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The paper studies a committee voting sequentially on a known series of binary proposals.
Each member is granted, in addition to a vote for each proposal, a single extra bonus
vote – a streamlined version of Storable Votes. When the order of the agenda is exogenous,
a sufficient condition guarantees the existence of welfare gains, relative to simple majority
voting. But is efficiency compromised if a chair controls the order of the agenda? The
agenda becomes cheap talk and can be used to transmit information about the chair’s
priorities. The game has multiple equilibria, differing in the precision of the information
transmitted, but the welfare impact is minor, and the comparison to simple majority voting
is unchanged. In laboratory experiments, subjects have difficulty identifying the informative
strategies, but payoffs are effectively identical to theoretical predictions. The bonus vote
matters; the chair’s control of the agenda does not.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Consider a group of voters faced with a series of binary decisions, each of which can either pass or fail. Decisions are
taken according to the majority of votes cast, but suppose that, in addition to a regular vote for each decision, each voter
is endowed with some “bonus votes” that can be spent freely over the different decisions. This is the idea behind Storable
Votes, a simple voting scheme designed to elicit and reward voters’ intensity of preferences. By inducing a voter to cast
more votes on decisions he considers relatively more important, storable votes typically increase ex ante welfare, relative to
simple majority voting.

One concern that previous work has not addressed is the potential for agenda manipulation. Because storable votes allow
voters to modify their “weight” in decision-making by cumulating or reducing the number of votes they cast, control of the
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agenda could be particularly important. The goal of this paper is to take a first step towards the study of storable votes with
endogenous agenda.

Because agenda-setting problems are difficult, and the storable votes game quite complex, the paper exploits two sim-
plifications. First, the voting mechanism is streamlined: in addition to their regular votes, agents are endowed with a single
indivisible bonus vote to be cast freely over any of the proposals. The analysis shows that when the agenda is fixed, this
simplified mechanism can be sufficient to achieve welfare gains over majority voting. More precisely, the paper identifies a
simple sufficient condition guaranteeing higher expected utility relative to majority voting. Welfare gains always obtain if
the value of the bonus vote, relative to regular votes, is chosen correctly (in practice, is not too large), and either the number
of voters is even or large enough, or the differences in intensity of preferences across proposals are important enough.

Suppose now that one of the voters assumes the role of committee chair and is granted some agenda power. The second
simplification of the paper is to limit such power to the order with which decisions are brought to a vote. At the start of
the game, the chair decides and announces the order of the agenda. Would the chair choose the order so as to exhaust
other voters’ bonus votes before presenting his own favorite proposal? Could he then carry it through the strength of his
bonus vote, even with a narrow support and an efficiency loss? And would the efficiency loss be magnified in equilibrium,
as the other committee members adjust their own strategies, possibly saving their bonus votes and failing to register their
intensity of preferences?

In this framework the agenda’s order acquires the character of a cheap talk message: the chair can use it to transmit
information about his priorities. In line with the results of the cheap talk literature, the game has multiple equilibria that
differ systematically in the precision of the information conveyed. A babbling equilibrium exists, where no information is
conveyed, and the game remains identical to the exogenous agenda case. But informative equilibria also exist where, on
the basis of their position in the agenda, voters are able to identify decisions over which the chair is sure not to cast his
bonus vote. When only one such decision is identified, the information is very imprecise; when two are identified, more
information is conveyed in equilibrium, and so on up to the fully informative equilibrium where all but one of the decisions
are known not to be targets of the chair’s bonus vote, and hence the one decision over which the chair casts the bonus
vote is identified precisely. The ability of the chair to transmit information, and varying degrees of information, through the
order of the agenda alone may seem a bit “too subtle” to have practical implications, but we can interpret the cheap talk
message as a norm: it is plausible to think of committees where the chair is known, for example, never to put on the table
his highest priority decision first, or second, or last.

In equilibrium, when information is transmitted the chair effectively commits to casting his bonus vote on a subset of
decisions only. The commitment is valuable because other voters refrain from competing with the chair’s vote, and the chair
sees his probability of being pivotal increase on the decisions he cares most about. As a result, the chair’s expected utility
is higher: the power to set the order of the agenda is valuable. As for the other voters, the impact of the information on
their expected utility is less clear-cut: by avoiding competition with the chair, in equilibrium they face higher competition
from other non-chair voters on the remaining decisions. The end result is ambiguous, as is the expected aggregate welfare
effect. As for the quantitative importance of these effects, precise numerical results for all parameterizations I have studied
yield very small magnitudes. Briefly then: granting control of the agenda’s order to a chair need not change the game at
all, if voters coordinate on the non-informative equilibrium; if the game does change, it is through the transmission of
information, with a positive effect on the chair’s expected utility, and an ambiguous effect on all other voters. Even then
the best guess is that the magnitudes are very small. The welfare comparisons to simple majority voting derived under
exogenous agenda carry over with little change when the chair controls the order of proposals.

But would voters be able to identify these rather subtle equilibrium strategies? And if they do not, could the chair’s
power in fact lead to sensible declines in efficiency? The second part of the paper reports the results of a laboratory ex-
periment where subjects are confronted exactly with the voting game described by the model. Not surprisingly, they have
clear difficulties identifying the possible informative role of the agenda order, a hard task, and one made still more difficult
by the multiple equilibria. Non-informative equilibrium strategies best explain the observed behaviors, and even then the
strategic mistakes are higher than in the simple scenario with exogenous agenda. And yet, and this is the interesting part of
the results, realized experimental payoffs track very closely the theoretical predictions of the non-informative equilibrium.
In fact, because theoretical predictions are quantitatively very similar across equilibria, experimental payoffs are almost in-
distinguishable from equilibrium payoffs for any of the equilibria of the experimental parameterization. Even when subjects
deviate from equilibrium strategies, they disproportionately cast their bonus vote on their highest intensity proposal, a sim-
ple, intuitive course of action sufficient to approximate very closely the equilibrium welfare properties of the voting rule.
The robustness of storable votes to strategic mistakes has been a recurrent finding in experimental studies and a strong
argument in their favor.

The paper’s conclusion is that both in theory and in the experiments, the bonus vote does matter; the chair’s control of
the agenda does not, at least in the limited form studied here. Stronger conclusions will need to wait, but the paper ends
with some discussion of why the insight provided by this simplest agenda game is likely to carry over to more general
scenarios.

This study is part of a larger research project studying the theoretical and experimental properties of storable votes. First
proposed in Casella (2005) and studied experimentally in Casella et al. (2006, 2008), storable votes resemble Cumulative
Voting, a voting system used in US corporate boards and local jurisdictions and allowing voters to spread freely across
multiple candidates a given total budget of votes. Cumulative voting is designed to increase the representation of minorities
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(Guinier, 1994; Issacharoff et al., 2002), and has been shown to do so effectively, theoretically (Cox, 1990), empirically (Pildes
and Donoghue, 1995; Bowler et al., 2003) and experimentally (Gerber et al., 1998). It applies to single multi-candidate
elections, and thus is a tool of representative democracy; storable votes instead are designed for series of binary decisions
and apply to committee decision-making and direct democracy. Like cumulative voting, storable votes make it possible for
a numerical minority to win occasionally, but in the case of storable votes the representation of minority interests need
not be a goal in itself; it is the result of giving weight to voters’ intensity of preferences, and thus it is typically efficient,
in addition to being fair. Proposition 2 in this paper, defining a sufficient condition for the welfare superiority of storable
votes to simple majority rule with an arbitrary number of voters, complements existing results. Previous work allowed
for multiple bonus votes, but outside some examples, equilibrium welfare results were obtained only when the voters are
either 2 (Casella, 2005), or a very large number (Casella and Gelman, 2008). From a theoretical point of view, storable votes
are related to the mechanism designed by Jackson and Sonnenschein (2007), and to the almost identical voting scheme
proposed independently by Hortala-Vallve (2006).

The literature on agenda games typically studies the introduction of different alternatives when a single choice must be
made among several (see for example McKelvey’s 1976 classic paper, Ordeshook and Palfrey, 1988, for an early discussion
of incomplete information, and, for more recent contributions, Dutta et al., 2004, and the works discussed there). Here the
problem is different because all proposals are unrelated; each of them either passes or fails, independently of the others.
The possible importance of the agenda comes solely from the existence of the bonus vote. The agenda game studied in this
paper recalls results and intuitions from the literature on cheap talk games, originating from Crawford and Sobel (1982). In
particular, through the agenda order the chair can communicate the ranking of his intensities over the different proposals
– a multidimensional cheap talk problem that has been shown to allow typically more communication than the one-
dimensional case (Austen-Smith, 1993; Battaglini, 2002; Levy and Razin, 2007). The closest comparison is to comparative
cheap talk (Chakraborty and Harbaugh, 2007), but the specific model is quite different: the message comes through an
action that although not costly constrains the remainder of the game, there are multiple agents, the game is sequential, and,
as the analysis will show, the strategic interaction between the players depends non-trivially on the number of voters and
proposals, and on the value of the bonus vote. Yet, the multiple equilibria distinguished by the coarseness of the information
transmitted are clearly reminiscent of this literature’s results. Similarly, the experiments recall experimental analyses of
cheap talk games (for example, Palfrey and Rosenthal, 1991; Sopher and Zapater, 1993; see Crawford’s 1998 survey and
discussion) but both the design and the goals are different. As opposed to allowing subjects to exchange messages and
testing whether the messages are truthful and whether they affect the subsequent play of the game, the experiments
described in this paper investigate whether subjects are aware that the order of the agenda can be used as a message, and
have as goal the evaluation of the welfare properties of the voting scheme, and their robustness to strategic mistakes.

The paper was motivated by concerns about the chair’s potential ability to manipulate the game; the theory suggests
that the chair may indeed benefit, although probably little, but the experiments see no evidence of a bias in favor of the
chair. From this perspective, the result recalls experimental tests of the Baron and Ferejohn (1989) legislative bargaining
game, where again experimental subjects regularly come short of achieving the proposer’s advantage hypothesized by the
theory (see McKelvey’s 1991 original paper, and the discussion and references in Fréchette et al., 2005).

Finally, the topic invites comparison with the body of work studying information transmission and deliberation in com-
mittees before a decision is taken by voting (starting with Austen-Smith, 1990; see also Coughlan, 2000, Austen-Smith and
Feddersen, 2006, and Gerardi and Yariv, 2007). But again the focus is different: the model of this paper is a pure private
value model, where individuals differ in their preferences, as opposed to a common value model where individuals differ in
their information.1 There is no deliberation, but a single agent, the chair, is allowed to send a non-costly signal.

The next section describes the model; equilibrium strategies and efficiency are studied in Section 3 when the agenda
is exogenous, and in Section 4 when the chair controls the order of the agenda; Section 5 describes the experimental
design and the experiment’s results, and Section 6 concludes. Most proofs and detailed calculations are in Appendix A;
experimental instructions for one of the treatments are reproduced in Appendix B.

2. The model

Consider a committee of n voters, meeting to decide whether or not to implement T distinct proposals, {P1, . . . , P T },
each of which can either pass or fail. The T proposals constitute the known, fixed agenda of the meeting, and the committee
votes over the proposals sequentially. Each member i of the committee has a preference over whether any specific proposal
Pt should pass or fail and attaches some importance to having the proposal decided in his preferred direction. Both features
of i’s preferences – direction and intensity – are summarized by a cardinal valuation vit . Valuations vit are independently
and identically distributed both across proposals and across individuals according to the distribution G(v) with support
[−1,1], symmetric around 0. A negative valuation means that the voter is against the proposal; a positive valuation that
he is in favor. For each proposal Pt , a committee member i receives utility equal to the absolute value of his valuation
|vit | ≡ vit if the decision goes in the preferred direction, and 0 otherwise.2 Thus the sign of the valuation indicates the

1 Ordeshook and Palfrey (1988) do discuss information transmission through straw voting in a pure private value model, but, as noticed above, the focus
is on a dynamic agenda game where a single choice must be made among multiple alternatives.

2 Only the difference in utility between the two outcomes (passing or failing) matters.
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preferred outcome for the proposal, while the absolute value indicates the intensity of preferences. The utility from the
entire meeting is the sum of the utilities derived from each individual proposal.

In addition to a regular vote over every proposal, each committee member is given a single indivisible bonus vote. The
bonus vote is worth B regular votes, where B can be smaller or larger than 1, and I will refer to B as its value. When the
vote over P1 is called, each individual decides whether to vote for or against, and whether to cast 1 or 1 + B votes. If a
voter casts 1 + B votes over P1, he will be able to cast only his regular vote over each of the successive proposals; if instead
he casts 1 vote over P1, he retains his bonus vote for one of the successive proposals. Voting continues in this manner until
the last proposal, when any remaining bonus vote will be cast. Each proposal is decided in the direction that receives more
votes; in case of a tie, a coin is flipped.

When voting over any proposal, a committee member knows his own valuations over all proposals and the set of voters
still endowed with the bonus vote, a set denoted by Λt . The committee member does not know others’ valuations over any
of the proposals, but the independence of the valuations and the distribution G from which they are drawn are common
knowledge. The state of the game at t is summarized by (Λt , t).

3. Exogenous order of proposals

Suppose first that the proposals are voted upon in some pre-determined, publicly known order.

3.1. Equilibrium

The analysis focuses on symmetrical Perfect Bayesian equilibria in weakly undominated strategies. With independent
valuation draws and weakly undominated strategies, all individuals vote in the direction they sincerely prefer. The only
question is when to cast the bonus vote. Because the direction of the vote is always chosen sincerely, G is symmetric
around 0, and valuations are independent, the decision to cast the bonus vote will depend on the valuations’ intensity, not
on their direction. Denote by v i the vector of realized intensities for voter i: v i ≡ {vi1, . . . , viT }, defined over support [0,1].
If we call xit the number of votes cast by voter i over proposal Pt , then xit = xit(v i,Λt , G, t) where xit ∈ {1,1 + B} and∑T

t=1 xit = T + B . At first sight, identifying equilibrium strategies may seem difficult: for a given vector v i the choice to cast
the bonus vote on proposal Pt in general may depend on how many bonus votes remain available to the other voters. But
when valuations are independent, the answer in fact is very simple:

Proposition 1.

(1) For all T ,n, G, and B there exists an equilibrium where each voter i casts his bonus vote over Pt if and only if vit = max{v i}.
(2) For some T , n, G, and B, no other symmetrical equilibrium in weakly undominated strategies exists.

The proof of Proposition 1 is in Appendix A, but the intuition is immediate. If everyone else follows the strategy, at any
point in the game the expected number of bonus votes cast over any future proposal is identical. There is no reason to
postpone or anticipate casting the bonus vote – the only consideration is one’s intensity of preferences. For specific values
of n, T and B other equilibria exist where voting strategies are not responsive to intensities3; however, as the proposition
states, the equilibrium identified here is the only one that exists for all parameter values. In addition, responsiveness to
intensity makes the equilibrium a natural focal point.

3.2. Efficiency

How desirable is the mechanism? In this set-up there is no reason to treat individuals asymmetrically, and a natural wel-
fare measure is ex ante utility – expected utility before the realization of any valuation, but given G(v) and the expectation
that all voters will choose the equilibrium strategy. Call pB the probability of obtaining the desired outcome when casting
1 + B votes, and p1 the corresponding probability when casting only the regular vote, noting from Proposition 1 that, when
evaluated ex ante, pBt = pB and p1t = p1 for all t . Ev is the expected value of the absolute valuation, or expected intensity,
and Ev(k) the expected kth order statistic among each voter’s T intensities (hence the T th order statistics is the expected
highest intensity). Then expected ex ante utility over the whole meeting, EV , is given by:

EV = pB Ev(T ) + p1

T −1∑
s=1

Ev(s) = (pB − p1)Ev(T ) + T p1Ev. (1)

To evaluate the mechanism’s performance, I compare EV to ex ante utility in the absence of the bonus vote, when
decisions are taken by simple majority, EW:

EW = T pEv. (2)

3 For example, for n odd and B < 1 there is always an equilibrium where all voters cast their bonus vote on the same proposal Pt , for any t ∈ {1, . . . , T }.
The voting scheme is then identical to simple majority voting.
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The symbol p indicates the probability of obtaining one’s desired outcome when every voter casts a single vote:

p =
n+I−1∑

z=(n+I−1)/2

(
n + I − 1

z

)(
1

2

)n+I−1

(3)

where:

I =
{

1 if n is even,

0 if n is odd.

Appendix A shows:

Proposition 2. For all T , n, and G there exists a range of strictly positive values for B, B(n), such that for all B ∈ B(n):

(i) If n is even, EV > EW.
(ii) If n is odd, EV > EW if Ev(T )/Ev > [T (n + 1)]/[T (n − 1) + 2].

If the number of voters is even it is always possible to choose a value of B that leads to a welfare improvement relative
to simple majority. Not surprisingly, welfare improvements relative to simple majority are more difficult to guarantee when
n is odd, for the simple reason that majority voting performs much better in that case. Whether the condition in the
proposition is satisfied depends on the distribution G , on n, and on T . Three observations are immediate. First, notice that
[T (n + 1)]/[T (n − 1) + 2] is strictly declining in n: all else equal, the larger the number of voters, the less demanding the
sufficient condition, and the more likely are welfare gains. At very large n, there is always a value of the bonus vote that
leads to welfare improvements over majority voting.4 Second, the effect of the number of proposals T is less straightforward,
because both Ev(T )/Ev and the ratio [T (n +1)]/[T (n −1)+2] increase with T . Whether the condition is more easily satisfied
at small or large T depends on the distribution G . Indeed, and this is the third observation, the shape of G plays a central
role. Suppose for example G(v) = |v|b = vb . Then Ev(T ) = T b/(T b + 1) and Ev = b/(b + 1). With [T (n + 1)]/[T (n − 1) + 2]
strictly declining in n, if the condition is satisfied at n = 3, it is satisfied at all n. At n = 3 the inequality is satisfied strictly
by all b < 1, and weakly by b = 1 (the uniform distribution). More generally, for any T and n, the inequality is satisfied for
all b < (n − 1)/2.

What is the meaning of these conditions, and why is the inequality in the proposition required? With the extra bonus
vote, the probability of obtaining the desired outcome rises when the bonus vote is cast, but falls in the case of the other
proposals. A welfare improvement then requires a sufficient wedge between the highest intensity and the mean intensity.
The example of the power distribution makes the point clearly. The ratio Ev(T )/Ev is strictly decreasing in b. With b < 1,
the density function is decreasing and convex, and the probability mass is concentrated around zero. Most draws will have
small values, but a draw may come from the tail of the distribution: the wedge between the expected highest intensity and
mean intensity is relatively large. The higher probability of winning the vote over that one issue is valuable and overrides
the lower probability of winning the remaining, relatively less important proposals. With b > 1, on the other hand, the
density function is increasing in v , and there is larger probability mass at higher valuations: most proposals are likely to be
considered important, and the ratio Ev(T )/Ev is relatively small. Increasing one’s influence on a single issue is less valuable
because it comes at the cost of reduced influence over other issues, still likely to be considered important.

Note that the critical range B(n) identified in the proposition depends on n only: although I am assuming that G is
common knowledge, the mechanism does not require the planner to know the distribution of valuations. The general lesson
is that, although strictly positive, B should not be too large. The proof of Proposition 1 identifies thresholds for B that decline
monotonically with n, but in fact the restriction to B ∈ B(n) is stronger than needed. Consider the following example, where
the bonus vote is equivalent to a regular vote (B = 1 /∈ B(n) if n > 4).

Example 1. Suppose G Uniform, and B = 1. To evaluate more intuitively the welfare properties of storable votes and simple
majority voting, express ex ante expected utility with either mechanism as share of expected first best efficiency. Expected
first best efficiency EV∗ is a voter’s expected utility if each proposal is decided in favor of the side with higher total
valuation (the criterion that maximizes ex ante utility). Its expression, together with the explicit equations for all relevant
probabilities, is given in Appendix A. All three criteria, EV , EW , and EV∗ , are scaled by a plausible lower bound: expected
utility with random decision-making ER = TEv(1/2). The normalized variables ΩBV ≡ (EV − ER)/(EV∗ − ER) and ΩNBV ≡
(EW − ER)/(EV∗ − ER) express the share of available surplus over random decision-making that the mechanism is expected
to appropriate. For the representative case T = 3 and n ∈ {2, . . . ,21}, they are plotted in Fig. 1, where the black dots
correspond to storable votes, and the grey dots correspond to simple majority. In the case of simple majority, the grey dots
trace two distinct curves: a lower curve, corresponding to n even, and a higher curve, corresponding to n odd. At n = 3,
the two mechanisms are equivalent (n = 3 corresponds to the highest point in the figure where the black and the grey dots
are superimposed), but for all other n storable votes outperform simple majority. The most striking aspect of the figure is

4 Casella and Gelman (2008) analyze in detail the scope of storable votes in large elections.
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Fig. 1. Share of available surplus as function of the number of voters. G Uniform, T = 3, B = 1. The black dots correspond to storable votes (ΩBV ); the grey
dots correspond to simple majority (ΩNBV ).

the stability of the storable votes welfare measure, as opposed to the predictable sensitivity of simple majority to n odd or
even. As n increases, the two variables stabilize to a 5 percent margin in favor of storable votes.5

4. Endogenous order of proposals

Suppose now that one of the voters had the role of proposer, in charge of setting the order of the agenda. Precisely: At
the start of the meeting, after everyone has observed his valuation, the chair c announces the order with which proposals
will be brought to a vote. A voter’s strategy is, for all voters, including the chair, the choice of the proposal on which to cast
the bonus vote, and, for the chair alone, the order in which the votes are called.

4.1. Equilibrium

A first observation comes immediately from the results established so far. Allowing for an endogenous order of proposals
need not reduce efficiency. Call P∗

i the proposal to which voter i attaches highest priority: v∗
i = max{v i}. Then:

Proposition 3. For all T , n, G, and B there exists an equilibrium where the chair orders P∗
c in any position on the agenda with equal

probability, and every voter i, including the chair, casts his bonus vote over P∗
i . The equilibrium is identical to the exogenous agenda

equilibrium of Proposition 1.

As discussed earlier, in this equilibrium the probability that a voter endowed with his bonus vote at t will cast it over
any of the remaining proposals is constant. From the point of view of a different committee member, then, the only criterion
for casting the bonus vote is the intensity of his own preferences: there are no gains from anticipating or postponing the
use of the bonus votes. The identical reasoning applies when the order of proposals is endogenous. If the proposer chooses
randomly, no information about his voting strategy is conveyed; casting the bonus vote on their highest priority proposal
remains a best response for all other voters, guaranteeing that a random choice is itself a best response for the proposer.
The endogeneity of the proposals’ order has no impact on expected outcomes.

This reasoning, however, already suggests the possibility of different equilibria where the proposer’s choice of agenda
order does in fact reveal information about his priorities and voting strategy. Consider the following example.

Example 2. Suppose T = 2, n = 3, B = 1, and G Uniform. Then there exists an equilibrium where the chair c orders P∗
c = P1

and casts his bonus vote on P1 with probability 1; each of the other two committee members, j �= c, spends his bonus vote
on P1 if and only if v1 j � (3/2)v2 j , and thus is expected to cast the bonus vote on P1 with probability 1/3. There is also a
second equilibrium, mirror-image of the first, where the chair orders P∗

c = P2 and always casts his bonus vote on P2; each
of the other two committee members spends his bonus vote on P1 if and only if v1 j � (2/3)v2 j , and thus is expected to
cast his bonus vote on P1 with probability 2/3.

5 Although the percentage gain in favor of storable votes is maintained, the absolute improvement over randomness decreases with n. With G symmetric,
for very large n, random decision-making, majority voting and storable votes all approach efficiency asymptotically.
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Giving control of the order of the agenda to the chair can alter the game because the agenda can be used to transmit in-
formation: the voting game becomes a cheap talk game. Through the order of the agenda, the chair can signal his priorities,
and thus his voting strategy; knowing on which proposal the chair will cast his bonus vote then induces the other voters
to modify their own voting strategy, supporting the chair’s informative communication. Proposition 3 states that, as usual
in cheap talk games, the uninformative “babbling” equilibrium continues to exist: there is always an equilibrium where the
message is ignored and conveys no information. But the interesting question, as in Example 2, is the possible existence of
equilibria where information is conveyed.

I define an equilibrium informative if, after the chair’s announcement of the agenda’s order, all voters identify the chair’s
highest priority proposal with probability higher than 1/T . A fully informative equilibrium is one where the chair’s highest
priority proposal is identified with probability 1. We know from the literature on cheap talk games that informative equi-
libria exist if the interests of the player sending the message and of those receiving it are sufficiently aligned (Crawford and
Sobel, 1982; Chakraborty and Harbaugh, 2007). In this game, establishing a general result is complicated by the fact that
the commonality of interest between the chair and the other committee members depends on the impact of other voters’
bonus votes on one’s probability of being pivotal, and thus on the number of voters and proposals, and on the value of
the bonus vote. It is not difficult to find examples where a fully informative equilibrium does not exist.6 But there are also
important cases where a fully informative equilibrium does exist. If we restrict attention to quasi-symmetric equilibria (in
weakly undominated strategies) where all voters who are not the chair play symmetric strategies, then Appendix A shows:

Proposition 4. Suppose T = 2.

(1) For all G, n, and B ∈ B(n) there exist two payoff-equivalent fully informative equilibria such that:
(i) The chair sets P∗

c = Pt , t ∈ {1,2}, and always casts his bonus vote on Pt ;
(ii) any other committee member i casts his bonus vote on Pt if and only if vit � α(n, G)vis , s �= t, with α(n, G) � 1 and unique.

(2) With T = 2 and B ∈ B(n), there exist G and n for which no other quasi-symmetrical equilibrium exists.

Proposition 4 generalizes the result of Example 2 to arbitrary committee sizes and preferences distributions, as long
as the value of the bonus vote falls in the set B(n) and there are only two proposals. The chair’s relative intensity of
preferences is fully transmitted by the agenda order, and the other voters’ incentive to cast their bonus vote on P∗

c can be
reduced by the chair’s commitment.7

When there are more than two proposals, an endogenous agenda allows for the existence of multiple informative equi-
libria that differ both in the precision of the information transmitted and in the expected payoffs, again in line with general
results of cheap talk games. The chair always casts his bonus vote on his highest priority proposal; the question is which
position in the agenda such proposal occupies. As in Proposition 4, equilibria may exist where the proposal is known to
occupy a specific position in the ordering, and thus all other committee members can predict the chair’s voting strategy
with probability 1. But there are also equilibria where the chair randomizes the position of his highest intensity proposal
over a subset of possible positions, and thus other voters can predict the chair’s use of the bonus vote only imperfectly. We
can describe these equilibria as encompassing the two cases of Propositions 3 and 4: when the subset of proposals known
to include P∗

c is not strict and corresponds to the full set of proposals, the equilibrium is uninformative – the babbling
equilibrium of Proposition 3; when the subset corresponds to a single position, the equilibrium conveys all information
– the fully informative equilibrium of Proposition 4. In all intermediate cases, when the subset is strict but larger than
a single position, the equilibrium is partially informative, the precision of the information declining with the size of the
subset of admissible positions. This multiplicity of equilibria differs from the “inessential” multiplicity of payoff-equivalent
equilibria in Proposition 4 (in Crawford’s (1998) terminology); it is a substantive multiplicity that corresponds to different
informational contents of the message. Call P∗

iS the proposal to which voter i attaches highest priority among some set of
proposals PS : v∗

iS = max{v iS }, and P∗
iT −S the proposal to which voter i attaches highest priority among the complement

set PT −S . With an eye to the parameter choices that will be made in the experiment, it is possible to show:

Proposition 5. Suppose n ∈ {3,4} and B ∈ B(n).

(1) For all G and T there exist T payoff-distinct equilibria such that:
(i) The chair selects his S-lowest intensity proposals, with S ∈ {0,1,2, . . . , T − 1}, and arranges them, in any order, in the first S

positions on the agenda; he orders the remaining T − S proposals with equal probability in each of the last T − S positions;

6 T = 3, n = 5, B = 1/2 and G Uniform is one such case. Note that the definition of informative adopted here refers to revelation of the chair’s underlying
priorities, as opposed to predictability of the chair’s strategy. It does not cover non-responsive equilibria where all voters, including the chair, cast their
bonus vote on the proposal in a specific position on the agenda, regardless of intensities. As mentioned in footnote 2, such equilibria may exist whether or
not the agenda is endogenous.

7 An interesting question is whether the order of proposals can be used to convey information about the chair’s direction of preferences, as opposed to
intensity. When preferences are independent across voters and proposals, revealing the direction of one’s vote can be counterproductive: it induces allies
to refrain from using their bonus votes on the issue, freeing their votes for future use, when their preferences may well differ from the chair’s. Appendix A
shows that this must be the case when n = 3.
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(ii) the chair always casts his bonus vote on P∗
c (and thus never casts it on the first S proposals);

(iii) any other committee member j �= c casts his bonus vote on P∗
jT −S if v∗

jT −S � α(n, G, T , S)v∗
jS , and on P∗

jS otherwise. For
all G, T , and S, α(n, G, T , S) � 1 and unique.

(2) These are the only payoff-distinct quasi-symmetric equilibria holding for all G,T , B ∈ B(n) and n ∈ {3,4}.

(The proof is in Appendix A.)
For future reference, note that with committees of 3 or 4 voters, B = 1 belongs to B(n): the proposition applies to

environments where the bonus vote is equivalent to a regular vote.8

The proposition restates the description of the equilibria in terms of two sets of proposals, proposals in the first S po-
sitions in the agenda’s order, PS , and proposals in the remaining T − S positions, PT −S . In the equilibria the proposition
identifies, the chair always orders his highest intensity proposal in one of the last T − S positions, choosing each of these
with equal probability, and always casts his bonus vote on it. The other members of the committee best-respond to the
chair’s strategy by privileging proposals in the first S positions as targets for their bonus vote. The larger is S , the smaller is
the set of proposals over which the chair may cast his bonus vote, and the more informative is the equilibrium: S = T − 1
corresponds to the fully informative equilibrium where the chair’s highest priority proposal is identified with probability
one, while S = 0 corresponds to the babbling equilibrium where no information is conveyed. The proof in Appendix A also
shows that for all T > 2, the probability with which a non-chair member of the committee casts his bonus vote on the
chair’s first priority proposal declines monotonically with S: the more informative the equilibrium, the more successful is
the chair in crowding out other voters’ bonus votes. Note, as remarked by Farrell and Gibbons (1989), that the informative
equilibria are substantially different from the equilibrium with exogenous agenda: through cheap talk information is trans-
mitted, and strategies are supported that could not be equilibrium strategies when the order of the agenda is exogenous.

In conclusion, it is indeed the case that setting the agenda’s order gives the chair the possibility to achieve less com-
petition with his own bonus vote. But this is an equilibrium result: the other voters are not caught unaware by the chair’s
strategy, nor are they tempted to counter it by hoarding votes. On the contrary, their decision to cast their bonus votes
disproportionately on other proposals is their optimal response.

4.2. Efficiency

The existence of the non-informative equilibrium makes clear that granting control of the agenda’s order to the chair
need not affect efficiency in any way. But when information is transmitted, does efficiency increase, or are there other
effects creating losses for the voters?

Call EV S
i the ex ante expected utility of voter i in the informative equilibrium where the chair is known not to cast the

bonus vote on the first S proposals. With this notation, EV T −1
i ≡ EVFI

i is i’s ex ante expected utility in the fully informative
equilibrium, and EV0

i ≡ EVNI
i , i’s ex ante expected utility in the non-informative equilibrium.

From the perspective of the chair, the ability to reduce the competition for influence over his highest intensity proposal
is indeed valuable. Appendix A shows:

Proposition 6. In all informative equilibria described in Propositions 4 and 5, EV S
c � EVNI

c , with S ∈ {1, . . . , T − 1}.

For the chair, any informative equilibrium is at least weakly superior to the non-informative equilibrium, and thus to
the equilibrium with exogenous agenda. Contrary to what one might expect, however, the different informative equilibria
cannot be ranked: with more precise information, the chair faces lower competition over his highest priority proposal, but
more competition over proposals in the first S positions of the agenda. Depending on G , n, T , and S , the gain may or may
not compensate the loss, and it is not difficult to find examples where the chair’s expected utility is higher in some partially
informative equilibrium than in the fully informative one.9

As for the other voters, the impact of the transmission of information on expected utility is ambiguous. Although it
allows them to reduce competition with the chair, informative communication induces higher competition with the other
committee members, all of which tend to shift their bonus votes away from the chair’s highest priority proposal. How
the two effects balance each other depends on the parameters of the problem. Depending on n, T , B and G , committee
members who are not chair may fare better or worse in the informative equilibria than in the non-informative equilibrium:

8 Although not stated for n = 2, the equilibria in the proposition hold in such a case too, with α(G, T , S)|n=2 = 1 for all G, T , and S . The reason is that
at n = 2 casting the bonus vote on one’s highest valuation is a dominant strategy, for any G , and for any T and S: the increase in the pivot probability
associated with the use of the bonus vote is exactly identical, whether one’s opponent casts the bonus vote or not. Thus whether the agenda’s order is
informative or not has no effect on the strategy of the voter who is not the chair. Similarly the chair can choose to transmit information through the agenda
setting, or not to, with no effect on his own voting strategy. Welfare is identical to the exogenous agenda case.

9 One such example is n = 3, B = 1, G Uniform and T = 10, where the chair’s highest expected utility corresponds to the equilibrium with S = 8: in
choosing where to order his highest intensity proposal, the chair randomizes between the last two positions on the agenda.
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(a)

(b)

Fig. 2. Expected utility in the fully informative equilibrium G Uniform, n = 3 and n = 4, B = 1. The upper black dots refer to the chair; the lower black dots
refer to a non-chair voter, and the grey dots refer to ex ante expected welfare with equal probability of being chair. (a) Relative to expected utility with
exogenous agenda, as a function of T . (b) Relative to expected utility with majority voting, as a function of T .

Examples 2 and 3. Suppose T = 2, and G Uniform, and consider j �= c. If n = 3 and B = 1, then EVFI
j < EVNI

j . But if n = 5

and B = 1/2, then EVFI
j > EVNI

j . Note that B = 1 ∈ B(3) and B = 1/2 ∈ B(5), and thus both examples are covered by Propo-

sition 4.10

Predictably, then, the overall effect of an endogenous agenda on expected welfare is of ambiguous sign. Consider ex
ante expected utility with equal probability of being chair, EV S . Whenever the voters who are not chair benefit from the
informative equilibrium, EV S > EVNI; when they do not, the effect on expected welfare depends on the relative magnitude
of the chair’s expected gains and the other voters’ expected losses. For G Uniform and B = 1, Fig. 2 shows ex ante expected
utility in the fully informative equilibrium, relative to expected utility with exogenous agenda and with simple majority
voting, for the two cases of n = 3 and n = 4, as function of the number of proposals. Each plot has three series of dots:
the two series of black dots plot individual expected utility for the chair (the upper one) and for a voter who is not chair
(the lower one); the grey dots plot expected welfare with equal probability of being chair. The upper half of the figure,
Fig. 2(a), reports the utility measures as share of the corresponding measures with exogenous agenda (or equivalently, in
the non-informative equilibrium). Following Proposition 6, the chair benefits in the fully informative equilibrium with both
n = 3 and n = 4. When n = 3, the chair’s expected gain is maximal with 2 proposals and declines monotonically as the
number of proposals increases; when n = 4, the magnitude of the gain is not monotonic in T , reaching a maximum at 5
proposals, and declining thereafter. The expected utility of a non-chair voter mirrors imperfectly the chair’s, with opposite
sign: when n = 3, the loss is maximal at T = 2 and declines monotonically as T increases; when n = 4, the loss is maximal
at T = 4, and declines at larger T .11 Expected ex ante welfare combines the impact on the chair and on the other voters’
utility and results in a small loss when n = 3 and a small gain when n = 4. Both individual and aggregate effects tend to
disappear as the number of proposals becomes large, and the probability of competing over the same proposal declines.

The lower half of the figure, Fig. 2(b), reports the utility measures as share of the corresponding measures with simple
majority voting. With G Uniform and B = 1, if n = 3, expected utility with simple majority voting is identical to expected

10 Precisely, if n = 3 and B = 1, EVFI
j = 0.989EVNI

j ; if n = 5 and B = 1/2, EVFI
j = 1.0001EVNI

j . Note the small quantitative effects.
11 I have no intuition for the non-monotonicity of expected utility gains and losses when n = 4, another illustration of the complicated interactions among

the different parameters of the problem.
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utility with exogenous agenda and the bonus vote, for any number of proposals, and thus the left panel of Fig. 2(b) replicates
exactly the left panel of Fig. 2(a): in the fully informative equilibrium, the chair expects to fare better than with majority
voting, the other voters expect to fare worse, and the overall effect is very slightly negative. When n = 4, the bonus vote
with exogenous agenda leads to higher expected welfare than simple majority, and the panel on the right of Fig. 2(b)
shows that the welfare superiority of the bonus vote is confirmed when the agenda is endogenous and the equilibrium fully
informative.

Whether positive or negative, in Fig. 2 the overall effect of the endogenous agenda is small: the expected welfare change
is at most of the order of two tenth of a percent, relative to welfare with exogenous agenda. This is a recurring result of all
numerical examples I have studied: regardless of the distribution of intensities, of the value of the bonus vote, and of the
numbers of voters and proposals, I have always found the welfare impact of the informative equilibrium to be quantitatively
small. From a theoretical point of view, showing that this regularity must hold generally is difficult. Limit results are easier
to obtain and intuitive: in all equilibria, the strategies of a storable votes game with T = 2 and n arbitrarily large, or with
n = 3 but T arbitrarily large converge to the strategies of the uninformative equilibrium – that is: for T = 2, limα(n, G) = 1
as n → ∞, for any G , and for n = 3, limα(T , G, S) = 1 as T → ∞, for any G and S . If n = 4 and T is arbitrarily large, the
result need not hold – that is: there exist G and S such that limα(T , G, S) > 1 as T → ∞ – but the welfare impact does
disappear asymptotically. The observations are not surprising: whether with two proposals and a large number of voters, or
with few voters and a large number of proposals, the influence of the chair’s vote alone becomes negligible.

More interesting and less obvious is the small welfare difference between informative and uninformative equilibria when
both the number of voters and the number of proposals are small, as captured in the figures. Taken together with the
existence, and empirical plausibility, of the uninformative equilibrium, the observation suggests that the practical impact of
allowing the chair to control the order of the agenda should be small, and thus have little effect on the welfare comparison
to simple majority voting. But what happens in practice is an empirical matter, best left to experimental testing.

5. The experiment

5.1. Experimental design

All sessions of the experiment were run at CESS, the Center for Experimental Social Science at NYU, with enrolled
students recruited from the whole campus through the laboratory web site.12 No subject participated in more than one
session. The main treatment variable was the proposals’ order, decided either exogenously by the computer, or endogenously
by one of the subjects in each group.

Subjects were matched randomly in groups of n members each, where n equalled 3 in some sessions and 4 in others, and
were asked to vote successively over 3 proposals, named the Green, Red and Blue proposal. In addition to one regular vote for
each proposal, all subjects were endowed with a single bonus vote, identical in value to the regular votes (B = 1). Valuations
for all three proposals were drawn randomly by the computer, independently for each subject and for each proposal, and
could assume any integer value between −100 and 100 (excluding 0), with equal probability. Before any decision was
taken, each subject was shown his valuations over the three proposals. In sessions where the order of proposals was chosen
exogenously, the computer selected the order randomly, independently for each group, and the monitor showed it to each
group member, together with a reminder that the order had been selected by the computer. In sessions where the order
was endogenous, one group member was chosen as chair and given the task of deciding the order of proposals. The order
was then communicated to the other members of the chair’s group, together with a reminder that it had been decided
by the chair. Subjects were then asked to vote over the first proposal, and could choose whether to cast the bonus vote,
or not. After the vote, the computer screen showed whether or not the proposal had passed, and the number of bonus
votes still available to the other group members. Voting continued in this fashion up to the third and last proposal, where
all remaining bonus votes were cast automatically. A new sequence (round) of three proposals was then repeated. At the
end of each session, four rounds were chosen randomly, and subjects were paid their cumulative valuation for all proposals
resolved in their preferred direction in those four rounds, multiplied by a pre-determined exchange rate, in addition to a $7
show-up fee. Average earnings were about $20.00 an hour.

The 3-proposal design is the simplest design allowing for a genuinely sequential series of votes (i.e. where more than one
voting decision must be made). From a theoretical point of view, 3 is the minimum number of proposals that can support
a partially informative equilibrium and lets us ask whether partially informative strategies are observed in the data. From a
pragmatic point of view, one concern about storable votes is that voters could be confused by the sequential nature of the
game and mistakenly hoard their bonus vote, even when the order of the agenda is exogenous. A 3-proposal design allows
us to evaluate whether this indeed occurs.

The existence of multiple informative equilibria when the order of proposals is endogenous makes learning particularly
important and difficult. To allow for it, groups were not rematched but remained unchanged for an entire experimental
session. Because valuations were private and drawn independently across both subjects and proposals, even with fixed

12 A sample of the instructions from one of the sessions is given in Appendix B. The experiment used the Multistage Game software package developed
jointly by the SSEL lab at Caltech and the CASSEL lab at UCLA, and freely available at http://research.cassel.ucla.edu/software.htm.

http://research.cassel.ucla.edu/software.htm
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Table 1
Experimental design.

Session n Order # Subjects Rounds

s1 3 X/D 12 10/30
s2 3 X/D 15 10/30
s3 4 X/D 12 8/32
s4 4 X/D 16 5/20
s5 3 X 12 20
s6 4 X 12 12
s7 4 X 12 12
s8 3 D 9 18
s9 4 D 12 20

Table 2
Equilibrium strategies and expected payoffs. Three proposals, G Uniform, B = 1.

Table 2(a)
Exogenous order of proposals.

n α Ωsv Ωnsv

3 1 0.923 0.923
4 1 0.908 0.804

Table 2(b)
Endogenous order of proposals.

n αc αNI
nc αPI

nc αFI
nc ΩNI

sv ΩPI
sv ΩFI

sv CPI CFI

3 1 1 (1,1.17) (1,1.26) 0.923 0.922 0.917 1.01 1.022
4 1 1 (1,1.05) (1,1.16) 0.908 0.9086 0.909 1.003 1.011

group membership there was no natural scope for coordination. When the order of proposals was endogenous, the same
subject acted as chair for a fixed number of rounds, specified in the instructions. Each member of a group acted as chair in
turn.

The experiment was run with four different treatments: n = 3,4 for each of two possible agenda orders, exogenous
(X ) or endogenous (D). Some of the sessions included both exogenous and endogenous order (beginning with the simpler
exogenous treatment), and, as control, others did not. In sessions with both treatments, a challenge was keeping the length
of the experiment reasonable, while allowing a sufficient number of rounds as chair to each group member; in sessions
with exogenous order only, again the experiment had to be reasonably short to keep the subject’s interest. Table 1 reports
the experimental design.13

The experiment mirrored closely the theoretical model, and thus all theoretical results apply here. With specific values
for the model parameters (n ∈ {3,4}, T = 3, B = 1, G Uniform), the equilibria can be characterized precisely. When the
order of proposals is exogenous, there is a unique symmetrical equilibrium where every voter casts the bonus vote on his
highest intensity proposal. When the order is endogenous, there are five equilibria in all: the non-informative equilibrium,
replicating the exogenous order equilibrium; three payoff-equivalent full information equilibria, where the chair always
orders his highest intensity proposal either first, or second, or third; and finally a single partially informative equilibrium
where the chair orders his highest intensity proposal either second or third, with equal probability, and always orders first
his least intensity proposal (see the discussion in Appendix A).

Equilibrium strategies and expected payoffs are reported in Tables 2(a) and 2(b) for the two cases of exogenous and
endogenous order respectively. As in Propositions 4 and 5, the tables summarize the equilibrium strategy through a value
α indicating the minimum required wedge between the intensity of the proposal receiving the bonus vote and the second
highest intensity, distinguishing, where necessary, between αc , for the chair, and αnc , for the other voters. When the order
of proposals is exogenous, α = 1 for all voters. When the order is endogenous, αc = 1 always, but αnc depends on the
equilibrium. In the uninformative equilibrium, again αnc = 1. In the informative equilibria, recall the distinction between
PS , the set of proposals known not to receive the chair’s bonus vote, and the complementary set PT −S , and the notation
P∗

iV indicating the proposal in some set V such that v∗
iV = max{v iV }. Proposition 5 states that non-chair voters cast their

bonus vote on P∗
jT −S if v∗

jT −S � αv∗
jS , and on P∗

jS otherwise, for some equilibrium value α > 1. I denote such a strategy
by the notation αnc = (1,α).

13 Because of a programming error, in the endogenous order treatment of session s3 different members within each group were chair for a different and
random number of rounds (as opposed to all being chair for 8 of the 32 rounds). The session will be singled out. To verify that holding the groups fixed
did not affect the results of the experiment, two of the exogenous order sessions, s6 and s7, were run with groups randomly rematching after each round
of 3-proposal voting. The results from these sessions are indistinguishable from the other results.
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The expected efficiency of the voting schemes is summarized by Ωsv (Ωnsv ): the expected share of available aggregate
surplus appropriated with storable votes (or without storable votes, i.e. with simple majority). In Table 2(b), the different
equilibria are distinguished by the superscripts. With simple majority, the endogeneity of the proposals’ order is irrelevant,
and efficiency is again summarized by Ωnsv , which is not repeated in the table. Finally, the last two columns report EVc/EVnc

(denoted in the table by C ), the gain the chair is expected to reap, relative to the other members of the group, in the
informative equilibria.

With this parameterization, when the order of proposals is exogenous, the bonus vote scheme is exactly as efficient as
simple majority if n = 3, and superior if n = 4, when it is expected to appropriate a full 10 percent more of available surplus.
When the order of proposals is endogenous, the uninformative equilibrium persists unchanged, while in the informative
equilibria aggregate surplus as measured by Ω falls slightly when n equals 3, up to a maximum of about half a percentage
point in the fully informative equilibrium, and remains effectively unchanged (more precisely, increases at most by one tenth
of a percent) when n equals 4. In all informative equilibria, the change in aggregate surplus reflects a (small) improvement
in expected utility for the chair, and a (small) decline for the other members of the group. Expected utility is 1 to 2 percent
higher for the chair, relative to the other voters, when n equals 3, and 0.5 to 1 percent higher when n equals 4. As the
number of voters increases from 3 to 4, the deterrent effect of the chair’s bonus vote declines because crowding with the
other voters becomes more costly, the thresholds α’s fall, and the relative advantage of the chair decreases.

5.2. Experimental results

The final objective of the Storable Votes mechanism is its practical use. The purpose of the experiment, then, is to
evaluate the efficiency of the mechanism when the order of the agenda is controlled by a chair. Are the theory’s conclusions,
derived in equilibrium, confirmed when subjects actually play the game? And if subjects make mistakes, how large is the
loss in efficiency?

As an intermediate step, what can we learn from the strategies the experimental subjects adopt in the lab?

5.2.1. Strategies
The strategic behavior of the experimental subjects can be summarized very briefly. Subjects have little difficulty playing

the equilibrium strategy in the exogenous order treatment, but find the endogenous order treatment more challenging.
They make more strategic errors, relative to both uninformative and informative equilibria, and find the latter particularly
difficult.

Given the multiple equilibria of the endogenous order treatment, the observation is not surprising. Multiple equilibria
exist in all cheap talk experiments, whether subjects communicate planned actions (Cooper et al., 1989, 1992; Clark et al.,
2001), or their private information (Palfrey and Rosenthal, 1991; Sopher and Zapater, 1993; Dickhaut et al., 1995; Valley
et al., 2002), and inevitably complicate the subjects’ task. Here however the subjects face two additional challenges. The
first difficulty is that not only are there different equilibria with different precision of information, but there are multiple
fully informative equilibria. Even if the chair’s intent to transmit information is understood, will he cast his most important
proposal first, second, or third? In the terminology of cheap talk games, a common language is missing: a priori, nothing
distinguishes one particular position as more significant than any other. From this perspective, the experiment recalls Blume
et al. (2001), comparing communication with and without a common language. Blume et al. find that communication does
develop, although more slowly in the absence of a common language, and only if the subjects have sufficient experience
with the experiment. The second challenge however is more radical and precedes the question of agreement on the meaning
of messages: the problem is that subjects may well not understand that the order of the agenda is a language at all. The
fact that it can be used to communicate relative strength of preferences is not obvious: without further thought, the chair’s
announcement can be interpreted simply as setting one of the game’s rules – the order of votes. In what follows, I discuss
to what extent the evidence allows us to distinguish among the possible hurdles.

Fig. 3 reports the aggregate error rate for voting decisions in each experimental session, on the horizontal axis, and the
experimental treatment and equilibrium on the vertical axis. I classify as an “error” each round of play (each three-proposal
game) where a subject does not cast the bonus vote on the proposal identified by his equilibrium strategy. The aggregate
error rate is the total number of errors divided by the total number of rounds played by all subjects. The lowest series of
points, with the vertical coordinate indicated by X , corresponds to the exogenous order treatment; the remaining series,
indicated by D , correspond to the different equilibria of the endogenous order treatment. Grey symbols refer to groups of
4 voters, black symbols to groups of 3 voters and the single unfilled dot to the 4-voter session s3, where chairs alternated
randomly; squares refer to the two D-only treatments.

With predictable variation across sessions, error rates tend to be lowest in the exogenous order treatment. In the en-
dogenous order treatment they are on average lowest when calculated relative to the NI equilibrium, and comparable when
calculated relative to either FI or PI equilibrium strategies. If we average across all sessions of the same treatment, com-
bining group sizes, in exogenous order sessions the mean error rate is 8 percent; when the agenda order is endogenous,
the mean error rate is 10 percent if calculated with respect to NI equilibrium strategies; 13 percent with respect to PI
strategies and 15 percent with respect to FI strategies. If individual errors are independent – a point I discuss in some detail
below – then according to a simple test of proportions, in the endogenous treatment the mean error rate with respect to
NI strategies is significantly lower, at the 5 percent level, than the error rate with respect to both PI and FI strategies. The
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Fig. 3. Voting decisions. Aggregate error rates by session and equilibrium. X refers to the exogenous order treatment; D refers to the different equilibria
(NI, PI, FI) of the endogenous order treatment. Grey symbols refer to n = 4, black symbol refers to n = 3, and the single unfilled dot refers to the 4-voter
session s3; squares refer to D-only sessions.

mean error rate in the exogenous treatment is not significantly different from the mean D-NI error rate.14 Note in addition
that session s3 is not an outlier, but errors are particularly high in the D-only sessions, indicated by the squares. The last
observation suggests that some initial training with the easier exogenous treatment may affect subject’s overall performance
in the experiment and underscores the importance of learning. However, partly accounting for learning by ignoring either
the first 5 rounds of each treatment, or the first two rounds of each chair’s rotation has no substantive effect on error rate
comparisons.15

Voting decisions are made within a group, and if strategic errors within a group are correlated, the independence as-
sumption exploited above is not legitimate. In fact, though, a useful feature of the present game is that individual best
response strategies are robust to most strategic errors by other group members. This is particularly easy to see in the NI
equilibrium: as long as others’ use of the bonus vote – the specific proposal receiving the bonus vote – is not predictable,
an individual’s optimal strategy is unchanged. In informative equilibria, matters are less clear-cut, but there is still no pre-
sumption that confusion about the chair’s ordering strategy should generate correlation in the measured error rates among
group members.16 The theoretical prediction is confirmed empirically. A probit regression of individual errors on errors by
other groups members, in each round, cannot reject the hypothesis of no correlation: in the exogenous order treatment,
the p-value for the null of no correlation is 20.5 percent; with endogenous order, the p-value is 12.2 percent for NI errors,
65.3 percent for FI errors and 69.8 percent for PI errors.17 Being able to maintain the independence of individual error rates
allows the use of the largest possible number of data points, and I will do so in what follows. The evidence discussed in
this section is qualitatively identical if the analysis is conducted at the group level, but with the much smaller sample the
statistical tests lack power.

To evaluate whether the aggregate results reported in Fig. 3 are a fair mirror of individual behavior, Fig. 4 reports
histograms of individual error rates in voting strategies, by treatment and equilibrium. Each column represents the fraction
of all subjects in the given treatment whose individual error rate, in percentage terms, falls in the corresponding bin. In
both treatments, there is a fair amount of heterogeneity in behavior, but the real outliers are few. In the exogenous order
treatment, 77 percent of all subjects have error rates below 10 percent; when the order is endogenous; that fraction falls to
68 percent for NI equilibrium strategies, 60 percent for PI strategies and 45 percent for FI strategies. At the other extreme, 5

14 The result may be due in part to the smaller number of rounds in the exogenous treatment sessions. Similarly, error rates calculated over the same
individual session, for different treatments or equilibria, are not, as a rule, statistically different.
15 See the discussion in Casella (2008). The higher error rates of the D-only sessions are maintained if we focus on later rounds only. In the last five

rounds, the NI error rate in D-only sessions is 17 percent, versus 6 percent for X/D sessions. The difference is statistically significant at the 5 percent level.
The results are analogous for PI and FI error rates. Learning seems a better explanation than possible behavioral effects caused by the experimental design.
The latter should also be present in a comparison of X/D versus X-only sessions, but cannot be detected in the data: in the first 5 rounds, the average
error rate is 8 percent for the former and 9 percent for the latter, a statistically not significant difference even at the 50 percent level.
16 In the non-informative equilibrium, whether some or all of the other group members cast their bonus vote randomly, or on their least important

proposal, or on the middling proposal, or in fact alternating among all of these possibilities, has no impact on an individual’s optimal strategy. In informative
equilibria, the conclusion is weakened because a voter’s optimal threshold α – the optimal degree of competition with the chair – depends on others’ α
choices. However, α thresholds are strategic substitutes: if others cast their bonus vote too often on the chair’s priority proposal, an optimizing non-chair
voter should refrain further from doing so. In the data, voting decisions classified as FI errors but not NI errors must, by construction, reflect too low α
thresholds and cannot be rationalized as best resposes to each others’ errors.
17 The results are robust to introducing either session, or group x session fixed effects. Given the lack of general results for probit estimation with fixed

effects, the analysis with fixed effects takes the form of either linear or conditional logit estimation. Both alternative methods also yield the same conclusion
in the absence of fixed effects. The estimation with group x session fixed effects ignores the data from sessions s6 and s7, where groups are rematched
randomly after each round.
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Fig. 4. Histograms of individual error rates. Each column represents the fraction of all subjects in the given treatment whose individual error rate, in
percentage terms, falls in the corresponding bin.

percent of all subjects have error rates above 30 percent when the order is exogenous, but 12 to 13 percent do so when the
order is endogenous, with little variation across the different equilibria.18 A Kolmogorov–Smirnov test rejects the hypothesis
of equal distribution for exogenous order errors and endogenous order NI errors (p-value of 0.7 percent), and again rejects
the hypothesis of equal distribution for endogenous order NI errors versus either PI errors (p-value of 3.8 percent) or FI
errors (p-value of 0.1 percent).19

18 Because individual deviations from equilibrium strategies are reported as error rates, as opposed to absolute numbers, they tend to be higher when the
relevant number of rounds is lower. Thus the measure penalizes the exogenous order treatment.
19 The distributions of PI and FI errors are not significantly different (p-value of 27.5 percent).
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(a) (b)

Fig. 5. The chair’s ordering strategy. Fraction of chairs who always choose the same order, where the order is consistent with informative equilibria. Grey:
fraction of chairs always casting their most intense proposal first, second of third in the agenda order. Black: fraction of chairs whose strategies are
consistent with either FI (“max same”), or PI (“min 1”) ordering strategies. In (b), the background columns ignore the first two matches of each chair’s
rotation. (a) All data. (b) With learning.

The first conclusion then is that the exogenous order treatment presents little difficulty for the subjects. The equilibrium
strategy appears very intuitive and there is little evidence of vote hoarding or other non-equilibrium behavior.

In the endogenous order treatment, NI equilibrium strategies appear to match subjects’ voting decisions better than
informative ones, but the frequency of errors is higher than with an exogenous agenda. Why do subjects find the informative
equilibrium so difficult? One possible answer comes from the chair’s agenda strategy: if the position on the agenda of
the chair’s highest priority proposal is very variable across rounds, it becomes practically impossible for the other group
members to identify the equilibrium.

Averaging over all sessions, chairs order their most important proposal first 39 percent of the time, second 19 percent,
and third 42 percent of the time. Chairs follow the PI equilibrium ordering strategy – ordering their least important proposal
first – 46 percent of the time. The aggregate frequencies are interesting but do not tell us how predictable the ordering
strategy is. For that, we need to look at the consistency of each individual chair’s ordering. Fig. 5 plots the fraction of all
subjects who, when chair, always choose the same order of proposals, and an order that is consistent with an informative
equilibrium. In Fig. 5(a) the fraction is calculated over the full data set; in Fig. 5(b), the results from the full data set
(the foreground columns) are compared to results obtained ignoring the first two rounds of each chair’s rotation, to allow
for learning (the background columns).20 The grey columns report the fraction of chairs always casting their most intense
proposal first, second or third in the agenda order. The black columns report the fraction of chairs whose strategies are
always consistent with either the same FI ordering strategy (“max same”), or the PI ordering strategy (“min 1”). When
chair, around 40 percent of subjects always order their highest intensity proposal in the same position (slightly less than 40
percent over the full data set, and slightly more when allowing for learning), and among them more than half order it first
on the agenda. The PI ordering strategy, where the least intense proposal is ordered first, is less popular, followed by about
15 percent of chairs.

Rigorously, the FI ordering strategy does not require that a chair always order his highest intensity proposal in the same
position over the multiple repetitions: any sequence of ordering, if understood by the other voters, is consistent with an FI
equilibrium.21 This said, the fact that the chairs do not appear to settle on one predictable ordering strategy must make any
understanding of the informative strategies very difficult. In addition, the equilibrium ordering strategy is unique in the PI
equilibrium, but the evidence in its support is weak. Thus, because the requirements are more stringent, the overall number
of strategic deviations, including both ordering and voting choices, is much higher for the PI equilibrium, which appears as
the least likely explanation of the experimental data.

Whether the difficulties with FI strategies arise from multiple equilibria or from unawareness of the game’s communica-
tion potential is unclear. Keeping in mind that the regularities observed in the chairs’ ordering strategies are not very strong
and could also result from simple rules-of-thumb, my own reading of the data cautiously favors the second interpretation.
Three observations provide some weak support for this view. First, the independence of individual strategic errors within

20 In Fig. 5(b), session s3 must be ignored when allowing for learning because of the randomness of the chair’s tenure, and for consistency, it is ignored
in both the foreground and background columns. Session s3 is included in Fig. 5(a). Notice that its impact is minimal.
21 Equally, any sequence of ordering, if understood as random by the other voters, is consistent with the NI equilibrium.
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groups is indirect evidence that their variability cannot be explained by lack of consistency in the chair’s ordering strategy.
Indeed there is no correlation in the data between individual FI errors per match and a dummy variable selecting fully
consistent chairs.22 Second, if the potential for communication were understood, we would expect that once one chair had
tried to exploit it, other voters in the same group would learn to do so too. In fact, over the entire set of experimental
sessions, there is not a single group of either 3 or 4 voters (out of a total of 19) where, following a chair who always casts
his highest priority proposal in the same position on the agenda, all succeeding chairs do so too, even allowing for different
positioning. Third, even if we consider only those sets of experimental rounds where the same chair always uses the same
FI strategy, the voting choices of the other members of the group are better explained by NI strategies. In this subset of
the data, ignoring the first two rounds of each chair’s rotation, there are 27 individual decisions that are classified as errors
according to one strategy, but not according to the other; the subjects chose the NI strategy in 22 of these cases, and the FI
strategy in 5.23

At the end, the experiment is too complex to distinguish among different possible rationales for the subjects’ strategic
errors. But that was not its purpose. The experiment was designed to evaluate how well storable votes do in the laboratory
when the order of the agenda is controlled by a chair, even with inexperienced subjects who may be prone to errors.
Previous experiments with storable votes found the voting mechanism remarkably robust to strategic errors: the theoretical
welfare properties matched the experimental data very well, even when the subjects’ actions deviated systematically from
equilibrium strategies (Casella et al., 2006, 2008). Evaluating the welfare implications of strategic mistakes is very difficult
in theory, not least because the mistakes themselves are difficult to predict. It is on the other hand an ideal task for
experiments.

5.2.2. Payoffs
Figs. 6 and 7 plot, for both treatments, realized aggregate experimental payoffs in each session and compare them to the

corresponding payoffs had the subjects played the equilibrium strategies (Fig. 6), or in the absence of the bonus vote (Fig. 7).
Payoffs are expressed as normalized share of available surplus, Ω , and all payoffs, whether with equilibrium strategies, with
simple majority, or maximizing the ex post aggregate surplus are calculated on the basis of the realized experimental draws.
Different colors are used for n = 3 (black) and n = 4 (grey) experiments, and the 45 degree lines make the figure easy to
read.

The panels of Fig. 6 report experimental payoffs on the vertical axis versus equilibrium payoffs, on the horizontal axis.
The upper left panel shows results for the exogenous agenda treatment. The wider dispersion of the grey dots, both along
and around the 45 degree line, reflects the much lower number of n = 4 matches, and thus the higher variability of average
intensities and aggregate payoffs. The experimental results match the theory very closely: as predicted, the share of surplus
appropriated by the subjects tends to be higher for groups of 3 voters than for groups of 4, and in both cases the distance
from the 45 degree line is small, indicating that the experimental results deviate little from the payoffs that subjects would
have obtained had they all played the equilibrium strategy.

The remaining panels of Fig. 6 report the results from the endogenous agenda treatment. The question is how good
a predictor theory is, and thus it is natural to compare aggregate experimental payoffs, or equivalently mean payoffs, to
the three payoff-distinct theoretical equilibria (NI, PI, and FI), without concerns for the changing identity of the chairs, the
repetitions of the game, and the strategic difficulties experienced by the subjects. In the endogenous order treatment, the
number of matches with 3- or 4-member groups is comparable, and there is no difference in the dispersion of payoffs for
the two types of experiments. Again, the experimental outcomes replicate the equilibrium results and lie either on or very
close to the 45 degree line. Surprisingly, this is true when evaluated relative to both the uninformative and the informative
equilibria, including the partially informative equilibrium, regardless of the larger number of strategic mistakes.24

Fig. 7 compares experimental payoffs, on the vertical axis, to what they would have been with simple majority voting,
given the experimental draws. The first panel, on the left, reports the results for the exogenous order treatment: as pre-
dicted, in 3-member groups the experimental payoffs are effectively identical to what they would have been without the
bonus vote; they are substantially higher in 4-member groups, again the dispersion reflecting the lower number of n = 4
experimental matches. The predictive power of the theory is confirmed for the endogenous order sessions: compared to ma-
jority voting, aggregate payoffs with storable votes are very similar, possibly just slightly inferior, for 3-member groups, and
clearly superior for 4-member groups. From a practical perspective, the comparison of the experimental results to majority
voting is the important result of the paper. It shows both that storable votes do indeed result in different outcomes – the
bonus vote does matter – and that, in the experiment at least, the endogeneity of the agenda order does not compromise
storable votes’ welfare properties.

The larger number of strategic errors in the endogenous order treatment, particularly but not only relative to informative
equilibria, is not mirrored by a noticeable decline in realized payoffs. The reason is that although subjects fail to grasp the
subtleties of equilibrium strategies, for the most part they continue to cast the bonus vote on high intensity proposals:

22 The hypothesis of no correlation cannot be rejected whether we control or not for others’ errors, and/or for different fixed effects.
23 The data supporting these observations ignore session s3, where the chair’s strategy is always unpredictable. Note that session s3 does not have

unusually higher error rates.
24 In the plot comparing experimental payoffs to the informative equilibrium payoffs, the dots indicating sessions s3 and s4 are superimposed and appear

as one (the higher of the two grey n = 4 dots).
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Fig. 6. Experimental payoff as share of available surplus. Experiment vs. equilibrium. Black dots refer to n = 3 sessions, grey dots refer to n = 4 sessions.

Fig. 7. Experimental payoff as share of available surplus. Experiment vs. majority voting. Black dots refer to n = 3 sessions, grey dots refer to n = 4 sessions.

recall that even in the endogenous order treatment, almost 70 percent of subjects cast their bonus vote on their highest
priority proposal more than 90 percent of the times. It is this continued sensitivity of storable votes to subjects’ intensity
of preferences that goes to the core of the voting mechanism and is mostly reflected in realized payoffs. Note that if voters
had not cast their bonus vote mostly on their highest valuation, the results would have been quite different. The floor on
subjects’ possible earnings corresponds to their least profitable strategy: casting the bonus vote on their lowest intensity
proposal. Given the experimental draws, it results in a share of aggregate surplus that is 12 percent (for n = 3) and 20
percent (for n = 4) lower on average than observed in the data, in both cases significantly below both the equilibrium
predictions and the majority voting reference point. A full range of payoffs above this floor but below the majority voting
threshold was available to the subjects.
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Finally, did the chair succeed in appropriating a larger share of the surplus, relative to the other subjects? The theory
predicts that this would hold in the informative equilibria only, but that even then the quantitative effect should be small.
By isolating the returns to the chair, the sample size is reduced to one third (for n = 3 sessions) or one fourth (n = 4) of the
original size, and the sampling variability trumps the differences in strategies. More insight can be gained by aggregating
the data over all sessions where groups have equal size, and reducing the noise. In the n = 4 experiments, relative to other
committee members, chairs did better than they would have done in any equilibrium, whether informative or uninformative,
and better than with simple majority: the strategic errors favored the chairs. The gain however was always small – averaging
over all subjects, relative to a non-chair voter, a chair increased his payoff by between 0.4 and 0.6 percent in all cases. In
the n = 3 experiments, relative to non-chairs, the chairs did better than they would have done in the non-informative
equilibrium, but worse than in the informative equilibria and worse than with simple majority. Here the potentially larger
gain available to the chair in the informative equilibrium is compromised by the strategic errors. But again the quantitative
effects are always very small, always smaller than 1 percent. In the experiments, as in the theory, any distributional effect
is minor.

6. Conclusions

Storable votes are designed to elicit and reward each voter’s relative intensity of preferences, and thus increase the
efficiency of decision-making and the representation of the minority. One important concern, however, is whether the
possibility to shift votes across decisions makes storable votes particularly sensitive to agenda manipulation. This paper
studies a scenario where the set of decisions to be voted upon is fixed, but the chair controls the order with which they are
called to a vote. The game is then transformed into a cheap talk game, where the chair can use the order of the agenda to
transmit information about his priorities. In line with the results of the cheap talk literature, several equilibria are possible,
distinguished by the precision with which the information is conveyed. When information is transmitted, it discourages the
other voters from competing with the chair, and increases the chair’s expected payoff. The effect on the other voters’ utility
and aggregate welfare is ambiguous, and in all parameterizations studied quantitatively very small.

In a laboratory experiment, subjects have clear difficulties in identifying the informative equilibria: even when the in-
dividual chairs’ ordering strategy is consistent, the informational content of the chair’s strategy is not recognized by the
other group members. Nevertheless, because bonus votes are disproportionately cast on high intensity proposals, the ex-
perimental payoffs are remarkably close to the theoretical predictions, a robustness result already observed in past storable
votes experiments with exogenous agendas. In this paper, the main theoretical prediction is that the chair’s control of the
order of the agenda should have a negligible effect on the welfare properties of storable votes. And this is indeed the final
conclusion of the experiment: the bonus vote does matter; the chair’s control of the agenda does not.

It is true, however, that the agenda power granted to the chair is minimal. Even restricting the chair to control the order
of the proposals, suppose the order was announced sequentially, after observing how many votes have been cast, as opposed
to being chosen once and for all at the beginning of the game. Would results change? Some equilibria of the game studied
in this paper remain equilibria here: the babbling equilibrium, where no information is conveyed, the fully informative
equilibrium where the chair always calls his highest intensity proposal first, and the partially informative equilibrium where
the chair never calls his highest intensity proposal first. In general the other equilibria break down because the uncertainty
over the agenda’s order prevents non-chair voters from comparing their intensities over decisions over which the chair’s
bonus vote is expected, or not expected; other equilibria may well appear. But the game remains essentially a game of
information transmission, an interesting but, in this setting, very subtle role for agenda control. At least in the equilibria
that carry over from this paper, the differences in expected outcomes with respect to an exogenous agenda remain minor.

How about the more interesting case where the chair controls not only the order but also the content of the agenda?
A plausible model would describe voters facing a set of possible decisions, only a subset of which would be voted upon,
with the chair choosing sequentially the next decision to be brought to the table. I leave this problem for future work, but
some preliminary thoughts suggest that the insights derived from this paper may carry over. The difficult problem facing
voters who are not chair is the uncertainty over which decisions will be presented in the future. But this uncertainty is
present even when the sequential agenda is exogenous – it is a different problem from protecting oneself from possible
manipulations by the chair. Where agenda power matters is once again in granting the chair the possibility to transmit
information about his priorities.

Appendix A

Proof of Proposition 1. (1) To verify that the strategies described are an equilibrium, consider i’s problem at any time t ,
where i ∈ Λt . Voter i must decide whether to cast the bonus vote on Pt or wait for a future proposal Pt+k , k ∈ {1, . . . , T − t}.
Call lt the number of voters other than i left with the bonus vote at t; pBs (p1s) the probability of obtaining the desired
outcome when casting 1 + B (1) votes on P s , and πs the probability that a voter r ∈ Λt and other than i casts the bonus
vote over proposal P s . Given the symmetry of G , at any s the probability of obtaining the desired outcome when casting
the bonus vote depends exclusively on the number of other voters who also cast the bonus vote. Thus:
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where the superscript t indicates the time at which the probability is evaluated, and pB( j) is the probability of obtaining
the desired outcome when i and j other voters cast the bonus vote and all others do not. In the candidate equilibrium
π t
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Similarly, evaluated at t , the probability of obtaining the desired outcome when casting the bonus vote at t + k is given by:
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But in the candidate equilibrium π t
t+s = 1/(T − t − s + 1). The probabilities in the square brackets of (A.2) simplify, and we

obtain:
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pB( j) = pt
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Following the same logic, we can show pt
1t = pt

1t+k . At time t voter i decides whether to cast the bonus vote on Pt or Pt+k

by evaluating the difference in expected utility from the two actions: Eui(Pt) − Eui(Pt+k) = vt(pt
Bt − pt

1t) − vt+k(pt
Bt+k −

pt
1t+k) = (pt

B − pt
1)(vt − vt+k). Since pt

B � pt
1, casting the bonus vote on Pt if vt > vt+k is a best response strategy for i for

all k ∈ {1, . . . , T − t} and all t: the candidate equilibrium is indeed an equilibrium.
(2) To establish part (2), note first that the strategy described in the lemma is a best response for all other voters’

strategies that result in pt
Bs = pt

B and pt
1s = pt

1 for all s. But with iid valuations, all strategies that depend exclusively on
relative intensities have this property. Thus no strategy of the type: cast the bonus vote on the kth higher intensity with
probability πk can be an equilibrium unless k = 1 and πk = 1. If another equilibrium exists, it must involve strategies
where voters differentiate among the proposals on the basis of their order. For our purposes it is sufficient to show that no
such equilibrium exists for specific values of n, T , and B . Suppose for example n = 3 and B = 1, and consider a candidate
equilibrium where all voters but i cast the bonus vote on some proposal Pr with probability π1

r = qr . With no loss of
generality, suppose qr > 1/T . There must then exist at least one proposal P s for which π1

s = qs < 1/T . With n = 3 and
B = 1, p1

1t = 3/4 − [qt(1 − qt)]/4, and p1
Bt = 3/4 + [(1 − qt)

2]/8. Voter i’s best response is to cast the bonus vote on Pr

over Pt if vr/vt > (p1
Bt − p1

1t)/(p1
Br − p1

1r) for all t; and similarly on P s over Pt if vs/vt > (p1
Bt − p1

1t)/(p1
Bs − p1

1s) for all t;
It is easy to verify that if qr > qs , (p1

Br − p1
1r) < (p1

Bs − p1
1s), and thus if voter i plays his best response strategy, he must

be expected to cast the bonus vote on Pr with some probability π1
ri < π1

si : no symmetrical equilibrium exists for q �= 1/T .
Symmetrical equilibria where voters differentiate among the proposals on the basis of their order do exist for different
values of n, T , and B . For example, as stated in footnote 3, for all n odd and B < 1, there is an equilibrium where every
voter casts the bonus vote on proposal Pt , ∀t ∈ {1, . . . , T }. �
Proof of Proposition 2. The probabilities pB and p1 in (1) depend on the value of the bonus vote. The proof proceeds
by verifying the proposition at the smallest value of the bonus vote for which the voting mechanism differs from simple
majority voting, and thus pB �= p �= p1.

(1) Consider first the case of n even. Any positive value of the bonus vote, no matter how small, affects the outcome
with positive probability: there is always a positive probability that the voters are exactly split and that one more voter on
one side than on the other casts the bonus vote. Consider then a value of the bonus vote small enough that as long as the
two groups are not equally split, the bonus votes cannot modify the outcome. This threshold is defined by the condition
that a minority of size n/2 − 1 casting all bonus votes does not win over a majority of size n/2 + 1 casting no bonus votes,
or: (

n

2
− 1

)
(1 + B) <

(
n

2
+ 1

)
⇐⇒ B <

4

n − 2
.

We can now derive pB and p1 for all values of B ∈ (0,4/(n − 2)). The only difference with respect to simple majority voting
can arise when the voters are split into groups of equal size. In this case, simple majority yields a tie, but the existence of
the bonus vote creates many possible configurations of voting choices for which one side strictly wins. Consider the problem
from the point of view of voter i. It turns out to be simpler to isolate a second voter j on the opposite side of i. Whenever
voter j casts the same number of votes as i, the probability that i’s side wins equals the probability that j’s side wins, and
the expected deviations from simple majority cancel out. The relevant cases are those where i and j cast a different number
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of votes. In calculating pB then, the deviation from p occurs when j does not cast the bonus vote. Call Mi the number of
voters on i’s side who vote 1 + B , ignoring i, and similarly M j the number of voters on j’s side who vote 1 + B , ignoring j.
It is immediate that i’s side wins if Mi > M j − 1. Similarly, i’s side ties if Mi = M j − 1 and loses if Mi < M j − 1. Thus:

pB = p +
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1

2

)n−1(n − 1

n/2

)(
T − 1

T

)[
1

2
prob(Mi > M j − 1) − 1

2
prob(Mi < M j − 1)

]
where (T − 1)/T is the probability that voter j casts a single vote, and the probabilities inside the square brackets are
multiplied by (1/2) because, absent the bonus vote, the relevant events would result in a tie. But prob(Mi > M j − 1) =
prob(Mi = M j) + prob(Mi > M j), and prob(Mi < M j − 1) = prob(Mi < M j) − prob(Mi = M j − 1). And since prob(Mi > M j) =
prob(Mi < M j), we can write:

pB = p +
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]
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Similarly,
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]
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The problem is symmetrical, and thus prob(Mi = M j − 1) = prob(M j = Mi − 1): the expressions in square brackets in (A.4)
and (A.5) are identical. Call them C . We can now write:

pB − p1 =
(

1

2

)n(n − 1

n/2

)
C, (A.6)
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We know from (1) that:

EV > EW ⇐⇒ Ev(T )(pB − p1) > TEv(p − p1). (A.8)

Substituting (A.6) and (A.7), we obtain:

EV > EW ⇐⇒ Ev(T ) > TEv

(
1

T

)
or Ev(T ) > Ev

which is always satisfied. We can conclude that if n is even, ex ante efficiency strictly improves over simple majority voting
for all values of B ∈ (0,4/(n − 2)). Note that if n = 2, the value of the bonus vote is unconstrained.

(2) Consider now the case of n odd. With n odd, there are strictly positive values of the bonus vote that never alter the
voting outcome from what it would be with simple majority. These are values such that when the voters are divided into
two groups with opposite preferences of sizes as similar as possible ((n − 1)/2 on one side, and (n − 1)/2 + 1 on the other),
the minority loses even when all voters on the minority side cast their bonus vote, and none of the voters on the majority
side does so. Or:(
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2
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)
⇐⇒ B <

2
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.

For all B < 2/(n − 1) and n odd, then trivially EV ≡ EW .25 Suppose then B � 2/(n − 1), but suppose also that the bonus vote
is small enough not to matter in any other possible configuration of votes. The next smallest threshold is given by a value
of B such that when the two groups with opposite preferences are of sizes (n − 1)/2 and (n − 1)/2 + 1, and none of the
majority voters uses the bonus vote while all but one of the minority voters do so, the result is a tie, i.e.:(

n − 1

2

)
(1 + B) − B = n + 1

2
⇐⇒ B = 2

n − 3
.

Suppose then B ∈ [2/(n − 1),2/(n − 3)). From the point of view of voter i, when casting the bonus vote the probability of
obtaining the desired outcome differs from the simple majority case only if he finds himself in a minority of size (n − 1)/2
and all of the voters on his side cast the bonus vote, while none of the majority voters do so. Or:
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where Itie = 1 if B = 2/(n − 1), and 0 if B ∈ (2/(n − 1),2/(n − 3)).

25 A simple example makes the point clearly. Suppose n = 3. Then for all B < 1, a voter can win only if at least one of the other two voters agrees with
him, exactly as in the case of simple majority voting.
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Similarly, when casting a single vote the difference with respect to simple majority comes from the possibility of losing,
even when belonging to the majority, if all minority voters cast the bonus vote and none of the majority voters do so:

p1 = p −
(

1

2

)n−1+Itie
(

n − 1

(n − 1)/2

)(
1

T

)(n−1)/2( T − 1

T

)(n−1)/2

(A.10)

where the difference in the binomial term reflects the different size of the two groups and the fact that pB in (A.9) is
calculated supposing that voter i is in the minority group, and p1 in (A.10) supposing i is in the majority. Hence:
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Substituting (A.10) and (A.11) in (A.8):

EV > EW ⇐⇒ D

[
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)
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where:
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Or:

EV − EW > 0 ⇐⇒ Ev(T )
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>

T (n + 1)

T (n − 1) + 2
.

This is the condition in Proposition 2. �
Construction of Fig. 1.
(a) Derivation of p1, pB for arbitrary B .
Consider the problem from the point of view of voter i. The expected voting behavior of the other voters is identical

over all proposals. Consider then a proposal P , and call π the ex ante probability that any voter casts the bonus vote on
that proposal (where in equilibrium π = 1/T ). Call J the number of other voters who cast the bonus vote. Excluding i,
the total number of votes cast in the election is n − 1 + B J . Call Mi (mi) the number of voters on i’s side who vote 1 + B
(1) over P , and thus mi + (1 + B)Mi the total number of votes on i’s side, ignoring i, and n − 1 + B J − mi − (1 + B)Mi
the total number of votes on the opposite side. If voter i casts only his regular vote, for any Mi and J , voter i’s side
wins strictly if: mi + (1 + B)Mi + 1 > n − 1 + B J − mi − (1 + B)Mi , or mi > [n + B( J − 2Mi)]/2 − 1 − Mi ; and ties if
mi = [n + B( J − 2Mi)]/2 − 1 − Mi . Taking into account that for generic n, J , and B , [n + B( J − 2Mi)]/2 need not be an
integer, we can write:

p1 =
n−1∑
J=0

(
n − 1

J

) J∑
Mi=0

(
J

Mi

)[ n−1− J∑
mi=k

(
n − 1 − J

mi

)
+ I I

2

(
n − 1 − J

k̃

)]
π J (1 − π)n−1− J (1/2)n−1

with:

k ≡ I

[
n + B( J − 2Mi)

2

]
− Mi

where I[x] is the largest integer smaller than x;

k̃ ≡ n + B( J − 2Mi)

2
− 1 − Mi,

I I =
{

1 if k̃ is an integer,
0 otherwise.

If voter i casts his bonus vote, then for any Mi and J , voter i’s side wins strictly if: mi + (1 + B)Mi + 1 + B > n − 1 + B J −
mi − (1 + B)Mi , or mi > [n + B( J − 1 − 2Mi)]/2 − 1 − Mi ; and ties if mi = [n + B( J − 1 − 2Mi)]/2 − 1 − Mi . We can write:

pB =
n−1∑
J=0

(
n − 1

J

) J∑
Mi=0

(
J

Mi

)[ n−1− J∑
mi=kB

(
n − 1 − J

mi

)
+ I I

2

(
n − 1 − J

k̃B

)]
π J (1 − π)n−1− J (1/2)n−1

with:

kB ≡ I

[
n + B( J − 1 − 2Mi)

2

]
− Mi

where I[x] is the largest integer smaller than x;
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k̃B ≡ n + B( J − 1 − 2Mi)

2
− 1 − Mi;

I I =
{

1 if k̃B is an integer,
0 otherwise.

(b) Efficiency.
When all valuations are independent draws from a Uniform distribution over interval [0,1], expected first best efficiency

is given by:

EV∗ = (1/2)n−1

[
1/2 +

n−2∑
k=0

(
n − 1

k

)( k∫
0

(1/2) f (x)dx +
k+1∫
k

1∫
x−k

s ds f (x)dx

)]

where f is the density function of a sum of n − 1 independent variables and is given by:

f (x) =
n−1∑
k=0

(−1)k
(

n − 1

k

)
(x − k)n−2Sign[x − k] 1

2(n − 2)! .

Proof of Proposition 4. I begin by studying the first candidate equilibrium. Recall that each voter i, including the chair,
decides whether to cast the bonus vote on P1 or P2 by evaluating the difference in expected utility from the two actions:
Eui(P1)− Eui(P2) = vi1(piB1 − pi11)− vi2(piB2 − pi12), where all probabilities are evaluated at the time of the first decision.
Any voter’s best response strategy is to cast the bonus vote on P1 if and only if:

vi1

vi2
� piB2 − pi12

piB1 − pi11
(A.12)

where i = c if the voter is the chair, and I ignore the subscript otherwise.
Restricting the value of the bonus vote to B ∈ B(n) allows us to calculate (A.12) and establish its properties.
(1) Suppose first that n is even. The derivation of the relevant probabilities proceeds as in the proof of Proposition 2.

Consider first the problem for a voter i who is not the chair, and begin by deriving pB1, the probability of winning P1
when casting the bonus vote. Recall that B < 4/(n − 2), implying that the bonus vote can make a difference only if the two
groups on opposite side of any proposal are of equal size. With probability 1/2, the chair is against i, the chair’s bonus vote
cancels i’s, and pB1 = p (where p is the probability of winning P1 under simple majority). With probability 1/2, the chair
is on i’s side. In this case, consider two voters on the opposite side, one of whom I call j. If both cast their bonus votes,
again pB1 = p. However, if either one or both do not cast their bonus vote, then pB1 > p. Working through the different
scenarios, we can derive:

pB1 = p +
(

1

2

)n−1(n − 2

n/2

)
(1 − π1)

[
A11 + (1 + π1)

2
A01 + (1 − π1)

2
A21

]
where A0t , A1t , and A2t are defined as:

A0t ≡ prob(Mit = M jt) =
n/2−2∑
M=0

(
n/2 − 2

M

)(
n/2 − 2

M

)
π2M

t (1 − πt)
n−4−2M ,

A1t ≡ prob(Mit = M jt + 1) =
n/2−3∑
M=0

(
n/2 − 2

M

)(
n/2 − 2

M + 1

)
π2M+1

t (1 − πt)
n−5−2M ,

A2t ≡ prob(Mit = M jt + 2) =
n/2−4∑
M=0

(
n/2 − 2

M

)(
n/2 − 2

M + 2

)
π2M+2

t (1 − πt)
n−6−2M ,

and Mit (M jt ) is defined as the number of voters on i’s ( j’s) side, up to a maximum of n/2 − 2 who cast the bonus vote
on Pt . The maximum is n/2 − 2 because we always exclude voter i and account separately for the chair, and, to keep the
two sides balanced, for j and one other voter on j’s side. The details are cumbersome but not difficult, and we obtain26:

pB1 − p11 =
(

1

2

)n−1{(
n − 2

n/2

)[
(A11 + A01) + (A21 − A01)(1 − π1)

2]
+

(
n − 2

n/2 − 1

)[
(A11 + A01) + (A21 − A01)π1(1 − π1)

]}
. (A.13)

26 The detailed derivation is available upon request.
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When deriving pB2 − p12, on the other hand, voter i knows that the chair will not cast the bonus vote, and thus the expres-
sion will not be exactly symmetrical to (A.13). Again the details are somewhat cumbersome, but the logic straightforward.
The expression is:

pB2 − p12 =
(

1

2

)n−1{(
n − 2

n/2

)[
(A12 + A02) + (A22 − A02)π

2
2

]
+

(
n − 2

n/2 − 1

)[
(A12 + A02) + (A22 − A02)π2(1 − π2)

]}
. (A.14)

With T = 2, π1 = 1−π2, and simple manipulations show that for all π1, A11 = A12; A01 = A02, and A21 = A22. It follows
that pB1 − p11 = pB2 − p12. A voter i who is not the chair should cast the bonus vote on P1 if and only if vi1 � vi2. Hence
α(n, G) = 1, and π1 = 1/2.

Consider now the chair’s problem. Given π1 = 1/2 = π2, the chair’s best response is simply to cast his bonus vote on the
proposal to which he attaches highest valuation. Thus if vc1 � vc2, always casting the bonus vote on P1 is indeed supported
as an equilibrium strategy. But we also know from Proposition 3 that with π1 = 1/2 = π2 from the point of view of the
chair the order of proposals is irrelevant, and choosing P1 such that vc1 � vc2 is consistent with the chair’s best response.

We can conclude that if n is even and T = 2, there is indeed an equilibrium where vc1 � vc2, xc1 = 1 + B , and x1 = 1 + B
if and only if v1 � v2, or equivalently α(n, G) = 1 for all G . The equilibrium is fully informative because it is common
knowledge that the chair always orders his higher priority proposal first.

(2) Suppose now that n is odd. Again consider first the problem for a voter i who is not the chair. Recall that B ∈ B(n) =
[2/(n − 1),2/(n − 3)), implying that the bonus vote makes a difference over simple majority only when the groups on
opposite sides of a proposal differ in size by a single voter, all minority voters cast the bonus vote, and none of the majority
does. In the candidate equilibrium, the chair always casts his bonus vote on P1. Thus pB1 �= p only if the chair is on i’s side
and so are (n − 1)/2 − 2 other voters, all of which cast their bonus vote, while none of the others do. That is:

pB1 = p +
(

1

2

)n−1+Itie
(

n − 2

(n + 1)/2

)
π

(n−5)/2
1 (1 − π1)

(n+1)/2. (A.15)

The same logic allows us to derive p11, pB2, and p12, and we obtain:

pB1 − p11 =
(

1

2

)n−1+Itie

π
(n−5)/2
1 (1 − π1)

(n−1)/2
[(

n − 2

(n + 1)/2

)
(1 − π1) +

(
n − 2

(n − 1)/2

)
π1

]
(A.16)

and

pB2 − p12 =
(

1

2

)n−1+Itie
(

n − 2

(n − 1)/2

)[
π2(1 − π2)

](n−3)/2
. (A.17)

In the candidate equilibrium π1 ∈ (0,1) and the ratio of (A.17) to (A.16) is well defined. Expanding the binomial terms and
simplifying, we can write:

pB2 − p12

pB1 − p11
=

[
π2(1 − π2)

π1(1 − π1)

](n−3)/2(
π1

1 − π1

)(
n + 1

n − 3 + 4π1

)
. (A.18)

Taking into account that π1 = 1 − π2, (A.18) simplifies to:

pB2 − p12

pB1 − p11
=

(
π1

1 − π1

)(
n + 1

n − 3 + 4π1

)
≡ β(π1).

Voter i’s best response strategy is to cast the bonus vote on P1 if vi1 � β(π1)vi2. Given πc1 = 1, a symmetrical best
response by all voters who are not the chair amounts to finding a value of π1 that solves π1 = prob(v1 � β(π1)v2), or:

π1 =
1∫

0

F

(
v

β(π1)

)
dF (v). (A.19)

With v1 and v2 independent and distributed according to F , the strategy described in Proposition 4 is a symmetrical best
response if and only if, for all n and G , there exists a solution to (A.19) at some π̃1 ∈ (0,1/2]. For given n and G , call
the right-hand side of (A.19) ϕ(π1). The function ϕ(π1) is continuous in π1 and for all n � 3, ∂β(π1)/∂π1 > 0, implying
that ∂ϕ(π1)/∂π1 � 0. But limπ1→0 β(π1) = 0, and hence limπ1→0 ϕ(π1) = 1, while β(1/2) = (n + 1)/(n − 1) > 1 for all
finite n, and hence ϕ(1/2) < 1/2. Thus there exists a unique π̃1 ∈ (0,1/2) such that π̃1 = ϕ(π̃1), or equivalently a unique
α(n, G) > 1: the statement in the proposition is verified.
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Consider now the chair’s problem. The logic is unchanged. From the chair’s point of view, pcBt �= p only if the chair is in
a minority of size (n − 1)/2 all of whose members cast their bonus vote, while none of the others do. That is:

pcBt = p +
(

1

2

)n−1+Itie
(

n − 1

(n + 1)/2

)
π

(n−3)/2
t (1 − πt)

(n+1)/2, t = 1,2. (A.20)

Similarly, pc1t �= p only if the chair is in a majority of size (n + 1)/2 none of whose members cast their bonus vote, while
all of the others do:

pc1t = p −
(

1

2

)n−1+Itie
(

n − 1

(n − 1)/2

)
π

(n−1)/2
t (1 − πt)

(n−1)/2, t = 1,2. (A.21)

Thus:

pcBt − pc1t =
(

1

2

)n−1+Itie

π
(n−1)/2
t (1 − πt)

(n−1)/2
[(

n − 1

(n + 1)/2

)(
1 − πt

πt

)
+

(
n − 1

(n − 1)/2

)]
with t = 1,2. If π1 ∈ (0,1) we can write:

pcB2 − pc12

pcB1 − pc11
=

[
π2(1 − π2)

π1(1 − π1)

](n−1)/2(
π1

π2

)(
n − 1 + 2π2

n − 1 + 2π1

)
or, again taking into account that π1 = 1 − π2 and simplifying:

pcB2 − pc12

pcB1 − pc11
=

(
π1

1 − π1

)(
n + 1 − 2π1

n − 1 + 2π1

)
. (A.22)

The right-hand side of (A.22) is strictly increasing in π1, and equals 1 at π1 = 1/2; thus (pcB2 − pc12)/(pcB1 − pc11) < 1
for all π1 < 1/2. It follows that if vc1 � vc2, xc1 = 1 + B is indeed the chair’s best response strategy.

Finally, given π1 < 1/2, could the chair gain by changing the order of proposals? Two deviations need to be ruled out.
The chair could choose P1 such that vc1 < vc2 and (i) cast the bonus vote on P2, or (ii) still cast the bonus vote on P1.
Call v∗

c ≡ max{vc1, vc2} and vc ≡ min{vc1, vc2}. The first deviation is ruled out if: pcB1 v∗
c + pc12 vc � pc11 vc + pcB2 v∗

c , or
v∗

c (pcB1 − pcB2) � vc(pc11 − pc12). Given v∗
c � vc and pcB1 > pc11, pcB2 > pc12, a sufficient condition is then (pcB1 − pc11) �

(pcB2 − pc12) which we know satisfied for all π1 < 1/2: the deviation cannot be profitable. The second deviation is ruled
out if: pcB1 v∗

c + pc12 vc � pcB1 vc + pc12 v∗
c , or v∗

c (pcB1 − pc12) � vc(pcB1 − pc12), or pcB1 − pc12 � 0. This can be verified
immediately from (A.20) and (A.21) above: again the deviation cannot be profitable.

We can conclude that for both n odd and n even, the strategies described in the first half of the proposition are in-
deed equilibrium strategies. But with T = 2, the two proposals are completely symmetrical, and the proof can be applied
identically to proposal 2. The two equilibria are mirror-images of each other, and are payoff-equivalent.

(3) The proposition states that no other quasi-symmetric informative equilibria exist for all n and G . We need to rule
out partially informative equilibria where the chair sets his highest priority proposal as P1 (or P2) with some probability
∈ (1/2,1). With T = 2, such equilibria do indeed exist when n is even. But suppose n = 3. Consider candidate informative
equilibria where πc1 ∈ (1/2,1]. Taking into account π2 = 1 − π1 and πc2 = 1 − πc1:

pB1 − p11 = (1 − π1πc1)

(
1

2

)2+Itie

,

pB2 − p12 = (πc1 + π1 − π1πc1)

(
1

2

)2+Itie

.

If πc1 + π1 > 1, then pB2 − p12 > pB1 − p11, implying π1 < 1/2. But we showed above that if π1 < 1/2, the chair’s best
response is to choose P1 such that vc1 � vc2 and always cast the bonus vote on P1. The only symmetric best response for
the other voters then is to cast the bonus vote on P1 if and only if v1 � α(3, G)v2, an event that occurs with probability
π̃1 ∈ (0,1/2) – the equilibrium strategy characterized earlier. If πc1 +π1 � 1, then pB2 − p12 � pB1 − p11, implying π1 � 1/2;
but πc1 > 1/2, and thus πc1 + π1 > 1, a contradiction. Identical reasoning rules out any informative equilibrium with
πc2 ∈ (1/2,1] that would differ from the second equilibrium characterized in the proposition.

The focus of the analysis, and the definition of informative equilibria stress the possibility to transmit information on the
chair’s priorities. But could the order of proposals be used to transmit information about the chair’s direction of preferences,
as opposed to the chair’s intensity of preferences? With T = 2, could there be an equilibrium where if there is at least one
proposal the chair favors, it will be ordered first, and if there is at least one proposal the chair opposes it will be ordered
last? Call dt the probability that the chair favors Pt – is there an equilibrium where d1 > 1/2 and d2 < 1/2? The answer is
that no such equilibrium can exist for all n. Intuitively, transmitting information about one’s priorities can encourage allies
to withdraw their bonus vote, relative to voters with opposite preferences, reducing the chair’s probability of winning the
current proposal, and because preferences are independent across proposals and voters no future benefit can accrue to the
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chair from the reallocation of available bonus votes among the other voters. Suppose for example n = 3, and call i and j
non-chair voters such that vi1 > 0 and v j1 < 0. Then:

pB1i − p11i = [
1 − π1 − d1(1 − 2π1 + π1πc1)

](1

2

)1+Itie

,

pB1 j − p11 j = [
1 − π1 − (1 − d1)(1 − 2π1 + π1πc1)

](1

2

)1+Itie

.

It can be verified immediately that (pB1i − p11i) < (pB1 j − p11 j) iff d1 > 1/2. Hence the threshold value of v1/v2 that
induces a voter to cast the bonus vote on P1 is higher if the voter agrees with the chair. As a result the chair would be
better off by lying. The argument extends unchanged to T > 2, and the possibility of equilibria of this type is not discussed
further. �
Proof of Proposition 5. For S = 0, the equilibrium falls under Proposition 3; for T = 2, and S = 1, the equilibrium falls under
Proposition 4. Consider then S > 0 and T > 2. Call PS the set of S proposals ordered by the chair in the first S positions of
the agenda, and PT −S the set of T − S proposals ordered in the last T − S positions. The proof is logically identical to the
proof of Proposition 4.

(1) Suppose first n = 4. Consider the best response strategy for voter i, who is not the chair. Voter i casts the bonus vote
on proposal Pt over proposal P s if the ratio vit/vis is larger than:

pBs − p1s

pBt − p1t
= 3 − πs(2 − πs) − πcs(1 − 2πs)

3 − πt(2 − πt) − πct(1 − 2πt)
(A.23)

where the right-hand side of (A.23) is derived taking into account B ∈ B(4), as in the proof of Proposition 4 (but allowing
πc to differ from 0 or 1). If P s and Pt ∈ PS , then in the candidate equilibrium πct = πcs = 0, and πt , the probability that
an other non-chair voter in the 4-person committee casts his bonus vote on Pt , must equal prob(v jt = v∗

jS )prob(v∗
jS >

(1/α)v∗
jT −S ) = (1/S)prob(v∗

jS > (1/α)v∗
jT −S ) = πs . Thus the ratio on the right-hand side of (A.23) is equal to 1, and i will

cast his bonus vote on Pt , as opposed to P s , only if vit > vis: among all proposals in PS , the only candidate for i’s bonus
vote is the highest intensity proposal in the set, P∗

iS . Similarly, if P s and Pt ∈ PT −S , then in the candidate equilibrium
πct = πcs = 1/(T − S), and πt = prob(v jt = v∗

jT −S )prob(v∗
jT −S > αv∗

jS ) = 1/(T − S)prob(v∗
jT −S > αv∗

jS ) = πs . Again, the
ratio on the right-hand side of (A.23) equals 1, and among all proposals in PT −S , the only candidate for i’s bonus vote
is the highest intensity proposal in the set, P∗

iT −S . Suppose then Pt = P∗
iT −S and P s = P∗

iS (note that this case is only
relevant if S > 0). The ratio in (A.23) becomes:

pBs − p1s

pBt − p1t
= 3 + π2

s − 2πs

3 − πt(2 − πt) − (1 − 2πt)/(T − S)
(A23′)

where πs = (1/S)[1−πt(T − S)]. We can write the right-hand side of (A.23′) as some function γ (πt). Voter i’s best response
is to cast his bonus vote on P∗

iT −S if and only if v∗
iT −S � γ (πt)v∗

iS . Thus in a quasi-symmetrical equilibrium πt , the
probability that a non-chair voter in the committee casts his bonus vote on Pt , must equal prob(v jt = v∗

jT −S )prob(v∗
jT −S >

γ (πt)v∗
jS ). Or:

πt =
1∫

0

[
F

(
v

γ (πt)

)]S[
F (v)

]T −S−1
dF (v) ≡ ψ(πt). (A.24)

Both γ and ψ are continuous in πt . Note that γ (0) ∈ (0,3/2) for all S < T , and hence ψ(0) > 0; while γ (πt)|πt=1/T > 1
for all T > 2, and hence ψ(πt)|πt=1/T < 1/T . It follows that (A.24) must have a solution at some π̃t < 1/T where γ (π̃t) =
α(4, G, T , S) > 1. In addition, for all S < T − 1, γ is strictly increasing in πt , for all πt ∈ [0,1/(T − S)], and thus ψ must
be strictly decreasing, and π̃t must be unique. If S = T − 1, limπt→1/(T −S)

γ (πt) = 1, and hence limπ1→1/(T −S)
ψ(πt) = 1/T ;

but ∂γ /∂πt has a unique root, a maximum, at some π ′
t < 1/T (and thus ψ has a unique minimum at π ′

t ), implying that
Eq. (A.24) again has a unique solution: α(4, G, T , S) is unique. Finally, notice that for all γ (π̃t) > 1, ψ(π̃t) must be lower
the higher is S , and thus for given G and T , π̃t must be lower the higher is S . The highest admissible value of S is S = T −1
or T − S = 1 – the fully informative equilibrium: π̃t is monotonically lower the more informative is the equilibrium.

Consider now the chair’s problem. Given the order of the proposals and the other voters’ posited strategies, the only
possible targets for the chair’s bonus vote are his highest intensity proposals in the two sets, P∗

cT −S and P∗
cS (because in

all comparisons between proposals P s and Pt in the same set, whether PS or PT −S , πt = πs and thus (pcBs − pc1s)/(pcBt −
pc1t) = 1). Suppose then Pt = P∗

iT −S and P s = P∗
iS , and recall that in the candidate equilibrium v∗

cT −S � v∗
cS . With B ∈

B(4) and n = 4:

pcBs − pc1s =
(

1 − πs(1 − πs)
)

pcBt − pc1t 1 − πt(1 − πt)
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an expression smaller than 1 for all πs > πt . Thus if v∗
cT −S � v∗

cS , it is indeed optimal for the chair to cast his bonus
vote on P∗

iT −S . Can the chair do better by deviating in the order of the proposals? As in the proof of Proposition 4, two
possible deviations must be considered. First, the chair could order his highest intensity proposal in the first S positions
on the agenda, and cast on it his bonus vote. Second, the chair could order his highest intensity proposal in the first S
positions, but cast his bonus vote on P∗

cT −S . Using the index t to refer to a proposal in PT −S and the index s to refer to
a proposal in PS , the first deviation is ruled out if v∗

c (pcBt − pcBs) > vc(pc1t − pc1s) for all vc � v∗
c . A sufficient condition

then is (pcBt − pc1t) > (pcBs − pc1s), which we know satisfied for all πs > πt . The first deviation cannot be profitable. The
second deviation is ruled out if v∗

c (pcBt − pc1s) > vc(pcBt − pc1s) for all vc � v∗
c . A sufficient condition then is pcBt > pc1s .

It is not difficult to verify that pcBt > p, while pc1s < p, implying that the second deviation cannot be profitable either.
Finally, Proposition 5 states that the chair will order his S lowest intensity proposals in the first S positions of the

agenda. Because the bonus vote is spent on v∗
c , the stated ordering is indeed a best response for the chair if pc1t > pc1s ,

which again is immediately verified, given πt < πs < 1/2.
(2) Suppose now n = 3. The logic proceeds identically. Again, consider the best response strategy for voter i, who is not

the chair. Voter i casts the bonus vote on proposal Pt over proposal P s if the ratio vit/vis is larger than:

pBs − p1s

pBt − p1t
= 1 − πsπcs

1 − πtπct
(A.25)

where the right-hand side of (A.25) is derived taking into account B ∈ B(3). If P s and Pt ∈ PS , or if P s and Pt ∈ PT −S , in
the candidate equilibrium the ratio on the right-hand side of (A.25) equals 1: only P∗

iS and P∗
iT −S are candidates for i’s

bonus vote. Suppose then Pt = P∗
iT −S and P s = P∗

iS (and S > 0). The ratio in (A.25) becomes:

pBs − p1s

pBt − p1t
= 1

1 − πt/(T − S)
. (A25′)

Call the right-hand side of (A.25′) δ(πt). Voter i’s best response is to cast the bonus vote on Pt if and only if v∗
iT −S �

δ(πt)v∗
iS . Thus πt = prob(v jt = v∗

jT −S )prob(v∗
jT −S > δ(πt)v∗

jS ). In a quasi-symmetrical equilibrium, πt must solve:

πt =
1∫

0

[
F

(
v

δ(πt)

)]S[
F (v)

]T −S−1
dF (v) ≡ ζ(πt). (A.26)

Both δ and ζ are continuous in πt . Note that limπt→>0 δ(πt) = 1, and hence limπt→>0 ζ(πt) = 1/T > 0; while δ(πt)|π1=1/T > 1
for all finite T , and hence ζ(πt)|πt=1/T < 1/T . In addition, δ is everywhere increasing in πt , and thus ζ is everywhere de-
creasing in πt . It follows that ζ (A.26) must have a unique solution at some π̃t ∈ (0,1/T ). Thus δ(πt)|πt=π̃t ≡ α(3, G, T , S) >

1 for all G, T , S , with S > 0. Note that for all δ(π̃t) > 1, ζ(π̃t) must be lower the higher is S , and thus for given G and T , π̃t

must be lower the higher is S . As in the case of n = 4, π̃t is monotonically lower the more informative is the equilibrium.
Consider now the chair’s problem. As argued earlier, given the order of the proposals and the other voters’ posited

strategies, the only possible targets for the chair’s bonus vote are his highest intensity proposals in the two sets, P ∗
cT −S and

P∗
cS . Suppose then Pt = P∗

iT −S and Pr = P∗
iS , and recall that in the candidate equilibrium v∗

cT −S � v∗
cS . With B ∈ B(3) and

n = 3:

pcBr − pc1s

pcBt − pc1t
=

(
1 − π2

s

1 − π2
t

)
an expression smaller than 1 for all πs > πt . Thus with v∗

cT −S � v∗
cS , it is indeed optimal for the chair to cast his bonus

vote on P∗
iT −S . Can the chair do better by deviating in the order of the proposals? Once again, two deviations must be

considered: (1) The chair could order his highest intensity proposal in the first S positions on the agenda, and cast on it
his bonus vote; (2) the chair could order his highest intensity proposal in the first S positions, but cast his bonus vote on
P∗

cT −S . Using the index t to refer to a proposal in PT −S and the index s to refer to a proposal in PS , the first deviation
is ruled out if v∗

c (pcBt − pcBs) > vc(pc1t − pc1s) for all vc � v∗
c . A sufficient condition then is (pcBt − pc1t) > (pcBs − pc1s),

a condition we know satisfied for all πt < πs . The first deviation cannot be profitable. The second deviation is ruled out
if v∗

c (pcBt − pc1s) > vc(pcBt − pc1s) for all vc � v∗
c . A sufficient condition then is pcBt > pc1s . But as in the case of n = 4,

pcBt > p, while pc1s < p, implying that the second deviation cannot be profitable either.
Finally, Proposition 5 states that the chair will order his S lowest intensity proposals in the first S positions of the

agenda. Because the bonus vote is spent on v∗
c , the stated ordering is indeed a best response for the chair if pc1t > pc1s ,

which again is immediately verified with πt < πs < 1/2 for all T > 2.
(3) To show claim (2) in the proposition, it suffices to show that no other quasi-symmetrical equilibrium exists when

n = 3. In the equilibria characterized by the proposition: (i) If the chair randomizes over P∗
c ’s position in the agenda, he

randomizes with equal probabilities. To show that this must be true, consider proposals in positions r and t , and suppose
πcr > πct > 0. With n = 3, voter i who is not chair prefers to cast his bonus vote on Pr relative to some other proposal P s if
vir/vis � (1 − πsπcs)/(1 − πrπcr), and similarly for Pt . It then follows immediately that any quasi-symmetrical equilibrium
where πcr > πct must have πr < πt . But for the chair this implies (pcBr − pc1r) > (pcBt − pc1t): in any realization where the
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chair orders P∗
c as Pt , he can do strictly better by exchanging Pt and Pr , and thus ordering P∗

c as Pr and casting his bonus
vote on Pr . If πcr > πct , then πct = 0. πcr > πct > 0 cannot be supported in equilibrium. (In fact, the same argument holds
for n = 4 if T > 2.) (ii) Given the chair’s strategy, the only candidates for non-chair voter i’s bonus vote are proposals P∗

iS
and P∗

iT −S . To show that this must be true, again consider the ratio (pBr − p1r)/(pBt − p1t). When both Pr and Pt belong
to PS , πcr = πct = 0; therefore with n = 3, (pBr − p1r)/(pBt − p1t) = 1, and i’s best response is to cast the bonus vote on Pr

rather than Pt if and only if vir > vit . The conclusion follows. When both Pr and Pt belong to PT −S , πcr = πct = 1/(T − S).
Suppose πr > πt ; then (pBr − p1r)/(pBt − p1t) < 1, and voter i’s best response results in casting the bonus vote on Pt more
frequently than on Pr : any quasi-symmetrical equilibrium requires πr = πt , and thus (pBr − p1r)/(pBt − p1t) = 1, and the
conclusion follows. Thus for n = 3, the only payoff-distinct informative equilibria are the ones described in the proposition,
and claim (2) is established. �
Proof of Proposition 6. In all informative equilibria, S > 0, and:

EV S
c = (pcBt − pc1t)Ev(T ) +

S∑
r=1

Ev(r)(pc1s − pc1t) + TEvpc1t, (A.27)

with the probabilities amended to take into account the voting strategies of the other committee members and derived
above in the proofs to Propositions 4 and 5. Propositions 4 and 5 imply πt � 1/T and πs = [1 − (T − S)πt ]/S � 1/T . If
πt = 1/T , then πs = 1/T , pc1s = pc1t and EV S

c = EVNI
c . Thus the proof of the proposition amounts to showing that EV S

c is
declining in πt for all πt ∈ [πt ,1/T ] where πt is the lower bound on possible equilibrium values of πt . Because πt and the
probabilities pcBt , pc1t , and pc1s depend on n, T , S, and B the different cases need to be studied separately. The proof is
tedious but straightforward.

(i) Consider first the equilibria described in Proposition 4, where T = 2 and S = 1. (A.27) can be rewritten as:

EV S
c = (pcB1 − pc12)Ev(2) + 2pc12Ev. (A.28)

As shown in the proof to Proposition 4, if n is even α(n, G, S) = 1, or correspondingly π1 = 1/2. Thus EVFI
c = EVNI

c = EVc

for all n even. Consider then n odd. Substitute pcB1 and pc12 in (A.28) from (A.20) and (A.21), taking into account that
π2 = 1 − π1. Differentiating with respect to π1, we obtain:

∂EV S
c

∂π1
< 0 ⇐⇒ Ev(2)

(
n − 3

2
− (n − 3)π1 − 2π2

1

)
< Ev(n + 1)π1(1 − 2π1). (A.29)

Note that the proof of Proposition 4 establishes a lower bound π1 on π1, where π1 is the solution to β(π1) = 1 (and thus
ϕ(π1) = 1/2). Solving β(π1) = 1, we find:

π1 = 1

4

[
3 − n + √

(n − 3)(n + 1)
]
.

It is not difficult to verify that the left-hand side of (A.29) is negative as long as π1 > π1. Hence:

∂EV S
c

∂π1
< 0 ⇐⇒ Ev(2)

Ev
>

2(n + 1)π1(2π1 − 1)

4π2
1 + 2(n − 3)π1 − (n − 3)

,

a ratio that is smaller than 1 for all π1 ∈ [n−1−√
n+1

2n , n−1+√
n+1

2n ]. But n−1−√
n+1

2n < π1 and n−1+√
n+1

2n > 1/2, and in equilib-

rium π̃1 ∈ (π1,1/2). Hence in equilibrium ∂EV S
c

∂π1
< 0, and thus EV S

c (π̃1) > EV S
c |π1=1/2 = EVc .

(ii) Consider now the equilibria described in Proposition 5, where T > 2, n ∈ {3,4} and B ∈ B(n). Suppose first n = 3.
With n = 3 and B ∈ B(n):

pcBt − pc1t =
(

1

2

)1+Itie
(

(1 − πt)
2

2
+ πt(1 − πt)

)
,

pc1s − pc1t =
(

1

2

)1+Itie[
πt(1 − πt) − πs(1 − πs)

]
,

pc1t = (3/4) −
(

1

2

)1+Itie

πt(1 − πt)

and recall that πs = [1 − (T − S)πt ]/S . Differentiating (A.27) with respect to πt , we obtain:

∂EV S
c

∂πt
=

(
1

2

)1+Itie 1

S2

[
−Ev(T )πt S2 + Ev(2πt − 1)S2T +

S∑
Ev(r)

[
S(2 + T − 4πt T ) + 2T (πt T − 1)

]]
. (A.30)
r=1



A. Casella / Games and Economic Behavior 72 (2011) 46–76 73
It is not difficult to verify that ∂2EV S
c /∂π2

t > 0, and thus (A.30) is maximal at πt = 1/T . But:

∂EV S
c

∂πt

∣∣∣∣
πt=1/T

= −
(

1

2

)1+Itie 1

ST

[
SEv(T ) + T (T − 2)

(
SEv +

S∑
r=1

Ev(r)

)]
< 0

(because SEv >
∑S

r=1 Ev(r)), and thus (A.30) is negative for all πt ∈ [0,1/T ]. Notice that although we know that πt is smaller
the higher is S , the observation does not imply that (A.27) must be higher the higher is S because at higher S the number
of terms in the summation increase, and (pc1s − pc1t) < 0 for all πt < 1/T .

Suppose now n = 4. With n = 4 and B ∈ B(n):

pcBt − pc1t = 3

16

[
1 − πt(1 − πt)

]
,

pc1s − pc1t = 3

16
πt

[
1 − πt(1 − πt)

] − 3

16
πs

[
1 − πs(1 − πs)

]
,

pc1t = (11/16) − 3

16
πt

[
1 − πt(1 − πt)

]
.

Differentiating (A.27) with respect to πt , we obtain:

∂EV S
c

∂πt
= 1

16

[
−3Ev(T )(1 − 2πt) − 3TEv

(
1 − 2πt + 3π2

t

) + 1

S3

S∑
r=1

Ev(r) A(πt)

]
(A.31)

where:

A(πt) ≡ 9T (1 − πt T )2 + 3S(1 − πt T )(9πt T − 3 − 2T ) + 3S2[2 + T − πt(6 + 4T − 9πt T )
]
.

If A(πt) < 0, then ∂EV S
c /∂πt < 0 and the proof is concluded. If A(πt) > 0, then ∂EV S

c /∂πt is increasing in
∑S

r=1 Ev(r) . But∑S
r=1 Ev(r) < SEv, and thus ∂EV S

c /∂πt must be negative if:

−3Ev(T )(1 − 2πt) − Ev

[
3T

(
1 − 2πt + 3π2

t

) − 1

S2
A(πt)

]
< 0.

Manipulating this expression, we obtain 3T (1 − 2πt + 3π2
t ) − 1

S2 A(πt) > 0 ⇔ 3 − 2S − 3πt(T − 2S) < 0. It is not difficult
to see that the condition must be satisfied for all S > 1. When S = 1, the condition requires πt > 1/(3T − 6). But if
S = 1, πt = 1/(1 + √

1 + T (T − 1)) > 1/(3T − 6) for all T > 3. The only remaining case is then S = 1, T = 3. But it is
then immediate to verify that for S = 1, T = 3, ∂EV S

c /∂πt < 0 for all πt > 0.131, a condition that must be satisfied for all
πt ∈ [πt ,1/T ] since πt = 1/(1 + √

7) = 0.274. Thus (A.31) must be always negative for all πt ∈ [πt ,1/T ], and the proof is
concluded. �
Equilibria of the experimental treatments. (1) The existence of the NI and PI equilibria, and of the FI equilibrium where
the chair orders P∗

c as the third proposal follows from Proposition 5. The FI equilibrium where P∗
c is ordered second

mirrors the payoff-equivalent equilibrium where P∗
c is ordered third – voting choices over the last proposal are residual,

and the chair cannot affect any non-chair strategy by deviating off equilibrium and not casting the bonus vote on P2. The
FI equilibrium where P∗

c is ordered first does require the specification of off-equilibrium beliefs that can support it as a
sequential equilibrium. Plausible beliefs πc2 = πc3 = 1/2, were the chair to deviate and not cast the bonus vote on P1, are
sufficient for the purpose: they guarantee π2 > π1 and thus support the chair’s equilibrium strategy. (2) Showing that with
the experimental parameterization no other equilibrium exists is more cumbersome, but again builds on arguments used in
the proofs to the propositions. For n = 3, the proof of Proposition 1 shows that no other NI equilibrium exists; the proof
of Proposition 5 shows that in the PI equilibrium the chair must randomize the order of P∗

c over positions {T − S, . . . , T }
with equal probability, and that in all equilibria the only candidates for non-chair voter i’s bonus vote are proposals P∗

iS
and P∗

iT −S . When T = 3, all results hold true for n = 4 and because the proofs follow the identical logic, I do not repeat
them here. These results establish that no other payoff-distinct quasi-symmetrical informative equilibrium exists; that the
NI equilibrium is unique, and that all FI equilibria are as described. To establish that the list of equilibria in the text is
exhaustive, then, one result is missing: we need to show that with T = 3 and n ∈ {3,4}, the PI equilibrium remains unique
when we allow for payoff-equivalent equilibria. This is the purpose of the following lemma:

Lemma. With T = 3 and n ∈ {3,4}, there is a unique PI equilibrium, and in such equilibrium the chair orders his lowest intensity
proposal as P1: PT −S = {P2, P3}.

Proof. Suppose to the contrary that PT −S = {P1, P3}: the chair orders his lowest intensity proposal as P2, and casts his
bonus vote with equal probability on P1 and P3: πc1 = πc3 = 1/2; πc2 = 0. If such an equilibrium exists, a non-chair voter
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must cast his bonus vote either on P2 or on P∗
T −S which is equally likely to be P1 or P3. Hence, with n = 3, and following

(A25′): π1 = prob(vi1 = max{vi1, vi3})prob(max{vi1, vi3} > (2vi2)/(2 − π1)). But if the chair’s bonus vote is not cast on P1,
then, under the candidate strategy, it must be cast on P3 with probability 1. Non-chair voters will then cast their bonus vote
on P3 with probability πn

3 = prob(vi3 = max{vi1, vi3})prob(max{vi1, vi3} > vi2/(1 − πn
3 )), where the superscript n indicates

that the probability has been updated after the chair failed to cast his bonus vote on P1. But then πn
3 < π1 (in the Uniform

parameterization πn
3 = 1/4 and π1 = 2/7): the chair can gain from deviating and always ordering P∗

c as P3, and the scenario
cannot be an equilibrium. With n = 4, the relevant probabilities are given by (A.23′), but the logic is identical (in the Uniform
parameterization πn

3 = 0.274 and π1 = 0.307). Finally, the same logic also establishes that there cannot be an equilibrium
with PT −S = {P1, P2}. �
Appendix B. Sample instructions (n = 3)

B.1. General instructions

This is an experiment in group decision making. By following the instructions and making careful decisions you will
earn varying amounts of money, which will be paid at the end of the experiment. Your earnings will depend partly on your
decisions, partly on the decisions of others, and partly on chance.

The entire experiment will take place through computer terminals, and your interaction with other participants will take
place through the computers. It is important that you do not talk or in any way try to communicate with other participants
during the experiment.

We will start with a brief instruction period. During the instruction period, you will be given a complete description
of the experiment and will be shown how to use the computers. If you have any questions during the instruction period,
raise your hand and your question will be answered out loud so that everyone can hear. If any difficulties arise after the
experiment has begun, raise your hand, and an instructor will come and assist you.

B.2. Decision problem

The decision problem you are participating in is about voting. In this experiment, you will participate in 40 independent
voting sessions. At the beginning of the experiment you will be randomly assigned to a group of three people. This will be
your group for the entire experiment. Each group follows exactly the same rules and what happens in one group has no
effect on the other groups.

In each session, you and the other members of your group will be asked to vote over three successive proposals, each of
which can either pass or fail. The proposals are called Green Proposal, Blue Proposal, and Red Proposal. Each member of a
group has one regular vote to be cast for each proposal. In addition, each member will be given one extra bonus vote. You
will choose in which of the three proposals you want to cast the bonus vote in addition to your regular vote.

At the beginning of a session you will be assigned a personal Green Proposal Value, Blue Proposal Value, and Red
Proposal Value. Each of the three values is equally likely to be any integer amount between −100 and 100, but not zero.
The three values are assigned randomly and thus will generally be different. The other members of your group are also
randomly assigned their own Green Proposal Values, Blue Proposal Values, and Red Proposal Values each of which is equally
likely to be any integer amount between −100 and 100, but not zero. Because the values are random, each person is likely
to have different values for the three proposals, and the values of each proposal (for example the Green Proposal Values)
are also likely to be different for three different persons. You are not told what the values of the other members of your
group are.

If your value is positive, you are in favor of the proposal and earn your value if and only if the proposal passes. If your
value is negative, you are against the proposal and earn the absolute value of your value if and only if the proposal does not
pass. Otherwise you earn 0 francs. For example, if your Green Proposal Value is −55, then you earn 55 francs if Green does
not pass, and 0 francs if Green passes (and similarly for Blue and Red proposals). Because the values are randomly assigned,
being in favor of one proposal carries no implication for how you feel about the others.

As mentioned earlier, the three elections are held sequentially. Each member of the group will cast one regular vote in
each proposal. In addition, each member will be given one extra bonus vote and will choose in which of the three proposals
he/she wants to cast the bonus vote in addition to his/her regular vote. Suppose for example that the first election is on the
Blue proposal. Then you will decide whether to cast 1 or 2 votes in the Blue election: your regular Blue vote only, or your
regular Blue vote and the bonus vote. The other members of your group may also cast up to 2 votes in the Blue election.
If you are in favor of the Blue proposal (that is, your Blue Proposal Value is positive), any votes you cast will automatically
be counted as YES votes. If you are against Blue (that is, your Blue Proposal Value is negative), any votes you cast will be
automatically counted as NO votes. The Blue proposal passes in your group if there are more YES votes than NO votes cast
by members of your group and fails if there are more NO votes than YES votes. Ties are broken randomly by the computer.

After you and the other members of your group have made voting decisions for the first proposal, the computer will
tell you the number of votes cast for and against the proposal, and the outcome of the vote for your group. You will then
proceed to the second proposal.
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Continuing with the example, suppose that the second election is the Green election. In the Green election each member
of your group (including you) has his or her regular green vote, plus the bonus vote, unless the bonus vote was cast earlier
in the Blue election. If you cast 2 votes in the Blue election, you will have only 1 vote in the Green election; but if you cast
1 vote in the Blue election, you will have up to 2 votes in the Green election. Your screen will display how many votes you
and the other members of your group have left.

Again, after you and the other members of your group have made voting decisions for the Green proposal, the computer
will tell you the number of votes cast for and against the proposal, and the outcome of the vote for your group. You will
then proceed to the third proposal.

Your screen will display how many votes you and the other members of your group have left for the third proposal,
the Red proposal in the example. You do not have any choice about how many votes to cast in this third election, but by
clicking the VOTE button, you will cast all your remaining votes. These votes will automatically be cast as YES vote for the
Red Proposal if your Red Proposal Value is greater than 0 and as NO vote if your Red Proposal Value is less than 0. Your
group’s outcome of the Red election is then reported to you.

When everyone has finished, we will go to the next voting session, that is to another set of three sequential elections.
You will repeat the procedure described above for 10 sessions.

In the first 10 sessions, after all personal values have been assigned, the computer randomly chooses the order in which
the three proposals will be voted upon, and you will be informed about this order. In the following 10 sessions (i.e. sessions
11–20), after all personal values have been assigned, the computer randomly assigns a member of the group to be the
Chair for the next 10 sessions. The Chair decides the order in which the three elections will be held. You will see on
your computer monitor whether you have been chosen to be the Chair. If so, you will be asked to choose the order of the
proposals; if not you will be told what order of elections the Chair has chosen. Voting then proceeds as we described earlier.
After the 20th session, the computer will again randomly assign one of the two other members of the group as Chair for
the next 10 sessions (i.e. sessions 21–30) and the same procedure will take place. Finally, the last member of the group will
be the Chair in the last 10 sessions (i.e. sessions 31–40).

B.3. Payoffs

Everyone will be paid in private and you are under no obligation to tell others how much you earned. Your earnings
during the experiment are denominated in francs. At the end of 40 voting sessions, the computer will randomly select one
from sessions 1–10, 11–20, 21–30 and 31–40. The sum of your earnings in these four sessions will determine your total
earnings. Your dollar earnings are determined by dividing your earnings in francs by a conversion rate. In this experiment,
the conversion rate is 18, meaning that

$1 = 18 francs.

This amount will then be added to the $7.00 participation fee to determine your final payment. Payments will be made in
private via petty cash vouchers at the conclusion of the experiment.

B.4. Rules

Please do not talk with anyone during the experiment. We ask everyone to remain silent until the end of the last decision
problem.

Your participation in the experiment and any information about your earnings will be kept strictly confidential. Your
receipt of payment and consent form are the only places on which your name will appear. This information will be kept
confidential in the manner described in the consent form.

If you have any questions please ask them now. If not, we will have a practice round before we proceed to the paid
session.
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