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Abstract

Can direct democracy overcome the ”Problem of Intensity”, treating everyone equally and

yet allowing an intense minority to prevail if, but only if, the majority’s preferences are weak?

Storable Votes (SV) and Quadratic Voting (QV) propose possible solutions. We test their per-

formance in two samples of California residents using data on four initiatives prepared for the

2016 California ballot. To estimate the probable effects of the two systems, we bootstrap the

original samples and generate two sets of 10,000 multi-elections simulations. Both systems

induce minority victories in 30-35 percent of the samples and yet result in higher expected

welfare relative to majority voting, appropriating between one third and two thirds of the re-

maining surplus.

Keywords: Intensity of preferences; minority, direct democracy, majority voting.

Supplementary material for this article is available in the appendix in the online edition. Repli-

cation files are available in the JOP Data Archive on Dataverse. The archive can be found at
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In Preface to Democratic Theory (1956), Dahl discussed the ”Problem of Intensity” as a

fundamental challenge to majoritarian principles: on both ethical and pragmatic grounds, an

intense minority should be able to prevail over an indifferent majority, but only if the minority

is indeed intense and the majority indeed indifferent. Dahl concluded that no such provision

was realistically available, because of the difficulty of observing intensities, of the challenge

of deciding when the case applies, of the different objectives of American constitutional rules.

The ”radical majoritarianism” of today’s populism (Urbinati 2019) raises new concerns on

how to protect the legitimate voice of the minority at the voting booth.

Two recent proposals suggest that a possible answer lies in the voting rule. Imagine a

voter faced with multiple referenda, as indeed is typically the case in many US states. Each

referendum can either pass or fail and is decided according to the majority of votes cast; all

voters are treated equally and given the same number of total votes. The only deviation

from usual voting practices is that voters choose how many votes to cast on any individual

referendum, out of the total at their disposal. The number of votes becomes a measure of

intensity, and the minority can indeed prevail, but only over those decisions on which it feels

strongly and the majority feels weakly. Storable Votes (SV) (Casella 2012) work exactly as

described; Quadratic Voting (QV) (Goeree and Zhang 2017, Lalley and Weyl 2018) imposes

a penalty on concentrating votes: ”effective” votes cast on any one referendum equal the

square root of the number of original votes dedicated to the referendum by the voter.

Both proposals have been studied theoretically, in the laboratory, in simulations, and

in opinion polls, and both have been found promising. But their final properties depend

on the distribution of preferences in the electorate, and the two schemes have never been

tested in the context of actual political decisions. In this paper we report on the results of

an incentivized survey that applies SV and QV to four actual initiatives in California.1
1Summaries of the theory behind the two voting schemes, as well as a brief overview of the literature,

additional details on the experiment, and screenshots of the survey can all be found in the appendix.
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1 The Survey

In May 2016 we selected four propositions that were being prepared for inclusion in the

November 2016 California ballot:

(1) Bilingual education (BE): re-instate the possibility of bilingual classes in public

schools. (The proposition was included in the November 2016 ballot and passed.)

(2) Immigration (IM): require all state law enforcement officials to verify immigration

status in case of an infraction and report undocumented immigrants to federal authorities.

(The proposition was not included in the final ballot.)

(3) Teachers’ tenure (TT): increase required pre-tenure experience for teachers from two

to five years. (The proposition was not included in the ballot.)

(4) Public Vote on Bonds (PB): require voters’ approval for all public infrastructure

projects of more than $2 billion. (The proposition was included in the ballot and failed.)

We then recruited 647 California subjects via Amazon Mechanical Turk (MTurk). We

first asked each subject how (s)he would vote on each of the four propositions, presented in

random order, allowing for the option to abstain. Answers to this part of the survey allowed

us to compute outcomes under majority voting. We then elicited measures of intensity of

preferences. Each subject was asked to distribute 100 points among the four propositions,

with the number of points used as scale of the importance attributed to each proposal (”How

important is this issue to you?”). We used examples to clarify that importance is independent

of whether the respondent is in favor or against a proposition, and summarized responses in

terms of priorities, allowing for revisions and asking for a final confirmation.2

After this first part of the survey, common to all respondents, subjects were randomly

assigned either to the SV treatment (324 subjects; 306 after data cleaning) or to the QV

treatment (323 subjects; 313 after cleaning). We used two simplified versions of SV and
2The report was not incentivized. The simplest procedure–a bonus proportional to the value attributed

to propositions in which the subject is on the winning side–distorts replies towards least contentious propo-

sitions. We concluded that incentive compatible methods would be too cumbersome for MTurk.
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QV, well-suited to practical implementation in large electorates. In the SV treatment, we

exploited theoretical results showing that, in large elections, the optimal SV design couples

regular votes, one per election, with a single bonus vote to be cast as desired (Casella and

Gelman 2008). Thus subjects in the SV sample were told that each was granted one extra

vote, in addition to the regular votes cast earlier, and were asked to choose the proposition

in which to use it. The vote was cast in the direction indicated in the first part of the survey,

and the final outcome under SV was calculated summing regular and bonus votes.

The design of the QV scheme required some innovation. Existing opinion surveys using

QV rely on proprietary software as well as a training video (Quarfoot et al. 2017). We chose

instead to simplify the QV scheme. We asked respondents to choose one of four classes of

votes, distinguished by color and weight. Blue votes are regular votes, four in number; a

person choosing blue votes casts one vote on each proposition. Green votes are only three,

but each is worth more than a regular blue vote and beats a blue vote if the two are opposed.

Yellow votes are two, each stronger than a green vote. Finally, a subject can choose to cast

a single red vote, stronger than a yellow vote. The weights we assigned to the different votes

are 1 for blue votes, 1.2 for green votes, 1.5 for yellow votes, and 2 for the red vote. A subject

who chooses green/yellow/red votes casts votes on only three/two/one proposition(s). The

simple four-class classification respects the convex cost of concentrating votes at the heart

of QV. A voter casting votes on all four propositions–choosing blue votes–has a total weight

of 4, but the total weight declines as votes are concentrated: the total weight corresponding

to the three green votes is 3.6, to the two yellow votes is 3, and to the single red vote is 2.

The decline is increasing with concentration, and increasing at an increasing rate, capturing

the core feature of QV.

We asked each subject to choose a class of votes, and then select the proposition(s) on

which to cast the vote(s). As with SV, votes were then cast automatically according to the

preferences indicated in the first part of the survey. The final outcome was calculated on the

basis of the QV votes cast.
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Under both voting systems and in all calculations we report, ties were resolved randomly.

Outcomes were computed using simple majority, and either SV or QV. We incentivized voting

choices by promising $250 for an organization working in favor of any proposal that passed

under either SV or QV, depending on the sample.

Our performance criterion is an empirical approximation to utilitarian welfare, based

on the points assigned by respondents to each proposition at the end of the first part of

the survey. Allocating points within a common budget encourages truthfulness in reporting

preferences, and prevents factors of scale from distorting welfare.3 Denoting by bik the

number of points attributed to proposition k by individual i, we define aggregate welfare

W S as W S =
∑

i

∑
k:i∈MS

k
bik, where S ∈ {majority voting, SV,QV } indicates the voting

scheme, and MS
k the side casting the majority of votes on k under S. Points are interpreted

as proxy for intensity–or more precisely as proportional to the value attributed to winning a

proposition over losing it. The measure W S reports how well the outcome of a proposition

mirrors the aggregate intensity on the two sides of each proposition. Utilitarian efficiency

requires that each proposition be won by the side which collectively values it most, or W ∗ =∑
i

∑
k:i∈Bk

bik where Bk denotes the side with higher total points on k. Thus a voting scheme

S resolves disagreement over proposition k efficiently if MS
k = Bk, i.e. if the winning side

under scheme S is also the side with higher total intensity (higher total points).

If the two opposite sides attribute similar aggregate values to a proposition, any outcome

for that proposition is close to efficient. To control for this, we normalize the welfare measures

by a floor corresponding to expected welfare under random decision making, where either

side of any proposition has equal probability of winning: R =
∑

i

∑
k bik/2. For each voting

scheme S, we call the ratio (W S − R)/(W ∗ − R) S’s realized share of surplus and use it as

our primary performance measure.
3Relative utilitarianism, such that each individual’s preferences are normalized to range between 0 and

1, uniquely satisfies desirable axioms when intensities matter (Dhillon and Mertens, 1999). It is fragile to

misreporting, a problem allievated in part by the imposition of a common budget. In our approximation,

intensities can only be read are relative to the four initiatives included.
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Figure 1: Margins in favor. Two-sided KS tests bootstrapped to correct for discreteness
and assessing whether the distributions of points are drawn from the same population yield
p-values equal to 0.629 (IM), 0.66 (BE), 0.092 (PB), 0.384 (TT).

We reproduce in the appendix the histograms of respondents’ intensities over each propo-

sition, distinguishing supporters and opponents, as well as detailed information on voting

choices. In SV, the bonus vote was primarily but not exclusively cast in the proposal to

which the respondent attributed highest value (74% of subjects did so). In QV, a full 40%

of subjects chose the Red class; the corresponding share recommended by the theory, given

reported preferences, is 24%; the disparity reflects the respondents’ bias towards vote classes

with fewer, heavier votes.

Figure 1 summarizes preferences and voting choices by reporting percentage margins in

favor of each proposition, in terms of number of votes (under either SV or QV), number of

voters (majority voting), and aggregate points. In both samples, a majority of respondents

is in favor of BE and PB and against TT and IM, although the margin in the IM proposition

is very small. In both samples and all propositions, the outcome is unchanged whether using

majority voting, SV, or QV. When the margins under the three voting schemes have the

same sign as the aggregate point margin, all three schemes deliver the utilitarian-efficient

outcome. Thus both majority voting and QV appropriate the full surplus in the QV sample,

while both majority and SV fall short in the SV sample because of the IM proposition.

The IM proposition stands out under several dimensions. It is the most contested. Al-

though it fails in both samples and with all three voting systems, it always does so with very

small vote margins: the vote tallies under majority are 129 to 125 (SV sample) and 136 to
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130 (QV sample); under SV the tally is 181 to 170, and under QV a bare 124.6 to 124.4. It

is also the most salient: it receives the highest number of total points in both samples, the

highest number of bonus votes in the SV sample, and the highest number of red votes and

of total votes in the QV sample.

Two simple statistical models summarize voting choices and help to classify behavior.

With SV, we conjecture that each subject follows one of four mutually exclusive behaviors:

with probability pMax, the bonus vote is cast on the subject’s highest value proposition;

with probability pClose on the one with closest outcome (IM); with probability pFam on the

most familiar (either BE or TT, the two education propositions, with equal probability); and

with probability pRand according to some other criterion that appears to us fully (uniformly)

random. Each choice observed in the data, matched with the individual’s reported valuations,

can be expressed as function of the four probabilities. We report the estimated probabilities,

as well as the estimation details, in the Appendix. We find that the bonus vote is cast

primarily on the proposition that the voter considers her highest priority, but a relatively

large role is left for randomness.

With QV, we posit a noisy two-step process that starts with choosing a vote class and

then, given the class, proceeds to casting the vote(s). The choice of vote class depends on

relative intensities: if one proposition is attached much higher value than any of the others,

the voter chooses the red vote; if such is not the case but two propositions are attached much

higher value than the remaining two, the voter chooses yellow votes, etc. The statistical

model estimates the thresholds guiding the choice of vote class and the probability with

which such a reasoning is followed (as opposed to choosing the class randomly), and finally,

given the vote class, the probability that votes are cast monotonically, i.e. on the highest

intensity propositions. Detailed results are in the Appendix. We find a strong tendency

towards cumulating votes and frequent deviations from the threshold rules estimated by the

model.4 Given the vote class, however, the tendency towards monotonicity is strong.
4As described in the appendix, a full 40 percent of subjects choose the single red vote.
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2 Results

On all four propositions, both SV and QV confirmed the outcome reached with simple

majority voting. The result, however, is not very informative: because the votes cast across

propositions are tied by a budget constraint, each sample reduces to a single data point. To

evaluate the potential impact of SV and QV, we would want to replicate the same elections

many times, with different electorates all drawn from the same population distribution. We

cannot rerun the elections, but, as in Casella 2012 (ch. 6), we can approximate such iterations

by bootstrapping our data.

The objective is to estimate the impact of the voting rules in a population for which our

samples are representative. The maintained assumption is that preferences are independent

across individuals, but not necessarily across propositions for a single individual. We sample

with replacement N individuals from each of our datasets, where N = 306 for SV and

N = 313 for QV. For each individual, we sample the direction of preferences over each

proposition, the number of points assigned to each, and the votes cast according to either

the SV or the QV scheme. We replicate this procedure 10,000 times for each original dataset,

SV or QV. A replication generates a distribution of preferences over each proposition and a

voting decision for all N voters, and thus a voting outcome for all four propositions. The

focus is on the fraction of simulations in which the two voting systems reach different results

from majority voting, and on their welfare properties.

Simulations allow to investigate different rules-of-thumb governing the use of the votes,

and thus to evaluate the robustness of the voting schemes to a range of plausible behaviors.

Matching individuals with their SV or QV choices is the obvious option, and the first one we

consider–we call it rule A. Individual choices, however, tend to be noisy, and the statistical

models organize the data into more systematic behavior. Given respondents’ allocation of

points and voting scheme, we implement the voting choices by having each drawn subject

behave according to the estimates of the statistical model–we call it rule B. If individuals had

voted as theory says is optimal, welfare gains would have been maximal. We simulate such
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behavior under a rule we call C.5 The distance in the results under A and C gives us a measure

of impact of the deviations from optimal behavior. One possibility is that such deviations

are purely random–we simulate a fourth rule, which we call D, such that individuals behave

either optimally or randomly, with equal probability. The distance between B and D teaches

us whether the deviations from optimality are random or have systematic patterns.

With all four rules, both SV and QV resulted in frequent minority victories (Figure 2:A).

More than one fourth of the 10,000 simulations in each of the two data sets, using any

rule, had at least one minority victory: the average across rules was 30% for QV and 35%

for SV. Remarkably, under all four rules both voting systems consistently delivered welfare

gains over majority voting, and this even though majority voting works well in these data,

especially in the QV samples. Averaging across rules and simulations, the realized share of

surplus was 85% for SV and 98% for QV, compared to 71% and 94% for majority in the

two sets of simulations (Figure 2:B). Focusing on rule A, SV appropriated about one third

of the surplus left on the table by majority (29%); QV, about two thirds (64%). However,

many minority victories also came with welfare losses. Averaging across all rules, SV causes

welfare losses in 11% of all simulations in which it delivers at least one minority victory,

while the percentage rises to 31% for QV (Figure 2:C).Under rule A, the numbers are 28%

for SV and 36% for QV.6

Reporting the realized share of surplus over all simulations (Figure 2:B), whether or

not any outcome differs from simple majority, gives weight not only to realized but also to

foregone efficiency gains–to minority victories that would have been efficient but did not

occur. But only a fraction of simulations include a minority victory, and within each sample

none of the expected surplus measures are statistically different from one another.

In the SV simulations, the outlier is rule A, which implements the actual voting choice

indicated by the subject drawn in the simulation (Figure 2:C). The problem comes from the
5Rule C is optimal under some simplifying assumptions. Under SV, it corresponds to casting the bonus

vote on the highest intensity proposition; under QV the optimal number of votes is proportional to the
voter’s intensities. See the Appendix for details.

6See the appendix for the numerical values corresponding to Figure 2, as well as Figure 2 below.
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Figure 2: Bootstrap results. In panel A, the frequency is significantly higher for SV under
rules B, C, and D (p < 0.01; one-sided Z test). In panel B, none of the differences in means
are statistically different from one another. Note the difference in surplus under majority in
the SV and QV samples. In panel C, all frequencies are significantly positive, but smaller
than 0.05 for SV-C (0.019) and SV-B (0.047).

IM proposition, where bonus votes are predominantly cast against the proposition, while

high points are predominantly attributed by subjects in favor. However, the asymmetry in

behavior concerns a small number of subjects, and may reflect pure noise (see the appendix).

The difference in performance between SV and QV is largely driven by the different po-

tential for improvement over majority voting (Figure 2:B). The two samples were populated

randomly during the MTurk survey, and the point distributions over IM are statistically

similar (see the legend of Figure 1). The discrepancy reflects small sampling noise when the

distribution of values is symmetric, as is the case for IM in both samples. To compare SV

and QV directly, we can combine the two MTurk samples. We lose the ability to evaluate

the voting schemes according to rule A, since only the SV (QV) sample was exposed to SV

(QV), but we can simulate voting behavior according to rules B, C and D.

Three regularities emerge clearly. First, QV results in a consistently higher fraction of

minority victories than SV (Figure 2:A): averaging across rules, 34% of QV simulations

have at least one minority victory, vs. 18% for SV. Second, under any rule, both voting

systems continue to appropriate a higher share of surplus than majority does (Figure 2:B).

QV captures 97% of surplus on average, and SV 94% (vs. 89% with majority). Third,

the frequency of welfare losses induced by QV and SV becomes more similar (Figure 2:C).

Averaging over the three rules, 13% of all simulations with at least one minority victory
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Figure 3: Joining the two samples. A: the fraction of samples with at least one minority
victory is consistently higher under QV (p < 0.001). B: none of the differences in means are
statistically different from one another. C: The frequency of welfare losses is significantly
higher under QV for rule B, but significantly lower for rules C and D (p < 0.01 for rules B
and C, p = 0.046 for D). All frequencies are significantly positive but less than 0.10 only for
QV-C (0.03) and SV-C (0.09) (One-sided Z tests). D: the vertical axis is absolute numbers;
the horizontal axis are percentage gains, and the vertical line is at 0.

induce welfare losses in QV, and 14% in SV.

The defining difference between the two voting schemes is the high frequency of minor-

ity victories under QV at positive but small welfare gains (Figure 2:D).7 Does this higher

sensitivity reflect the specific parametrization we have implemented? As we show in the

appendix, QV behaves better in our data if it is complemented by regular votes–votes that

must be cast one on each initiative and that move the voting scheme towards majority vot-

ing. This is advantageous under QV because respondents select higher weight vote classes

much more often than theory prescribes. Adding regular votes to QV also makes it closer to

SV, however, inviting questions on the trade-off between complexity and surplus gains.

Finally, our data allow us to construct measures not only of aggregate surplus but also

of inequality, defined as ex post disparity in the number of propositions on which each voter
7However, a puzzling aspect of our data is the weak performance of SV-A.
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is on the winning side, weighted by the importance (the number of points) the voter assigns

to each. An important tenet of democracy is that the composition of winning coalitions

shifts across issues, ensuring that no group is disenfranchised. We show in the appendix that

under this dimension too in our data SV and QV perform well: because, ceteris paribus,

both voting schemes increase the probability of being on the winning side on issues the voter

considers higher priorities, ex post inequality is reduced.

Our study confirms the theoretical promise of the two voting schemes. SV and QV

allow for occasional minority victories on those issues over which the minority’s intensity of

preferences is sufficiently stronger than the majority’s to make a minority victory desirable.
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A Appendix

A.1 Very Brief Notes on the Literature

The question of intensity has been the focus of a large literature in both political science

and economics, in fields ranging from social choice to voting theory to mechanism design.

One fundamental prior question–whether the very notion of intensity is legitimate in col-

lective decision problems–has given rise to passionate debate. To give weight to intensities

in a collective decision requires being able to evaluate and compare them across different

individuals, a problem that has no fully satisfactory answer. Without notions of intensity

however, social welfare functions cannot give rise to rigorous discussions of inequality (Sen,

1973) and Dahls’s pragmatic position continues to seem very wise: ”We shall continue to

believe not only that we can guess intelligently but that we must guess intelligently about

such things” (Dahl, 1956, p.100).

If intensities are accepted and grounded on a common numeraire, a major challenge

is how to elicit them truthfully. A large literature in mechanism design is devoted to this

question. The main answers are mechanisms with side-payments, where individuals are asked

to state their willingness to pay for a public decision and are rewarded or taxed according

to the impact of their statement on the final decision. The subsidy or tax is calculated in

such a way that honesty is the best strategy. VCG mechanisms take their acronym from

the authors who first proposed them: Vickrey (1961), Clarke (1971) and Groves (1973).1

The mechanisms are remarkably clever, but rely on some restricting assumptions and have

problems with collusion, with bankruptcy, and with individuals’ willingness to participate if

budget balance is required (Green and Laffont, 1980, Mailath and Postlewaite 1990).

A different take on the same question comes from the literature on vote markets.

Here the focus is directly on voting, as the collective decision-making procedure, and, prior

to voting, on purchases and sales of votes as channels for transfers, whether in the form

1. d’Apremont and Gerard-Varet (1979) proposed an important extension. See Krishna (2002) for a very
clear description of the different mechanisms and their underlying logic.
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of money or of broader favors. Political scientists and economists have long conjectured

that, in the absence of binding budget constraints, markets for votes would allow voters to

differentiate themselves according to the intensity of their preferences and lead to decisions

that reflect preferences more accurately (for example, Buchanan and Tullock, 1962; Coleman,

1966; Haefele, 1971; Mueller, 1973; Parisi, 2003). The conjecture however turned out to

be misleading. Even ignoring other critiques on distributional and philosophical grounds,

markets for votes would not mimic good markets. For one thing, vote trading imposes

externalities on third parties; more fundamentally, votes have no value in themselves: their

value depends on the influence they provide on the final decision, and such influence depends

on the allocation of votes among all other voters. Hence the value of a vote is positive only if

the vote is pivotal, and falls to zero when it is not. Casella et al (2012) show that once these

aspects are taken into account, with a large electorate a competitive vote market followed

by majority voting would lead to lower welfare than in the absence of the market.2

The assumption of a not-binding budget constraint allows these studies to ignore dis-

tributional issues that would be of great relevance in practice: voters have unequal access

to resources, and markets for votes, or more generally mechanisms with side-payments, tie

individuals’ influence on collective decision-making to their economic power. Research has

then focused on mechanisms without side-payments. Within the perspective of vote trading,

scholars studied log-rolling, the possibility to give away votes on issues over which a voter

has weak preferences in exchange for votes on issues felt deeply. However, after receiving a

lot of attention in the 60’s and 70’s (see, for example, Park, 1967; Tullock, 1970; Bernholz,

1973; Riker and Brams, 1973; Ferejohn, 1974; Koehler, 1975; Schwartz, 1975; Miller, 1977)

the lack of an agreed upon framework and shared conclusions lead to the loss of interest in

the question. Recently, Casella and Palfrey (2019) have suggested analyzing vote trading

2. The literature claimed better results for centralized vote trading, mediated either by a market-maker or
by party leaders (Koford, 1982, and Philipson and Snyder, 1996) because centralized trading can address the
externalities caused by individual trades on voters who are not part of the transaction. Here too, however,
very strong assumptions are required. As discussed below, the original version of QV also falls under the
heading of a centralized market (an auction system) for the purchase of votes via money.
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as a sequential dynamic process and reached precise but on the whole discouraging conclu-

sions: in general, trading votes for votes need not converge to the Condorcet winner (the

alternative that is majority preferred to any other), even when such an alternative exists,

and, echoing Riker and Brams, if trading by the coalition of the whole is restricted, Pareto

inferior outcomes are possible.

Beyond vote trading, and focussing more precisely on the question of eliciting truthful

revelation of intensity of preferences, the literature has suggested other mechanisms without

side-payments. The attention to intensity and the common focus on decisions with two

alternatives only, as in this paper, correspond to restrictions both on preferences and on

applications. One implication is that Gibbard and Satterthwaite’s general result on the

manipulability of all decision rules does not apply. Nevertheless, in the collective decision-

making setting that are of interest here, mechanisms without transfers that induce both

truthful revelation and efficient outcomes are rare. The simplest scenario–when voting is

costly and optional–does lead to abstention for weaker preferences (for example, Börgers,

2004; Krishna and Morgan, 2015), but biases will result if the cost of voting is correlated

with voters’ preferences (Campbell, 1999). Limit results help: Ledyard and Palfrey (2002)

show that, as the electorate becomes very large, welfare can be maximized via a simple

voting rule if the threshold for approval reflects correctly the distribution of preferences in

the population; Jackson and Sonnenschein (2007) show that truthfulness can be achieved

without sacrificing any surplus if individuals are asked to state their priorities over several

similar issues, as the number of issues becomes very large and the possible answers are

constrained to reflect the distribution of preferences. Both mechanisms have high ambition–

appropriating the full surplus–but rely on large numbers and on knowledge of the preference

distribution.

In this scenario, the versions of SV and QV studied in this paper have both more

modest goals and weaker requirements.3 The realistic ambition is to improve over simple

3. Qualitative Voting (Hortala-Vallve, 2012) was developed independently and is very similar to SV.
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majority voting, with no strong claim to full efficiency, but, on the positive side, the voting

schemes are set without reference to the distributions of preferences. Indeed, this is the

main motivation for the study: do SV and QV perform well when specific distributions

of preferences are neither assumed, as often in theoretical analyses, nor induced, as in the

laboratory, nor in fact known?

A.2 The Theory

A large numberN of voters are asked to vote, contemporaneously, on a set ofK > 1 unrelated

proposals. Each proposal can either pass or fail. Voter i’s preferences over proposal k are

summarized by a valuation vik, where vik > 0 indicates that i is in favor of the proposal, and

vik < 0 that i is against. If the proposal is decided in i’s preferred direction, then i’s realized

utility from proposal k, denoted uik, equals vik = |vik|, otherwise it is normalized to 0. Thus

the sign of vik indicates the direction of i’s preferences, and vik their intensity, of the voter’s

differential utility from winning the proposal over losing it. Preferences are separable across

proposals, and the voter’s objective is to maximize total utility Ui, where Ui =
∑

k uik.

Each individual’s valuations {vi1,..,viK} are privately known. They are a random sam-

ple from a joint distribution F(v1, . . . ,vK) which is common knowledge. There is no cost of

voting, and voters vote sincerely. We consider three voting systems: majority voting, SV,

and QV. In all three, each proposal is decided in the direction preferred by a majority of the

votes cast. The voting systems differ in the rules under which votes are cast.

Under majority voting, each voter has K votes and casts a single vote on each proposal.

The voting scheme gives weight to the extent of support for a proposal. Storable votes and

quadratic voting allow voters to express not only the direction of their preferences but also

their intensity.
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A.2.1 Storable votes

SV grants each voter a budget of ”bonus votes” to be distributed freely over the different

proposals. We summarize here the main results of Casella and Gelman (2008), to which we

refer the reader for details. The theoretical analysis assumes that valuations are independent

across voters and propositions and restricts attention to symmetric Bayesian equilibria in

undominated strategies where, conditional on their set of valuations, all voters vote sincerely.

The only decision is the proposition on which to cast the bonus vote.

If voters are endowed with multiple bonus votes to distribute over multiple proposals,

in a large electorate with independent values, the optimal strategy is to cumulate all bonus

votes on a single proposal (section 7.11 in Casella and Gelman). Thus, in a large electorate

a simple design becomes desirable. Each voter is asked to cast one vote on each proposition,

and in addition is given one extra bonus vote. The bonus vote is modeled as having value

θ > 0, relative to a regular vote, with θ part of the optimal design of the mechanism, and

dependent on the distribution of valuations. In the parametrization we use in the experiment

we set θ = 1: the bonus vote is equivalent to a regular vote.

With valuations independent across voters and proposals, we can phrase the problem

in terms of the marginal distributions Fk(v). Casella and Gelman show that SV behaves

well, in the precise sense that ex ante expected utility improves over majority voting under

multiple scenarios, as summarized by different assumptions on the marginal distributions.

The result holds in the following environments. (1) If Fk(v) = F (v) for all k, where F (v) is

a distribution with known median (the median can be 0, if the distribution is symmetric, or

differ from 0, if the distribution is asymmetric). (2) If Fk(v) varies with k, but for all k Fk(v)

is symmetric around a zero median. (3) If Fk(v) = G(v) for all k, where G(v) is symmetric

around a random median with expected value at 0.

With independent voters and large N , assumptions about the shape of the distributions

Fk(v) have immediate implications about the results of the referenda. In particular, assuming

specific medians for the distributions Fk(v) amounts to assuming that a random voter’s

5



probability of approval of each proposition is effectively known ex ante. It is then possible

to predict the majority voting outcome with accuracy that converges to 1 as N becomes

large. The literature has remarked that allowing for a random median, as in environment

(3) above, is a better assumption (Good and Mayer 1975, Margolis 1977, Chamberlain and

Rothschild 1981, Gelman et al. 2002). We report here in more detail the results that refer

to that case.

Suppose that ex ante each voter i has a probability ψk of being in favor of proposal k

(vik > 0), and 1−ψk of being against (vik < 0). The probability ψk is distributed according

to some distribution Hψ defined over the support [0, 1] and symmetric around 1/2: the

probability of approval is uncertain and there is no expected bias in favor or against the

proposition. Each realized ψk is an independent draw from Hψ.

Recall that |vik| ≡ vik is i’s intensity over proposal k. To rule out systematic expected

biases in intensities, both within and across proposals, assume that, regardless of the direction

of preferences, the distribution of intensities is described by Qk(v), defined over support [0, 1],

with Qk(v) = Q(v) for all k.

We want to evaluate the welfare impact of the bonus vote, relative to a scenario with

majority voting. We construct the measure:

ω ≡ EW SV − ER
EW − ER

(1)

where EW is a voter’s ex ante expected utility under majority voting, ER is a floor,

given by expected utility under random decision making (when any proposal passes with

probability 1/2), and EW SV is ex ante expected utility under SV.

In equilibrium voters cast their bonus vote in the proposition to which they attach the

highest intensity. Denoting by Ev the expected intensity over any proposal, and by Ev(j)

the expected jth order statistic among each individual’s k intensities, it is then possible to
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derive:4

ω =
k(Ev) + θEv(k)

(Ev)(k + θ)
(2)

It follows that ω > 1 for all θ > 0, for all distributions Hψ(ψ) and Q(v), and for all K > 1.

By using the bonus vote to give weight to the intensity of their preferences, voters’

actions work towards increasing the probability of achieving their preferred outcome in the

proposition they consider their highest priority, at the cost of some reduced influence over

the resolution of the other proposals. The result is an increase in expected welfare.

The conclusion, with some minor qualifications, holds in the different environments

listed earlier.

A.2.2 Quadratic voting

QV is an auction-type mechanism designed for a large population faced with a single binary

proposal (Goeree and Zhang 2017, Lalley and Weyl 2018a). Each voter is endowed with a

numeraire and bids for the direction in which the proposal is decided. The winning side is

the one with the larger total bid. The important innovation is that each voter’s bid is pro-

portional to the square root of the numeraire the voter commits. If values are independent

across voters and the distribution F is common knowledge, the literature shows that the

equilibrium strategy for almost all voters is to bid an amount proportional to one’s valua-

tion. It then follows that the decision must be efficient in utilitarian terms: it mirrors the

preferences of the side with higher total valuation.5

4. Equation (2) follows from:

ER = kEv/2

EW = kEvπ

EWSV = Ev(k)pθ +

k−1∑
j=1

Ev(j)p

where π is the ex ante probability of a desired outcome in any referendum under majority voting, and pθ
and p are the corresponding probabilities under SV when casting and when not casting the bonus vote. The
challenge is characterizing these probabilities in the assumed stochastic environment.

5. If F is symmetric, bidding in proportion to one’s values is the unique equilibrium strategy for all
voters. If F is not symmetric, the characterization of the equilibrium is more delicate, and bids in the tails of
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In the case of multiple elections, QV could be implemented by paying for votes in an

artificial currency: ”voices”, which can be translated into votes at a quadratic cost. Casting

xk votes on proposal k requires spending x2k voices on k (Posner and Weyl 2015, Lalley and

Weyl 2018b). QV becomes similar to SV, but for the quadratic cost, and the quadratic cost

limits the incentive to cumulate votes.

There is no theoretical analysis of the equilibrium properties of QV in multiple elections.

However, a simple model shows that efficiency can extend to this case if voters believe that,

on any election, the marginal impact of their votes on the probability of their preferred

side prevailing is constant. We know from Lalley and Weyl (2018a) that the condition is

generally not satisfied in equilibrium, but the deviations may be too subtle for voters to take

into account.

The following model, similar but more transparent than the model in Lalley and Weyl

(2018b), was suggested to us by Glen Weyl. There are K > 1 independent binary proposals,

and voters values over each proposal are randomly drawn from marginal distribution F (v);

each voter is endowed with a budget of ”voices” yi, for simplicity set equal to 1 and fully

divisible. Voices are allocated across proposals and are transformed into a number of votes on

each proposal equal to the square root of the dedicated voices. Note that votes too are fully

divisible. If xik denotes the votes cast on proposal k by voter i, and yik the corresponding

voices, then xik =
√
yik, or

∑K
k=1(xik)

2 =
∑K

k=1 yik = 1. Each voter i faces the constrained

maximization problem:

Max{xik}2
K∑
k=1

pik(xik)vik subject to
K∑
k=1

(xik)
2 = 1

where 2 is a normalizing constant and pik(xik) is the probability that proposal k is decided

as i prefers when casting xik votes. Voters adopt weakly undominated strategies and thus

vote sincerely over each proposal.

distribution need not be proportional to values. Nevertheless the efficiency results continues to hold (Lalley
and Weyl 2018a).
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Suppose now that the marginal impact of any additional vote is constant:

∂pik(xik)

∂xik
≡ q (3)

Then for each proposal k, the first order condition yields:

xik =
qvik
λi

where λi is the Lagrange multiplier linked to the budget constraint. Substituting the budget

constraint
∑K

k=1(xik)
2 = 1, we obtain:

q

λi
=

√
1∑K

k=1(vik)
2

and thus:

xik =
1√∑K

k=1(vik)
2

vik (4)

Equation 4 says that the optimal number of votes cast on each proposal equals the

voter’s value, normalized by the Euclidean norm of the voter’s values across all proposals.

If such norms are similar across voters–for example because the number of issues is very

large–or if each individual’s value norm is used to normalize cardinal values in the welfare

criterion, then utilitarian efficiency follows immediately by equation 4: because the number

of votes cast in each proposal is proportional to the voter’s value (or equal to the voter’s

normalized value), each proposal is won by the side with larger total values.

The model relies on two approximations. First, voices and votes are assumed to be fully

divisible. Theoretically, the assumption simplifies the analysis by avoiding the complications

caused by discrete vote distributions. In practice, it suggests giving voters a large number

of voices. Experiments, on the other hand, routinely suggest that subjects have difficulties

making decisions when the set of options is large. In our experimental implementation, we
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take a different route and simplify the subjects’ problem by limiting the number of options.

The second approximation is more substantive and is the assumption of constant

marginal impact of additional votes, the simplification embodied in equation 3 above.6 The-

oretically the simplification is strong and unlikely to hold in general. The practical question

is how large the deviation is and how is it reflected in voters’ actual choices. As long as vot-

ers believe that votes have constant marginal impact, the characterization of their behavior

follows correctly.

A.3 Implementation of QV in the experiment.

Figure A1: The design of the QV scheme in the MTurk survey.

A.4 Experimental data

We collected the data in May 2016. Two months earlier, in March, we had presented an orig-

inal set of ten propositions, all with the potential to reach the November ballot, to a sample

6. In this simple model, with equal marginal distributions of values, marginal pivotality is constant across
issues, for given number of votes. The iid assumption could be relaxed and, with a large number of indepen-
dent voters and a large number of issues, constant marginal pivotality across issues may conceivably arise as
an equilibrium result. Constant marginal pivotality across the number of votes cast, for given issue, however
will not hold in equilibrium.
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of 94 California MTurk subjects. Given the responses, we selected the four propositions we

used in the final survey on the basis of three criteria: we needed propositions whose outcome

was unlikely to be a landslide, about which some voters would feel strongly, and that would

be clear enough to the average MTurk subject. The March responses also yielded a poll we

reported at the end of the May survey before asking if respondents wanted to change any of

their answers. Very few did, with no impact on aggregate results, and we ignore it.

A.4.1 Cleaning procedures

In designing the survey, we added an attention check to both samples. The check took the

form of a fictitious fifth proposition, titled the ”Effective Workers Initiative”, whose accom-

panying text asked the reader not to hit any of the three ”For”, ”Against” and ”Abstain”

buttons and continue directly to the next screen. The order of this fifth ”initiative” was

random.

Before analyzing the data, we excluded all subjects who either did not conclude the

survey or failed the attention check. In addition, we excluded subjects in the QV sample

who chose the red vote and cast it on a proposition on which they abstained–these subjects

effectively abstained on all propositions under the QV scheme, and left us no alternative.

We also excluded all subjects in the SV sample who cast the bonus vote on a proposition on

which they abstained–a behavior that may correspond to rejecting the use of the bonus vote,

but seems more likely to denote confusion or lack of interest, as in the QV sample. (Results

are effectively unchanged if we maintain these subjects in the sample). These exclusions

reduced the two samples to 306 (from 324) subjects for SV, and 313 (from 323) for QV.

In both samples, we set to zero the number of points assigned by a subject to a

proposition on which the subject abstained (again note that we have no alternative since we

do not know the direction of the subject’s preferences on such a proposition). Finally, we

set to +1 (or -1) the points attached to a proposal on which a subject voted in favor (or

against) but to which the subject assigned zero points. Out of 100 total points, this very
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minor adjustment allows us to give at least minimal weight to the direction of preferences

expressed by the subject.

A.4.2 Subjects’ preferences

Subjects’ preferences over each proposition are summarized in histograms reporting the

number of respondents who assign different numbers of points to a proposition. Points

are coded as negative when the subject voted against the proposal, and as positive when the

subject voted in favor, with bins of size 10 (0, colored light blue in the figures, corresponds

to abstentions). Figure A2 below reports the histograms relative to the IM proposition for

the two samples. It says, for example, that in the SV sample 38 respondents assigned it

between 1 and 10 points and voted against it, while 27 assigned to the proposition equally

low points but voted in favor (the corresponding numbers for QV are 29 and 20). The figure

also reports, for each sample, the total number of subjects for and against, the abstentions,

and the total number of points, for and against (bold indicates the larger number).

Figures A3, A4, and A5 report the histograms for the other propositions.

Note in particular the strong symmetry of the distributions of value in the IM initiative,

in both samples. Thus both the mean number of points (which determines the welfare

measure) and the median (which determines the majority winner) are close to zero: on a

possible range of [-100, 100], they are 2.85 and -2 in the SV sample, and -0.42 and -4 in

the QV sample. In addition, symmetry implies that random decision-making would perform

well, in welfare terms, over this initiative, and thus the surplus left to exploit through the

voting rule is small. The difference in sign between mean and median in the SV sample, and

thus the inefficient outcome under majority voting, is heavily penalized.

A.4.3 The voting choices

SV The optimal selection of the proposition on which to cast one’s bonus vote is not

trivial. If there are asymmetries among the propositions, it should reflect not only relative
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Figure A2: Distribution of preferences: the IM proposition

Figure A3: Distribution of preferences: the BE proposition.
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Figure A4: Distribution of preferences: the PB proposition

Figure A5: Distribution of preferences: the TT proposition
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valuations, but also pivotality (all else equal, pivotality is higher if the proposition is expected 

to be close and lower if it is salient). If voters are not well-informed, however, or unable or 

unwilling to compute equilibria, a plausible rule-of-thumb is to treat all propositions equally 

and cast the bonus vote on the proposal on which one’s preferences are most intense. The 

simple rule corresponds to optimal behavior if voters believe that valuations v are iid across 

proposals according to some marginal distribution F symmetric around zero (Casella and 

Gelman 2008). Figure A6 shows, for each of the four propositions, a measure of the relative 

intensity of preferences for all voters who cast their bonus vote on that proposition (with 

points slightly jittered for visibility). The vertical axis is the number of points assigned to 

the proposition; the horizontal axis is the maximum number of points assigned to any other.7

If all voters had cast their bonus vote on the proposition to which they assigned the 

highest number of points, all dots in each panel would be above the 45 degree line. In total, 

three fourths of all subjects (74%) did so.

The salience of the IM proposition is supported by the high number of bonus votes 

(97 vs. 76 for BE, 61 for PB and 72 for TT) . As noted in the text, when accounting 

for bonus votes the margin of victory for opponents of the proposition increases, although 

IM supporters report higher average and total intensity. The result reflects two sources of 

asymmetry. Of the 23 subjects who identify the IM proposition as their first priority and 

yet do not target it with their bonus vote, more than twice (16) are supporters rather than 

opponents (7); of the 20 subjects who cast their bonus vote on IM and yet do not identify it as 

their priority, more than twice (14) are opponents rather than supporters (6). However these 

differences are numerically very small and in neither case are the differences in proportions 

statistically significant.

As we describe briefly in the text, we summarize the voting choices through a statistical 

model, to be read as compact representation of the data.                                                                      .                                                                                

7. A few subjects cast the bonus vote on a proposition to which they had not assigned any points. As 
described earlier, if they nevertheless voted on that proposition they are recoded as assigning +/- 1 point, 
depending on the direction of preferences.
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Figure A6: The Bonus Vote Decision

We conjecture that each subject follows one of four mutually exclusive behaviors: with 

probability pMax, the bonus vote is cast on the subject’s highest value proposition; with 

probability pClose on the one with closest outcome (IM); with proba-bility pF am on the most 

familiar (either BE or TT, the two education propositions, with equal probability); and with 

probability pRand according to some other criterion that appears to us fully (uniformly) 

random. Each choice observed in the data, matched with the individual’s reported 

valuations, can be expressed as function of the four probabilities. Assuming inde-pendence 

across subjects, the probabilities are estimated by MLE are reproduced in Table A1.

16



SV

95% CI

pMax 0.63 [0.56, 0.76]

pClose 0.04 [0, 0.14]

pFam 0.09 [0.04, 0.21]

pRand 0.23 [0.15, 0.37]

Table A1. SV voting choices: a statistical model. MLE estimates under the constraints
that all probabilities be non-negative and sum to 1. The confidence intervals are obtained
by bootstrapping and reflect the distribution of the estimated probabilities in 10,000 simu-
lations.

In the SV sample, the bonus vote is cast primarily on the proposition that the voter

considers the highest priority, but a relatively large role is left for randomness.

QV Under QV, voters need to make two choices: the class of votes, and, given the class,

the propositions on which the votes are cast. Figure A7 reports the frequencies with which

subjects chose the different classes.

As the figure shows, even with the convex penalty from cumulating voting power, a full

40 percent of subjects chose the red vote, and thus cast their vote on a single proposition; less

than 10 percent cast votes on all four propositions. In the data, the frequency of selection

of a vote class is monotonic in the votes’ weight, contrary to what theory predicts. Across

propositions, IM received the highest number of red votes (45 vs. 19 for BE, 26 for PB and

34 for TT), as well as the highest total number of unweighted or weighted votes (178 vs. 153

for BE, 120 for PB, and 156 for TT (unweighted), or 249 vs. 210.4 for BE, 165.8 for PB,

and 218.7 for TT (weighted)), confirming its salience.

As for SV, we can summarize observed voting choices through a simple statistical

model. We posit a noisy two-step process that starts with choosing a vote class and then,

given the vote class, proceeds to casting the vote(s) on the different propositions in order of
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Figure A7: QV sample. Frequency of vote classes. The solid columns correspond to the
observed frequencies in the MTurk sample. The striped columns correspond to optimal
choices, given the observed distributions of preferences, if voters perceive the marginal pivotal
probability to be constant (as under rule-of-thumb QV-C, described below).

intensity.

Denoting by b(k) the voter’s kth highest number of assigned points, we summarize

behavior through five parameters: {ρ, γ, ξ, ε, µ}. With probability (1− ε), the voter chooses

the vote class that reflects her relative priorities: red if b(4)/b(3) ≥ ρ, yellow if b(4)/b(3) < ρ

but b(3)/b(2) ≥ γ, green if b(4)/b(3) < ρ, b(3)/b(2) < γ, but b(2)/b(1) ≥ ξ, and blue otherwise;

with total probability ε, the voter chooses one of the other classes (uniformly). Given a vote

class, with probability (1− µ) all votes are cast monotonically, i.e. on the highest intensity

propositions; with probability µ, votes are cast non-monotonically, with uniform probability

over the different options. Parameters are estimated by MLE, assuming independence across

subjects, and reproduced in Table A2.
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QV

95% CI

ρ 1.33 [1.21, 2.10]

γ 1.19 [1.04, 1.21]

ξ 1.39 [1.18, 1.79]

ε 0.50 [0.44, 0.54]

µ 0.21 [0.17, 0.26]

Table A2. QV voting choices: a statistical model. MLE estimates under the constraints
that all threshold parameters be larger or equal to 1 and all probabilities be non-negative
and smaller than 1. The confidence intervals are obtained by bootstrapping and reflect the
distribution of the estimated parameters in 10,000 simulations.

The thresholds determining the choice of vote class are significantly higher than 1 but

quantitatively not far, reflecting a strong tendency towards cumulating voting power. About

half of the time, the vote class does not obey the threshold rules estimated by the model.

Given the vote class, however, the tendency towards monotonicity is strong.

A.5 Bootstrap simulations

A.5.1 Rules-of-thumb

As described in the text, rule A corresponds to the observed behavior of the subject drawn

when populating the bootstrapping sample. Rule B implements the statistical models in

Tables A1 and A2, given the subject’s allocation of points and voting system. Rule C

corresponds to optimal voting behavior under the maintained assumption that individuals

take their probability of pivotality as constant (across propositions in SV, and across the

number and weight of votes in QV). Under SV, the optimal rule is then to cast the bonus

vote on one’s highest intensity proposition. Under QV, individuals choose a vote class so as

to minimize the distance between the weights of the votes they cast and their normalized
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values. Rule D suppose that individuals act as under C with probability 1/2, and randomly

with probability 1/2. Because rules C and D are less transparent under QV, we describe

them in some more detail.

QV: rules C and D As shown in section A.2.2, assuming constant marginal pivot proba-

bilities, the optimal number of votes under QV is proportional to the voter’s value, or xik =

αivik. The budget constraint
∑K

k=1(xik)
2 = 4 then implies αi = 2/βi, where βi is the Eu-

clidean norm of the voters’ values, or βi =
√∑K

k=1(vik)
2. Under QV, rule C attributes to each

subject a vote class by selecting the vector, out of {2, 0, 0, 0}, {1.5, 1.5, 0, 0}, {1.2, 1.2, 1.2, 0},

{1, 1, 1, 1, } that minimizes the distance from
{

2vi(4)/βi, 2vi(3)/βi, 2vi(2)/βi, 2vi(1)/βi
}

.8 Given

a vote class, votes should be assigned monotonically.

As a check, we reestimated the QV statistical model reported in Table A2 after having

imposed the normative choice on the MTurk sample. As shown in Table A3 below, estimated

thresholds ρ and γ are significantly higher than in Table A2, supporting the hypothesis that

MTurk respondents concentrated votes excessively.9

95% CI

ρ 2.35 [2.33, 2.56]

γ 1.95 [1.85, 2.04]

ξ 1.63 [1.42, 1.79]

ε 0.05 [0.03, 0.08]

µ 0.0 [0.0, 0.0]

Table A3. Reestimating the QV statistical model imposing rule C. MLE estimates.
The confidence intervals are obtained by bootstrapping and reflect the distribution of the
estimated parameters in 10,000 simulations.

8. Requiring subjects to indicate intensity by allocating 100 points among the four initiatives implies that
values are normalized linearly. It is easy to verify however that the linear normalization does not affect the

transformation described here: if ṽik = vik/
(∑K

k=1 vik

)
, then ṽik/

√∑K
k=1(ṽik)2 = vik/

√∑K
k=1(vik)2.

9. Note that the constraints imposed on the problem–the four vote classes and the fixed number of votes
per initiative in each class–imply that when estimating intensity thresholds as allocation criteria, some errors
(ε > 0) are to be expected. Monotonicity, on the other hand, can be fully respected (µ = 0).
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Rule D leaves a larger role to randomness. With QV, it means choosing the vote class

according to rule C with probability 1/2, and choosing any of the four classes with proba-

bility 1/8 each. Given a vote class, the voter casts the available votes on the propositions

with highest values with probability 1/2, and randomly, treating all propositions equally,

otherwise.

Random behavior To evaluate the welfare costs of misusing the voting systems, we have

simulated, for both SV and QV, a fifth possible behavior capturing randomness. We posit

that voters vote in the direction of their preferences but choose randomly the proposition

on which to cast the bonus vote under SV, and both the vote class and the propositions

under QV. As intuition suggests, over the 10,000 simulations, average welfare under both

SV and QV replicates average welfare under majority voting. (The results are available upon

request.)

A.5.2 Numerical values for Figure 2 (in the text)

We report here the numerical values corresponding to the three panels of Figure 2 (in the

text).

A: Minority victories

SV QV

A 0.35 0.35

B 0.33 0.29

C 0.41 0.27

D 0.29 0.28

avg 0.35 0.30

B: Share of surplus

SV QV

A 0.80 0.98

B 0.87 0.975

C 0.92 0.996

D 0.84 0.98

avg 0.86 0.98

maj SV 0.72

maj QV 0.95

C: Welfare losses

SV QV

A 0.28 0.36

B 0.05 0.38

C 0.02 0.14

D 0.10 0.35

avg 0.11 0.31
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Table A4. Simulations based on the original samples. Panel (A): Frequency of simula-
tions such that the minority wins at least one proposition; Panel (B) Share of appropriated
surplus over the full 10,000 simulations; Panel (C): Frequency of welfare losses, relative to
majority, conditional on at least one minority victory.

As discussed in the text, majority voting fails to appropriate 28 percent of available

surplus in the simulations drawn from the SV sample, and only 5 percent in those drawn

from the QV sample. And yet, even with such little leeway, QV succeeds in improving over

majority under each of the four rules (averaging over all simulations). If we use majority as

reference, we can calculate the fraction of surplus above what is appropriated by majority

that the two voting rules capture, according to each of the four rules. For example, under

rule A, SV captures (0.80-0.72)/(1-0.72) of such surplus, or 29 percent, while QV captures

(0.982-0.95)/(1-0.95) or 64 percent. Table A5 reports these numbers for each of the four

rules.

Fraction of surplus over majority

SV QV

A 0.29 0.64

B 0.55 0.50

C 0.72 0.915

D 0.44 0.59

avg 0.50 0.66

Table A5. Simulations based on the two samples separately. Fraction of the surplus left
on the table by majority appropriated by the two voting schemes, under each of the four
rules.

A.5.3 Differences across propositions

Because both SV and QV constrain the use of the votes across propositions, each boot-

strapped sample corresponds to an outcome for all four propositions. The discussion in the

text focuses on the frequency of samples in which at least one minority victory is observed,
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without distinguishing among propositions. Yet, large differences exist. As the preference

histograms in Figures A2, A3, A4, and A5 show, the potential for minority victories is largest

in IM and BE, while SV and QV have a much smaller effect on the other two propositions.

Figures A8-A9 below report the results.

Figure A8: Minority victories by initiative. SV simulations. In each panel, the solid
(dashed) part of each column is the fraction of minority victories that are efficient (ineffi-
cient). The efficient frequency of minority victories by initiative is: 0.52 (IM), 0.24 (BE),
0.05 (PB), and 0.04 (TT).
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Figure A9: Minority victories by initiative. QV simulations: bootstrapping the original QV
sample. In each panel, the solid (dashed) part of each column is the fraction of minority vic-
tories that are efficient (inefficient). The efficient frequency of minority victories by initiative
is: 0.18 (IM), 0.12 (BE), 0.00 (PB and TT).

A.5.4 Numerical values for Figure 3 (in the text)

We report here the numerical values corresponding to Figure 3 (in the text).

A: Minority victories

SV QV

B 0.18 0.32

C 0.195 0.39

D 0.17 0.29

avg 0.18 0.34

B: Share of surplus

SV QV

B 0.94 0.96

C 0.95 0.99

D 0.93 0.95

avg 0.94 0.97

maj 0.896 0.896

C: Welfare losses

SV QV

B 0.14 0.18

C 0.09 0.03

D 0.19 0.17

avg 0.14 0.13

24



D: Fraction of surplus over majority

SV QV

B 0.45 0.575

C 0.56 0.89

D 0.37 0.55

avg 0.46 0.67

Table A6. Simulations based on the two samples combined. Panel (A): Frequency
of simulations such that the minority wins at least one proposition; Panel (B) Share of
appropriated surplus over the full 10,000 simulations; Panel (C): Frequency of welfare losses,
relative to majority, conditional on at least one minority victory; Panel (D): Fraction of the
surplus left on the table by majority appropriated by the two voting schemes.

A.6 Adding regular votes to QV

The QV survey did not include regular votes–votes that must be cast one each on each

proposition. However, according to the theory in section A.2.2, neither a voter’s optimal

strategy nor QV’s efficiency properties would change. On this basis, we have conducted an

additional set of 10,000 simulations adding regular votes to QV, cast over each initiative

according to the preferences elicited at the start of the survey, as for SV. We call this voting

scheme QVV–QV with Vote.

We begin by reporting here data comparing QV and QVV when bootstrapping the

original QV sample. As noted in the text, in the QV simulations based on the original sample

majority voting appropriates a full 95% of the available surplus. On average, QV improves

over majority under each of the four rules-of-thumb, but the small margin for improvement

translates into a relatively high frequency of inefficient minority victories. QVV addresses

this problem effectively: averaging over all rules, the frequency of minority victories declines

from 30% to 19% (Fig. A10: A), with a corresponding decline (from 31% to 18%) in the

frequency of welfare losses, in the simulations with at least one minority victory (Fig. A10:

C). The impact on the average realized share of surplus is negligible (Fig. A10: B).

25



Figure A10: Boostrapping the original QV sample: QV and QVV. The fractions of samples
with at least one minority victory (Panel A) or with welfare losses, conditional on at least
one minority victory (Panel C) are consistently lower under QVV (p < 0.001 in all cases).
In Panel B, the average shares of surplus are not statistically different from majority (based
on bootstrapped CI’s). All tests of proportions are one-sided Z tests.

Table A7 reports the numerical values corresponding to the figure (including the num-

bers for QV for comparison).

A: Minority victories

QVV QV

A 0.22 0.35

B 0.175 0.29

C 0.20 0.27

D 0.18 0.28

avg 0.19 0.30

B: Share of surplus

QVV QV

A 0.99 0.98

B 0.98 0.975

C 0.99 0.996

D 0.98 0.98

avg 0.99 0.98

maj 0.95 0.95

C: Welfare losses

QVV QV

A 0.17 0.36

B 0.25 0.38

C 0.06 0.14

D 0.23 0.35

avg 0.18 0.31
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D: Fraction of surplus over majority

QVV QV

A 0.81 0.64

B 0.54 0.50

C 0.88 0.91

D 0.59 0.59

avg 0.70 0.66

Table A7. Comparison of QVV and QV in the simulations drawn from the original
QV sample. Panel (A): Frequency of simulations such that the minority wins at least one
proposition; Panel (B) Share of appropriated surplus over the full 10,000 simulations; Panel
(C): Frequency of welfare losses, relative to majority, conditional on at least one minority
victory; Panel (D): Fraction of the surplus left on the table by majority appropriated by the
two voting schemes.

We find similar results in the simulations based on the two samples combined, although

the gains from QVV, relative to QV, are reduced by the lower proportion of QV errors.

Relative to QV, QVV forfeits minority victories with small welfare changes, whether in

terms of gains or losses (Figure A11).
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Figure A11: Comparing SV, QV and QVV over the two samples, joint. In Panel A,
the fraction of samples with at least one minority victory remains consistently lower under
SV than under QVV (p < 0.01). In Panel B, none of the differences in mean surplus are
statistically significant from one another (bootstrapped CI’s), but Panel D reports detailed
information on percentage welfare gains over all samples with at least one minority victory
(the vertical axis is absolute numbers; the horizontal axis are percentage gains, and the
vertical line is at 0). Over those samples, the frequency of welfare losses under QVV is
significantly lower than under under QV (p = 0.018 (B), p = 0.019 (C), p = 0.0096 (D)),
and than SV for rules C and D (p < 0.01), but not for rule B (p = 0.15) (Panel C). In
Panel C, the frequency of welfare losses under QVV-C is 0.02. All tests of proportions are
one-sided Z tests.

Table A8 reports the numerical values for QVV (including QV for comparison).
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A: Minority victories

QVV QV

B 0.19 0.32

C 0.25 0.39

D 0.18 0.29

avg 0.21 0.34

B: Share of surplus

QVV QV

B 0.94 0.96

C 0.97 0.99

D 0.94 0.95

avg 0.95 0.97

maj 0.896 0.896

C: Welfare losses

QVV QV

B 0.15 0.18

C 0.02 0.03

D 0.14 0.17

avg 0.11 0.13

D: Fraction of surplus over majority

QVV QV

B 0.45 0.575

C 0.72 0.89

D 0.44 0.55

avg 0.54 0.67

Table A8. Comparison of QVV and QV in the simulations drawn from the two samples
combined. Panel (A): Frequency of simulations such that the minority wins at least one
proposition; Panel (B) Share of appropriated surplus over the full 10,000 simulations; Panel
(C): Frequency of welfare losses, relative to majority, conditional on at least one minority
victory; Panel (D): Fraction of the surplus left on the table by majority appropriated by the
two voting schemes.

A.7 Inequality

As we constructed a measure of aggregate welfare, we can construct a measure of individual

welfare. Denoting by bik the number of points attributed to proposition k by individual i,

and MS
k the side casting the majority of votes on k under voting system S, as in the text,

individual ex post utility under S corresponds to US
i =

∑
k:i∈MS

k
bik. US

i reflects both the

frequency with which voter i is on the winning side of a proposition and the importance that

i attributes to it. By construction, a voter who loses all propositions has an ex post utility

of 0; and one who wins them all of 100.
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Figure A12: Frequency and magnitude of Gini declines. Panels A and C: With the exception
of SV-A, the probability of a Gini decline is statistically higher than 50% for both SV and
QV, and the differences between SV and QV are all significant (p < 0.01; one sided Z-tests).
Panels B and D: The average magnitudes of the Gini declines are not statistically significant
(based on bootstrapped CI’s. See SI).

To evaluate SV and QV’s impact on inequality, we calculate the Gini coefficient of the

realized utility distribution for each of our simulations and under each rule-of-thumb, under

the relevant voting system and under simple majority

Focusing on simulations with at least one minority victory and averaging across the

rules-of-thumb, the frequency of Gini declines, relative to majority voting, is 73% for SV

and 67% for QV when bootstrapping separately the two original samples (Figure A12:A)

30



and increases to 75% for SV and 85% for QV in the simulations based on the two samples

combined (Figure A12:C). Over all rules, the average Gini change is a decline of 10% for SV

and 7% for QV in the simulations based on the two separate samples (Figure A12:B), and

a decline of 11% and 12% respectively when bootstrapping the two samples jointly (Figure

A12:D). In both sets of simulations, the impact of QVV is statistically indistinguishable from

QV (Tables A9 and A10). The summary message is that both SV and QV have a positive

impact on ex post inequality.

Average Gini coefficients are reported in Tables A9 and A10.10

SV

95% CI

maj 0.37 [0.32, 0.43]

A 0.35 [0.28, 0.40]

B 0.32 [0.28, 0.40]

C 0.315 [0.28, 0.39]

D 0.33 [0.28, 0.40]

QV

95% CI

maj 0.32 [0.27, 0.37]

A 0.29 [0.26, 0.345]

B 0.30 [0.26, 0.35]

C 0.30 [0.26, 0.35]

D 0.30 [0.26, 0.35]

QVV

95% CI

maj 0.33 [0.27, 0.37]

A 0.29 [0.26, 0.35]

B 0.30 [0.26, 0.35]

C 0.30 [0.26, 0.35]

D 0.30 [0.26, 0.35]

10. Given the 10,000 simulations, each rule, A, B, C, or D, corresponds to a somewhat different realization
of minority victories, and thus to somewhat different subsamples. Thus results under majority voting vary
slightly across rules. The differences are very small. The numbers we report for majority voting in Tables
A9 and A10 correspond to the subsamples with at least one minority victory under rule C, but the changes
are vey minor and the conclusions identical if we use any other rule.
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Table A9. Gini coefficient: Simulations based on the two separate samples (at least one
minority victory). The confidence intervals are obtained by bootstrapping.

SV

95% CI

maj 0.35 [0.29, 0.38]

B 0.31 [0.27, 0.36]

C 0.30 [0.27, 0.36]

D 0.31 [0.27, 0.37]

QV

95% CI

maj 0.35 [0.30, 0.38]

B 0.31 [0.27, 0.36]

C 0.29 [0.27, 0.35]

D 0.31 [0.28, 0.36]

QVV

95% CI

maj 0.35 [0.31, 0.38]

B 0.31 [0.27, 0.37]

C 0.30 [0.27, 0.36]

D 0.31 [0.28, 0.36]

Table A10. Gini coefficient: Simulations based on the two samples joint (at least one
minority victory). The confidence intervals are obtained by bootstrapping.
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