomes in either patient groups (not reported). It is worth noting that newborns with im-

28An alternative approach is to implement regression (2) in subsamples of NICU and non-NICU newborns.
The subsample approach allows coefficients on covariates to differ inside and outside NICU. However, such
approach reduces the sample size by half hence leads to imprecise estimates. Hypothetically, there is little
reason to believe patient observables affect outcomes significantly different inside and outside NICU.
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mediate NICU admission are in worse heath conditions compared to non-NICU newborns.

Hence, it is hard to disentangle whether the heterogeneity is caused by NICU admission or

newborn health conditions, as shown in Section 5.3.3.

Newborns with birth weight of 2500 grams or above have low health risks and have

limited demand for care after birth. They stay mostly in regular nurseries that are phys-

ically separate from NICU facilities. Hence, unscheduled high-risk newborn admissions

are expected to have little influence on low-risk newborns. Table A10 summarizes effect

estimates among the low-risk sample. Only subsample estimates from equation (2) by con-

gestion levels are reported. Comparing coefficients in Table A10 to point estimates in the

bottom panel even columns of Table 3, 4, and 5, all coefficients from the low-risk sample

are precisely estimated zeros. This result is consistent with the hypothesis that low-risk

newborns have limited interaction with high-risk admissions even with overlapping hospi-

tal stays.

To complete the analysis of the spillover effect, I also estimate the spillover effects

on mid-risk newborns admitted on the same day or within the two days after unexpected

high-risk admissions in Appendix Section B.1. I also present effect estimates on incumbent

newborns using c-section VLBW birth admissions as demand shocks in Appendix Section

B.2.

6 Possible Mechanisms

Results in Section 5.3.2 show that newborns admitted prior to unscheduled high-risk

admissions are treated by physicians with more intensive practice styles and receive in-

creased medical care. One plausible explanation is that the increase in treatment intensity

is driven by physicians’ practice styles unrelated to patient conditions. Hence, little benefit

is observed in newborn health.

To explore the impact of physicians’ practice styles, I follow Baron and Kenny (1986)

to test a mediation hypothesis. Specifically, I seek to decompose the total spillover effects

into direct effects that are not associated with the attending physicians’ practice styles and

indirect effects that are mediated through physicians’ practice styles. Partial mediation

occurs if the mediator variable accounts for some, but not all, of the total spillover effects.

Denoting the measure of physicians’ practice styles as variable Phy, two regression
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equations are estimated simultaneously following the variable notation in equation (2):

Phyi,h,t = φ1 · Prei,h,t + βXi,h,t + µi,h,t,

Yi,h,t = φ2 · Pre+ θ · Phyi,h,t + βXi,h,t + εi,h,t.

φ2 measures the direct effect of Pre on Y and φ1 ·θ measures the indirect effect through

physicians’ practice styles, i.e. the mediator variable Phy.29 The total effect is the summa-

tion of direct and indirect effects (φ1 · θ + φ2).30

Table A11 column 1,3, and 5 report coefficients estimated simultaneously from the

above two equations using structural equation modeling (SEM). The physician practice

baseline measures defined in Section 3.3 are tested as mediator variables Phy. The di-

rect effect is measured by the regression coefficient φ2. The indirect and total effects are

calculated by “nonlinear combinations of estimators” function nlcom where the standard

errors are computed using the Delta Method. Indirect % measures the indirect fraction of

total effect, i.e. the fraction through mediator variable Phy. Columns 2, 4, and 6 report

the total spillover effects estimated from equation (2), which differ slightly from Table 5

due to the exclusion of observations missing physician practice measures. The indirect ef-

fect percentages reported in the bottom panel imply that physicians’ practice styles account

for 25% - 40% of the total increases in care utilization. Considering that the mediating

variable Phy only captures one dimension of physician practice, the decomposed indirect

effects through physician style can be interpreted as a lower bound. There could also ex-

ist spillovers in treatment practice across physicians. These effects are closely related to

physician practice, but will be captured as direct effects instead of indirect effects through

physician practice style measure Phy.

To further explore how physician styles affect care utilization, I test whether procedures

performed on the unscheduled high-risk newborns increase the probability of receiving the

same procedures among incumbent newborns patients. Specifically, I analyze three ICD-

9 procedures that high-risk newborns frequently receive on the day of admission and are

also common among mid-risk newborns: 93.90 non-invasive mechanical ventilation, 99.15

29For patient i admitted on date t attended by physician p, Phyi,h,t is calculated to be average Y of patients
discharged by the physician p up to date (t− 1).

30Although the Baron and Kenny (1986) method is the most commonly used approach in testing mediation ef-
fects and some associated technical issues can be addressed by structural equation modeling (SEM), it may
suffer identification issues and the effect decomposition needs to be interpreted with caution (MacKinnon
et al., 2007; Hayes, 2009; Zhao et al., 2010).
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parenteral infusion of concentrated nutritional substances, and 99.83 other phototherapy. A

regression modified from equation (2) is implemented:

Y j
i,h,t = γ0 · Prei,h,t × (Procji,h,t = 0) + γ1 · Prei,h,t × (Procji,h,t = 1)

+ βXi,h,t + τh,y + τdow + τm + εi,h,t (4)

• Y j
i,h,t,s = 1 if patient i admitted on date t in hospital h receives procedure j during

the 2 days after the admission day.

• Prei,h,t = 1 if patient i admitted on date t in hospital h encounters an unscheduled

high-risk newborn within the 2 days the admission day.

• Procji,h,t = 1 the unscheduled high-risk newborn receives procedure j on the day of

admission.

• γ0 captures the spillover effect when newborns in the treated group encounter an

unscheduled high-risk newborn who does not receiving procedure j on the day of

admission.

• γ1 captures the spillover effect when newborns in the treated group encounter an

unscheduled high-risk newborn who receives procedure j on the day of admission.

Table A12 summarizes regression results on the three procedures that are common both

among high-risk and mid-risk newborns. The odd columns summarize the regression re-

sults among all mid-risk newborns and the even columns report estimates at high congestion

levels. Encountering an unscheduled high-risk newborn receiving one of the three proce-

dures on the day of admission significantly increases the probability of receiving the same

procedure among incumbent newborns. No similar increase in procedure use is observed

when encountering an unscheduled high-risk newborn not receiving such procedure. Table

A12 even columns present the estimated effects when NICUs are congested. Although the

estimates are less precise due to the reduction in sample size, the point estimates are pos-

itive and take larger values compared to effect estimates when the unscheduled high-risk

newborns receive no such procedures. This finding suggests a mechanism through physi-

cian practice in addition to changes in physician–patient matching: physicians’ practice

styles on incumbent newborns may be directly influenced by the presence of unexpected

high-risk newborns. This dynamic pattern of physicians’ practice styles has been shown in

many medical studies that physicians may resort to the availability heuristic, i.e. previous

or concurrent patient events, in making treatment decisions (Choudhry et al., 2006). One

could further test for the extent of cross-physician spillovers by checking whether such
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mechanism mainly exists among incumbent newborns treated by the attending physician

of unexpected high-risk newborns. However, such analysis is severely underpowered due

to the insufficient sample size of the data.

Another possible explanation of minimal health improvement from the increased treat-

ment intensity is that unscheduled high-risk admissions may have led to initial negative

spillovers on previously admitted newborn patients. Hence, hospitals retain incumbent

newborns for longer stays and/or treat them more intensively to compensate for the initial

negative effects. To test the crowding-out hypothesis, I investigate whether unscheduled

high-risk admissions lead to delays in standard procedures after birth such as vaccinations

and hearing tests, the two most common procedures after birth. Table A13 report regres-

sion estimates from equation (2) in the entire mid-risk sample and by congestion levels.

Columns 1 and 2 report linear probability model estimates. The top panel sample averages

show that more than 60% and 40% of newborns receive hearing tests and vaccination be-

fore discharge. To investigate any possible delays, I adopt two measures in columns 3 -

6, the number of days before receiving the two procedures, and a binary variable concern-

ing whether the procedure is performed within the first 4 days during the stay. If initial

crowding-out occurs, we would expect a longer period before receiving the procedure or a

lower probability of receiving the procedure within the first few days. The sample averages

in columns 5 - 6 indicate that hearing tests and vaccination are performed typically on the

3rd and 4th day after birth. Since newborns in the treated group are admitted within the

two days prior to unscheduled high-risk admissions, these two procedures are subject to any

crowding-out effects if that exists. All regression coefficients in Table A13 are small and

insignificant, indicating that unscheduled high-risk admissions do not change the overall

probability or result in initial delays of receiving these two common procedures among in-

cumbent newborns. Hence, it is unlikely that initial crowding-out masks any health benefits

from increased care utilization among newborns admitted prior to unscheduled high-risk

admissions.

7 Conclusion

The increase in labor specialization and the expansion of professional service-oriented

sectors have increased the importance of skill–task matching in advanced economies. Typ-

ically, a specialist outperforms a jack-of-all-trades in tasks that require specific knowledge
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and extensive training. However, it is has been established theoretically that the need to

coordinate specialized activities might limit and even outweigh the benefits in production

brought by specialization (Becker and Murphy, 1992; Garicano, 2000; Dessein and Santos,

2006; Fuchs and Garicano, 2010). This paper is the first to provide empirical evidence on

firms’ skill–task matching behaviors in response to demand uncertainty. When demand is

unpredictable, matching experts’ skills to tasks they are suited for requires frequent and

recurring decision-making – an often-overlooked challenge in modern production. Un-

derstanding firms’ decisions under such condition is essential because it will provide re-

searchers and policy-makers with key information in efficiency evaluation.

The health care sector provides an appealing research setting for examining skill–task

matching under demand uncertainty. Hospitals cannot fully control the arrivals of patients,

and the assignments of patients to physicians are clearly defined in hospital discharge

records. This paper capitalizes on the availability of this rich information, using discharge

data from New York City hospitals to study the skill–task matching behaviors in response to

demand shocks arising from unscheduled high-risk admissions. Additionally, decisions in

the health care sector are expensive: not only do they drive high aggregate medical spend-

ing, but they also affect patient morbidity and mortality. The high costs involved make the

subject of this study a practically meaningful area for research inquiry and policy-making.

Empirical findings in this paper show that hospitals summon highly specialized physi-

cians and reoptimize physician–patient assignment upon temporary increases in care de-

mand. This leads to spillover effects on patients admitted prior to unscheduled high-risk

admissions: when hospitals are congested, these incumbent patients are more likely to be

attended by physicians with more intensive practice styles who specialize in treating high-

risk cases, leading to increases in care utilization for these patients without any detectable

improvement in outcomes. The low productivity of specialized physicians when perform-

ing less familiar tasks has important implications. Whereas it seems almost certain that less

specialized individuals would not perform as well as highly specialized experts at complex

tasks, more specialized or highly trained experts are not better at all tasks. Instead, experts’

productivity strongly depends on their task assignments, making good skill–task matching

essential in highly specialized production.

Hospitals’ responses to the unexpected demand provide broader insights into indus-

tries with a high level of specialization. The finding that hospitals are more likely to allow

skill–task mismatch when matching is more costly suggests that the costs of assigning tasks
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are carefully considered in health care production. Meanwhile, many specialized industries

face similar challenges where evaluating the cost-benefit trade-offs in managing specialized

labor inputs is not straightforward, especially under demand fluctuations. Additional em-

pirical studies focusing on demand uncertainty in analyzing firms’ task assignment behav-

iors would add great value to the literature and provide useful evidence for policy-makers

as they design job assignment schemes. Although the research setting in this paper is not

suited for determining the optimal level of skill–task mismatch in production, the findings

underscore the need to carefully consider all costs associated with task assignment when

evaluating efficiency. These findings provide vital information for policy-makers looking

to identify waste in utilization and create incentives to enhance efficiency.
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A Stylized Model

Consider a simple production model with discrete task types i = 1, ..., n and expert

types j = 1, ..., n. To model hospitals’ responses upon patient admission, I assume that

the content and arrival time of tasks (patients) are exogenous and the available experts

(physicians) on site are given. In a long-run general equilibrium model, hospitals may be

able to adjust both the demand and supply by selectively admitting patients or employing

physicians of certain types. However, in the short-run partial equilibrium model I explore

here, the assumptions of exogenous patient demand and fixed physician supply do not seem

overly restrictive.

In the production function, I follow Chandra and Staiger (2017) and focus on patient

health benefits which include any reduction in mortality or morbidity from medical care.

Although hospital decisions could be influenced by other incentives such as financial re-

turns, many studies show that physicians care about patient outcomes. In addition, if we

assume physician experts only differ by their comparative advantage in skills, i.e. horizon-

tal differentiation, there is insufficient reason to assume ex-ante that some physicians will

generate higher financial revenue or costs than others at the task assignment stage. For a

similar reason, I ignore any actual costs of treatment and only focus on the labor cost in the

cost function. Formally, we assume that

Yi =
n∑

j=1

λijLj, Ci =
n∑

j=1

ωijLj,

where Yi andCi are the health outcome and labor cost associated with a patient of type i. Lj

is the input unit of type j physician assigned to the patient. Under a one-to-one matching,

only one of Lj takes a unit value and the rest are zero,

Under horizontal differentiation, the model assumes homogeneous marginal product λ

and marginal cost ω of physicians when tasks are randomly assigned. Marginal product

increases if a good skill–task matching is achieved, i.e. i = j. This in turn incurs extra

matching costs.

λij =

λH , i = j

λL, i 6= j
, and ωij =

c+M, i = j

c, i 6= j
.
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Upon the admission of a type i patient, hospitals assign one unit of physician input and

maximize the net benefit (Yi − Ci) by choosing among physician types:

Maxj

n∑
j=1

(λij − ωij)Lj.

Hospitals prioritize matching, i.e. j∗ = i, if (λH)− c−M > λL− c. The optimal decision

depends on whether the cost of matching M outweighs its return (λH − λL).

The matching cost M , although enters the model as a constant, can vary significantly

depending on environmental factors. When hospitals are congested, there may be little flex-

ibility in resource allocation. Hence the matching cost will be high and it will be inefficient

for hospitals to prioritize matching. If we assume the marginal cost c takes a U-shape over

physicians’ existing workload, i.e. high costs to call in new physicians or assign patients

to fully-occupied physicians, achieving a good matching will incur a high opportunity cost

when some “j 6= i” type physicians are on site with excess capacity but no “j = i” type

physician is readily available. The level of differences between patients affects the mag-

nitude of (λH − λL). If a type i patient does not differ much from other patient types, the

cost of mismatch will be low and hospitals will be reluctant to prioritize physician–patient

matching. Moreover, uncertainty in demand will lead to additional inertia in adjusting la-

bor input that the optimal strategy allows certain level of mismatch due to the high costs in

constantly tracing the optimal assignment. (Dai et al., 2015).31

B Spillover Effects - Supplementary Results

B.1 Newborns Admitted on the Same Day or After Unscheduled High-
risk Admissions

Newborns admitted on the same day or soon after unscheduled high-risk admissions

also experience considerable overlaps in hospital stay with the high-risk newborns. I repeat

the analyses following regression equation (2) to estimate spillover effects at each con-
31The stochastic control model in Dai et al. (2015) assumes that the demand follows a Brownian motion and

the labor control solution is solved based on Hamilton-Jacobi-Bellman equation (similar models are widely
adopted in finance for option pricing). Their model predicts a “no-action region” where a firm does not
constantly trace the optimal labor input level and only adjusts labor input when the labor-to-demand ratio
hits an upper or lower bound (see Figure B26).
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gestion level on mid-risk newborns admitted on the same day or in the two days post to

unscheduled high-risk admissions. Section 5.2 discusses the potential selection issue that

hospitals may be selective in admitting newborns in the presence of unscheduled high-risk

admissions. Table A14 show marginal differences in observables between newborns admit-

ted in the two days post to unscheduled high-risk admissions and the control group. The

differences between newborns admitted on the same day and the control group are more

salient. Even in absent of observable differences, it is acknowledged in the literature that

selection in patient unobservables is plausible. Given that high-risk admissions consume

a large amount of hospital resources, it is likely that hospitals respond in subsequent ad-

mission decisions. Hence, any estimated spillover effects among newborns admitted on the

same day or after unscheduled high-risk admissions need to be interpreted with caution.

Table A16 summarizes effect estimates among newborns admitted during the two days

post to unscheduled high-risk admissions. Opposite to the findings on incumbent newborns,

newborns admitted soon after are assigned to physicians with less intensive treatment styles

when NICU facilities are congested. However, the difference in physician style does not

lead to reduction in treatment intensity. Little difference is seen in care utilization or patient

outcomes reported in the bottom panel. With the concern that hospitals might selectively

admit healthier newborns after unscheduled high-risk admissions, it’s less clear whether

the differences in physicians’ practice styles could be interpreted as spillover effect or a

result of selection in patient admissions.

Table A17 summarizes effect estimates among newborns admitted on the same day of

any unscheduled high-risk admissions. The top panel suggests that newborns are treated

by physicians more specialized in treating high-risk births with more intensive styles when

NICU facilities are not congested. The bottom panel indicates that care utilization is

marginally higher when NICU occupancy is either low or high. In addition, the in-hospital

mortality is lower when NICU congestion is at medium level. In general, the findings

on care utilization and patient outcomes do not point to any internally consistent patterns.

Splitting newborns admitted on the same day by whether admitted prior to or after the un-

scheduled high-risk admissions does not eliminate covariates imbalance or produce more

consistent effect estimates. Since the mother of the high-risk newborn could be in labor

hours before the admission time of the baby, it is hard to determine the time horizon on the

day of unscheduled admissions during which hospital admission decisions are less likely

to be affected by the high-risk newborn.
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B.2 Newborns Admitted Prior to C-section High-risk Admissions

C-section high-risk births also lead to increases in care demand in hospitals. They can

be either scheduled or emergent (unscheduled). However, such information is not available

in the data. Figure 1 - B1 and the LASSO prediction model estimates in Table A19 suggest

that some c-section high-risk admissions may be scheduled, as discussed in Section 3.1. If

hospitals and physicians are expecting the increase in care demand resulted from c-section

high-risk newborn admissions, the spillover effects would be attenuated or nonexistent.

It is also possible that obstetricians intentionally schedule other prior c-section births to

accommodate the c-section high-risk births which will violate the exogeneity assumption.

Table A15 presents covariates differences between newborns admitted in the two days

prior to c-section high-risk admissions and newborns admitted three or more days away

by congestion levels. The treated and control group newborns are similar in observables,

except that the treated group has a slightly lower female fraction and a slightly higher Medi-

caid fraction at low and medium congestion levels. Table A18 summarizes spillover effects

of c-section high-risk admissions on incumbent newborns at each congestion level using

regression (2). unlike in the cases of unscheduled high-risk admissions, there is little effect

on physician characteristics when NICU facilities are congested. If the previous conjecture

is correct that c-section high-risk admissions are expected, hospitals should arrange staff so

that assignment of attending physicians among other patients are not affected. Consistent

with estimates on attending physician characteristics, no increase in care utilization is seen

when NICU facilities are congested. Compared to estimates in Table 5, point estimates in

Table A18 are more precise but much smaller in magnitude. These is a reduction in out-

transfer rate when the congestion level is high. It could be that hospitals are better staffed

which in turn benefits incumbent newborns and reduces the need of out-transfer.
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C Appendix Tables

Table A1: Sample Partition

Birth Weight < 1500g [1500, 2500)g ≥ 2500g
Categories High-risk Mid-risk Low-risk
Vaginal Births Demand Shocks (main analyses) Analysis

Sample
Placebo
SampleC-section Births Demand Shocks (supplementary analyses)

Table A2: Differences in Attending Physician Practice Stylea

(1) (2) (3) (4) (5) (6)
Congestion Avg. Res. Len. of Stay (log) Avg. Res. Charges (log) Avg. Res. # of Proc.
All 0.00221 0.00555 0.0181*

(0.00355) (0.00993) (0.0101)
Low -0.00654 -0.00942 -0.0156 -0.0223 -0.00527 -0.0125

(0.00611) (0.00643) (0.0166) (0.0161) (0.0239) (0.0262)
Medium 0.00492 0.00550 0.0139 0.0142 0.0255 0.0267

(0.00378) (0.00388) (0.0113) (0.0105) (0.0194) (0.0200)
High 0.00809 0.00784 0.0159 0.0183 0.0323 0.0309

(0.00630) (0.00619) (0.0170) (0.0159) (0.0204) (0.0197)
Covariate x Cgst No Yes No Yes No Yes
Nb 23535 23535 23535 23535 23535 23535
Y-mean 0.0622 0.0622 0.201 0.201 0.213 0.213

Standard errors in parentheses Standard errors clustered at hospital level
a For patients admitted on day t attended by physician p, physician practice style measures are defined to be residual
averages among newborn patients discharged up to day t-1 by physician p. Residuals are generated by controlling for
birth hospital-year, birth month, birth day of week, birth delivery method, insurance type, race, gender, and birth weight.
b A small fraction of patients have missing physician practice measures because there is no previously discharged patients
by their attending physicians.
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Table A3: Differences in Number of Procedures

(1) (2) (3) (4) (5) (6)
Congestion # of Proc (3rd+ day) # of Proc (4th+ day) # of Proc (5th+ day)
All 0.0134 0.0103 0.0205

(0.0365) (0.0236) (0.0266)
Low -0.0544 -0.0373 -0.0370 -0.0190 -0.0153 0.0146

(0.0637) (0.0528) (0.0532) (0.0411) (0.0397) (0.0308)
Medium -0.00591 -0.00736 -0.0148 -0.0188 -0.00562 -0.00792

(0.0486) (0.0513) (0.0329) (0.0347) (0.0365) (0.0369)
High 0.161* 0.160* 0.141** 0.144** 0.136* 0.125*

(0.0850) (0.0832) (0.0694) (0.0682) (0.0749) (0.0710)
Covariate x Cgst No Yes No Yes No Yes
N 23791 23791 23791 23791 23791 23791
Y-mean 1.102 1.102 0.769 0.769 0.597 0.597

Standard errors in parentheses Standard errors clustered at hospital level

Table A4: Differences in One-Year Care Utilization

(1) (2) (3) (4) (5) (6)
Congestion 1-Year Total Len. of Stay (log) 1-Year Total Charges (log) 1-Year Total # of Proc.
All 0.00707 -0.00251 0.0304

(0.00999) (0.0168) (0.0534)
Low -0.0150 -0.0191 -0.00868 -0.0287 -0.0680 -0.0328

(0.0201) (0.0209) (0.0287) (0.0317) (0.0601) (0.0633)
Medium -0.00465 -0.00160 -0.0422* -0.0354 0.00314 -0.000685

(0.0149) (0.0145) (0.0247) (0.0234) (0.0716) (0.0659)
High 0.0653** 0.0672** 0.0975* 0.104* 0.236 0.227

(0.0270) (0.0298) (0.0514) (0.0536) (0.144) (0.177)
Covariate x Cgst No Yes No Yes No Yes
N 23791 23791 23791 23791 23791 23791
Y-mean 1.915 1.915 9.502 9.502 2.837 2.837

Standard errors in parentheses Standard errors clustered at hospital level
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Table A5: Treated - Control Differences in Newborn Characteristics

(1) (2) (3) (4) (5) (6)
C-section Birth Weight Female White Black Medicaid

Panel A: Overall Treated - Control Differences (same as in Table 2)
Pre -0.0152 -5.043 -0.00888 -0.00481 -0.00363 0.00387

(0.0123) (6.373) (0.00822) (0.00957) (0.0115) (0.00760)
N 23791 23791 23791 23791 23791 23791
Panel B: Treated Group Newborns Assigned to the Specialized Physician vs. Other Physicians
Pre× (Spec = 1) 0.0385** -81.07*** -0.0569*** -0.0108 0.0250 0.0224

(0.0165) (16.05) (0.0150) (0.0119) (0.0178) (0.0269)
Pre× (Spec = 0) -0.0372** 26.05** 0.0108 -0.00236 -0.0153 -0.00372

(0.0170) (10.66) (0.0117) (0.0129) (0.0152) (0.0137)
N 23791 23791 23791 23791 23791 23791
Panel C: Treated Group Newborns When Specialized Physicians Treat No Prior Patients
Pre -0.0351* 17.77* 0.0152 -0.00882 -0.0137 -0.00959

(0.0173) (9.931) (0.0125) (0.0119) (0.0160) (0.0131)
N 23008 23008 23008 23008 23008 23008

Standard errors in parentheses Standard errors clustered at hospital level
a Hospital-year, month, and day of week fixed effects are included in measuring treated–control differences.
b Panel A reports overall differences between the treated and control group newborns. Panel B separately reports treated–
control differences for incumbent newborns who are assigned to the specialized physicians and incumbent newborns who
are assigned to other physicians. Panel C reports treated–control differences for a subsample of newborns in the treated
group when the attending physician of subsequent high-risk admission treats no incumbent patients.
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Table A6: Alternative Specifications
(Congestion = High)

(1) (2) (3) (4) (5)
Length of Stay (log) 0.0906** 0.102** 0.103** 0.110*** 0.0731***

(0.0405) (0.0393) (0.0391) (0.0382) (0.0264)
R2 [0.041] [0.102] [0.111] [0.123] [0.449]
Total Charges (log) 0.129 0.147* 0.148* 0.163** 0.107**

(0.0782) (0.0726) (0.0732) (0.0717) (0.0444)
R2 [0.121] [0.173] [0.179] [0.193] [0.484]
# of Procedures 0.237* 0.256* 0.257* 0.286** 0.208

(0.139) (0.134) (0.135) (0.140) (0.125)
R2 [0.179] [0.200] [0.204] [0.236] [0.359]
Experience with VLBW 0.00631* 0.00668* 0.00655* 0.00709** 0.00606*

(0.00339) (0.00335) (0.00337) (0.00336) (0.00314)
R2 [0.171] [0.177] [0.181] [0.184] [0.248]
Physician Avg Len. of Stay 0.0437* 0.0467** 0.0456* 0.0497** 0.0409**
(log) (0.0224) (0.0221) (0.0228) (0.0220) (0.0188)
R2 [0.156] [0.164] [0.170] [0.177] [0.274]
Physician Avg Total Charges 0.0767* 0.0830* 0.0805* 0.0886** 0.0708**
(log) (0.0430) (0.0421) (0.0430) (0.0414) (0.0346)
R2 [0.226] [0.234] [0.242] [0.248] [0.342]
Physician Avg # of Procedure 0.0896** 0.0952** 0.0937** 0.0990** 0.0849**

(0.0382) (0.0380) (0.0386) (0.0391) (0.0348)
R2 [0.436] [0.441] [0.443] [0.446] [0.498]
Delivery Method No Yes Yes Yes Yes
Insurance Type No No Yes Yes Yes
Race & Gender No No No Yes Yes
Birth Weight (250g bin) No No No No Yes
N 4986 4986 4986 4986 4986

Standard errors in parentheses, R2 in square brackets Standard errors clustered at hospital level
a All regressions include hospital-year, birth month, and day of week fixed effects
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Table A7: Alternative Control Groups
(Congestion = High)

(1) (2) (3) (4)
Length of Stay (log) 0.0731*** 0.0738*** 0.0788*** 0.0784***

(0.0264) (0.0247) (0.0249) (0.0260)
Total Charges (log) 0.107** 0.111** 0.128** 0.132**

(0.0444) (0.0469) (0.0520) (0.0548)
# of Procedures 0.208 0.171 0.177 0.212*

(0.125) (0.116) (0.120) (0.122)
Experience with VLBW 0.00606* 0.00571 0.00696* 0.00728*

(0.00314) (0.00362) (0.00366) (0.00368)
Physician Avg Len. of Stay 0.0409** 0.0369 0.0469* 0.0483*
(log) (0.0188) (0.0226) (0.0245) (0.0255)
Physician Avg Total Charges 0.0708** 0.0661 0.0850* 0.0886*
(log) (0.0346) (0.0421) (0.0451) (0.0456)
Physician Avg # of Procedures 0.0849** 0.0772* 0.0930** 0.100**

(0.0348) (0.0394) (0.0427) (0.0449)
Control Groupa 3+ Days Apart 4+ Days Apart 5+ Days Apart 6+ Days Apart
N 4986 4598 4250 3978

Standard errors in parentheses Standard errors clustered at hospital level
a Alternative control groups are defined in Section 5.3.4.
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Table A8: Alternative Treated Groups
(Congestion = High)

(1) (2) (3) (4) (5) (6)
Length of Stay (log) 0.0731*** 0.0773*** 0.0662 0.168*** -0.0266 0.0240

(0.0264) (0.0269) (0.0755) (0.0549) (0.0615) (0.0491)
Total Charges (log) 0.107** 0.110** 0.121 0.243*** 0.00886 0.00991

(0.0444) (0.0488) (0.123) (0.0819) (0.133) (0.0675)
# of Procedures 0.208 0.227 0.424 0.657*** -0.145 0.0947

(0.125) (0.140) (0.276) (0.202) (0.151) (0.192)
Experience with VLBW 0.00606* 0.00575 -0.00119 0.00663* 0.0113 -0.00453

(0.00314) (0.00407) (0.00536) (0.00388) (0.00899) (0.00491)
Physician Avg Len. of Stay 0.0409** 0.0530 -0.0145 0.0384 0.0920 -0.0516
(log) (0.0188) (0.0337) (0.0587) (0.0398) (0.0671) (0.0339)
Physician Avg Total Charges 0.0708** 0.0956 -0.0182 0.0470 0.190 -0.0910
(log) (0.0346) (0.0611) (0.118) (0.0739) (0.134) (0.0736)
Physician Avg # of Procedures 0.0849** 0.103 -0.000584 0.0726 0.151 -0.114*

(0.0348) (0.0644) (0.102) (0.0694) (0.107) (0.0560)
Treated Groupa 1-2 Days 1 Day 0-12 Hrs 12-24 Hrs 24-36 Hrs 36-48 Hrs
N 4986 4768 4670 4661 4679 4657

Standard errors in parentheses Standard errors clustered at hospital level
a Alternative treated groups are defined in Section 5.3.4.

Table A9: Effects among Patients inside and outside NICU
(Congestion = High)

(1) (2) (3) (4) (5) (6) (7)
Len. of

Stay (log)
Total Charges

(log)
# of

Procedures
Experience
with VLBW

Avg. Len. of
Stay (log)

Avg. Total
Charges (log)

Avg. # of
Procedures

All 0.0695** 0.118** 0.200 0.00657* 0.0522** 0.0964** 0.0997**
(0.0293) (0.0490) (0.127) (0.00376) (0.0216) (0.0400) (0.0386)

Inside NICU 0.104** 0.181*** 0.302* 0.0100 0.0667 0.112 0.137
(0.0471) (0.0500) (0.165) (0.00842) (0.0445) (0.0873) (0.0866)

Outside NICU -0.0165 -0.0770* -0.0288 -0.00127 -0.00345 -0.00470 -0.00532
(0.0260) (0.0408) (0.0943) (0.00520) (0.0367) (0.0739) (0.0662)

Standard errors in parentheses Standard errors clustered at hospital level
a Inside NICU Sample: Newborns who are directly admitted to NICU after birth.
a Outside NICU Sample: Newborns who are never admitted to NICU during the hospital stay.
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Table A10: Placebo Test - Low-risk Newborn Sample

(1) (2) (3) (4) (5) (6)

Congestion
Len. of

Stay (log)
Total Charges

(log)
# of

Procedures
Physician

Tenure
Experience
with VLBW

Avg. Total
Charges (log)

Low 0.00334 0.00613 0.0117 -0.0952 0.000561 0.0122
(0.00227) (0.00600) (0.0110) (0.131) (0.000487) (0.0120)

Medium -0.00177 -0.00281 -0.000322 0.117 -0.000354 -0.00231
(0.00229) (0.00510) (0.00794) (0.213) (0.000293) (0.00999)

High 0.00165 -0.00342 -0.000951 0.212 -0.000720 -0.00959
(0.00403) (0.00875) (0.0113) (0.254) (0.000572) (0.0127)

N 398562 398562 398562 389269 396117 394191
Y-mean 1.257 8.269 1.524 16.77 0.0126 8.666

Standard errors in parentheses Standard errors clustered at hospital level
a Sample: Singleton newborns with birth weight of 2500 grams or above.

Table A11: Mediation Analysis - Physician Practice Style
(Congestion = High)

(1) (2) (3) (4) (5) (6)
Length of Stay (log) Total Charges (log) # of Procedures

Phy = α1 + φ1Pre++βX + µ

Pre 0.0409** 0.0708** 0.0849**
(0.0187) (0.0345) (0.0347)

Y = α2 + φ2Pre+ θPhy + βX + ε

Pre 0.0590** 0.0780** 0.0686* 0.111** 0.157 0.217**
(0.0261) (0.0308) (0.0408) (0.0544) (0.122) (0.0995)

Phy 0.464*** 0.593*** 0.714***
(0.0311) (0.0380) (0.0478)

Effect Decomposition
Direct Effect 0.0590** 0.0686* 0.157
(φ2) (0.0261) (0.0408) (0.122)
Indirect Effect 0.0190** 0.0420** 0.0607**
(φ1 · θ) (0.00882) (0.0207) (0.0260)
Total Effect 0.0780*** 0.111** 0.217*
(φ2 + φ1 · θ) (0.0262) (0.0432) (0.126)
Indirect % 0.243 0.380 0.279
N 4942 4942 4942 4942 4942 4942

Standard errors in parentheses Standard errors clustered at hospital level
a For each outcome Y , the physician practice measure Phy is the physician baseline measure of average Y
defined in Section 3.3, i.e. the average Y of patients discharged by the physician p up to date (t− 1).
b The standard errors of the indirect and total effects are calculated using the Delta method.
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Table A12: Treatment Procedure Spillover

(1) (2) (3) (4) (5) (6)
Procedure Ventilation Nutrition Phototherapy
Pre× (Procj = 0) -0.00243 -0.00658 -0.00993 -0.00876 -0.0104 0.00196

(0.00390) (0.00807) (0.00691) (0.0145) (0.00768) (0.0160)
Pre× (Procj = 1) 0.0253** 0.0103 0.0961*** 0.103* 0.147*** 0.115

(0.0109) (0.0244) (0.0312) (0.0529) (0.0324) (0.0775)
N 23791 4986 23791 4986 23791 4986
Y-mean 0.0217 0.0231 0.0741 0.0642 0.133 0.125
Congestion All High All High All High

Standard errors in parentheses Standard errors clustered at hospital level
a Procji,h,t = 1 if the unscheduled high-risk newborn receives procedure measured in the outcome variable on the
day of admission.

Table A13: Delays in Common Procedures

(1) (2) (3) (4) (5) (6)

Congestion Hearing Tests Vaccinations
Hearing Tests
within 4 Days

Vaccinations
within 4 Days

# Days before
Hearing Tests

# Days before
Vaccinations

All 0.00502 0.00691 0.00406 0.00202 0.0438 0.0722
(0.00893) (0.00603) (0.00942) (0.00777) (0.0825) (0.0904)

N 23791 23791 23791 23791 14574 10174
Y-mean 0.613 0.428 0.433 0.341 3.093 2.047
Low -0.00550 0.00859 0.00833 0.00222 -0.118 0.0667

(0.0106) (0.0122) (0.0138) (0.0109) (0.136) (0.151)
N 7015 7015 7015 7015 4313 3042
Y-mean 0.616 0.435 0.429 0.345 3.162 2.051
Medium 0.00696 -0.00501 -0.00246 -0.00290 0.124 -0.0275

(0.0124) (0.00965) (0.0127) (0.0110) (0.116) (0.124)
N 11790 11790 11790 11790 7258 5063
Y-mean 0.616 0.430 0.435 0.342 3.094 2.071
High 0.00734 0.0224 -0.00187 0.00540 0.158 0.381

(0.0190) (0.0271) (0.0197) (0.0246) (0.161) (0.240)
N 4986 4986 4986 4986 2990 2044
Y-mean 0.601 0.413 0.435 0.333 2.993 1.979

Standard errors in parentheses Standard errors clustered at hospital level
a Hearing tests and vaccinations are the top two procedure categories performed on newborns after birth.
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Table A14: Treated - Control Differences:
Admissions on the Same Day or the Two Days Post to Unscheduled High-risk Admissions

(1) (2) (3) (4) (5) (6) (7)
Congestion C-section Birth Weight White Black Female Medicaid N
Panel A: Post - Control Difference
Low 0.00619 -3.169 -0.00647 -0.00160 -0.0272 0.0146 6892

(0.0186) (14.51) (0.0162) (0.0173) (0.0256) (0.0159)
Medium 0.0163 6.297 -0.00353 0.0145 0.0243 -0.0139 11774

(0.0200) (9.259) (0.0101) (0.0135) (0.0176) (0.0103)
High -0.0298 -8.511 -0.0361* -0.00162 0.0359 0.0347* 5118

(0.0210) (12.63) (0.0210) (0.0242) (0.0240) (0.0202)
Panel B: Same - Control Difference
Low -0.0420* -1.533 -0.0175 0.00367 -0.0586** 0.0168 6731

(0.0232) (13.76) (0.0164) (0.0243) (0.0251) (0.0190)
Medium 0.00118 11.80 -0.0238*** 0.00121 0.0270 -0.0158 11255

(0.0188) (11.34) (0.00847) (0.0132) (0.0235) (0.0168)
High -0.0143 -8.322 -0.0364 -0.00608 -0.0646 0.0327 4783

(0.0352) (18.04) (0.0247) (0.0249) (0.0383) (0.0256)

Standard errors in parentheses Standard errors are clustered at hospital level
a Hospital-year, month, and day of week fixed effects are included in measuring treated–control differences.

Table A15: Treated - Control Differences:
Admissions on the Two Days Prior to C-section High-risk Admissions

(1) (2) (3) (4) (5) (6) (7)
Congestion C-section Birth Weight White Black Female Medicaid N
Low -0.00819 -7.253 0.00317 0.0107 -0.00554 0.0217* 6597

(0.0176) (6.960) (0.0109) (0.00968) (0.0161) (0.0125)
Medium 0.00146 -7.841 0.0100 -0.00217 -0.0301* 0.0161 10619

(0.0143) (7.777) (0.0132) (0.00965) (0.0165) (0.00994)
High -0.00561 -1.265 0.00472 -0.0153 0.00894 -0.00399 4417

(0.0187) (11.70) (0.0238) (0.0209) (0.0223) (0.0175)

Standard errors in parentheses Standard errors are clustered at hospital level
a Hospital-year, month, and day of week fixed effects are included in measuring treated–control differences.
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Table A19: LASSO Prediction Model for C-section High-risk Admissions

LASSOa Post-LASSO OLS
Physician Experience with VLBW (L2) -0.0459 -0.100**

(0.0473)
Physician Experience with LBW (L1) 0.0217 0.0488

(0.0507)
Physician Avg. Res. # of Procedures (L1) 0.00155 0.00612

(0.00950)
Total # of Attending Physicians (L1) 0.000366 0.000646

(0.00134)
Total Newborn Admissions (L1) 0.000422 0.000605

(0.000629)
Fraction of LBW (L3) 0.000936 0.00767

(0.00915)
Fraction of VLBW (L2) -0.0153 -0.0356**

(0.0165)
Fraction of VLBW (L3) 0.0216 0.0363*

(0.0206)
Fraction of White (L2) 0.00233 0.0106

(0.00677)
Fraction of White (L3) -0.00330 -0.0112

(0.00716)
Fraction of Black (L3) 0.00247 0.00721

(0.00436)
Month Dummy (Feb) -0.00148 -0.00654

(0.00394)
Month Dummy (May) 0.000810 0.00448

(0.00273)
Month Dummy (Jun) 0.00137 0.00499

(0.00475)
Month Dummy (Nov) -0.00469 -0.00956**

(0.00404)
Month Dummy (Dec) -0.00921 -0.0139***

(0.00420)
Day of Week Dummy (Wed) 0.00205 0.00471

(0.00316)
Day of Week Dummy (Thu) 0.00127 0.00406

(0.00371)
Day of Week Dummy (Sat) -0.0104 -0.0139***

(0.00334)
Day of Week Dummy (Sun) -0.0115 -0.0144***

(0.00351)
N 59311 59311

Standard errors clustered at hospital level are in parentheses
a Hospital-year fixed effects are included and not penalized. Parameter lambda is selected to
minimize the mean-squared prediction error after cross-validation.
b L# indicates #-day lagged measure.
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D Appendix Figures

Figure B1: Distribution of High-risk Admissions: Hour of Day
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Figure B2: Days between Unscheduled High-risk Admissions
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Figure B3: Variation in NICU Occupancy
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Figure B4: Average Total Charges by Birth Weight

263.4

40.1

6.0

0
50

10
0

15
0

20
0

25
0

To
ta

l C
ha

rg
es

 (1
00

0 
do

lla
rs

)

VLBW=1.5% total births, 33% total medical spending; LBW=7% total births, 22% total medical spending

Very Low Birthweight Low Birthweight Normal Birthweight

65



November 4, 2019

Figure B5: Probability of In-hospital Death by Birth Weight
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Figure B6: Distribution of Birth Weight
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Figure B7: Physician Tenure by Birth Weight
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Figure B8: Physician Experience with VLBW Patient by Birth Weight
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Figure B9: Physician Style by Birth Weight - Baseline Measure
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Figure B10: Physician Style by Birth Weight - Residual Measure
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Figure B11: Daily Admissions and Discharges of NICU Patients
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Figure B12: Daily Admissions and Discharges of NICU Patients
(high congestion on event day -1)
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Figure B13: Number of Patients Attended per Physician

-1
-.8

-.6
-.4

-.2
0

.2
.4

.6
.8

1
N

um
be

r o
f P

at
ie

nt
s 

pe
r P

hy
si

ci
an

-5 -4 -3 -2 -1 0 1 2 3 4 5
Event Day

The high-risk admission does not affect physician’s workload

Figure B14: Number of Patients Attended by High-risk Newborn’s Physician
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Figure B15: Number of Patients Attended by High-risk Newborn’s Physician
(high congestion on event day -1)
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Figure B16: Number of Patients Attended in the Same Hospital
Prior to Days with Patient Admissions
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Figure B17: Hypothetical Hospitals’ Responses
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Figure B18: Distribution of Length of Hospital Stay
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Figure B19: Distribution of Daily Procedures
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Figure B20: Marginal Effect over Birth Weight
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Figure B21: Marginal Effect over Birth Weight
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Figure B22: Marginal Effect over Birth Weight
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Figure B23: Marginal Effect over Birth Weight
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Figure B24: Marginal Effect over Birth Weight
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Figure B25: Marginal Effect over Birth Weight

-2
-1

0
1

2
N

um
be

r o
f P

ro
ce

du
re

s

1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500
Birthweight (100g Bin)

76



November 4, 2019

Figure B26: Solution Regions for Optimal Labor Control under Stochastic Demand

Source: Dai et al. (2015).

Dai et al. (2015) show that when faced with a stochastic demand, a firm does not constantly trace the optimal

labor input level and only adjusts labor input when the labor-to-demand ratio η (the solid line) hits an upper

or lower bound, i.e. bF and bH in the graph.
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