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Abstract

Most recent empirical applications of matching with transferable utility have imposed a

natural restriction: that the joint surplus be separable in the sources of unobserved heterogeneity.

We propose here two simple methods to estimate models in this class. The first method is a

minimum distance estimator that relies on the generalized entropy of matching introduced in

Galichon and Salanié (2022). The second applies to the more special but popular Choo and Siow

(2006) model, which it reformulates as a generalized linear model with two-way fixed effects.

Both methods are easy to apply and perform very well.
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Introduction

The estimation of models of two-sided matching has made considerable progress in the past decade.

While some of this work has used matching under non-transferable utility, many applications have

focused on markets where utility is transferable. The pioneering contribution of Choo and Siow

(2006) introduced a simple and highly tractable specification for matching models with perfectly

transferable utility. Their specification is a natural extension of the multinomial logit model, and

it has become quite popular. They applied it to estimate the effect of the 1973 liberalization of
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comments.
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abortion in the US on marriage outcomes. In doing so, they used a nonparametric estimator of the

matching patterns.

The Choo and Siow specification rests on three main assumptions: separability; a large market

approximation; and unobserved shocks to the joint surplus that are distributed as iid standard

type I extreme value random variables. In Galichon and Salanié (2022), we showed that the third,

distributional assumption is not necessary for most of the analysis: for any (separable) distribution

of the errors, the joint surplus is nonparametrically identified. The crucial assumption that underlies

much of the literature in this subfield is separability. As we will explain in Section 1.1, this rules out

interactions between partner-specific unobserved shocks in the generation of the joint surplus. The

great value of separability is that it generates a simple relationship between the observed matching

patterns and the underlying joint surplus that can readily be used to identify and estimate the

surplus.

The application to marriage in Choo and Siow only conditioned on the ages of the partners

in a couple; and it specified errors as type I extreme value. These two restrictions, combined with

separability, allowed them to construct a nonparametric estimator of the joint surplus. This strategy

breaks down, however, when more covariates are considered as matching cells become too small;

and by construction, it does not allow for parameterized error distributions. Structural models of

household behavior also naturally introduce parameters in the joint surplus. In all of these cases, the

analyst must resort to parametric models. We describe here two very simple methods to estimate

parametric versions of separable matching models with perfectly transferable utility, with special

emphasis on the Choo and Siow model and more generally on “semilinear” models, where the joint

surplus is linear in the parameters.

Our first method applies a minimum-distance estimator to the identification equation derived

in Galichon and Salanié (2022), which relates the joint surplus to the derivatives of a generalized

entropy function evaluated at the observed matching patterns. For any fixed distribution of the

error terms, the generalized entropy can be evaluated and differentiated, numerically if needed.

The estimator selects parameter values and also provides a simple specification test. In semilinear

models, the estimator can be obtained in closed form by quasi-generalized least squares.

The second method we present applies more specifically to the semilinear Choo and Siow model.

We show that the moment-matching estimator we described in Galichon and Salanié (2022) can be

reframed as a generalized linear model, more specifically as a weighted pseudo-maximum likelihood

estimator of a Poisson regression with two-sided fixed effects. This is available as linear model in
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the scikit-learn library in Python, as fepois in the R package fixest and as ppmlhdfe in Stata,

among other common statistical packages.

Section 1 describes the simplest version of the type of matching market to which our methods

apply: the bipartite model with perfectly transferable utility. To make the paper self-contained, we

give intuitive proofs of the main results; we refer the reader to Galichon and Salanié, 2022 for fully

rigorous arguments. Sections 2 and 3 present our two estimation methods, still only for the bipartite

model. Section 4 explains how we deal with some common issues, and Section 5 shows how our

two methods extend to more general matching markets. Finally, Section 6 shows the results of a

small Monte Carlo simulation. We conclude with a brief discussion of the pros and cons of the two

methods.

We coded both methods in a Python package called cupid matching that is available on the

standard repositories1.

1 The Bipartite Model

In a bipartite matching market, each match consists of at most one partner in each of two separate

sub-populations. For simplicity, we refer here to the two sub-populations as “men” and “women”;

each match consists of one man and one woman, and we allow for singles. We use the same notation

as in Galichon and Salanié (2022), from which most of the results in this section are taken. We

assume that the analyst can only observe which of a finite set of types each individual belongs to.

Types could represent a combination of education and age, for instance. Each man i ∈ I has a

type xi ∈ X ; and, similarly, each woman j ∈ J has a type yj ∈ Y. Without loss of generality, we

assimilate X to {1, . . . , X} and Y to {1, . . . , Y }. We will say that “man i is of type x” if xi = x,

and “woman j is of type y” if yj = y; and we will use the shorter notation “i ∈ x” and “j ∈ y”. In

addition, men and women of a given type differ along some dimensions that they all observe, while

the analyst does not.

We denote µij the indicator function for a match between man i and woman j: it equals 1 if

i and j are matched and 0 otherwise. Similarly, µi0 and µ0j equal 1 if i or j remain unmatched,

respectively. A matching is the specification of who matches with whom; it is characterized by

1See http://bsalanie.github.io/code for more information, and https://bsalanie-cupid-matching-st-main-page-pwvpse.

streamlitapp.com for an interactive Streamlit app that demonstrates solving and estimating a Choo and Siow (2006)

model.
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the collection of numbers (µij , µi0, µ0j). It is feasible if each individual is matched to at most one

partner. Since every man i is either matched once or stays single,
∑
j µij + µi0 = 1; similarly, for

every woman j we have
∑
i µij + µ0j = 1. A feasible matching is stable if no individual who has a

partner would prefer to be single, and if no two individuals would prefer forming a couple over their

current situation.

Since the analyst only observes types xi and yj , she can only count the number of matches

between partners of given types. We denote µxy the number of couples where the man belongs to

type x, and where the woman belongs to type y, which is formally defined as µxy =
∑
i∈x,j∈y µij . We

also denote µx0 =
∑
i∈x µi0 and µ0y =

∑
j∈y µ0j the numbers of single men of type x and of single

women of type y. An observed matching µ thus consists of the collection of numbers (µxy, µx0, µ0y).

We denote A = (X × Y) ∪ (X × {0}) ∪ ({0} × Y) the set of potential observed matchings. As the

marital options include singlehood, we denote X0 = X ∪{0} and Y0 = Y ∪{0} the respective sets of

marital options of women and men in an observed matching.

If nx represents the number of men of type x ∈ X , feasibility requires that
∑
y∈Y µxy+µx0 = nx.

Similarly,
∑
x∈X µxy + µ0y must equal my the number of women of type y. We denote q = (n,m)

the vector that collects the numbers nx and my, which we will sometimes refer to as the margins.

Finally, feasible marriage patterns are represented by an (X,Y ) matrix µ of non-negative numbers

such that
∑
y∈Y µxy ≤ nx for all x ∈ X and

∑
x∈X µxy ≤ my for all y ∈ Y.

1.1 Separability

This paper assumes that utility is perfectly transferable within each couple, at a constant 1-for-1

rate. Then the utility possibility frontier within an (i, j) match has equation ui + vj = Φ̃ij . In

this notation, Φ̃ij represents the joint utility in the couple. A priori, this joint utility might depend

on interactions between both the observed types xi and yj and the unobserved components of the

identity of the partners. This would make the analysis quite difficult, both analytically and in terms

of the amount of data required to identify the parameters2. For this reason, most of the literature

has adopted the simplifying assumption that the joint utility from a match is separable:

Assumption 1 (Separability). There exist a vector Φ in IRX×Y and random terms ε and η such

that

2See Fox et al., 2018 for a contribution in this direction.
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(i) the joint utility from a match between a man i of type x ∈ X and a woman j of type y ∈ Y is

Φ̃ij = Φxy + εiy + ηxj , (1.1)

(ii) the utility of a single man i is Φ̃i0 = εi0,

(iii) the utility of a single woman j is Φ̃0j = η0j,

(iv) conditional on i ∈ x, the random vectors εi = (εiy)y∈Y0
are independent across i; they have

probability distribution Px,

(v) conditional on j ∈ y, the random vectors ηj = (ηxj)x∈X0 are independent across j; they have

probability distribution Qy,

(vi) the random variables

max
y∈Y0

|εiy| and max
x∈X0

|ηxj |

have finite expectations under Px and Qy respectively.

The core of the separability assumption is item (i), which rules out interactions between partner

characteristics that are unobserved by the analyst. This would be violated if, for instance, man i

had an idiosyncratic preference for an unobserved characteristic of woman j. Clearly, separability

is a stronger assumption when the data contains few attributes of men and women. Exploratory

simulations by Chiappori, Nguyen, et al., 2019 suggest that, even when it only holds approximately,

assuming it may only generate small biases.

Chiappori et al. (2017) and Galichon and Salanié (2022) showed that under separability, the

characterization of stable matchings becomes much simpler. Consider a woman j ∈ y. She could

either stay single and obtain utility η0j , or match with a man i and share the joint utility Φ̃ij with

him. Let ui denote the utility that man i expects at a stable matching, so that woman j can only

obtain Φ̃ij − ui for herself in their match. To select her best option, this woman will solve

max
(
η0j ,max

i

(
Φ̃ij − ui

))
;

the value of this program represents the utility vj she can expect at a stable matching. Using

Assumption 1.(i), we rewrite

vj = max

(
η0j ,max

x∈X
max
i∈x

(Φxy + εiy + ηxj − ui)
)

= max

(
η0j ,max

x∈X

(
Φxy + ηxj + max

i∈x
(εiy − ui)

))
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Now define Vxy = mini∈x(ui − εiy). We obtain

vj = max

(
η0j ,max

x∈X
(Φxy − Vxy + ηxj)

)
= max
x∈X0

(Φxy − Vxy + ηxj) , (1.2)

with the convention that Φoy = V0y = 0. We would obtain in the same way, for a man i ∈ x,

ui = max
y∈Y0

(Φxy − Uxy + εiy) (1.3)

with Uxy = minj∈y(vj − ηxj) and Φx0 = Ux0 = 0.

Now consider i ∈ x and j ∈ y. If they are a couple, then the sum ui + vj of their utilities must

equal Φ̃ij . If they are not partners, then Φ̃ij cannot exceed the sum ui + vj ; otherwise they would

both be better off by matching together, and splitting the additional joint utility Φ̃ij −ui− vj . This

deviation would make the matching unstable. Therefore for all i and j we must have ui + vj ≥ Φ̃ij .

This translates into

(Φxy − Uxy + εiy) + (Φxy − Vxy + ηxj) ≥ Φxy + εiy + ηxj

so that Uxy + Vxy ≤ Φxy. If i and j do match at the stable matching, the utility possibility frontier

ui + vj = Φ̃ij gives Uxy + Vxy = Φxy.

To summarize:

Theorem 1 (Discrete Choice Representation). Normalize utilities by Φx0 = Ux0 = V0y = Φ0y = 0

for all x ∈ X , and y ∈ Y.

(i) There exist two (X,Y ) matrices of numbers U = Uxy and V ≤ Φ − U such that a woman

j ∈ y (resp. a man i ∈ x) remains single or marries a man of a type x (resp. a woman of type

y), depending on the maximizer in (1.2) (resp. in (1.3)).

(ii) Moreover, Vxy = Φxy − Uxy for any pair of types such that µxy > 0.

It is clear from (1.2) and (1.3) that separability implies some form of indifference: if woman j ∈ y

opts for a match with a man of type x, then the other characteristics of this man do not matter to

her. It does allow for a restricted form of “matching on unobservables”: at a stable matching, this

woman is more likely to marry a man i of type x if εiy is high.
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1.2 Generalized Entropy

Now consider the group of all men of type x. By Assumption 1, the value of their average utility at

a stable matching equals

G̃x(Φx· − Vx·) ≡
1

nx

∑
i∈x

max
y∈Y0

(Φxy − Vxy + εiy).

The function G̃x(U) ≡ (1/nx)
∑
i∈x maxy∈Y0(Uy+εiy) is a linear function of the maximum of (Y +1)

linear functions of its arguments. As such, it is a piecewise linear, convex function of these (Y + 1)

arguments. Moreover, G̃x(a+ t) = G̃x(a) + t for any vector a and real number t.

Since G̃x is convex, it has a subgradient ∂G̃x, which is defined as follows:

d ∈ ∂G̃x(U) iff for all U ′, G̃x(U ′)− G̃x(U) ≥ d · (U ′ −U ′) .

The subgradient is a convex subset of RY+1; it is almost everywhere a singleton, which is the gradient

of G̃x. Then the partial derivative of G̃x with respect to Uy is the proportion of men i ∈ x who

prefer a partner of type y. The points of non-differentiability of G̃x correspond to the values of U

for which Uxy + εiy = Uxt + εit for some i ∈ X and some t ∈ Y.

Recall that the Legendre-Fenchel transform of a real-valued function f defined over a domain D

of a finite-dimensional vector space V is the function f∗ defined over V by

f∗(p) = max
x∈D

(p · x− f(x)).

Any such function is convex, as the maximum of linear functions of p. It may not take a finite

value, however. If f(x + t) ≡ f(x) + t for all x and any real number t, then adding a number t to

all elements of x changes the objective by (
∑
k pk − 1)t. It follows that f∗(p) = +∞ if

∑
k pk 6= 1.

Since G̃x has this property, we circumvent this problem by restricting the domain of G̃x to vectors

U normalized by U0 = 0. For a vector ν = (ν1, . . . , νY ) such that
∑
y∈Y νy ≤ 1, we define

G̃∗x(ν) = max
U∈{0}×RY

∑
y∈Y

νyUy − G̃x(U)

 . (1.4)

Note that we impose U0 = 0 when taking the maximum.

The first-order condition in (1.4) gives us ν ∈ ∂G̃x(U) for all U that achieve the maximum. By

the envelope theorem, ∂G̃∗x(ν) coincides with the set of these vectors U . As a consequence, if U0 = 0

then

ν ∈ ∂G̃x(U) if and only if U ∈ ∂G̃∗x(ν).
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This reciprocal relationship is at the core of the identification and inference results in Galichon

and Salanié (2022). Its economic interpretation is simple. To use the language of discrete choice

models, suppose that Ux· = (Uxy)y∈Y represents the mean surplus that men of type x obtain by

matching with women of type y. Then the (generically unique) vector ν·|x in ∂G̃x(Ux·) represents the

proportions of men of this type who marry with the Y types of women (and ν0|x = 1 −
∑
y∈Y νy|x

represents the proportion of single men of type x). Reciprocally, the generically unique vector

Ux· ∈ ∂G̃∗x(ν·|x) rationalizes the matching patterns ν·|x of men of type x.

For any woman type y, we can similarly define

H̃y(V·y) =
1

my

∑
j∈y

max
x∈X0

(Vxy + ηxj)

and its Legendre-Fenchel transform H̃∗y ; and we obtain, for V0y = 0,

ν·|y ∈ ∂H̃y(V·y) if and only if V·y ∈ ∂H̃∗y (ν·|y).

We showed in Section 1.1 that at a stable matching, there exist U and V matrices, with Ux0 =

V0y = 0, such that Uxy + Vxy ≤ Φxy for all pairs of types (x, y), with equality if some individuals

of these types do match (µxy > 0). Now µy|x = µxy/nx is the proportion of men of type x who

match with a woman of type y, so that Ux· ∈ ∂G̃∗x(µ·|x). Similarly, V·y ∈ ∂H̃∗y (µ·|y), where (with

some abuse of notation) µx|y ≡ µxy/my. It follows that at any stable matching, the elements of all

matrices in the sum of sets

∂G̃∗x(µ·|x) + ∂H̃∗y (µ·|y)

are at most equal to the corresponding elements of Φ; and that if µxy > 0, then the (x, y) element

is uniquely defined and equals Φxy.

This somewhat cumbersome statement is much simplified if we assume that the population

constitutes a “large market” and if the unobserved heterogeneity has full support.

Assumption 2 (Large market). The population contains a continuum of individuals of each type.

Assumption 2 allows us to replace all averages with expectations, and all proportions with prob-

abilities in our statements. To denote this change, we now take out the tildes in the notation: we

write Gx and Hy instead of G̃x and H̃y, and G∗x and H∗y instead of G̃∗x and H̃∗y .

At this point, the functions Gx and Hy may still have points of non-differentiability if some

unobserved heterogeneity terms have atoms; and some matching patterns may be zero if they are
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dominated for all values of the heterogeneity terms. The continuous, full support assumption rules

out these two cases.

Assumption 3 (Continuous full support). All distributions Px and Qy have full support and no

mass points.

Given Assumptions 2 and 3, all matching patterns µx0, µ0y, and µxy must be positive, so that

Uxy + Vxy = Φxy for all (x, y); moreover, all subgradients are gradients. This allows us to write

Φxy =
∂G∗x
∂µy|x

(µ·|x) +
∂H∗y
∂µx|y

(µ·|y)

for all (x, y).

Finally, we define the generalized entropy : for any (X,Y ) matrix µ of feasible marriage patterns,

E(µ, q) = −
∑
x∈X

nxG
∗
x

(
µx·
nx

)
−
∑
y∈Y

myH
∗
y

(
µ·y
my

)
. (1.5)

The function E only depends on the marriage patterns µ and the margins q = (n,m). It is concave;

its shape depends on the distributions (Px) and (Qy) of the unobserved heterogeneity terms ε and

η. Note that the element µxy only comes in via the x term of the first sum and the y term of the

second sum, so that
∂E
∂µxy

(µ, q) = − ∂G∗x
∂µy|x

(
µx·
nx

)
−

∂H∗y
∂µx|y

(
µ·y
my

)
. (1.6)

This suggests, and Galichon and Salanié (2022) proves, that:

Theorem 2 (Identifying the Joint Surplus). Under Assumptions 1, 2, and 3, the stable matching

µ is unique; it solves the following globally convex program:

max
µ

∑
x∈X
y∈Y

µxyΦxy + E(µ, q)

 . (1.7)

The solution is characterized by the first-order conditions

Φxy = − ∂E
∂µxy

(µ, q).

The objective function in (1.7) is the sum of two terms. The first one represents the social

surplus from all matches when all unobserved heterogeneity terms are zero. The second one adds

the contribution to the social surplus of matching on unobservables, through the generalized entropy

term. The relative contributions of these two terms thus are directly related to the size of unobserved

heterogeneity.
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Theorem 2 shows that if a large population is governed by a separable matching model with

known distributions of unobserved heterogeneity that are continuous and have full support, then

the joint surplus can be recovered from the matching patterns. In many common specifications, the

derivatives of the generalized entropy can be computed in closed form. One key caveat applies: if the

distributions Px and Qy are only known up to say r parameters, then we can only identify (XY − r)

parameters of the joint surplus matrix Φ. This is unavoidable, as we only observe the matching

patterns µ. They consist of (XY + X + Y ) numbers (µxy, µx0, µ0y); but only the XY conditional

matching patterns (µxy/nx, µxy/my) enter the identification formula (1.6). To put it differently, all

separable models are homogeneous of degree 1: rescaling the market by multiplying all nx and my

by the same positive number rescales all stable matching patterns by the same number.

1.3 The Data

We assume that the analyst observes a random sample of size N from a large population of house-

holds. By simple counting, she obtains estimators of the matching patterns µ̂xy, µ̂x0, and µ̂0y and

a consistent estimator Σµ̂ of their asymptotic variance-covariance matrix, given by the standard

formula3:

Σµ̂ = diag µ̂− µ̂µ̂′.

This also yields estimators of the margins q:

n̂x = µ̂x0 +
∑
y∈Y

µ̂xy

m̂y = µ̂0y +
∑
x∈X

µ̂xy

and finally, an estimator Σ̂ of the variance-covariance matrix of (µ̂, q̂).

In the following two sections, we will assume throughout that Assumptions 1, 2 and 3 hold in the

population from which the data is drawn. Section 4 discusses how our estimators can be adapted to

more general settings.

3This would be easy to adapt if sampling weights were used.
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2 Minimum-distance Estimation

Under our assumptions, Theorem 2 shows that at the stable matching µ, the joint surplus matrix

Φ can be obtained by the following simple formula:

Φxy = − ∂E
∂µxy

(µ, q). (2.1)

Suppose that the distributions Px and Qy are specified up to a parameter vector α ∈ Rdα ,

while the joint surplus matrix Φ is specified up to a parameter vector β ∈ Rdβ . We denote the

generalized entropy function by Eα and the parameterized surplus vector by Φβ. We assume that

the parameters α and β are point-identified4. Then we can use (2.1) as the basis for a minimum

distance estimator, see Newey and McFadden (1994). That is, we write a mixed hypothesis as

∃λ = (α,β), Dλ(µ, q) ≡ Φβ +
∂Eα

∂µ
(µ, q) = 0,

stacking all X × Y conditions in (2.1) in a vector Dλ.

2.1 The Estimation Procedure

To estimate λ = (α,β), we will replace the population values of µ and q with the observed values

µ̂ and q̂. Now the sample will obviously be smaller than the population. Fortunately, we saw in

Section 1.2 that all separable matching models exhibit constant returns to scale. More precisely, the

derivatives of the entropy are homogeneous of degree 0 in (µ, q), so that the mixed hypothesis is

scale-invariant.

The smaller size of the sample raises a more serious issue. Even though under Assumptions 1, 2

and 3 all µxy, µx0 and µ0y are positive, some of them may be quite small. This may result in zero

values in the observed sample. If, as in many common specifications, the derivatives of the entropy

are infinite in zero, this will create difficulties. We will discuss this further in Section 4. For now,

we rule out such “zero cells”.

Assumption 4 (No zero cells). All values of µ̂ are positive.

Under Assumption 4, we can both test our mixed hypothesis and estimate λ by minimizing

‖Dλ(µ̂, q̂)‖2S for some positive definite (X×Y,X×Y ) matrix S. By the general theory of minimum

4Note that in general, this requires that dα + dβ ≤ X × Y .
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distance estimators, we know that this yields a consistent estimator of λ if the model is well-

specified and λ is point-identified. Moreover, if we choose S = Ω̂−1 where Ω̂ consistently estimates

VDλ(µ̂, q̂), the minimum distance estimator will reach its efficiency bound5. Finally, under this

choice of S the minimized value of the squared norm follows a χ2 of degree X × Y − dα − dβ under

the mixed hypothesis. This gives us a straightforward specification test.

This procedure is summarized in Box 1.

1. Choose any positive definite matrix S and minimize over λ ∈ Rdα+dβ

‖Dλ(µ̂, q̂)‖2S =
∑
x,y,z,t

Sxy,zt

(
Φβxy +

∂Eα

∂µxy
(µ̂, q̂)

)(
Φβzt +

∂Eα

∂µzt
(µ̂, q̂)

)
.

This gives a consistent estimator λ∗.

2. Use the delta method to estimate the variance Ω∗ of Dλ(µ̂, q̂) at λ = λ∗; let S∗ = (Ω∗)−1.

3. Minimize as in 1. with S = S∗, to obtain another consistent estimator λ̂.

4. The variance-covariance matrix of λ̂ is consistently estimated by(
F̂ ′S∗F̂

)−1
where F̂ is the Jacobian of Dλ with respect to λ at λ̂.

5. Under the null of correct specification, the statistic

T̂ =
(
D̂λ̂
)′
S∗D̂λ̂

converges to a χ2(X × Y − dα − dβ) distribution.

Box 1: minimum-distance estimation (general case)

2.2 The Linear Case

In general, the optimization problem in Box 1 is not globally convex. There is an important special

case in which it is in fact quadratic, and minimum-distance estimation is a particularly appealing

5Given an initial consistent estimate of λ and the estimator Σ̂ of the variance-covariance matrix, such a consistent

estimate Ω̂ can be obtained by applying the delta method.
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strategy.

2.2.1 Linearity in the Parameters

Suppose that both the derivatives of the generalized entropy function Eα and the surplus matrix

Φβ are linear in the parameters:

∂Eα

∂µxy
(µ, q) = e0xy(µ, q) + exy(µ, q) ·α (2.2)

where for every (x, y) ∈ X × Y, e0xy(µ, q) is a scalar and exy(µ, q) is a vector of size dα; and

Φβxy = φxy · β (2.3)

where φxy is of size dβ.

The basis functions e0(µ, q), e(µ, q) and φ are imposed by the modeler. Then

Dλxy(µ, q) = φxy · β + e0xy(µ, q) + exy(µ, q) ·α

is linear in the parameters λ. Note that the parameter-free part e0 is necessary in order to identify

λ: since we are minimizing the norm of Dλ, making α and β equal 0 would give a trivial solution

otherwise. This is simply due to the fact that the scale of the error terms is not identified in

discrete-choice models, as will become clearer in our examples.

These linearity assumptions call for two remarks. Condition (2.2) trivially holds in models where

the Px and Qy are parameter-free, like the ubiquitous Choo and Siow (2006) specification. More

generally, it holds in families of models where the parameters α change the location of the unobserved

heterogeneity terms and/or rescale them identically across partner types.

Proposition 3. Linear derivatives in identical-scale models

Suppose that there exist parameter-free distributions (P0
x) and (Q0

y) such that

• for every x, the unobserved heterogeneity terms

εiy = axy ·α+ bx ·α ε0iy

where the vector (ε0iy) is distributed as P0
x; the vectors axy and bx are known and non-random;

and bx ·α is positive for all α;

• for every y, the unobserved heterogeneity terms

ηxj = cxy ·α+ dy ·α η0xj
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where the vector (η0xj) is distributed as Q0
y; the vectors cxy and dy are known and non-random;

and dy ·α is positive for all α.

Then the derivatives of the generalized entropy E with respect to µ are linear in α.

While the statements in Proposition 3 may look cumbersome, they give a simple recipe to generate

a market with linear derivatives of the generalized entropy:

1. pick any families of distributions (P0
x) and (Q0

y) and draw random vectors (ε0i·) and (η0
·j) from

them

2. shift the location of the ε0 and η terms arbitrarily

3. and allow for heteroskedasticity that can depend in an arbitrary manner on x (resp. y) only

for ε0 (resp. η).

As we will see in Section 2.3, Proposition 3 applies to several leading examples. It does rule out, for

instance, models in which the preference shock of men of type x for women of type y has a variance

that depends on y.

The joint surplus is the sum of the pre-transfer utilities of both partners, maximized over house-

hold decisions. As such, it is a function of prices, income, taxes, and other environmental variables.

The linearity of the surplus function (Condition (2.3))is clearly a restrictive condition. We prefer to

view (2.3) as a “seminonparametric” or flexible expansion over a set of basis functions. If the set

of basis functions is large enough, the estimated joint surplus can then be projected on a class of

structural models that are nonlinear in the parameters.

2.2.2 Estimation in the Linear Case

Under conditions (2.2) and (2.3), the minimum distance estimator can be implemented by linear

least-squares. Let F̂ denote the (X × Y, dα + dβ) matrix that stacks ê = e(µ̂, q̂) and φ vertically,

so that Dλ(µ̂, r̂) = ê0 + F̂ λ, where ê0 = e0(µ̂, q̂). Then for any choice of S, the minimum distance

estimator λ̂ solves the linear system (
F̂ ′SF̂

)
λ̂ = −F̂ ′Sê0; (2.4)

that is, λ̂ is simply the GLS estimator in the linear regression

− ê0 = F̂ λ+ u (2.5)
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when V u = S−1.

The resulting QGLS procedure is summarized in Box 2.

1. Evaluate ê0 ≡ e0(µ̂, q̂) and ê ≡ e(µ̂, q̂); stack e and φ vertically in a matrix F̂ .

2. Choose any positive definite matrix S and run the GLS regression (2.5) to get a consistent

estimator λ∗.

3. Use the delta method to estimate the variance Ω∗ of Dλ(µ̂, q̂) at λ = λ∗; let S∗ = (Ω∗)−1.

4. Take S = S∗ and run the GLS regression (2.5) to obtain λ̂. Denote û the residuals of the

regression.

5. The variance-covariance matrix of λ̂ is consistently estimated by(
F̂ ′S∗F̂

)−1
.

6. Under the null of correct specification, the statistic

T̂ = û′S∗û

converges to a χ2(X × Y − dα − dβ) distribution.

Box 2: min-distance estimation (linear case)

If moreover all distributions (Px) and (Qy) are parameter-free, then λ only consists of β; the

generalized entropy is also parameter-free and ê is zero. Then the matrix Ω∗ is simply the variance

of e0(µ̂, q̂) since φβ does not depend on the observed matching. Moreover, F̂ reduces to the matrix

φ. The estimators of λ = β can be obtained following the procedure described in Box 3.
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1. Evaluate Ω∗ = V ê0 and S∗ = (Ω∗)−1.

2. Solve the linear system (φ′S∗φ) β = −φ′S∗ê0.

3. The variance-covariance matrix of β̂ is consistently estimated by

(φ′S∗φ)
−1
.

4. Under the null of correct specification, the statistic

T̂ =
(
φβ̂ + ê0

)′
S∗
(
φβ̂ + ê0

)
converges to a χ2(X × Y − dβ) distribution.

Box 3: minimum-distance estimator (linear case with parameter-free entropy)

The one remaining difficulty in the procedures of Boxes 2 and 3 is the evaluation of Ω∗ by the

delta method. Now

V D̂λ =
(
E ′µµ E ′µq

)
V

µ̂
q̂

Eµµ
Eµq

 .

where Eµ = e0 + e · α. Computing Ω∗ therefore requires evaluating the derivatives in (µ̂, q̂) of ê0

and (unless the entropy is parameter-free) ê, which constitute the elements of Eµµ and Eµq. While

this can be done in closed form for several commonly used specifications, it may require numerical

approximation in general. It is easy to see from the definition in (1.5) that the first derivative of E

with respect to µxy only depends on the conditional matching patterns µ·|x = (µx1/nx, . . . , µxY /nx)

of men of type x, and on those of women of type y. As a consequence, the Hessians of E are very

sparse and are often easy to evaluate.

2.2.3 Estimation under Linear Derivatives

Proposition 3 shows that many useful classes of models can be parameterized in such a way that

Condition (2.2) holds:
∂Eα

∂µxy
(µ, q) = e0xy(µ, q) + exy(µ, q) ·α.

On the other hand, the analyst may favor a structural model of joint surplus Φ that cannot be

written as a linear function of its parameters β. The linearity of the derivatives of the generalized
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entropy still simplifies minimum distance estimation here.

Given values for the parameters β, the equation

Φβ = −ê0 − ê ·α

implies that for any matrix M such that Me = 0,

M(ê0 + Φβ) = 0.

This gives a family of moment conditions that yield a consistent estimator of β̂. In a second step, a

least squares estimator α̂ can be obtained by regressing (ê0 + Φβ̂) on −ê.

The matrix M used in the first step can simply be the projector on ê⊥

M = I − ê (ê′ê)
−1
ê′;

in the second step, generalized least squares can be used as in Box 1 so as to maximize efficiency.

2.3 Examples

We start with two examples for which the generalized entropy and its derivatives are available in

closed form; in both cases, the derivatives are linear in the parameters α. It is easy to see that both

cases are covered by Proposition 3; we give self-contained derivations below.

In our third example, the calculation requires finding the fixed point of a contraction, in a way

that is similar to the “Berry inversion” of empirical industrial organization (Berry, 1994).

2.3.1 The Choo and Siow Model with Heteroskedasticity

Let us start with an easy extension of the Choo and Siow (2006) logit model: the distributions Px
and Qy are type I-EV iid vectors with unknown scale factors σx and τy respectively. Collecting the

scale factors in vectors σ and τ , the parameters of the generalized entropy are α = (σ, τ ). The

derivatives of Eα with respect to µ are linear in α:

∂Eα

∂µxy
(µ, q) = −σx log

µxy
µx0
− τy log

µxy
µ0y

where µx0 = nx−
∑
y∈Y µxy and µ0y = my −

∑
x∈X µxy. As explained earlier, we need to normalize

the scale of the vector λ. The most natural way to do it is to fix the value of one of the parameters

in α. If for instance we fix σ1 = 1, then
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• e01y = − log(µ1y/µ10) and e1y = 0 for all y ∈ Y;

• for x = 2, . . . , X, the (x−1)-th element of exy is − log(µxy/µx0) and its (X−1+y)-th element

is − log(µxy/µ0y);

• all other elements of e0 and e are zero.

The Choo and Siow homoskedastic model obtains when all σx and τy equal one; a gender-

heteroskedastic model would have all σx equal to one and all τy equal to an unknown τ . Chiappori

et al. (2017) applied a minimum distance estimator to the homoskedastic and heteroskedastic logit

models.

The second derivatives of the generalized entropy take a very simple form in this class of models:

∂2Eα

∂µxy∂µzt
(µ, q) = − σx

µx0
11(z = x)− τy

µ0y
11(t = y)− σx + τy

µxy
11(z = x, t = y) (2.6)

and
∂2Eα

∂µxy∂nz
(µ, q) =

σx
µx0

11(z = x);
∂2Eα

∂µxy∂mt
(µ, q) =

τy
µ0y

11(t = y). (2.7)

2.3.2 Nested Logit

Consider a two-layer nested logit model. Take men of type x first. Alternative 0 (singlehood) is

obviously special; we put it alone in its nest. Each other nest n ∈ Nx contains alternatives y ∈ Yn.

The correlation of alternatives within nest n is proxied by 1− (ρxn)
2

(with ρx0 = 1 for the nest made

of alternative 0). Similarly, for women of type y, alternative 0 is in a nest by itself with parameter

δy0 = 1 and alternatives x ∈ Xn′ are in a nest n ∈ N ′y with parameter δyn′ . We collect the parameters

ρ and δ into α.

The formulæ in Example 2.1 of Galichon and Salanié (2022) imply that if y is in nest n ∈ Nx
and x is in nest n′ ∈ Ny, then

∂Eα

∂µxy
(µ, q) = −ρxn log

µxy
µx0
− (1− ρxn) log

µxn
µx0

− δyn′ log
µxy
µ0y
− (1− δyn′) log

µn′y
µ0y

, (2.8)

where we defined µxn =
∑
t∈Yn µxt and µn′y =

∑
z∈Xn′

µzy. Once again, this is linear in the

parameters α; it remains linear if we impose constraints on the nests (for instance, that Nx is the

same for all types x) and/or linear constraints on the ρ parameters (for instance, that ρxn only

depends on n). Here too the second derivatives, while more complicated than in the multinomial

logit, can be computed in closed form.
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2.3.3 Mixed Logit

Let us now describe a random coefficient logit model. Consider a man i of type x, endowed with

preferences ei over a set of d observable characteristics Z of potential partners. We add an id-

iosyncratic shock ζi that is distributed as a standard iid type I extreme value vector over IRY+1,

independently of ei, and a scale factor s > 0:

εiy =

d∑
k=1

Zykeik + sζiy

or in matrix form: ε = Ze+ sζ. This specification is standard in empirical IO6.

Let individual preferences e of men of type x have distribution Pex. We will seek to estimate the

parameters β of the joint surplus, the scale factor s, and the parameters of the distributions Pex. We

collect s and the parameters of Pex in a vector α. Note that except in trivial cases, this model does

not have the “identical-scale” property that underlies Proposition 3. In fact, the derivatives of the

generalized entropy generally fail to be linear in α.

To compute the derivative of the generalized entropy function, we recall from Galichon and

Salanié (2022) that we only need to replace the max operator in the definition of the function Gx

with a regularized “softmax” that accounts for the integration over the shocks e:

Gx(U ;α) =

∫
s log

∑
y=0,1,...,Y

exp

(
Uy + (Ze)y

s

)
dPex(e).

This gives

G∗x(ν;α) = max
U∈RY+1

∑
y∈Y0

νyUy −
∫
s log

∑
y=0,1,...,Y

exp

(
Uy + (Ze)y

s

)
dPex(e)

 .
By the envelope theorem, the derivative of G∗x(ν;α) with respect to ν is the vector U that solves

the system

νy =

∫
exp((Uy + (Ze)y)/s)∑

t=0,1,...,Y exp((Ut + (Ze)t)/s)
dPex(e) ∀y = 1, . . . , Y.

This is exactly isomorphic to the inversion problem in Berry et al. (1995), with the unknown U

standing for the product effects and ν playing the role of the product market shares7. After replacing

ν with the observed µx·/nx, the system can be solved by any of the algorithms that are standard

6In Berry et al. (1995), the covariates in Z stand for the observed characteristics of the products; the e are

individual valuations of these characteristics; and the ζ are idiosyncratic shocks.
7The limit case s = 0 yields the pure characteristics model of Berry and Pakes (2007).
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in this literature. The solution gives row x of the matrix U . Proceeding in the same way for other

types of men, and solving for V for women, gives the derivatives of the generalized entropy function:

∂Eα

∂µxy
(µ, q) = − ∂G

∗
x

∂νxy

(
µx·
nx

)
−
∂H∗y
∂νxy

(
µ·y
my

)
= −Uxy − Vxy = −Φxy.

3 Moment-based Estimation by Poisson Regression

Let us now return to the linear case with a parameter-free generalized entropy: Φβ = φβ and the

function E is known (or assumed).

Galichon and Salanié (2022) introduced a moment-matching procedure that gives a consistent

estimator of the parameter vector β if the model is well-specified. The moment matching estimator

equalizes the observed and simulated comoments, that is the expectations of the basis functions φ

under the observed and simulated matching patterns:∑
x,y

µ̂xyφxy =
∑
x,y

µβxyφxy,

where µβ denotes the stable matching patterns for the parameter vector β. As explained in Galichon

and Salanié (2022), these are the first-order conditions of the following maximization problem:

max
β

(
µ̂Φβ −W(β, q)

)
(3.1)

where

W(β, q) = max
µ

(
µΦβ + E(µ, q)

)
(3.2)

is the value of the total joint surplus. To see this, first apply the envelope theorem to (3.2) to obtain

∂W
∂β

= µβ
∂Φβ

∂β
= µβφ;

then use the first-order condition in (3.1):

µ̂φ = µβφ.

Moreover, both of these maximization problems are globally convex. We now show that in the specific

(but popular) case of the Choo and Siow (2006) model, moment matching can be reformulated as a

generalized linear model, and estimated by a Poisson regression with two-sided fixed effects.

Define A = X × Y ∪ X×{0} ∪ {0} × Y the set of possible marital arrangements. For (x, y) ∈ A,

we denote by wxy the size of household (x, y): it is 2 if the household is a couple and 1 if it is a

single. This defines a vector w ∈ RA. The following theorem summarizes our results.
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Theorem 4 (Estimating the logit model with a Poisson regression). In the Choo and Siow model, the

moment-matching estimator β̂ is the solution to a Poisson regression of (µ̂xy)xy∈A on
(
Φβxy/wxy

)
xy∈A,

with x- and y- fixed effects and with weights wxy defined above, and where we take by convention

Φβx0 = 0 and Φβ0y = 0 and a0 = 0 and b0 = 0. In other words, β is the solution to

max
βk,ax,by

∑
xy∈A

wxyµ̂xy

(
Φβxy − ax − by

wxy

)
−
∑
xy∈A

wxy exp

(
Φβxy − ax − by

wxy

)
.

The proof of Theorem 4 is given in Appendix C. The result is very useful in that it allows for

inference on β,u and v in semilinear logit models with standard statistical packages such as glm in

R, or scikit-learn in Python. Note that like Santos Silva and Tenreyro (2006) in the international

trade literature, we end up fitting a Poisson regression to a model that is definitely not generated

by a Poisson count process. The motivation is different, however. They start from a semiparametric

model of the gravity equation and use the robustness of the Poisson pseudo-maximum likelihood

estimator. We start from a more complex, fully specified structural model and we show that a

semiparametric estimator (moment-matching) is numerically equivalent to the maximum likelihood

estimator of a Poisson model8.

In the sequel we will denote Im the (m,m) identity matrix; p(m,n) the (m,n) matrix whose

elements all equal p; and pm ≡ p(m,1). Also, we say that we stack an (X,Y ) matrix in “row-major

order” when we create a vector of X × Y elements whose first Y elements are the first row of the

matrix, etc. If A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product A ⊗ B is a matrix of size

(mp)× (nq) defined by a blockwise expression as:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB


where each aijB denotes the matrix B scaled by the scalar aij .

8The formal analogy between the (one-sided) multinomial logit model and a Poisson process is known in the

statistics literature—see e.g. Palmgren (1981).
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1. Flatten the observed matching patterns µ̂ into a vector of size |A|, by first stacking the elements

xy ∈ X × Y in row-major order, then adding the elements x0 ∈ X × {0}, and finally adding

the elements 0y ∈ {0} × Y.

2. For each basis function k = 1, . . . ,K, use the same ordering to create a vector φk ≡ (φkxy)xy∈A.

Then combine these K column vectors of size |A| into an |A| ×K matrix.

3. Using the same ordering again, define the vector w in RA:

w = (2′X×Y ,1
′
X ,1

′
Y )′.

4. Finally, define the |A| × (K +X + Y ) matrix Z as

Z =


φ/2 − 1

2IX ⊗ 1(Y,1) − 1
21(X,1) ⊗ IY

0(X,K) −IX 0(X,Y )

0(Y,K) 0(Y,X) −IY

 .

5. Run a Poisson regression of µ̂ on Z with weights w. Do not add any fixed effect, as these have

already been included in the design of Z. Let γ̂ be the vector of coefficients obtained this way;

it solves

max
γ∈RK+X+Y

(∑
a∈A

waµ̂a (Zγ)a −
∑
a∈A

wa exp ((Zγ)a)

)
.

6. Decompose γ̂ = (β̂′, â′, b̂′)′ ∈ RK+X+Y . Then β̂ is the moment-matching estimator, and ax

and by are the x- and y- fixed effects.

Box 4: GLM estimator (linear case with logit heterogeneity)

As a result, we get that:

Theorem 5. The asymptotic variance-covariance matrix of γ̂ can be estimated with

V̂ γ̂ = Â−1 B̂ Â−1

where, letting W = diagw, we have

Â =
(
Z>W diag (exp (Zγ))Z

)
=

∑
a∈A

wa exp(Zaγ̂)Z>a Za
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and

B̂ = Z>W (diag(µ̂)− µ̂µ̂>)WZ

=
∑
a∈A

waµ̂aZ
>
a Za −

∑
a,a′∈A

wawa′ µ̂aµ̂a′ Z
>
a Za′ .

4 Dealing with Common Issues

It is often the case in applications that some (x, y) cells contain no match: µ̂xy = 0. This generally

creates no particular difficulty for our GLM estimator. On the other hand, it may require adapting

our minimum-distance estimator. We discuss several solutions in Section 4.1.

Data aggregation occurs when we only observe matching patterns at a more aggregated level

than the (x, y) cell, where we imposed separability. Assumption 1 rules out interactions between the

unobserved characteristics of the two partners, conditionally on (x, y). Suppose for instance that we

collected data on age and education for women, but only on education for men. Separability at the

age × education level requires that if men i and i′ have the same age and education, and women j

and j′ have the same age and education, then

Φ̃ij + Φ̃i′j′ = Φ̃i′j + Φ̃ij′ .

If now men k and k′ have the same education and different ages, it is quite possible that

Φ̃kj + Φ̃k′j′ 6= Φ̃k′j + Φ̃kj′ :

separability is not preserved by aggregation. This affects both of our proposed estimators; Section 4.2

proposes a general strategy to deal with it.

4.1 Zero Cells

The minimum-distance estimator relies on the equation

∀(x, y), Φβxy +
∂Eα

∂µxy
(µ,n,m) = 0,

which is the first-order condition of the surplus maximization in the population under Assumptions 1,

2, and 3. Assumption 3 (continuous full support) may fail for two reasons: some distributions Px or

Qy may have bounded support, and/or they may have mass points. In both cases, some matching
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patterns may be zero in the population, and a fortiori in the sample. This requires allowing for

inequalities in the identifying equations, and replacing derivatives with subgradients at mass points.

The most relevant case for applications arises because of sampling variation. Even if Assump-

tions 1, 2, and 3 hold and all population matching patterns are positive, some may be so small that

the corresponding cells are empty in the sample. In such cases we would have µxy > 0 but µ̂xy = 0.

First note that it may not be a problem at all: if there exists λ = (α,β) that solves

Φβxy +
∂Eα

∂µxy
(µ̂; n̂, m̂) = 0 for all x, y

then this λ is a perfectly reasonable estimator. Still, for many specifications, like those we studied

in Section 2.3, the partial derivatives of the generalized entropy are infinite in zero. Then such a λ

cannot exist.

Perhaps the simplest solution then is to add a small number δ > 0 to each component of µ̂. This

can be done without modifying the number of households in the sample, using:

µ̂δa = (µ̂a + δ)
N

N + δ|A|

where a ∈ A goes over all components. If we fix δ and the sample size N grows to infinity, the

number of households in any cell grows like N . As a consequence, the estimators (αδN ,β
δ
N ) that

result from applying minimum-distance estimation to the pseudo-data µ̂δ will be consistent.

More generally, we could replace µ̂a with

µ̃a = kN µ̂a + lN

for positive numbers kN , lN such that kN → 1 and lN = o(N). One such formula is

µ̃a = N
µ̂xy + 1/2

N + 1/2
,

which in principle helps correct finite-sample bias (see Appendix B).

Note that the Poisson-GLM estimator of the Choo and Siow linear model that we presented in

Section 3 maximizes a function that is linear in the observed matching patterns µ̂; as such, it applies

without modification when some cells are empty.

4.2 Aggregation

Now suppose that we have a data-generating process for which all elements of both µ and µ̂ are

positive at the (x, y) level. If we had the data, we could use our minimum-distance estimator, or,
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for the linear Choo and Siow model, the Poisson-GLM estimator. Unfortunately, we only observe

aggregate (a, b) categories. Let us denote “x ∈ a” and “y ∈ b” to mean that x belongs to the

aggregate a type, and y to the aggregate b type. The unobserved disaggregated matching patterns

must add up to the observed aggregates: for all a and b,

µ̂ab =
∑
x∈a
y∈b

µ̃xy

µ̂a0 =
∑
x∈a

µ̃x0 (4.1)

µ̂0b =
∑
y∈b

µ̃0y.

On the other hand, the minimum distance estimator readily extends to such incomplete data. To

see this, recall that with complete data we would use

∀(x, y), Φβxy +
∂Eα

∂µxy
(µ̂, n̂, m̂) = 0

to estimate λ = (α,β). Our proposal here is to augment the set of parameters λ with new positive

parameters µ̃xy, µ̃x0, µ̃0y. That is, we replace λ with

Λ = (λ, (µ̃xy), (µ̃x0, (µ̃0y))

and we choose Λ to minimize the norm of the vector DΛ under the constraints that the µ̃xy, µ̃x0, µ̃0y

(i) be positive and (ii) satisfy the system of equalities (4.1). This can be seen as a minimum-distance

estimator for the augmented mixed hypothesis

∃Λ = (λ, µ̃ > 0) s.t. DΛ = 0 and (4.1).

While the constraints in (4.1) are linear in the new parameters, the partial derivatives of the gen-

eralized entropy now depend in a non-linear way on the additional parameters µ̃. This breaks the

linearity of the procedure, even if Φ is linear in β and the generalizes entropy is linear in α. Still,

it is a simple constrained optimization problem that can be solved using off-the-shelf software.

A similar remark applies to the Poisson estimator of the linear Choo and Siow model: the

optimization now runs over both γ and the µ̃ auxiliary variables under the constraints in (4.1).

5 Extensions

While we described our two estimation methods in the setting of a bipartite model, they can be

used in a broader class of matching models with perfectly transferable utility.
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5.1 Multipartite Matching

Suppose that each match must consist of at most p partners; the partner in position k = 1, . . . , p (if

any) must be drawn from sub-population k. The separability assumption extends naturally: for a

match of individuals i1 ∈ x1, . . . , ip ∈ xp, we assume that

Φ̃i1...ip = Φx1...xp +

p∑
l=1

εil;x−l

where we denote x−l the characteristics of all partners except il. Then we can define e.g.

Gxl(Uxl·) = EPxl max
x−l

(
U(xl, x−l) + εil;x−l

)
,

the associated Legendre-Fenchel transforms, and the generalized entropy

E(µ, q) = −
K∑
l=1

∑
xl∈Xl

nxlG
∗
xl

(
µxl·
nxl

)
given sub-population numbers q = (nx1

, . . . , nxp) and matching patterns µx1...xp .

A minimum-distance estimator obtains easily from these definitions; the algorithms in Boxes 1,

2 and 3 apply with obvious changes. For the linear Choo and Siow model, the Poisson-GLM

estimator also only requires simple changes. In both cases, the main change is that with p > 2,

other configurations than complete partner sets and singles may exist9. We give detailed formulae

for the case p = 3 in Appendix D.

5.2 Many-to-one Matching

The pioneering contribution of Kelso and Crawford (1982) had firms matching with workers. While

a given worker may only match with one firm, a firm may hire many workers. We now turn to a

separable, transferable utility version of their model.

First assume that all workers occupy interchangeable functions within the firm. Each firm has an

observed type x and each worker has an observed type y. Consider a firm i of type x that employs

a set of workers S (a team). Denote nSy the number of workers in S who have observed type y, and

nS the vector (nS1 , . . . , n
S
Y ). We call nS the type profile of the team S. Then we define the joint

surplus as

Φ̃(i, S) = Φ(x,nS) + εi(n
S) +

∑
j∈S

ηj(x).

9E.g. with p = 3, positions 1 and 3 may be filled in a match but not position 2. Such a partial match may still

generate a positive joint surplus.

26



Here εi(n
S) could represent the unobserved shock to the production of this team in firm i; and−ηj(x)

could be the unobserved shock to the disutility of work of worker j in a firm of characteristics x10.

Denote vj the equilibrium payoff of a worker j. A firm i ∈ x solves

ui = max
S

Φ(x,nS) + εi(nS) +
∑
j∈S

ηj(x)−
∑
j∈S

vj

 .

Using similar reasoning as in Section 1, this can be rewritten as

ui = max
nS

Φ(x,nS) + εi(n
S)− min

T |nT=nS

∑
j∈T

(vj − ηj(x))


= max

nS

Φ(x,nS) + εi(n
S)−

Y∑
y=1

nSy min
Ty

1

nSy

∑
j∈Ty

(vj − ηj(x))


where for each y, the “minimum over Ty” ranges over all sets of nSy workers with type y. The value of

this minimum is a function of x, y, and nS . In our large market approximation, it does not depend

on nSy ; we denote it by V (x, y). It will represent the mean utility of type y of workers in firms of

type x. We obtain

ui = max
n∈NY

(
Φ(x,n)−

Y∑
y=1

nyV (x, y) + εi(n)

)
where the maximum ranges over all integer-valued vectors n in NY .

We generate in the same way the utility of a worker j of observed type y who may join a firm i

with a set S of other workers. Let us denote n+ 1y the type profile obtained by adding a worker of

type y to an existing type profile n. We have

vj = max
i,S

(
Φ(x,nS + 1y) + εi(n

S + 1y) +
∑
k∈S

ηk(x) + ηj(x)− ui −
∑
k∈S

vk

)

= max
x,n∈NY

(
Φ(x,n+ 1y) + ηj(x)−min

i∈x
(ui − εi(n+ 1y))− min

T |nT=n

∑
k∈T

(vk − ηk(x))

)

= max
x,n∈NY
ny≥1

(
Φ(x,n) + ηj(x)− U(x,n)−

Y∑
t=1

ntV (x, t)

)
,

after defining U(x,n) = mini∈x(ui − εi(n)).

To summarize: there exist functions U(x,n) and V (x, y) such that

U(x,n) +

Y∑
y=1

nyV (x, y) ≥ Φ(x,n)

10This disutility could also vary with the type profile of the team.
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with equality if some firm of type x employs a team n of workers. In a match of a firm i ∈ x with a

team of type profile n, the firm has a payoff

ui = U(x,n) + εi(n)

and a worker j of type y in this firm obtains

vj = V (x, y) + ηj(x).

We can define the expected maximum utility of a firm of type x as

Gx(U) = Eε max
n∈NY

(U(x,n) + εi(n))

and that of a worker of type y as

Hy(V ) = Eη max
x∈X

(V (x, y) + ηj(x)) .

From the functions Gx and Hy we can derive the Legendre-Fenchel transforms G∗x and H∗y in the

standard manner. Note that the G∗x is defined over the set of probabilities µ(n|x), while H∗y is

defined over probabilities µ(y|x). These probabilities are linked, however. Since a firm with a team

of type profile n employs ny workers, the number of workers of type y employed by all firms of type

x must be

µ(x, y) =
∑
n∈NY

nyµ(x,n).

This allows us to redefine H∗y as a function H̄y of the probabilities µ(x,n).

Finally, given a sample withNx firms of type x andMy workers of type y, we define the generalized

entropy as

E(µ;N ,M) = −
X∑
x=1

NxG
∗
x(µ(·|x))−

Y∑
y=1

MyH̄y(µ).

for a collection of matching patterns µ = µ(x,n). It is easy to check that

Φ(x,n) = − ∂E
∂µ(x,n)

(µ;N ,M). (5.1)

The observed matching patterns are µ̂(x,n), the number of firms of type x which hire a team with

type profile n. Our minimum distance estimator can be directly applied to (5.1). The only difficulty

is that with so many possible values of the type profile n, many observed matching cells will be

zero; then the adjustment suggested in Section 4.1 should be used. Corblet (2022) proposed such

a many-to-one variant of the Choo and Siow model to examine how workers in different age and

education groups sort across firms in different industries on the Portuguese labor market.
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One could go further and distinguish the tasks that different workers can accomplish within a

firm. The type profile would then become a type-task profile: nSyt would represent the number

of workers of type y allocated to a task t within a team S. While the notation becomes more

cumbersome, the extension follows naturally.

5.3 Unipartite Matching

Unipartite matching (also called roommate matching) is the instance of the one-to-one matching

problem in which both partners can be taken from the same population. This increases greatly

the number of possible blocking coalitions; as a result, a stable unipartite matching may fail to

exist. Chiappori, Galichon, et al. (2019) showed that this difficulty vanishes asymptotically in large

markets. Moreover, they show how a virtual bipartite matching problem can be associated to any

large unipartite matching instance. In the case of continuous observable characteristics, Ciscato et al.

(2020) leveraged that connection to build estimators can be used directly in the original unipartite

problem.

With discrete observable characteristics, a separable unipartite matching problem is given by a

set of types X ; margins nx; and the following joint surplus:

Φ̃ij = Φxy + εiy + εxj

where

• the matrix Φ is symmetric: Φxy = Φyx for all x, y ∈ X ;

• for each i ∈ x, the vector (εiy)y∈X0 is distributed according to Px.

Note the two differences with Assumption 1: since the partners are drawn from the same population,

both the deterministic and the stochastic part of the joint surplus must be symmetric. In addition,

the matching patterns µ must also be symmetric: if we define µxy to be the number of matches with

one partner of type x and one of type y, then

µxy = µyx for all x, y ∈ X .

The margin equation expressing that the mass of agents of type x equals nx then becomes

2µxx +
∑
y 6=x

µxy ≤ nx
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where the factor 2 in front of µxx is due to the fact that in a xx pair, there are two agents of type x.

Theorem 1 takes a slightly different form: there exists a (not necessarily symmetric) matrix U

such that an agent i ∈ x matches with an agent of type y (possibly 0) that maximizes Uxy + εiy over

X0; and

Uxy + Uyx ≤ Φxy,

with equality if there exist matches between types x and y.

We can define the Emax functions Gx and their Legendre-Fenchel transforms G∗x exactly as

before:

Gx(Ux·) = EPx max
y∈X0

(Uxy + εiy)

and for
∑
y∈X0

µy|x = 1,

G∗x(µ·|x) = max
Ux·

∑
y∈X0

µy|xUxy −Gx(Ux·)

 .

By the envelope theorem, this identifies Uxy as

Uxy =
∂G∗x
∂µy|x

(µ·|x)

which can be used as the basis for a minimum-distance estimator.

It is easy to see that the stable matching maximizes the total joint surplus

W(µ) =
∑
x

µxxΦxx +
1

2

∑
x 6=y

µxyΦxy + E(µ;n), (5.2)

where the generalized entropy now takes the following form:

E(µ;n) = −
X∑
x=1

nxG
∗
x(µx·/nx).

Theorem 2 still holds and (since µyx = µxy)

Φxy = − ∂E
∂µxy

(µ;n).

Finally, our Poisson estimator adapts readily for the special case of the linear Choo and Siow model.

We give the formulæ in Appendix E.
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6 Monte Carlo Simulation

We coded these two estimation methods in a Python package called cupid matching that is available

from the standard repositories11.

In order to test the quality of the estimators on a realistic example, we generated data from a

simplified version of the Choo and Siow model that we estimated in Galichon and Salanié, 2022,

Section 7. More precisely, we first estimated an eight-parameter semilinear Choo and Siow model

on the same dataset. Our model has X = Y = 25 and the following K = 8 basis functions12:

1, x, y, x2, xy, y2, 11(x ≥ y),max(x− y, 0).

The first six basis functions generate a quadratic expansion, while the last two allow the surplus to

differ according to whether the husband or the wife is older.

The original dataset combines two different sources: the 1970 Census for the as-yet-unmarried

men and women (“available”), and the 1971-72 Vital Statistics for 216,428 observed marriages.

Choo and Siow (2006) and Galichon and Salanié (2022) used sampling weights when estimating

their models; the population has about 8 times more availables than marriages. For our simulations,

we maintain this proportion and we create a “small sample” of 260,000 observations and a “large

sample” of 1.7m observations. The large sample has the original number of marriages and rescaled

availables; the small sample has the original number of availables and a only about 30,000 marriages.

We fit the Choo and Siow model with the eight basis functions on both samples; we then use

the estimated coefficients to generate 1, 000 new samples. Finally, we compute both the Poisson

estimator and the minimum-distance estimator on each generated sample.

As several of the cells are empty in the original data and in our generated samples, we used the

adjustment of Section 4.1; we took δ to be the size of the smallest positive cell, which happens to

be one. We applied this adjustment both to the original dataset and to the generated samples. We

found that the precise value of δ does not matter much for the quality of the estimates13.

To make the figures more readable, we normalized the basis functions so that the estimates in

the original dataset equal 1. Their estimated standard errors are in Table 1.

11See https://pypi.org/project/cupid-matching/.
12We applied a preliminary quantile transform to the margin vectors n and m and we used Legendre polynomials

on [0, 1].
13The bias-correction mentioned in Appendix B turned out to be numerically unstable: with many thousands of

observations, the derivative of the logarithm becomes very large in empty cells.
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Base Estimate Standard Error

Small sample Large sample

1 1 0.007 0.003

11(x > y) 1 0.024 0.010

max(x− y, 0) 1 0.018 0.007

x 1 0.024 0.009

y 1 0.015 0.006

x2 1 0.034 0.013

xy 1 0.070 0.026

y2 1 0.126 0.044

Table 1: Estimates on the Original Datasets

Figure 1 plots the distribution of the minimum distance and Poisson estimates on the smaller

sample. Each of the eight panels corresponds to the coefficient of a base function. The blue “Ex-

pected” curve plots the distribution of 1, 000 draws from a normal distribution centered at the true

value of 1, with a standard error equal to the estimated standard error in Table 1. Note that the

horizontal axes have very different scales.

It is clear from Figure 1 that the minimum distance and Poisson estimators have very similar

distributions, with standard deviations that are in the same ballpark as the standard errors estimated

on the original dataset. We checked that in most cases, the values of the two estimators differ by

less than 0.1. The biases go from a couple of percentage points for the top panels to a more sizable

50% in the bottom panels. Tests for equality to the true value of the coefficient of the quadratic

terms, for instance, would reject much too often.

The dominant term in finite-sample bias is quite generally in 1/n, so that one would expect it

to be about six times smaller with the larger sample. This is essentially what Figure 2 shows: the

biases are all smaller than 10% and testing procedures would be less misleading. Still, a 5% test

that the coefficient of y2 equals its true value would reject the null close to half of the time.

It is important to emphasize here that by construction, the minimum distance estimator exhausts

all of the empirical content of the model; so does the Poisson GLM for the Choo and Siow model.

It seems unlikely that alternative estimators would perform much better. In particular, we checked
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Figure 1: Estimating the Choo and Siow Model (small sample)
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that the nonparametric estimator used by Choo and Siow (2006)

Φ̂xy = log
µ̂2
xy

µ̂x0µ̂0y

(which coincides with our estimator when the basis functions are the X × Y cell indicators) has

non-negligible bias in moderate-size samples.

Even in relative large samples where cells with no match may be rare, the range of variation of

cell counts can be very large. To illustrate, the dataset we used in Galichon and Salanié (2022) has

216, 428 marriages. With X = Y = 25, there are 625 marriage cells. Table 2 show some quantiles of

the 625 elements of the matrix (µxy) in this dataset. While only 12 of the 625 cells are empty, the

P90-P10 ratio is larger than 100.

Table 2: Quantiles of Marriage Numbers in the Original Dataset

Percentile Value

1% 0

5% 3

10% 7

25% 27

50% 79

75% 179

90% 704

95% 2, 077

99% 5, 095

This huge dispersion of cell counts appears to be the reason why it takes so many observations

to get reliable estimates of the parameters in the Choo and Siow data. To prove this, we simulated

1,000 samples from a data-generating process that has the same (estimated) parameter values, but

with basis functions uniformly divided by 5. This simulates a marriage market where the dispersion

in the matching patterns across cells is roughly ten times smaller as in the original dataset. Figure 3

shows that in this “shrunk” marriage market, both of our estimators perform very well: the biases

vanished and the dispersion is very close to what one would expect from the asymptotic formula.
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Figure 2: Estimating the Choo and Siow Model (large sample)
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Figure 3: Estimating the “shrunk” Choo and Siow Model (small sample)
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Concluding remarks

Given a fully specified model, the maximum likelihood estimator can always be used. It requires

numerical optimization and, in an “inside loop”, the computation of the stable matching for each

current value of the parameter vector. This may be quite costly when fast algorithms (such as IPFP)

cannot be used. It also requires much more coding than the procedures we present in this paper.

Each of the two methods we presented has its pros and cons. The minimum-distance estimator

applies to all separable models; it is most convenient in semilinear models. To achieve maximum

efficiency, and to test the specification, one needs to evaluate the second derivatives of the entropy

with respect to the matching patterns. This may be difficult. In addition, when the data contains

zero cells it needs to be adjusted as explained in Section 4.1. The Poisson regression estimator only

applies to semilinear Choo and Siow (2006) models. It is appealing in its simplicity of use, as one

can rely on standard statistical packages. It is also robust to zero cells.

Our simulations suggest that even in “simple” models such as the Choo and Siow (2006), it may

take large sample sizes to get reliable estimates. Analysts should be aware that the dispersion in

matching patterns seems to be a crucial determinant of the performance of the estimators for a given

sample size.

In labor markets or in marriage markets, large samples are readily available. When they are not

(as with matching between firms), finite-sample bias may be a concern. The alternative is to develop

a bias-correction procedure that is more powerful than the rather elementary one we presented.
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A IPFP for the Nested Logit

Let us consider a nested logit model in which the nests do not depend on the type (Nx ≡ N

and N ′y ≡ N ′) and their parameters ρ and δ only depend on the nest: ρxn ≡ ρn and δyn′ ≡ δn′ .

Equation (2.8) can be rewritten as follows, for y ∈ n and x ∈ n′:

µρn+δn′xy = exp(Φxy)µx0µ0yµ
ρn−1
xn µ

δn′−1
n′y . (A.1)

Since µxn =
∑
y∈n µxy, we get

µxn = µ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

∑
y∈n

exp (Φxy/(ρn + δn′))µ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y ,

and, denoting Kxy = exp (Φxy/(ρn + δn′)):

µ(δn′+1)/(ρn+δn′ )
xn = µ

1/(ρn+δn′ )
x0

∑
y∈n

Kxyµ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y . (A.2)

Substituting in the adding up constraint µx0 +
∑Y
y=1 µxy = nx gives

nx = µx0 +
∑
n∈N

µxn

= µx0 +
∑
n∈N

µ
1/(δn′+1)
x0

(∑
y∈n

Kxyµ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y

)(ρn+δn′ )/(δn′+1)

. (A.3)

For given values of (µ0y, µn′y) for all y, (A.3) defines µx0 uniquely14 . Once µx0 is known, we can

plug it in (A.2) to obtain the values of µxn for all n. We do this for all values of x.

Then we can apply similar equations to the y side:

µ
(ρn+1)/(ρn+δn′ )
n′y = µ

1/(ρn+δn′ )
0y

∑
x∈n′

Kxyµ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

my = µ0y +
∑
n′∈N ′

µ
1/(ρn+1)
0y

(∑
x∈n′

Kxyµ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

)(ρn+δn′ )/(ρn+1)

to solve for µ0y and µn′y given the values of (µx0, µxn) for all x. We iterate until convergence and

we use (A.1) to compute the matching patterns µxy.

B Bias Correction for the Minimum Distance Estimator

As explained in Section 6, the range of variation of cell counts can be very large in applications. This

dispersion may be an issue with the minimum distance estimator, as the derivative of the generalized

14Since δn′ ≥ 0, the right-hand side is an increasing function of µx0 whose values go from zero to infinity.
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entropy often is highly nonlinear for small cells. To illustrate this, remember that in the Choo and

Siow model, this derivative equals

log
µ2
xy

µx0µ0y
= log

µxy
µx0

+ log
µxy
µ0y

.

If types x and y have a low propensity to marry each other, the observed values of both fractions

will be very small. Since the logarithm function is very concave at zero, the logarithm r̂ of the ratio

µ̂xy/µ̂x0, for instance, is likely to underestimate the logarithm r of the population ratio µxy/µx0.

A simple solution to this problem is to use second-order Taylor expansions. Asymptotically µ̂xy

is distributed as a normal with mean µxy and variance µxy(1 − µxy/N). For any function f with

three bounded derivatives around µxy,

Ef (µ̂xy) ' f(µxy) +
1

2
f ′′(µxy)V µ̂xy = f(µxy) +

1

2
f ′′(µxy) µxy

(
1− µxy

N

)
.

Thus we may hope to get a better estimate of f(µ) with

f (µ̂xy)− 1

2
f ′′(µ̂xy) µxy

(
1− µ̂xy

N

)
.

This correction could be applied to the derivative f of the generalized entropy.

In the Choo and Siow model and its variants, this won’t work: if f(µ) = log µxy for instance,

the correction is infinite when µ̂xy = 0. However, it is easy to see that Ef(µ̂xy + dxy) is also almost

unbiased for f(µxy) if we take

dxy = −1

2

f ′′(µ̂xy)

f ′(µ̂xy)
µ̂xy

(
1− µ̂xy

nx

)
.

If f is the logarithm function, this gives the finite correction

dxy =
1

2

(
1− µ̂xy

N

)
,

so that we only need to replace log µ̂xy with

log

(
µ̂xy +

1

2

(
1− µ̂xy

N

))
.

This also solves the “zero cell” problem as it is well-defined at µ̂xy = 0. It is easy to check that this

is equivalent to substituting the proportion µ̂xy/N with

µ̂xy + 1/2

N + 1/2
,

a formula that is often used in discrete choice problems.
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C Proofs

C.1 Proof of Proposition 3

Consider men of type x. Their Emax function under identical-scale unobserved heterogeneity is

Gx(Ux·;α) = EP0
x

max
y∈Y0

(
Uxy + axy ·α+ bx ·α ε0iy

)
= (bx ·α)×G0

x ((Ux· + ax· ·α)/(bx ·α))

where we denote G0
x the Emax function for the distribution ε0|x, which is independent of α.

Now take the Legendre-Fenchel transform:

G∗x(µ·|x;α) = max
Ux·

(
µ·|xUx· −Gx(Ux·;α)

)
= (bx ·α)×max

Ûx·

(
µ·|xÛx· −G0

x(Ûx·)
)
−
∑
y∈Y0

µy|xaxyα

where we used the change of variables

Ûxy =
Uxy + axy ·α

bx ·α
.

The maximum in the second line is simply (G0)∗x(µ·|x, and is independent of α. Therefore

∂G∗x
∂µ·|x

(µ·|x;α) = (bx ·α)× ∂(G0)∗x
∂µ·|x

(µ·|x)− ax·α

which is clearly linear in α. By (1.6), the derivatives of the generalized entropy are a linear combi-

nation of the derivatives of G∗x and of H∗y . Therefore they also are linear in α.

C.2 Proof of Theorem 4

Recall that

N =
∑
x,y

µβxy +
∑
x

µβx0 +
∑
y

µβ0y

is the total mass of households in the sample. For the Choo and Siow (2006) specification we know

that at the stable matching (µ,u,v) for a joint surplus Φ the following obtain:

µx0 = n̂x exp(−ux)

µ0y = m̂y exp(−vy) (C.1)

µxy =
√
n̂xm̂y exp((Φxy − ux − vy)/2).
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Now consider the maximization of the following expression:

L(u,v,β) =
∑
x,y

µ̂xyφxyβ − 2
∑
x,y

√
n̂xm̂y exp((φxyβ − ux − vy)/2)

−
∑
x

n̂x exp(−ux)−
∑
y

m̂y exp(−vy)−
∑
x

n̂xux −
∑
y

m̂yvy (C.2)

over u, v, and β. The first order conditions with respect to ux and vy give∑
y

√
n̂xm̂y exp((φxyβ − ux − vy)/2) + n̂x exp(−ux) = n̂x

∑
x

√
n̂xm̂y exp((φxyβ − ux − vy)/2) + m̂y exp(−vy) = m̂y.

Substituting (C.1), these are simply the margin equations∑
y

µxy + µx0 = nx (C.3)

∑
x

µxy + µ0y = my. (C.4)

The first order conditions with respect to βk become∑
xy

µ̂xyφ
k
xy =

∑
xy

µxyφ
k
xy.

Therefore maximizing (C.2) gives the moment matching estimator β̂ and the associated stable

matching (uβ,vβ).

Now remember that given observations (N̂a,Za)a∈A weighted by a vector w, the log-likelihood

function of a Poisson count model with parameter exp(Z ′aγ) is

l (µ̂,γ;w) =
∑
a∈A

wa (µ̂aZ
′
aγ − exp (Z ′aγ)− log(µ̂a!)) . (C.5)

. Define γ = (β′,a′, b′) with

a = u− log n̂, b = v − log m̂.

Then with Z and w defined in Theorem 4, and denoting Za the row a of the matrix Z, we have

(Zγ)xy = (φxyβ − ux + log n̂x − vy + log m̂y)/2

(Zγ)x = −ux + log n̂x

(Zγ)y = −vy + log m̂y.

This proves that up to constant terms, the objective functions l and L are identical.
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C.3 Proof of Theorem 5

The variance-covariance matrix of γ̂ follows directly from the fact that it maximizes (C.5), and

hence is an M-estimator, see chapter 5 of van der Vaart (1998). The maximization of (C.5) gives

first-order conditions ∑
a∈A

wa exp(Zaγ̂)Za =
∑
a∈A

waµ̂aZa,

so that, applying the delta method, we get at first order(∑
a∈A

wa exp(Zaγ̂)Z ′aZa

)
(γ̂ − γ) =

∑
a∈A

waZa(µ̂a − µa).

so we obtain a consistent estimator of the variance of γ̂ as

V̂ γ̂ = Â−1 B̂ Â−1

where

Â =
∑
a∈A

wa exp(Zaγ̂)Z ′aZa

and

B̂ =
∑

a,a′∈A
wawa′cov(µ̂a, µ̂a′)Z

′
aZa′ .

D Tripartite Matching

Suppose that each match at most one partner in each of p = 3 sub-populations. We denote i1 ∈

X1, i2 ∈ X2, and i3 ∈ X3 the types, with corresponding observed types x1, x2, x3. There may now

be seven types of matches:

• complete matches, with a joint surplus

Φ̃i1i2i3 = Φx1x2x3
+ ε1x2x3

+ ε2x1x3
+ ε3x1x2

• three types of incomplete matches, for instance

Φ̃i10i3 = Φx10x3
+ ε10x3

+ ε3x10

• and three types of singles, with for instance Φ̃i100 = ε100.
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The margin conditions have for instance∑
x2x3

µx1x2x3
+
∑
x2

µx1x20 +
∑
x3

µx10x3
+ µx100 = n1x1

.

Of course, some of these types of matches may be ruled out by the context.

If the distribution of ε1 is P1
x1

, we define

G1
x1

(U1
x1··) = EP1

x1
max

(
max
x2,x3

(U1
x1x2x3

+ ε1x2x3
),

max
x2

(Ux1x20 + ε1x20),max
x3

(Ux10x3
+ ε10x3

), ε100

)
and

(G1)∗(ν··) = max
U

(∑
x2x3

νx2x3Ux2x3 +
∑
x2

νx20Ux20 +
∑
x3

ν0x3U0x3 −G1(U)

)
The generalized entropy is

E(µ,n) = −
∑
x1

n1x1
(G1)∗(µ··|x1

)−
∑
x2

n2x2
(G2)∗(µ··|x2

)−
∑
x3

n3x3
(G3)∗(µ··|x3

)

and the joint surplus is identified by

Φx1x2x3
= − ∂E

∂µx1x2x3

= − ∂(G1)∗

∂µx2x3|x1

− ∂(G2)∗

∂µx1x3|x2

− ∂(G3)∗

∂µx1x2|x3

Φx1x20 = − ∂E
∂µx1x20

= − ∂(G1)∗

∂µx20|x1

− ∂(G2)∗

∂µx10|x2

Φx100 = 0

and the obvious permutations.

Applying the minimum-distance estimator to these equalities is straightforward. For the Poisson

estimator, we need to change a few things as the set of possible match configurations is larger, and

each match may have 1, 2, or 3 members.
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The function L of Appendix C becomes

L(u1,u2,u3,β) =
∑

x1x2x3

µ̂x1x2x3φx1x2x3β

+
∑
x1x2

µ̂x1x20φx1x20β
∑
x1x3

µ̂x10x3
φx10x3

β
∑
x2x3

µ̂0x2x3
φ0x2x3

β

− 3
∑

x1x2x3

(
n̂1x1

n̂2x2
n̂3x3

)1/3
exp

(
(φx1x2x3

β − u1x1
− u2x2

− u3x3
)/3
)

− 2
∑
x1x2

√
n̂1x1

n̂2x2
exp

(
(φx1x20β − u1x1

− u2x2
)/2
)
− 2

∑
x1x3

√
n̂1x1

n̂3x3
exp

(
(φx10x3

β − u1x1
− u3x3

)/2
)

− 2
∑
x2x3

√
n̂2x2

n̂3x3
exp

(
(φ0x2x3

β − u2x2
− u3x3

)/2
)
−

∑
k=1,2,3

∑
xk

n̂kxk
(
exp(−ukxk) + ukxk

)
.

To identify it to the function l(µ̂,γ;w), we define γ = (β′,a1′,a2′,a3′)′; the set of observations a

is

A = X1×X2×X3∪X1×X2×{0}∪X1×{0}×X3∪{0}×X2×X3∪X1×{0}×{0}∪{0}×X2×{0}∪{0}×{0}×X3;

and wa is the number of partners in match a (3, 2, or 1). We denote by φ123 the matrix whose

k-th column contains all values of φkx1x2x23, stacked in a vector; φ120 the matrix whose k-th column

contains all values of φkx1x20, stacked in a vector; etc. Then the matrix Z has |A| rows and (K +

X1 +X2 +X3) columns and

Z =



φ123/3 − 1
3IX1

⊗ 1(X2X3,1) − 1
31(X1,1) ⊗ IX2

⊗ 1(X3,1) − 1
31(X1X2,1) ⊗ IX3

φ120/2 − 1
2IX1 ⊗ 1(X2,1) − 1

21(X1,1) ⊗ IX2 0(X1X2,X3)

φ103/2 − 1
2IX1 ⊗ 1(X3,1) 0(X1X3,X2) − 1

21(X1,1) ⊗ IX3

φ023/2 0(X2X3,X1) − 1
2IX2

⊗ 1(X3,1) − 1
21(X2,1) ⊗ IX3

0(X1,K) −IX1
0(X1,X2) 0(X1,X3)

0(X2,K) 0(X2,X1) −IX2
0(X2,X3)

0(X3,K) 0(X3,X1) 0(X3,X2) −IX3


.

The Poisson-GLM estimates of γ give estimates of β and of the average expected utilities ukxk =

akxk + log n̂kxk .

E The Poisson-GLM Estimator for the unipartite Model

For the linear Choo and Siow unipartite model, we have

Φxy = log
µ2
xy

µx0µy0
and ux = − log(µx0/nx).
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To define the Poisson estimator we start by replacing µ̂ with µ̃, defined by

µ̃xy =

µ̂xy/2 if x 6= y

µ̂xx if x = y.

The function L becomes

L(u,β) =
∑
x,y

µ̃xyφxyβ − 2
∑
x,y

√
n̂xn̂y exp((φxyβ − ux − uy)/2)−

∑
x

n̂x exp(−ux)−
∑
x

n̂xux.

The corresponding Poisson model has only one-way fixed effects, with wxy = 2, wx = 1, and

(Zγ)xy = (φxyβ − ux + log n̂x − uy + log n̂y)/2

(Zγ)x = −ux + log n̂x.

This is achieved by defining γ = (β,a) with ax = ux − log n̂x and the following matrix Z, with

(X2 +X) rows and (K +X) columns:

Z =

 φ/2 − 1
2 (1X ⊗ IX + IX ⊗ 1X)

0(X,K) −IX

 .
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