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Abstract

Storable Votes and Quadratic Voting are two voting systems that elicit

and reward voters’ intensity of preferences. Both apply when voters face

multiple, binary choices and work by granting a total budget of votes and

allowing some discretion in the number cast on each election. We test

their performance in a Mechanical Turk experiment where two samples

of California residents reported their preferences and voting choices over

four initiatives being prepared for the 2016 California ballot. Both voting

systems make minority victories possible and both result in higher wel-

fare relative to majority voting. Quadratic voting induces more minority

victories and achieves higher welfare, but also causes more inefficient mi-

nority victories. Testing new voting systems is hampered by the scarcity

of data. We overcome the problem by bootstrapping the original samples

and generating two sets of 10,000 multi-elections simulations, a method-

ology applicable more broadly.

1 Introduction

From the Brexit referendum in the UK to Trumpian politics in the US, to the

En Marche movement in France, to Cinque Stelle in Italy, Western democracies

show a clear decline of traditional political parties. If, as Cinque Stelle for one

theorizes, we move to a world where political choices are subject to immediate

electronic polling, we need to rethink how to protect the minority: increased

reliance on direct democracy invokes new fears of the tyranny of the majority, a

classic problem in political design.1 [Refs in fn] The protection of basic rights

1Federalist Papers (Hamilton and Adams), Mill, Dahl(?), Guinier.
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is the domain of the judicial branch. Here we are concerned instead with the

expression and weighing of political preferences. There are different reasons for

such concern—fairness and legitimacy are foremost, in diverse societies where

racial, ethnic or religious identities can make some groups disproportionately

likely to be on the minority side. Straightforward utilitarian efficiency is an

additional one, and is the object of this study: in a binary decision, the numer-

ical size of the two opposing groups does not account for varying intensities of

preferences and majority voting can lead to an inefficient outcome (refs?)

An ideal solution would not superimpose a different set of rules or institutions—

quota systems, pre-set rotation in positions of power, vetoes—but amend the

voting system to allow for the expression of preference intensity. Outcomes

would then reflect preferences endogenously, mirroring changes in preferences

over time, and reverting to simple majority voting when in fact intensities do

not differ substantially. Recently, two such voting schemes have been proposed:

Storable Votes (Casella, 2005, 2012), and Quadratic Voting (Posner and Weyl

xx, Lalley and Weyl, 2018). This paper compares their performance, and com-

pares them to simple majority voting, by eliciting preferences and voting be-

havior over four state initiatives in two samples of California respondents. Ac-

cording to our results, both voting schemes do indeed generate non-negligible

minority victories and both result in consistently higher efficiency than simple

majority.

Both schemes induce voters to express the intensity of their preferences by

allowing them to distribute a total budget of votes across different binary deci-

sions. In each decision, the side with more votes then prevails. Storable votes

is simpler: it advocates granting voters one "regular" vote to cast on each de-

cision, as well as a budget of "bonus votes" that can be spent as desired. In

large elections, the best design grants voters a single bonus vote, in addition to

regular votes. Quadratic voting was originally designed as an auction system in

which voters use money to bid for the outcome of a single binary election (see

also Goeree and Zhang, 2017). When applied to multiple decisions, quadratic

voting grants voters a budget of "voices" to be used as numeraire—voices acquire

value through their possible use in different elections. The central feature is that

the cost of bundling votes is quadratic: casting one vote in an election costs one

voice, but casting ten votes cost 100 voices. Under both systems, voters have an

incentive to cumulate votes to express intensity, but the mechanism is somewhat

tempered: with storable votes, by the existence of regular votes and, in large

elections, by the single bonus votes; with quadratic voting by the convex cost
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of bundling.

In our experiment, we polled subjects registered on Amazon Mechanical

Turk and resident (?) in California on their preferences and voting choices

over four initiatives that, at the time of polling, were being prepared for the

2016 ballot. The four initiatives concern: (1) the reestablishment of bilingual

education in public schools; (2) the cooperation of the state’s enforcement agen-

cies with federal immigration agents; (3) new requirements for voters’ approval

of large public infrastructure projects; and (4) longer required teaching experi-

ence for teacher’s tenure. We collected data simultaneously from two samples of

about 300 respondents each, exposing one to storable votes and one to quadratic

voting.

Because the voting systems rely on the single budget constraint tying the

different voting decisions, the unit of analysis is the joint four-initiative election.

Our data then correspond to two data points, one for storable votes, and one

for quadratic voting, obviously too few for any meaningful extrapolation. We

would ideally want a large number of identical joint elections, all with electorates

drawn from our population. We cannot have such data, but we can bootstrap

our original samples to generate two samples, one with storable votes one with

quadratic votes, of 10,000 simulated multi-elections each. This is the data set

on which we base our conclusions.2

As mentioned earlier, both voting systems perform well: they make minority

victories possible and consistently result in higher total welfare (according to

our utilitarian measure) than majority voting. There are however differences

between them. In our data, quadratic voting leads to more frequent minority

victories and higher realized efficiency. However, quadratic voting is more likely

to also cause a substantial number of inefficient minority victories. Storable

votes is a more conservative system, missing some potential efficiency gains, but

also overthrowing majority’s decisions more rarely.

Our conclusions apply to the specific parametrizations of the two systems

used in our survey. Based on what we see, however, it is tempting to suggest

complementing quadratic voting with regular votes, one to be cast in each elec-

tion, as we do (and the theory advocates) for storable votes. The addition of

regular votes would dampen the working of quadratic voting, making outcomes

less sensitive to minority preferences. In our data, they would cause negligible

declines in efficiency, in exchange for fewer "mistaken" minority victories.

2We borrowed the methodology from Casella et al. 2010.
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Whether the efficiency gains resulting from a system of "quadratic voting

with regular votes" are worth the higher complexity, relative to a simple system

with storable votes, we leave to the reader to evaluate.

2 The Theory

A large number  of voters are asked to vote, contemporaneously, on a set of

 unrelated proposals (with   1). Each proposal can either pass or fail.

Voter ’s preferences over proposal  are summarized by a valuation v, where

v  0 indicates that  is in favor of the proposal, and v  0 that  is against.

If the proposal is decided in ’s preferred direction, then ’s realized utility from

proposal , denoted , equals  = |v|, otherwise it is normalized to 0.
Thus the sign of v indicates the direction of ’s preferences, and  their

intensity. Preferences are separable across proposal and the voter’s objective is

to maximize total utility  from the set of proposals, where  =
P

 .

Each individual’s valuations {v1,v2,..,v} are privately known. They are a
random sample from a joint distribution F(v1    v) which is common knowl-
edge. There is no cost of voting, and voters adopt weakly undominated strate-

gies and vote sincerely with no abstention. We consider three voting systems:

majority voting, Storable Votes and Quadratic Voting. In all three, each pro-

posal is decided in the direction preferred by a majority of the votes cast on the

proposal. The voting systems differ in the rules under which votes are cast.

Under majority voting, each voter has  votes and casts a single vote on

each proposal. The voting scheme gives weight to the extent of support for a

proposal. Storable Votes and Quadratic Voting allow voters to express not only

the direction of their preferences but also their intensity.

2.1 Storable Votes

Storable Votes (SV) is a voting system that grants each voter a budget of "bonus

votes" to be distributed as desired over the different proposals (Casella, 2005,

2012; Hortala-Vallve, 2012). In large elections, it is typically optimal to cu-

mulate all bonus votes on one proposal3 , and the simplest implementation is

then to endow each voter with a single bonus vote, to spend as desired, and

complement it with  "regular" votes, one per proposal. If voters’ valuations

are independent across voters and proposals, Casella and Gelman (2008) shows

3Casella and Gelman (2008).
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that ex ante welfare in the unique symmetric Bayesian Nash equilibrium is

higher than ex ante welfare under majority voting, under a range of plausible

assumptions about the distributions (v). (We summarize the arguments in

the online appendix). In particular, as is to be expected, the benefits of SV in-

crease if there are asymmetries in intensities between voters on the opposite side

of a proposal, and especially so if the minority holds more intense preferences—

not coincidentally the case in which the desirability of simple majority voting is

most disputed.

2.2 Quadratic Voting

Quadratic Voting (QV) has been proposed in the context of a single binary

election: voters purchase votes with a numeraire and pay a price that equals

the square of the number of votes purchased. Goeree and Zhang (2017) and

Lalley and Weyl (2018) show that if valuations are independent across voters,

the symmetric Bayesian Nash equilibrium, conjectured unique, converges as-

ymptotically to full utilitarian efficiency. As in the case of SV, the possibility

of casting more than one vote, at a cost, allows for the expression of a voter’s

intensity of preferences and gives it weight over the final outcome.

There is no theoretical analysis of the efficiency properties of QV in multiple

elections, where bidding can be expressed in an artificial currency. In this design,

first described by Posner and Weyl (2015), each voter is granted a budget of

"voices", which can be translated into votes at a quadratic cost: casting 

votes on proposal  requires spending 2 voices on . QV becomes similar to

SV, but the quadratic cost limits the incentive to cumulate votes. Although no

rigorous results exist, a simple model (suggested by Glen Weyl and reported in

the online appendix) shows that efficiency extends to this case if voters believe

that, on any election, the marginal impact of their votes on the probability of

their preferred side prevailing is constant for any number of votes they cast.

We know from Lalley and Weyl that the condition is generally not satisfied in

equilibrium, but the deviations may be too subtle for voters to take into account.

3 The Experiment

In May 2016 we selected four initiatives submitted for inclusion in the November

2016 California ballot. We then recruited 647 subjects in California via Ama-

zon’s Mechanical Turk (MTurk), and randomly assigned them either to the SV
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treatment (324 subjects; 306 remained after data cleaning4) or to the QV treat-

ment (323 subjects; 313 after cleaning). We asked each subject how she would

vote on each of the four initiatives, presented in random order, allowing for

the option to abstain, and how important each of these initiatives was to her.

The sample assigned to the SV treatment was then presented with a version of

SV; the second sample with a simplified QV scheme; both were asked on which

initiatives they would cast these votes. Outcomes were computed using simple

majority, and either SV or QV. In both samples, we incentivized voting choices

by promising $250 for an organization working in favor of any proposal that

passed under either SV or QV, depending on the sample. The questions were

programmed in Qualtrics, and copies of all screenshots are reproduced in the

online appendix.

3.1 The four initiatives

Our goal was to identify multiple initiatives whose outcome was unlikely to be a

landslide, about which some voters at least would feel strongly, and that would

be clear enough to the average MTurk subject. In March 2016 we presented

an original set of ten initiatives, all with the potential to reach the November

ballot, to a sample of 94 California MTurk subjects. Based on their responses,

we selected the following four initiatives:5

(1) Bilingual education (BE): abolish the requirement that basic education

be offered in English only and re-instate the possibility of bilingual classes in

public schools. The initiative was included in the November 2016 ballot and

passed.

(2) Immigration (IM): require all state law enforcement officials to verify

the immigration status of any individual caught in an infraction and to report

undocumented immigrants to federal immigration authorities. The initiative

was not included in the final ballot.

(3) Teachers’ tenure (TT): increase the required years of pre-tenure expe-

rience for teachers from two to five. The initiative was not included in the

ballot.

(4) Public Vote on Bonds (PB): require voters’ approval for all public in-

frastructure projects of more than $2 billion, including those financed by tolls

4See the online Appendix for details on the data cleaning criteria.
5The March survey were used exclusively to select the four initiatives we submitted to the

May samples. The exact wording with which we summarized the four initiatives in the May

survey is on the screenshots in the online appendix.
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and fees generated by the projects themselves. The initiative was on the No-

vember 2016 ballot and failed.

3.2 Direction and intensity of preferences

The two novel voting rules appeared only in the second part of the survey. The

first part—eliciting voters’ direction and intensity of preferences—allowed us to

compute outcomes under majority voting and construct a measure of utilitarian

welfare. The latter is our performance meter. We constructed it as follows.

In both samples, we asked each subject to distribute 100 points among the

four initiatives, with the number of points meant as a scale of the importance

attributed to each proposal ("How important are these issues to you?"). We

used examples to make clear that importance is unrelated to preferred direction

and we summarized responses in terms of priorities, allowing for revisions and

asking for a final confirmation. We interpret points as proxy for valuations, and

the common total of 100 points as a normalization required to prevent factors

of scale from distorting welfare.6

Denoting by  the number of points attributed to initiative  by indi-

vidual , we set  = . Thus 

 =

P
:∈


, where  ∈ {

   } indicates the voting scheme and 
 the side casting a ma-

jority of votes on  under . Realized aggregate welfare  is then given by

 =
P



P
:∈


. In this perspective, full utilitarian efficiency requires

that each initiative be won by the side which collectively values it most, or

 ∗ =
P



P
:∈  where  denotes the side with higher total number of

points on . For each voting scheme , our primary performance measure is

thus the ratio  ∗. We should note here that although this is the most

natural—in fact the only—measure we can construct, it remains imperfect even

if our questions are understood correctly and answered with no error. Respon-

dents presumably use their votes thinking of the broad Californian electorate,

while we can only compare the voting schemes’ effects on the MTurk samples.

3.3 The voting schemes

The second part of the survey was designed to test the new voting rules, un-

der specific parametrizations. In the SV sample, subjects are told that each is

6 In the same spirit to the constraint that all valuations be drawn from the same distribution

in the theoretical model.
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granted a bonus vote—one extra vote—in addition to the regular votes cast ear-

lier. With no reference to voting weights, the bonus vote is understood to be

equivalent to a regular vote. Each subject is asked to choose the initiative in

which to use it; the vote is then cast automatically in the direction chosen in

the first part of the survey. The final outcome is calculated summing regular

and bonus votes.

The design of the QV scheme is less straightforward because it must convey

clearly that cumulating votes has a quadratic cost. We present the subjects

with four different classes of votes, distinguished by color, and ask them to

choose one class. Blue votes are regular votes, four in number. Votes cannot

be cumulated, and thus a person choosing blue votes casts one vote in each

initiative. Green votes are only three, but each is worth more than a regular

blue vote and beats a blue vote if the two are opposed. A subject who chooses

green votes must abstain in one of the initiatives. Yellow votes are two, each

stronger than a green vote, but choosing yellow votes means abstaining on two

initiatives. Finally, a subject can choose to cast a single red vote, stronger than

a yellow vote, but forcing the subject to abstain in three of the four initiatives.

More precisely, the weights of the different votes are 1 for blue votes, 1.2 for

green votes, 1.5 for yellow votes, and 2 for the red vote.

QV: Vote classes

Figure 1: The design of the QV scheme in the MTurk survey.

The simple four-class classification respects the convex cost of concentrating
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votes. A voter using all four votes on different initiatives—choosing blue votes—

has a total weight of 4, but the total weight declines as votes are concentrated:

a voter using all her voting power on a single referendum has a total weight of

2, the square root of 4, exactly in line with QV logic. For the intermediate cases

of concentration on three or two initiatives, the total weights are 3.6 and 3. The

decline in total voting weight is increasing with concentration, and increasing

at an increasing rate, capturing the core feature of QV. On the other hand, our

streamlined version of QV forces subjects to cast votes of equal weight on all

referenda on which the subject casts votes, a constraint that is not part of the

original idea. Especially in the uncontrolled and fast MTurk environment, the

hope is that our simplified QV may benefit from its easier comprehension more

than it loses in flexibility.

We asked each subject to choose a class of votes, and then select the initia-

tive(s) on which the vote(s) were to be cast. As with SV, the votes were then

cast automatically according to the preferences indicated in the first part of the

survey. The final outcome was calculated on the basis of the QV votes cast.7

3.4 The experimental data

The survey yielded distributions of preferences—empirical counterparts to the

theoretical distributions (v)—and voting outcomes. We reproduce the his-

tograms of respondents’ preferences in the online appendix. Here we summarize

both preferences and voting choices by reporting the percentage margin in favor

of each initiative, in terms of aggregate points, average points, number of voters,

and number of votes under either SV or QV (Figure 2).8

7At the end of both the SV and QV survey, we reported the voting results over the four

initiatives from our March poll of 96 subjects, including the poll’s margins of errors, and asked

whether subjects wanted to change their allocation of the bonus vote (or choice of QV class

and vote allocation). At the 95% confidence level, margins of errors were +/- 10%, and no

outcome could be ruled out. About 10% of subjects in each sample changed their vote but

the net vote changes in each initiative were negligible. We base the analysis that follows on

the data collected before showing the poll.
8Representing results in terms of margins accentuates the differences between the two

samples. For all four initiatives, two-sided KS tests cannot reject that the distributions of

points are drawn from the same population, with boostrapped p-values equal to 0.629 (IM),

0.66 (BE), 0.092 (PB), 0.384 (TT). Because each subject must allocate 100 points, within

each sample the distributions are not independent, although with four initiatives no individual

distribution is redundant.
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Figure 2: Margins in favor.

In both samples, a majority of respondents is in favor of BE and PB and

against TT and IM, although the margin in the IM initiative is very small.

In both samples and all initiatives, the outcome is unchanged whether using

majority voting, SV, or QV. When the aggregate point margin has the same sign

as the majority voting outcome (all four initiatives in the QV sample; BE, PB

and TT in the SV sample), the outcome is efficient. Thus both majority voting

and QV achieve full efficiency in the QV sample, while both majority and SV

fall short in the SV sample (both appropriate 94.7 percent of efficiency). When

the margin in terms of average points also has the same sign as the majority

voting outcome, the more numerous side has higher average intensity, and since

SV and QV are expected to reflect intensities, not only should both voting

schemes confirm the majority voting outcome, but they should do so with a

larger margin (in absolute value)—as is the case for BE, PB and TT in the SV

sample, and BE and PB in the QV sample. If, on the contrary, the average

points margin has the opposite sign, as in IM in both samples and TT in the

QV sample, then the margin should be smaller than under majority—as indeed

occurs for both initiatives in the QV sample, but not for IM in the SV sample.

The IM initiative stands out under several dimensions. It is the most con-

tested: although it fails in both samples and with all three voting systems, it
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always does so with very small vote margins.9 It is also the most salient: as re-

ported in the online appendix, it is allocated the highest number of total points

in both samples, the highest number of bonus votes in the SV sample, and the

highest number of red votes and of total votes in the QV sample. In addition,

the voting result under SV shows that in the IM initiative the bonus vote was

not used symmetrically by supporters and opponents: supporters’ higher total

intensity is not reflected in the SV results, and the inefficiency of majority voting

is not corrected. 10

As noted, on all four initiatives, both SV and QV confirmed the outcome

reached with simple majority voting. The observation, however, is not very

informative: with both voting systems, the votes cast across initiatives are tied

by a budget constraint. Effectively, we have a single data point in each sample.

Evaluating the impact of the two voting systems requires much larger samples—

ideally we would want to replicate the same elections many times, with many

different electorates whose preferences are all drawn from the same underlying

distribution. We cannot rerun the elections, but, following the methodology

proposed by Casella et al. (2010), we can approximate such iterations by boot-

strapping our data.11

4 10,000 Multi-election Samples

The objective is to estimate the impact of the voting rules in a population

for which our samples are representative.12 The maintained assumption of the

bootstrapping exercise is that preferences are independent across individuals,

but not necessarily across elections for a single individual. We sample with

replacement  individuals from each of our data sets, where  = 306 for SV

and  = 313 for QV. For each individual, we sample the direction of preferences

over each initiative, the number of points assigned to each, and the votes cast

9The vote tallies under majority are 129 to 125 (SV sample) and 136 to 130 (QV sample);

under SV the tally is 181 to 170, and under QV a bare 124.6 to 124.4.
10On average, opponents who cast their bonus vote on IM did so at lower intensity than

supporters. (43.7 points for opponents versus 55.9 for supporters, a significant difference

(p=0.0034)).
11The classical references are Efron (1979) and Efron and Tibshirani (1993). For a more

recent treatment, see Davidson and MacKinnon (2006).
12Of the two initiatives that did appear on the ballot in November 2016, one (BE) was

decided as in our samples, the other (PB) was not. The representativeness of MTUrk workers

has been debated (Bartneck et al., 2015, Clifford et al., 2015, Huff and Tingley, 2015), and

our results confirm such doubts. However, for our purposes—the performance and comparison

of SV and QV—the imperfect representativeness of the samples is not by itself problematic.
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over all initiatives, according to either the SV or the QV scheme, depending on

the data set. We then replicate this procedure 10,000 times for each original

data set, SV or QV. Each replication generates a distribution of preferences over

each initiative and a voting decision for each voter, and thus a voting outcome

for all four initiatives. The focus is on the fraction of simulations in which

the two voting rules reach different results from majority voting, and on their

welfare properties.

Generating voting outcomes by matching individuals with their SV or QV

voting choices in the original samples is a natural option, and the first one

we consider in our simulations, but an important goal of the simulations is to

test the robustness of the two voting schemes to a range of plausible behaviors

in casting votes. Without claims of optimality or micro-founded sources of

bounded rationality, we posit four alternative rules-of-thumb governing the use

of SV and QV. They are: (A): as the individual did in the original sample; (B)

as in a descriptive statistical model of the original samples; (C) as optimal in a

simplified environment; (D) introducing randomness in rule C.

Rule (B) imposes some structure on the data we collected and adds some

noise. Rule (C) supposes, for both SV and QV, that individuals take their

probability of pivotality as constant, across initiatives and, in QV, across the

number and weight of the votes they cast. Under SV, the optimal rule is then to

cast the bonus vote on one’s highest intensity initiative. Under QV, individuals

choose a vote class so as to minimize the distance between the weights of the

votes they cast and their normalized values. Rule (D) suppose that individuals

act as under (C) with probability 1/2, and randomly with probability 1/2. (See

the online appendix for detailed descriptions of all rules).

Voters could potentially be fully random—i.e., although voting according to

their preferences, they could choose randomly the initiatives on which to cast the

votes at their disposal (and with QV, they could choose randomly the vote class

too). The scenario provides a plausible floor to the performance of the voting

systems, relative to majority voting. We do not report the results in what

follows, but have verified what intuition suggests: only close elections would

be overturned, with equal frequency of efficiency gains and losses. Over the

10,000 simulations, average welfare under both SV and QV replicates average

welfare under majority voting. We consider this case a useful check, both on

the properties of SV and QV and on our simulations.
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Simulation Results

In both sets of simulations, with all four rules, both SV and QV resulted in

frequent minority victories (Figure 3:A).13
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Figure 3: Bootstrap results. Panel A reports the frequency of samples with at

least one minority victory. Minority victories were concentrated in the IM and

BE initiatives (see online appendix for details). Panel B reports the average

share of efficiency over the full 10,000 simulations. Note the difference in ma-

jority welfare in the SV and QV samples. Panel C reports the frequency of SV

and QV samples with lower welfare than majority voting among those with at

least one minority victory.

More than one fourth of the 10,000 simulations in each data set, using any

rule, had at least one minority victory: the average across rules was 31 percent

for QV and 35 for SV. Remarkably, both voting systems consistently delivered

welfare gains over majority voting (Figure 3:B). Averaging across rules, the

realized share of efficiency was 98.2% for SV and 99.7% for QV, compared to

96.3 and 99.14% for majority in the two sets of simulations. Majority does very

well in these data, and particularly so in the QV simulations, and the fact that

both voting systems succeed in improving over majority is impressive, when so

little foregone surplus is available.

However, many minority victories come with welfare losses. Averaging across

all rules, SV causes welfare losses in 11% of all simulations in which it delivers at

least one minority victory, a percentage that rises to almost a third for QV (32%)

(Figure 3:C). SV is more conservative, foregoing potential gains (on average, SV

13Standard errors do not appear in the figures because with 10,000 bootstrap samples the

sampling error is negligible. As a test, we recalculated the results with 20,000 independent

bootstrap samples, with barely detectable differences.
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appropriates 55% of available improvement over majority, v/s 66% for QV), but

also inducing less frequent losses.

A proper comparison between the two voting systems is difficult because

majority voting does substantially better in the QV simulations [test of diff in

means?]. The reason is the difference in the original samples in the preferences

over the IM initiative. As we described, in the SV sample the majoritarian

outcome in the IM initiative is inefficient: the proposal fails but the intensity of

preferences among supporters is sufficiently strong to overcome the numerical

superiority of the opponents. Such is not the case in the QV sample. This

disparity carries over to the bootstrapped samples.

We can correct the problem by recalibrating the samples in the bootstrap

exercise.

4.1 Comparing SV and QV: Recalibrating the QV samples

We construct 10,000 recalibrated QV samples by restricting the distributions

of preferences over the IM initiative so as not to differ, on average, from the

average distribution generated when populating the SV samples. For each QV

simulation, as before, we draw with replacement 313 subjects from the QV

sample, but now constrain each draw to come from each bin of the QV IM

preference histogram with a probability equal to the corresponding frequency

in the SV IM preference histogram. Since a draw is a subject, each simulation

corresponds to a sample of 313 preferences and voting choices over all four

initiatives.14 [How do we check that the other distrs are not distorted?]

The recalibrated simulations lead to a substantially higher frequency of mi-

nority victories under QV—now consistently more frequent than under SV (Fig-

ure ??: A). For three of the rules—A, B, and C—under QV the minority wins at

least one initiative in more than half of all simulations, a frequency we never

observe with SV. In terms of appropriated surplus, QV now reaches, on aver-

age, 99.5% of efficiency, with majority voting at 97% (versus 98 for SV, with

majority at 96.5). Again, majority voting does very well in these samples and

outperforming it across all rules-of-thumb is remarkable. With QV’s recali-

brated sample, the room for improvement over majority voting, if still small, is

larger than in the original sample, and the average frequency of welfare losses

under QV falls drastically to 6% of all simulations with minority victories (v/s

14Note that because subjects are drawn with their full set of preferences over all initiatives,

by imposing constraints over the IM distribution, we could be distorting the distributions in

the QV samples over the other initiatives.[We verified that such is not the case. How?]

14



11% with SV). Over all 10,000 samples, the frequency of losses is small for both

voting systems—at 3.9% for QV and 2.6% for SV (minority victories are less

frequent under SV).

SV’s somewhat weaker performance is due to rule A. As noticed earlier,

in the original SV data the use of the bonus vote is biased against the IM

initiative, relative to the number of points assigned: supporters assign more

points than opponents, but cast fewer bonus votes. In the simulations that

allocate the bonus votes according to the subjects’ original choice (rule A),

the IM initiative fails disproportionately— it fails more than efficiency dictates

(in 68% of the samples, v/s less than 10% under efficiency), and more than

under majority (60%). Under rule A, close to 90% of all simulations in which

SV induce losses relative to majority voting are due to the inefficient minority

victory of opponents of the IM initiative. The anomaly appears clearly if we

plot the distribution of welfare gains over majority voting (Figure ??:D). No

such problem arises with QV, where results are more consistent across rules.

If the difference between SV and QV under rule A is driven by asymmetries

in the original SV sample, under the other rules the difference is more repre-

sentative of the underlying properties of the two voting systems. Consider rule

C in Figure ??:D. We drew the histograms in terms of absolute numbers, as

opposed to proportions, to highlight the higher number of minority victories

under QV, as well as the values of the welfare changes corresponding to such

higher number. The two distributions differ almost exclusively because of the

higher spikes under QV corresponding to small welfare gains: 85 percent of dif-

ference in the number of samples in which minority victories are realized under

QV correspond to welfare gains over majority voting not larger than 5%. The

two voting systems differ in their sensitivity to intensity of preferences. If we

draw the histograms in terms of relative frequency of welfare gains, SV under

rule C FOSD’s QV: whenever minority victories are realized, they tend to be

associated with large gains.
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The observation invites two questions. First, both voting systems should

be evaluated according to the welfare criterion we have chosen, and QV does

very well in these simulations. From the point of view of practical implementa-

tion, however, the legitimacy of majority decisions has value, and one may ask

whether reversing a majority decision for small welfare gains is wise. Second,

and related, how much does QV’s higher frequency of minority victories depend

on the exact parametrization employed in the experiment? For SV, we have

followed closely Casella and Gelman (2008), where background "regular" votes—

one vote per decision—are added to blunt the impact of the bonus vote. With

QV, the convex cost by itself moderates the incentive to cumulate votes, and

formal QV models do not include background votes. But formal QV models do

not address multiple decisions, and the intuitive model in the online appendix

would accommodate background votes with no change [Verify]. Adding such

votes would favor the majority and reduce the fraction of minority victories.

Could reducing QV’s sensitivity to intensity be desirable?
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4.2 QV cum regular votes

The MTurk survey described QV as consisting exclusively of the classes of votes

chosen by the respondents, without additional ordinary votes. Applying the

subjects’ responses to a different environment with regular votes is thus not

fully legitimate. It is true however that under the maintained assumption of

constant marginal pivot probability neither a voter’s optimal choice nor the

efficiency properties of the voting system would change. In line with our focus on

robustness and rules-of-thumb, we investigate in this section how the simulations

results would be affected by endowing each voter with four additional votes.

These votes, one on each initiative, are cast according to the voter’s declared

preferences in the first part of the survey, as we do for SV. We call the voting

system QVV—QV with Vote.

We begin by comparing QVV to QV in the simulations obtained from boot-

strapping the original sample, where QV induced frequent welfare losses. Pre-

dictably, under QVV minority victories become less frequent: averaging across

all rules, the frequency falls from 31 to 20.5% (Figure ??: 1A). And yet the

realized share of efficiency does not fall (the average moves from 99.7 to 99.8)

while the frequency of samples with lower welfare than under majority does

decline by more than a third (from 32 to 19% on average) (Figures ??: 1B and

1C).15 (Need fn?)

15The impact of adding regular votes is confirmed in the re-calibrated simulations: minority

victories are less frequent than under QV and when they happen, the frequency of welfare

losses declines. Efficiency remains higher than under majority under every rule, with the

average realized ratio of full efficiency effectively unchanged relative to QV (at 98.5 versus

98.8%, compared to 97% for majority voting).
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Our results thus suggest that tempering QV’s sensitivity to intensity of pref-

erences by adding ordinary votes is probably desirable: by attributing some

weight to majority preferences, QVV reduces the frequency of minority victo-

ries, but especially of inefficient minority victories, without substantial effects

on overall efficiency.

But if that is the case, isn’t then SV, with its much simpler design, a prefer-

able choice? The difficulty in answering the question is that SV’s simulations

are disturbingly sensitive to the rule we posit in casting the bonus vote. Under

rule A, the asymmetric behavior of voters on the IM initiative translates into

a frequency of welfare losses that is a multiple of what we observe under QV

or QVV (Figure ??: 2A. Under the other rules, on the other hand, especially

under C and D, the performances of SV and QVV are very similar (Figure ??:

2B,2C and 2D).

QV and QVV’s performances are more consistent across rules. It could be

that QV’s design, with or without background votes, is itself responsible for the

more consistent outcomes: the convex cost in concentrating votes may focus

voters’ attention, relative to the cost-free allocation of the bonus vote under

SV—and in this case QV’s observed consistency recommends it, especially when

accompanied by regular votes. Or it may be that the surprising asymmetries in

SV-rule A are just noise: the IM initiative is very close and changing a handful

of data points would affect the results. And in this case, the simplicity of SV,
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together with its rather conservative behavior, may make it a more pragmatic

choice.

Conclusions

The institutions of representative democracy are in decline. If, as seems plausi-

ble, the future brings more reliance on direct democracy, electronic and not, the

protection of minority interests assumes new urgency. Simple voting schemes

that allow minority victories when, and only when, minority preferences are

strong and majority preferences are not hold the potential to improve both

legitimacy and efficiency. Storable votes and quadratic voting are two such

schemes. Both are designed to incentivize and reward the expression of voters’

intensities of preferences when multiple, independent binary elections are on the

ballot and function by endowing voters with a budget and allowing discretion in

choosing the number of votes to cast on each of the elections. Ceteris paribus,

the two schemes encourage casting more votes on decisions on which a voter

feels more strongly. And because decisions are resolved in favor of the side with

more votes, as opposed to more voters, minority victories are possible. In both

cases, the theory is promising, but is also complex and incomplete.

This paper reports the results of a Mechanical Turk experiment that elicited

subjects’ preferences and voting choices over four initiatives intended for the

2016 California ballot. After having expressed their preferences, subjects were

asked to vote over the four initiatives, using either storable votes or quadratic

voting. By bootstrapping our data, we generated two samples of 10,000 joint

elections (i.e. 10,000 instances of voting on all four initiatives) on which the

performances of the two voting systems can be compared, and compared to

simple majority voting.

We find that both systems result in non-negligible minority victories: be-

tween 30 and 50% of all samples have at least one initiative won by the minority

side. And while making minority victories possible, both systems consistently

raise our measure of total welfare, appropriating between one half and two thirds

of the available welfare improvement over majority voting. In the parametriza-

tions we implement, quadratic voting is more sensitive to minority preferences

than storable votes: it induces more minority victories and appropriates a larger

share of the surplus. Such sensitivity however comes at a cost: inefficient mi-

nority victories are more frequent too. If blunting the sensitivity of quadratic
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voting to minority preferences is desirable, this can be achieved by adding to the

scheme a set of regular votes, one to be cast in each election, as in the storable

votes design. The result is a smaller frequency of minority victories, and in our

data, on balance, a negligible impact on efficiency.

In detail in the text and briefly here, we have described the impact of storable

votes and quadratic voting on aggregate welfare. A second possible dimension

of analysis, however, is the impact of the voting systems on ex post inequality,

measured as inequality in realized utilities, or satisfied preferences weighted by

declared intensity. A particularly strong motivation for voting schemes that al-

low minority victories is the possibility of systematic minorities—groups that are

regularly confined to the losing side of most public decisions. Majority voting

effectively disenfranchises systematic minorities, a state of affairs that can not

only damage efficiency but radically limit the meaning of democracy.16 (Check

fn) In our experiment, such a concern is measurable: if individual preferences

are correlated across initiatives, majority voting will lead to inequality in the

distribution of realized utilities. Voting schemes that allow for occasional mi-

nority victories are predicted to reduce such ex post inequality. We report our

results in the online appendix, and indeed this is what we find. Both storable

votes and quadratic voting consistently lead to declines [numbers!] in the Gini

coefficient measured on the distribution of ex post utilities. The decline corre-

lates with the frequency of minority victories, and thus is larger for quadratic

voting, relative to storable votes, while similar for storable votes and quadratic

voting with regular votes.

On the whole, the voting systems we have tested perform well, even very

well, better than we had grounds to expect. But two related questions remain.

The first is the cost of making the voting rule more complex, and thus less

transparent. Our subjects on the whole did well, and surprisingly acted more

consistently with the more complicated quadratic voting scheme than with stor-

able votes. (We did implement a very streamlined version of quadratic voting

and spent effort and time in making it clear.) But are voters more widely ready

to trust new voting rules? And are we ready to trust that such rules will be

used correctly? Second, and related, majority voting worked very well in both

of our samples, appropriating more than 96% of full efficiency in the storable

votes sample, and more than 99% in the quadratic voting sample. The fact that

both storable votes and quadratic voting still outperformed majority voting is

16 Indeed, doubts about the legitimacy of democracy typically arise from the failure of rep-

resentation of systematic minorities (see for example, Dahl xxx)
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impressive. But, at such high realized efficiency, the need for new voting sys-

tems, clever, well-meaning, and effective, but also less transparent, less tested,

and most probably less trusted is not self-evident. How much weight should be

given to the established legitimacy of majority voting?
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6 Online Appendix

6.1 Theory

6.1.1 Storable Votes

We summarize here the main results of Casella and Gelman (2008) (CG), to

which we refer the reader for details. As mentioned in the text, if voters are

endowed with multiple votes to distribute over multiple proposals, in a large elec-

torate with independent values, the optimal strategy is to cumulate all votes on

a single proposal (section 7.11 in CG). Thus in the case of referenda a simple de-

sign becomes desirable. Each voter is asked to cast one vote in each referendum,

and in addition is given one extra bonus vote. It is natural to think of the bonus

vote as equivalent to a regular vote—and that is indeed the parametrization we

use in the experiment—but we can suppose, more generally, that the bonus vote

is worth  regular votes, with   0 and either an integer or the inverse of an

integer. The optimal value of  is part of the design of the mechanism.

A voter’s strategy is a mapping from the voter’s set of valuations to the

vote or votes cast on each referendum. The theoretical analysis in CG restricts

attention to symmetrical Bayesian equilibria in undominated strategies where,

conditional on their set of valuations, all voters select the same optimal strategy.

Because there can be no gain from voting against one’s preferences, in these

equilibria voters vote sincerely. The only decision is the referendum on which

to cast the bonus vote.

SV behaves well, in the precise sense that ex ante expected utility improves

over majority voting under multiple scenarios, as summarized by different as-

sumptions on the distributions of values over each referendum. CG show that

the result holds in the following environments. (1) If (v) =  (v) for all ,

where  (v) is a distribution with known median (the median can be 0, if the

distribution is symmetric, or differ from 0, if the distribution is asymmetric). (2)

If (v) 6= 0(v) if  6= 0, but (v) is symmetric around 0 for all  ∈ {1 }.
(3) If (v) = (v) for all , where (v) is symmetric around a random median

with expected value at 0.

With independent voters and large  , assumptions about the shape of the

distributions (v) have immediate implications about the results of the ref-

erenda. In particular, assuming specific medians for the distributions (v)

amounts to assuming that a random voter’s probability of approval of each ref-

erendum is effectively known ex ante. It is then possible to predict the majority
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voting outcome with accuracy that converges to 1 as  becomes large. The lit-

erature has remarked that allowing for a random median, as in environment (3)

above, seems a better assumption.17 We report here in more detail the results

that refer to that case.

Suppose that ex ante each voter  has a probability  of being in favor of

proposal  (v  0), and 1− of being against (v  0). The probability 

is distributed according to some distribution  defined over the support [0 1]

and symmetric around 12: the probability of approval is uncertain and there

is no expected bias in favor or against the referendum.18 Each realized  is an

independent draw from .

Recall that |v| ≡  is ’s intensity over proposal . To rule out system-

atic expected biases in intensities, both within and across proposals, assume

that, regardless of the direction of preferences, the distribution of intensities is

described by (), defined over support [0 1], with () = () for all .

We want to evaluate the welfare impact of the bonus vote, relative to a

scenario with simple majority voting. We construct the measure:

 ≡  − 

 −
(1)

where the subscript  denotes the stochastic probability of approval in each

referendum,  is a voter’s ex ante expected utility under majority voting,

 is a floor, given by expected utility under random decision making (when

any proposal passes with probability 1/2), and  is ex ante expected utility

under SV.19

17See for example Good and Mayer (1975), Margolis (1977) and Chamberlain and Roth-

schild (1981). Gelman, Katz and Tuerlinckx (2002) discuss the implications of a number of

alternative models.
18Ruling out expected biases in voters’ preferences is likely to be the correct empirical

assumption because legislatures defer to the popular vote predominantly those measures whose

popularity is difficult to predict (Matsusaka, 1992).
19 If we denote by  the expected intensity over any proposal, and by () the expected

th order statistic among each individual’s  intensities, we have:

 = 2

 = 

 = () +

−1
=1

()

where  is the ex ante probability of a desired outcome in any referendum under majority

voting, and  and  are the corresponding probabilities under SV when casting and when

not casting the bonus vote. The challenge is characterizing these probabilities in the assumed

stochastic environment (i.e. given the properties of the value distributions).
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CG show that in equilibrium voters cast their bonus vote in the referendum

to which they attach the highest intensity. It is then possible to derive:

 =
() + ()

()( + )
(2)

It follows that   1 for all   0, for all distributions () and (), and

for all   1.

By using the bonus vote to give weight to the intensity of their preferences,

voters’ actions work towards increasing the probability of achieving their pre-

ferred outcome in the referendum they consider their highest priority, at the

cost of some reduced influence over the resolution of the other proposals. The

result is an increase in expected welfare.

The conclusion, with some minor qualifications, holds in the different envi-

ronments listed earlier.

6.1.2 Quadratic Voting

As described in the text, QV is an auction-type mechanism designed for a large

population faced with a single binary proposal (Goeree and Zhang (2017), Lal-

ley and Weyl (2018)). Each voter is endowed with a numeraire and bids for

the direction in which the proposal is decided. The winning side is the one

with the larger total bid. The important innovation is that each voter’s bid is

proportional to the square root of the numeraire the voter commits. Goeree

and Zhang, and Lalley and Weyl show that if values are independent across

voters and the distribution  is common knowledge, the equilibrium strategy

for almost all voters is to bid an amount proportional to one’s valuation. It

then follows that the decision must be efficient in utilitarian terms: it mirrors

the preferences of the side with higher total valuation.20

The model relies on the use of the numeraire, valuable in the private market,

and the absence of credit constraints. However, Posner and Weyl (2015) first

suggested that the numeraire could be substituted by an "artificial currency"

whose value derives from being the bidding currency over multiple binary pro-

posals. In this formulation, QV becomes equivalent to SV, but with a square

root rule translating the artificial currency budget into bids (or votes) over each

20 If  is symmetric, bidding in proprtion to one’s values is the unique equilibrium strategies

for all voters. If  is not symmetric, the characterization of the equilibrium is more delicate,

and bids in the tails of distribution need not be proportional to values. Nevertheless the

efficiency results continues to hold (Lalley and Weyl, 2018).
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proposal.

The theoretical extension to this case has not been worked out and is likely

to be complex. Still, under some approximation its intuition is simply captured

by the following model, suggested to us by Glen Weyl.

There are   1 independent binary proposals; each voter is endowed with

a budget of "voices" , for simplicity set equal to 1 and fully divisible. Voices

are allocated across proposals and are transformed into a number of votes on

each proposal equal to the square root of the dedicated voices. Note that votes

too are fully divisible. If  denotes the votes cast on proposal  by voter , and

 the corresponding voices, then  =
√
, or

P
=1()

2 =
P

=1  = 1.

Each voter  faces the constrained maximization problem:

{}2
X
=1

() subject to

X
=1

()
2 = 1

where 2 is a normalizing constant and () is the probability that proposal

 is decided as  prefers when casting  votes. Voters use weakly undominated

strategies and thus vote sincerely over each proposal.

Suppose now that the marginal impact of any additional vote is constant for

any number of votes cast:
()


≡  (3)

Then for each proposal , the first order conditions yield:

 =




where  is the Lagrange multiplier linked to the budget constraint. Substituting

the budget constraint
P

=1()
2 = 1, we obtain:




=

s
1P

=1()
2

and thus:

 =
1qP

=1()
2

 (4)

Equation 4 says that the optimal number of votes cast on each referendum

equals the voter’s value, normalized by the Euclidean norm of the voter’s values

across all proposals.
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With a welfare criterion depending on cardinal measures of utility, values

need to be normalized to prevent arbitrary scaling from affecting welfare con-

siderations. In the experiment, values are normalized by constraining each in-

dividual’s values over the four initiatives to sum up to the same total of 100

points, a constraint equivalent to dividing each value by the sum of the indi-

vidual’s total values. That is, in the experiment, the relevant component of the

welfare criterion is 
P

=1(). But other normalizations are plausible too,

including normalizing by the Euclidean norm of the voter’s values. If the rel-

evant welfare component is 

qP
=1()

2, equation 4 immediately delivers

utilitarian efficiency: because the number of votes cast in each proposal equals

the voter’s (normalized) value, each proposal is won by the side with larger total

(normalized) values. Relative to the linear normalization, normalizing by the

norm discounts extreme values. The experiment pre-dated the model and, by

using a different normalization, does not capture its intuition exactly.

The model relies on two approximations. First, voices and votes are assumed

to be fully divisible. Theoretically, the assumption simplifies the analysis by

avoiding the complications caused by discrete vote distributions. In practice,

it suggests giving voters a large number of voices. Experiments, on the other

hand, routinely suggest that subjects have difficulties making decisions when the

set of options is large. In our experimental implementation, we take a different

route and simplify the subjects’ problem by limiting the number of options.

The second approximation is more substantive and is the assumption of

constant marginal impact of additional votes, the simplification embodied in

equation 3 above. Theoretically the simplification is strong and unlikely to

hold in general. The practical question is how large the deviation is and how

is it reflected in voters’ actual choices. As long as voters believe that votes

have constant marginal impact, the characterization of their behavior follows

correctly.

6.2 Experimental data

6.2.1 Cleaning procedures

In designing the survey, we added an attention check to both samples. The

check took the form of a fictitious fifth initiative, titled the "Effective Workers

Initiative", whose accompanying text asked the reader not to hit any of the

three "For", "Against" and "Abstain" buttons and continue directly to the

next screen. The order of this fifth "initiative" was random.
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Before analyzing the data, we excluded all subjects who either did not con-

clude the survey, or failed the attention check. In addition, we excluded subjects

in the QV sample who chose the red vote and cast it on an initiative on which

they abstained—these subjects effectively abstained on all initiatives under the

QV scheme, and left us no alternative. We also excluded all subjects in the

SV sample who cast the bonus vote on an initiative on which they abstained—a

behavior that may correspond to rejecting the use of the bonus vote, in principle

a plausible choice, but seems more likely to denote confusion or lack of interest,

as in the QV sample. (Results are effectively unchanged if we maintain these

subjects in the sample). These exclusions reduced the two samples to 306 (from

324) subjects for SV, and 313 (from 323) for QV.

In both samples, we set to zero the number of points assigned by a subject

to an initiative on which the subject abstained (again note that we have no

alternative since we do not know the direction of the subject’s preferences on

such an initiative). Finally, we set to +1 (or -1) the points attached to a proposal

on which a subject voted in favor (or against) but to which the subject assigned

zero points. Out of 100 total points, this very minor adjustment allows us to

to give at least minimal weight to the direction of preferences expressed by the

subject.

6.2.2 Subjects’ preferences

Subjects’ preferences are summarized in histograms reporting the number of

respondents assigning to an initiative different number of points. Points are

coded as negative values when the subject voted against the proposal, and as

positive values when the subject voted in favor, with bins of size 10 (0, colored

light blue in the figures, corresponds to abstentions). Figure 4 below reports

the histograms relative to the IM initiative for the two samples, expressed in

number of subjects. It says, for example, that in the SV sample 38 respondents

assigned it between 1 and 10 points and voted against it, while 27 assigned to

the initiative equally low points but voted in favor (the corresponding numbers

for QV are 29 and 20).
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Subjects: +125 / ‐129 / abs. 52
Points: +4340 / ‐3468

Subjects: +130 / ‐136 / abs. 47
Points: +4137 / ‐4269

Figure 4: Distribution of preferences: the IM initiative

The figure also reports, in each sample, the total number of subjects for and

against, the abstentions, and the total number of points, for and against (bold

indicates the larger number).

Figures 5, 6, and 7 report the histograms for the other initiatives.

Subjects: +146 / ‐134 / abs. 26
Points: +4350 / ‐2836

Subjects: +159 / ‐139 / abs. 15
Points: +4345 / ‐2776

Figure 5: Distribution of preferences: the BE initiative.
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Subjects: +162 / ‐102 / abs. 49
Points: +4464 / ‐2008

Subjects: +139 / ‐114 / abs. 53
Points: +3779 / ‐2694

Figure 6: Distribution of preferences: the PB initiative.

Subjects: +112 / ‐176 / abs. 25
Points: +2969 / ‐4391

Subjects: +126 / ‐155 / abs. 25
Points: +3129 / ‐4061

Figure 7: Distribution of preferences: the TT initiative.

6.2.3 The SV voting choice

In general, the optimal selection of the initiative on which to cast one’s bonus

vote is a complicated problem. If there are asymmetries among the initiatives—if
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some are expected to be more salient than others, or the vote is expected to

be closer—then considerations other than intensity of preferences should influ-

ence voting choices.21 On the other hand, if voters are not well-informed, or

unable or unwilling to compute equilibria, a plausible rule-of-thumb is to treat

all initiatives equally and cast the bonus vote on the proposal on which one’s

preferences are most intense. The approximation is analogous to the posited

behavior under QV. Figure 8 shows, for each of the four initiatives, a measure

of the relative intensity of preferences for all voters who cast their bonus vote

on that initiative. The vertical axis is the number of points assigned to the

initiative; the horizontal axis is the maximum number of points assigned to any

other.22

SV – IM  (N=97) SV – BE  (N=76)

SV – PB  (N=61) SV – TT  (N=72)

Figure 8: The Bonus Vote Decision.

21 See Casella and Gelman (2008). The decision of where to cast the bonus vote reflects the

probability of pivotality, which is higher in close elections and, all else equal, smaller in salient

elections.
22A few subjects cast the bonus vote on an initiative to which they had not assigned any

point. As described earlier, if they had voted on such initiative they are recoded as assigning

+/- 1 point, depending on the direction of preferences.
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If all voters had cast their bonus vote on the initiative to which they assigned

the highest number of points, all dots in each panel would be above the 45 degree

line. In total, three fourth of all subjects (74%) did so. Across initiatives, the

differences are small, although the two education initiatives see a smaller fraction

of bonus votes coming from highest priority voters (68% for TT and 71% for

BE), relative to the other two initiatives (77% for IM and 78% for PB).

The salience of the IM initiative is supported by the high number of bonus

votes (97, v/s 76 for BE, 61 for PB and 72 for TT) . As noted in the text, when

accounting for bonus votes the margin of victory for opponents of the initiative

increases, although IM supporters report higher average and total intensity.

The result reflects two sources of asymmetry. Among those who identify the

IM initiative as their first priority and yet do not target it with their bonus

vote, more than twice are supporters rather than opponents; among those who

cast their bonus vote on Immigration and yet do not identify it as their priority,

more than twice are opponents rather than supporters23 .

6.2.4 The QV voting choices

Under QV, voters need to make two choices: the class of votes, and, given the

class, the initiatives on which the votes are cast. Figure 9 reports the frequencies

with which subjects chose the different classes.

0.4

0.35

0.16

0.09

0

0.1

0.2

0.3

0.4

0.5

R Y G B

QV: observed fraction of vote classes

Figure 9: Frequency of vote classes. QV sample.

23 23 subjects identify the IM initiative as their highest intensity proposal and yet cast their

bonus vote elsewhere; of these 23, 16 are supporters and 7 are opponents. 97 subjects cast

their bonus vote on IM, but 20 of these assign to it a strictly lower number of points than to

some other initiative; of these 20, 14 are opponents and 6 are supporters.
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As the figure shows, even with the convex penalty from cumulating voting

power, a full 40% of subjects chose the red vote, and thus cast their vote on a

single initiative; less than 10% cast votes on all four initiatives. As described

in detail below, we calculated the shares of the different vote classes subjects

would have chosen had they followed the theoretical model skectched earlier.

We find: Red=0.24, Yellow=0.35, Green=0.28, and Blue=0.13—relative to the

theory, subjects chose the red vote too often.24

Figure 10 reports, for all subjects who cast a vote on the relevant initiative,

the number of points assigned (on the vertical axis) as well as the maximum

number of points assigned to any other initiatives. Each dot is a voter, and the

color of the dot matches the chosen class of votes. Thus red dots denote voters

who only voted on that initiative, and for whom we expect that the assigned

number of points be higher than for any other initiative. For the most part,

indeed, red dots are above the 45 degree line. The salience of the IM initiative

is reflected by several features of subjects’ vote choices: IM received the highest

total number of votes among all initiatives (97 v/s 76 for BE, 61 for PB and 72

for TT), as well as the highest number of red votes (45 v/s 19 for BE, 26 for

PB and 34 for TT); looking at red votes across all initiatives, those cast on IM

correspond to higher average points (54.9 v/s 46.4 for BE, 50.4 for PB and 46.2

for TT)

24These numbers are derived applying rule (C), described in section 6.3.1 below, to the QV

sample.
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QV – IM  (N=178) QV – BE  (N=153)

QV – PB  (N=120) QV – TT  (N=156)

Figure 10: The QV Vote Allocation.

6.3 Bootstrap Simulations

6.3.1 The four rules-of-thumb

SV. Rule (A) replicates the individual’s choice in the original MTurk sample

and needs no further description.

Rule (B) is obtained by replicating the best-fit frequencies of reasonable but

exogenously given behaviors estimated from the original samples. For SV, we

conjecture the following alternative criteria: casting the bonus vote on the high-

est value initiative (with probability ); or on the one with closest outcome

(IM) (); or on the most familiar (either BE or TT, the two education ini-

tiatives, with equal probability) (); or randomly, with equal probability on

all initiatives ().
25 Thus, for example, in terms of our criteria the choice

of a respondent who attributed maximal points to the IM initiative and cast

on it the bonus vote has probability  + + (14). Each choice

25Casella et al. (2010) propose a similar descriptive model.
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observed in the data, matched with the individual’s reported valuations, can

be expressed as function of the four probabilities. Assuming that respondent’s

choices are independent, the likelihood of observing the data is then the prod-

uct of the probabilities of the individual choices. We estimated the underlying

probabilities by MLE and report them in Table 6.3.1. By construction, the

estimated probabilities are better understood as population frequencies of the

four behavioral criteria.

95% CI

 0.63 [0.56, 0.76]

 0.04 [0, 0.14]

 0.09 [0.04, 0.21]

 0.23 [0.15, 0.37]

Table

SV: MLE estimates of the statistical model. The confidence intervals are

obtained by bootstrapping. They are derived from the distribution of the

estimated probabilities in 10,000 simulations

In the SV simulations, we implement rule B by having each drawn subject

cast the bonus vote according to the probabilities in Table 6.3.1, given the

subject’s allocation of points.26

Rule (C) is the normative reference in a simplified scenario in which voters

believe that the marginal impact of their votes is equal over all initiatives. With

SV, as noted in the text, this implies casting the bonus vote on the highest value

initiative.

Finally under rule (D) each individual casts the bonus vote on the highest

value initiative (as under (C)) with probability 1/2, and on any of the four

initiatives with equal probability otherwise.

QV. Again, rule (A) replicates the individual’s choice in the original MTurk

sample.

Under QV, rule (B) posits that behavior is shaped by intensity of preferences

only, and the thresholds determining the choice of vote class are estimated from

26Note that the model does not allow for asymmetries based on the direction of voters’

preferences. This is why rule B typically outperforms rule A, in welfare terms: although

based on the same data, it induces similar behavior for supporters and opponents of any

initiative, and of the IM initiative in particular.
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the MTurk sample. Denoting by () the voter’s th highest value, we conjec-

ture that behavior can be summarized by three parameters {  }: the voter
chooses the single red vote if (4)(3) ≥ , the two yellow votes if (4)(3)  

but (3)(2) ≥ , the three green votes if (4)(3)  , (3)(2)  , but

(2)(1) ≥ , and the four blue votes otherwise; given a vote class, all votes are

cast on the highest intensity initiatives. We estimate {  } so as to minimize
the number of misclassified individuals. A grid search (varying each parameter

between 1 and 3, in intervals of 0.05) yields:  = 125;  = 105;  = 1.

Under rule (C), as noted, voters act optimally under the belief that the

marginal impact of their votes is constant. As shown in section 6.1.2, assum-

ing constant marginal pivot probabilities, the optimal number of votes under

QV is proportional to the voter’s value, or  = . The budget constraintP
=1()

2 = 4 then implies  = 2, where  is the Euclidean norm of the

voters’ values, or  =

qP
=1()

2. Under QV, rule (C) attributes to each

subject a vote class by selecting the vector, out of {2 0 0 0} {15 15 0 0} {12 12 12 0} {1 1 1 1 }
that minimizes the distance from

©
2(4) 2(3) 2(2) 2(1)

ª
.

Finally, rule (D) leaves a larger role to randomness. Under rule (D) each

voter behaves according to rule (C) with probability 1/2, and randomly other-

wise. With SV, that corresponds to casting the bonus vote on the highest value

initiative with probability 1/2, and on any of the four initiatives with probabil-

ity 1/8. With QV, it means choosing the vote class according to rule (C) with

probability 1/2, and choosing any of the four classes with probability 1/8 each.

Given a vote class, under (D) and QV, the voter casts the available votes on the

initiatives with highest values with probability 1/2, and randomly, treating all

initiatives equally, otherwise.

6.3.2 Experimental results: Differences across initiatives

Because both SV and QV constrain the use of the votes across initiatives, each

bootstrapped sample corresponds to an outcome for all four initiatives. The

discussion in the text focuses on the frequency of samples in which at least

one minority victory is observed, without distinguishing among initiatives. Yet

there are large differences across initiatives. As the preference histograms above

show, the potential for minority victories is largest in IM and BE, while SV and

QV have little effect on the other two initiatives. There are also differences

across the two voting systems in their impact on individual initiatives, and

in particular on the IM initiative: comparing SV and QV (recalibrated), the
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frequency of minority victories in the IM initiative is about double under QV.

Figures ??-11 below report the results.
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SV. Frequency of minority victories by initiative

Minority victories by initiative. SV simulations. Frequency of minority

victories obtained by SV in 10,000 simulations constructed by bootstrapping

the SV sample, distinguishing between efficient (solid color) and inefficient

(shaded color) ones. The efficient frequency of minority victories by initiative

is: 0.52 (IM), 0.24 (BE), 0.05 (PB), and 0.04 (TT).
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QV.  Frequency of minority victories by initiative
No recalibration

Minority victories by initiative. QV simulations. Frequency of minority

victories obtained by QV in 10,000 simulations constructed by bootstrapping

the QV sample, distinguishing between efficient (solid color) and inefficient

(shaded color) ones. The efficient frequency of minority victories by initiative

is: 0.18 (IM), 0.12 (BE), 0 (PB), and 0.002 (TT).

39



0

0.05

0.1

0.15

0.2

0.25

IM BE PB TT

Rule A

non efficient

efficient

0

0.05

0.1

0.15

0.2

0.25

IM BE PB TT

Rule B

0

0.05

0.1

0.15

0.2

0.25

IM BE PB TT

Rule C

0

0.05

0.1

0.15

0.2

0.25

IM BE PB TT

Rule D

QVV.  Frequency of minority victories by initiative
No recalibration

Minority victories by initiative. QVV simulations. Frequency of minority

victories obtained by QVV in 10,000 simulations constructed by bootstrapping

the QV sample, distinguishing between efficient (solid color) and inefficient

(shaded color) ones. The efficient frequency of minority victories is reported in

the caption of Fgure ??.
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QV.  Frequency of minority victories by initiative
Recalibrated samples

Minority victories by initiative. QV simulations on recalibrated sample.

Frequency of minority victories obtained by QV in 10,000 simulations

constructed by bootstrapping the QV sample recalibrated on SV IM

preferences, distinguishing between efficient (solid color) and inefficient

(shaded color) ones. The efficient frequency of minority victories by initiative

in the recalibrated sample is: 0.51 (IM), 0.16 (BE), 0 (PB), and 0.001 (TT).

Note the difference in scale relative to the preceeding figures.
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Recalibrated samples

Figure 11: Minority victories by initiative. QVV simulations on recalibrated

sample. Frequency of minority victories obtained by QVV in 10,000 simulations

constructed by bootstrapping the QV sample recalibrated on SV IM preferences,

distinguishing between efficient (solid color) and inefficient (shaded color) ones.

The efficient frequency of minority victories by initiative is reported in the cap-

tion of Figure ??. Again, note the difference in scale.
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6.3.3 QVV and recalibrated samples. Comparisons to QV and to

SV.
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SV, QV and QVV comparisons; 10,000 simulations. The QV and QVV

simulations are based on recalibrated samples.

6.4 Inequality
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