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Abstract

According to the theory of mechanism design, the presence of a mediator can strictly improve

the chances for peace between two contestants. What is striking is that the result follows even

when the mediator is less informed than the two parties and has no enforcement power. We test

the theory in a lab experiment where two subjects negotiate how to share a resource. In case of

conflict, the subjects’ privately known strength determines their payoff. The subjects send cheap

talk messages about their strength to one another (in the treatment with direct communication)

or to the mediator (in the mediation treatment), before making their demands or receiving the

mediator’s recommendations. We find that, in line with the theory, messages are significantly

more sincere when sent to the mediator. However, contrary to the theory, peaceful resolution is

not more frequent, even when the mediator is a computer implementing the optimal mediation

program. While the theoretical result refers to the best (i.e. most peaceful) equilibrium under

mediation, multiple equilibria exist, and the best equilibrium is particularly vulnerable to small

deviations from full truthfulness. Subiects are not erratic and their deviations induce only small

losses in payoff, but translate into significant increases in conflict.

1 Introduction

Consider two parties fighting over a contested resource. Can an impartial third party help resolve

conflict? Probably, if that party can distribute additional resources to the warring factions, or if

it has superior information about their preferences and strengths, and enforcement power to lend

teeth to its recommendations. But if that is not the case? From family disputes to labor relations

to international conflict, mediation continues to attract sustained and indeed increasing attention,

from psychologists, lawyers and judges, international organizations, and corporate agents specializing

in its craft.1 Concentrating attention to international conflict, widely quoted surveys conclude, for
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example, that "half of all interstate wars and one third of all international crises since World War

I have involved mediation" (Beardsley, 2011, p.3); in international crises, the recourse to mediation

increases to almost two thirds in 1990-96 (Wilkenfeld et al. 2003, p 286). There can be many reasons

for mediation’s potential usefulness. But with self-interested and rational parties, in the absence of

transfers, information, or power, through which mechanism can we hope for mediation to be helpful?

The surprising answer, proposed by Myerson in a particularly beautiful application of mechanism

design, is that indeed, under these constraints, mediation can still increase the chances of peace

(Myerson, 1991, ch.6). The essence is the confidentiality of the communication between the contestants

and the mediator. It is possible for the mediator to induce the parties to the dispute to reveal their

actual strength, and yet issue recommendations that leave them uncertain about the strength of their

opponent, and thus willing, because of this uncertainty, to accept the recommendation rather than

engage in open conflict. The final result is a higher frequency of peaceful resolutions than the two

sides can obtain by communicating directly, a higher frequency fully engineered by the mediator’s

subtle modulation of incentives in the recommendations issued. As Myerson phrases it, the key is the

obfuscation the mediator can employ—the possibility of not fully revealing the opponent’s message—

obfuscation that the parties cannot achieve by direct communication.

Myerson’s insight is exploited by Hörner, Morelli and Squintani (2015) in an elegant model that

confirms the superior role of mediation, relative to the best equilibrium under direct communication.2

Narrowly defined, the present paper presents an experimental test of Hörner et al’s model. More

broadly, it studies the robustness of optimal mechanisms to multiple equilibria and noise.

The set-up is simple. Two subjects negotiate how to share a resource. In case of conflict, the

subjects’ privately known strength determines their payoffs. The subjects send cheap talk messages

about their strength either to one another, in the direct communication treatment, or to the mediator,

in the mediation treatment, before making their demands or receiving the mediator’s recommended

allocation. The mediator is a neutral third party whose goal is to maximize the probability of a

peaceful resolution, but who has no information about the opponents’ levels of strength (beyond a

common prior) and no enforcement power. Upon seeing the subjects’ messages, the mediator can issue

a recommendation or refuse to mediate. Peace prevails if the mediator accepts to mediate and if the

recommendation is individually accepted by both subjects. In line with Myerson’s lesson, Hörner et

2Hörner et al. reach a particularly strong result: in their model a mediator with no enforcement power is just as

effective in avoiding conflict as an arbitrator who can force the two factions to accept the arbitration resolutions (but

cannot force them to enter into the arbitration process).
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al. show that if the mediator can commit to refuse mediation under some conditions, then the ex ante

probability of peace can be strictly higher, for some parameter values, than what the two opponents

can achieve without a third party.

The streamlined game lends itself well to experimental testing. We take it to the lab, with minimal

departures from the theoretical model. At the center of our experiment is the comparison between a

treatment with direct communication and a mediation treatment where the mediator is a computer,

known to enact the theoretical optimal mediation mechanism identified by Hörner et al..3 We find that

mediation does indeed increase sincerity, something that theory predicts in our setting: in particular,

the possibility to send confidential messages is associated with higher willingness to admit weakness.

However, mediation does not increase the frequency of peace.

We find that there are several reasons. First, keeping constant the mediation program, there is a

multiplicity of equilibria which vary greatly both in the messages’ truthfulness and in the frequency

of peace. This is a well-known problem in mechanism design,4 and not too surprisingly the lab makes

it salient. Second, and more closely tied to the specific mechanism studied here, when the equilibrium

with highest peace requires obfuscation, the locus of equilibria is discontinuous in the probability of

peace in the neighborhood of full truthfulness. Any deviation from full truthfulness, no matter how

small, must trigger non-compliance with the mediator’s recommendations and a discrete upward jump

in the probability of conflict. The fragility of obfuscation matters because according to the theory it

is exactly the possibility of obfuscation that makes mediation superior to direct negotiations. In the

data, the extent of non-compliance is less than the equilibrium analysis predicts, but is large enough

to make the frequency of peace under mediation and under direct communication fully comparable.

However, the fragility of obfuscation is not the only source of our experimental results. There

is no discontinuity in the absence of obfuscation, and yet in our data when the optimal mediation

program does not involve obfuscation, the frequency of peace is comparable to that achieved with

direct communication. Again, part of the reason can be found in the multiplicity of equilibria, given

the mediation program, but we also see experimental subjects deviating from equilibria. And still,

even with such a complex game, subjects’ decisions are not erratic. For both messages and acceptance

strategies we very strongly reject the hypothesis that subjects act randomly. In the lab, observed

actions are not always best responses to the choices of others, but the deviations come consistently

3The optimal mechanism—the precise mapping from the pair of messages received and the mediator’s

recommendations—is publicly announced and known to the experimental subjects.
4 See, for example, Palfrey (1990).

3



with small payoff effects. This is true for all subjects, but the intentionality of the choices is particularly

clear for subjects of lesser strength: two thirds of such subjects suffer losses of not more than 5 percent;

if subjects played randomly, the fraction suffering such small losses would be between one tenth and one

fifth, depending on treatment. This then is the third reason we see for our results. Optimal mediation

is fragile not only because of multiple equilibria, not only because of the instability of obfuscation

to small deviations from full truthfulness, but more broadly because a large set of strategies induces

both small individual losses and high conflict.

Our study can be read under two alternative perspectives. It is an analysis of the effectiveness of

mediation, and thus contributes to the literature on mechanisms for bargaining and dispute resolution.

Economic theorists continue to debate the extent to which the form of mediation we study in this

paper—without superior information, transfers, or enforcement power—can improve outcomes in two-

player conflict relative to direct communication. Not surprisingly, the answer is sensitive to the details

of the game: how long the direct communication can last; whether it is only verbal or can take other

forms; whether, after the communication stage, the bargaining is one-shot or dynamic; whether the

asymmetry of information is one or two-sided.5 From an applied perspective, the mediator’s lack of

enforcement power makes the model particularly well-suited to conflict between sovereign states. Even

with this specific application in mind, the theoretical result is very sensitive to the precise assumptions:

in a model very similar to Hörner et al., Fey and Ramsay (2010) find that mediation cannot improve

over direct communication if the asymmetry of information concerns a private value—the cost of going

to war—as opposed to an interdependent value as in Hörner et al.—the strength of each party, and

hence the probability of victory in case of conflict. We follow Hörner et al. but in the lab simplify the

direct communication protocol to a one-round exchange of cheap talk messages, without the support

of any correlation device. Although the theoretical superiority of mediation becomes less surprising,

the discrepancy between such theoretical superiority and the empirical performance we see in the lab

delivers a sharper, if negative, result.6

Our paper can also be approached by a second direction, opening the road to more constructive

5For seminal papers on the question, see Forges (1986) and Aumann and Hart (2003). The limits of verbal v/s richer

communication are discussed in Forges (1990) and Krishna (2007); Fanning (2019) summarizes the current state of the

art on mediation in dynamic bargaining; Goltsman et al. (2009) study the same questions asked by Hörner et al. in a

sender-receiver model where the asymmetry of information is one-sided.
6 In Political Science, the theoretical literature on mediation in international conflicts usually grants the mediator

more tools than confidentiality alone. Typically the mediator has access to independent information, as opposed to

having to elicit it from the parties; often the question concerns whether such information can be conveyed accurately

and believed, when the mediator is more or less biased towards one of the parties or towards peace (Kidd, 2003; Kidd,

2006, Rauchhaus, 2006; Smith and Stam, 2003).
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suggestions. To the best of our knowledge, most existing experiments on mediation simulate historical

world crises and observe the impact of a mediator, trained to follow different protocols (see for example

Wilkenfeld et al., 2003). A noticeable exception is the recent work by Blume et al. (2019) who

compare mediation and direct communication in a sender-receiver game with one-sided asymmetric

information.7 Our work focuses on conflict mediation with two-sided asymmetric information, as in

classic experiments in political science, but, like Blume et al., follows closely the methodology of game

theory experiments, with a simple but very precise abstract model, a fully controlled environment, and

a detailed formal theory that pins down the expected effects of the different treatments. It belongs

to the tradition of experiments in mechanism design, a tradition with a succesful record of melding

theory and practice. Where mechanism design has been particularly influential (in planning matching

mechanisms, for example, or designing spectrum auctions), the theory has been complemented by

experimental studies that have tested and fine-tuned the final format: "The lab as a "wind-tunnel"

for mechanisms", as phrased by Chen and Ledyard (2006).8 In this perspective, our study reaches two

main conclusions. First, we find that the theoretical properties of optimal mediation are weakened

by the multiplicity of equilibria. Scholars interested in applications would benefit from engineering

a reduction in the number of equilibria. In our data, some experimental sessions deliver equilibrium

outcomes, but nevertheless fall short of the frequency of peace that corresponds to the best equilibrium,

i.e. the equilibrium with maximal peace. The problem is different, but the lesson is similar to

the results of Cason et al. (2006), highlighting, as we do, the potential of multiple equilibria to

hamper implementation of a desirable social choice. Second, theoretical predictions on outcomes must

be robust to small noise in behavior. This is where the fragility of the mediation mechanism we

observe in the lab becomes problematic. Again the problem is different but the broad question as

well as the conclusion echo Aghion et al. (2018), confronting subgame perfect implementation with

behavioral biases in the lab. The observation can matter for applications. For example, Meirowitz et

al. (2019), again working with the Hörner et al. model, single out exactly the mediation mechanism

with obfuscation as being the one dispute resolution institution that would not lead to increased

7Blume et al. (2019) find that while there are some deviations from equilibrium that prevent the full gains from

mediation, mediation does increase truthful revelation and leads to moderate payoff improvements. Schroeter and

Vyrastekova (2003) test whether agreement is encouraged or delayed by information on the opponent’s payoff. There

is no mediator in the experiment, but in one treatment subjects can agree to make all payoffs mutually known (which

the authors identify as agreeing to mediation).
8For FCC auctions, see, for example, Banks et al., 2003, and Brunner et al., 2010; Milgrom, 2004, offers a thrilling

account of the collaboration between theorists, FCC officers, and experimentalists in fine-tuning the first spectrum

auction in July 1994 under severe time constraints. For matching mechanisms, see, among many others, Chen and

Somnez, 2006; Roth, 2002 and 2016. For other examples, see for example Attiyeh et al., 2000; Chen and Plott, 1996,

and Chen, 2008 for VCG mechanims for public good provision.
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militarization and eventually increased conflict. We observe in the lab that the mechanism with

obfuscation is particularly fragile, a fragility that calls for caution.

The paper proceeds as follows. The next section describes the model and its main theoretical

properties, comparing optimal mediation, direct communication, and mediation in the absence of

commitment power; Section 3 describes the experimental design; Section 4 reports the results; Section

5 discusses possible reasons why the optimal mediation mechanism is not more successful than direct

communication in averting conflict in the lab. Section 6 reports equilibria for the direct communication

treatment, as well as for the experimental treatment that implements mediation without commitment,

a "human mediator" treatment, where the mediator was played by a third subject. Finally, Section

7 concludes. Additional material, in particular but not exclusively the derivation of the theoretical

equilibria, is collected in two Appendices.

2 The Model

The mediation game we took to the lab follows closely the model in Hörner, Morelli and Squintani

(2015) (HMS), with a few modifications that streamline the experimental design. Two risk-neutral

players, 1 and 2, compete for a resource of size 1. Each player is of type  ∈ {}. Types are
drawn independently for the two players and are private information, but it is commonly known that

each player is of type  with probability , and of type  with probability 1− . If 1 and 2 agree on

sharing the resource peacefully, each receives the agreed share. If not, they go to war, the resource

shrinks to   1 and is divided according to the two players’ types: if the two players’ types are equal,

each receives 2; if one player is  and the other is ,  receives the full amount  and  receives

0. From an efficiency standpoint, distribution is irrelevant: maximizing ex ante efficiency corresponds

to maximizing the probability of peaceful resolution.

An equal split (12 12) is always preferable to conflict for an  type; in the absence of other

information, (12 12) is also acceptable to an  type if 12 ≥ (1 − ) + 2. To highlight the

role of information, HMS (and we) assume 12  (1− ) + 2, or   (2 − 1). In addition, we
constrain 2  1 −  to ensure that the  type prefers to fight rather than accepting the smaller

share when facing another  type.

The core of the analysis is the procedure through which the two players can reach an agreement.
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We consider two such procedures: unmediated (or direct) communication and mediation.9 In both

cases, the players take actions in two consecutive stages: a message stage, and an allocation stage.

Under unmediated communication, after learning one’s own type, at the message stage each player

sends to the other player a cheap talk message( ). The message can be blank, or report a type as the

player’s own, but the report need not be truthful. Using lower case letters to indicate reported types,

and  for the option to remain silent,  ∈ {  }. The two players send messages simultaneously.
After messages are sent and received, the game moves to the allocation stage. At this stage, the

two players, again moving simultaneously, express a demand (0  ), where 0 stands for the

opponent’s message. Demand may consist of the refusal to negotiate, or indicate the demanded share

of the resource. We constrain  to take one of four values:  ∈ {1 −  12  }, where  stands

for "walking out", as we phrase it in the lab. If neither player chooses  and the two demands are

compatible (1 + 2 ≤ 1), then each player receives what the player demanded, and peace prevails. If
either player chooses , or if 1+ 2  1, then no agreement is reached and war follows: the resource

shrinks to  and is divided according to the players’ types.10

Under mediation, a third party enters the game, the mediator, whose objective is to maximize

the probability of peace. The mediator shares the common prior  but has no information on the

realizations of the players’ types and has no enforcement power. At the message stage, each player

sends the mediator a confidential message, where, as before,  ∈ {  }. On the basis of the

messages received, the mediator recommends a division of the resource between the two players, or

alternatively refuses to mediate. Denoting by  the mediator’s recommendation, and indicating the

share recommended to player 1 and then to player 2, in order, we constrain (0) to one of the

following values  ∈ {{1−  } {12 12} { 1− } } where as before  stands for "walking out",
or the mediator’s refusal to mediate. If the mediator has made a recommendation, then, at the

allocation stage, each player has the option of accepting the recommendation or rejecting it. The

recommendation is implemented if both players accept it. If the mediator has refused to mediate, or

if either player rejects the recommendation, then war follows, the resource shrinks to  and is divided

according to the players’ types.

The mediator’s ability to commit to war by refusing to mediate is essential to inducing players to

be truthful in their messages. It is also key to the following result:

9HMS also consider arbitration, i.e. mediation with enforcement power.
10 If 1 + 2  1, a third agent acquires what is left of the resource. In the lab, it will be the experimenter.
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Proposition HMS. If (2−1)    (2−1), mediation can achieve a strictly higher probability
of peace than any equilibrium of the unmediated communication game.

By the revelation principle, the optimal mediation program must result in a weakly higher fre-

quency of peace than unmediated communication. But HMS’ result is stronger: for parameters in the

specified range, mediation can achieve a strictly higher probability.11

Under the optimal mediation program, there exists an equilibrium where all messages to the me-

diator reveal the player’s type sincerely, and all mediator’s recommendations are always accepted by

the players. The two binding constraints are ’s incentive compatibility constraint (’s incentive to

be truthful), and ’s ex post participation constraint (’s acceptance of the mediator’s recommen-

dation). The optimal mediation program has two crucial ingredients. First, the mediator refuses to

mediate with positive probability following an  message (thus keeping  sincere)—the mediator is

able to commit. Second, if   (2 − 1), the mediator’s optimal recommendation does not reveal the
opponent’s type (thus limiting ’s recourse to war when matched with an )—although all messages

are sincere, the opponent’s type is obfuscated.

The mediator’s ability to obfuscate explains the superiority of the optimal mediation equilibrium

relative to what can be achieved under unmediated communication, where the direct messages pre-

vent conditioning strategies on true types and yet having players uncertain about their opponent.12

Effective obfuscation however requires a sufficiently high frequency of  types, high enough that an

 player, uncertain about the type of the opponent, is still willing to accept an equal share of the

resource. The equilibrium with obfuscation cannot be sustained if   (2 − 1). And in the absence
of obfuscation, there exists an equilibrium of the direct communication game that replicates what

mediation can accomplish.

AS HMS show, the optimal equilibrium of the direct communication game is a correlated equi-

librium that exploits a publicly observed randomization device. In our experimental design, there

is no explicit public correlation device. In its absence, achieving the correlated equilibrium through

the randomization of individual messages is very difficult in principle13 , and, we believe, impossible

11Our adaption differs slightly from HMS’ original model because we allow for silence and constrain both demands

and the mediator’s recommendations to lie in a restricted set. However, Proposition HMS continues to hold in our set-up

because both under mediation and under direct communication the HMS equilibria remain optimal. Under mediation,

the option of remaining silent can be ignored (again by the revelation principle), and under both mediation and direct

communication, if the HMS equilibria are optimal in the absence of restrictions, they must be optimal over the smaller

set of programs that satisfy the restrictions.
12As noted in the Introduction, the superiority of mediation also depends on the interdependent nature of the variable

subject to private information (see Fey and Ramsay, 2010).
13Mixed strategy profiles cannot typically result in correlated randomness (Forges (1986)). HMS make the same
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in practice. Since lack of correlation is achievable in the HMS unmediated communication game but

is not part of the optimal program, the highest achievable frequency of peace must be weakly lower

when excluding correlated equilibria. For emphasis, we state this observation as a separate Remark:

Remark: In the uncorrelated equilibria of the unmediated communication game played in the lab,

the probability of peace must be weakly lower than in the optimal correlated equilibrium. Hence it must

be lower than in the optimal mediation equilibrium, and strictly lower if (2 − 1)    (2 − 1).

In addition to introducing coordination, the public correlation device exploited in the best corre-

lated equilibrium of the direct communication game induces war with a positive probability in response

to specific pairs of messages. The possibility of war plays a disciplining role in equilibrium that mimics

the commitment demanded from the mediator. In studying unmediated communication equilibria in

our experimental setting, we ignore correlated equilibria, but the subjects’ option to walk-out ( = )

can in principle introduce commitment to war and induce sincerity. For example, there always exists a

truthful equilibrium where all messages are sincere, all  types demand 12, and all  types walk-out.

In fact, as the next proposition shows, in the absence of correlation and for the range of  values that

are relevant for the experiment (2  1− ), full revelation in the unmediated communication game

can only occur in equilibria where the option to walk-out is chosen with positive probability.

We focus, in the proposition below as in the rest of our analysis, on equilibria that are symmetric

for players of given type. Then:

Proposition 1. Consider any uncorrelated equilibrium of the unmediated communication game

in which  =  is never played. Then at least one type of player must be lying with strictly positive

probability.

Proof. Suppose to the contrary that a fully revealing equilibrium exists where  =  is never

played. Consider the players’ demand strategies, conditional on their type and their opponent’s (fully

revealed) type. Consider first a player of type  facing an opponent of the same type. With 2  1−,
war against an opponent of the same type yields more than (1− ); hence demanding 1−  is strictly

dominated.14 Thus in any symmetric equilibrium with full revelation, in a match between two players

of equal type, either both demand 12, or both demand , or both mix between 12 and . Now

observation and document that, in the UC game, the optimal equilibria with mixed strategies at the message stage lead

to a probability of war that under some parameters must be strictly higher than in the optimal correlated equilibrium

with full truthfulness.
14The strategy is strictly dominated under the restriction that the opponent never plays  =  (otherwise, the player’s

own demand could be irrelevant). The strategy is always weakly dominated.
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consider a match between an  and an . In such a match, the  player can always guarantee itself

 by asking for it, and the pair of demands (, 1 − ) is the unique pair of mutual best responses.

Consider then an  who reveals her type truthfully. If matched with an , the highest possible realized

share is 12; if matched with an  it is (1 − ). But then an  type has an incentive to deviate:

declare type , be believed, and best respond to the opponent’s strategies. The  type masquerading

as an  can demand and obtain  against an  opponent, and at least (1−) against an  opponent.

The deviation is strictly profitable. Hence a fully revealing equilibrium cannot exist.¤

In the absence of repetition or commitment,  =  is always weakly dominated by  = , for any

type and for any message sent and received. In the lab, random rematching induces lack of repetition,

and in what follows we concentrate on uncorrelated, symmetric equilibria in weakly undominated

strategies, where  =  is never chosen. We refer to them in short as "equilibria".15

In the experiment, optimal mediation is implemented by a computer algorithm, but we also in-

vestigated a more exploratory question: whether untrained experimental subjects could be effective

mediators. The experimental design has anonymity and random rematching across rounds, with the

result that mediators cannot build reputation and lack incentives to walk out of mediation. It is well-

known that the absence of commitment power hinders the effectiveness of mediation. The following

proposition, proved in the Appendix, makes the case for the present model.

Proposition 2. Assume   (2 − 1). If the mediator cannot commit to refuse mediation, a
truthful equilibrium exists if and only if  ≥ (2−1). If   (2−1) the probability of peace is strictly
lower than can be achieved by a mediator with commitment power.

In a later part of the paper (Section 6) we describe and test non-correlated equilibria of the

direct communication game, as well as equilibria of the subject-mediator game. However, Proposition

HMS, Proposition 1, and Proposition 2 are sufficient to establish the hypotheses at the heart of our

experiment: the optimal mediation program is expected to yield both higher peace and higher sincerity

than either the unmediated communication game or the subject-mediator game played in the lab.

The comparison of mediation with and without commitment is complicated by the fact that,

in the absence of commitment, the revelation principle does not apply (Bester and Strausz, 2000

15Focussing on equilibria in undominated strategies eliminates trivial equilibria where, regardless of messages, all

players’ demand equals  under unmediated communication, or all players reject the mediator’s recommendation under

mediation. (In the lab, the frequency of subjects choosing  =  in the direct communication treatment is always less

than 5 percent).

10



and 2001).16 Thus we consider possible lessons from the subject-mediator treatment more tentative.

The main focus of the experiment is the relative performance of the optimal mediation program to

unmediated communication.

3 Experimental parametrization and design

Throughout the experiment we fixed  = 07. We studied two different parametrizations of the ex

ante frequency of  types:  = 12 (Par1) and  = 13 (Par0). The optimal program follows directly

from Lemma 3 in HMS. The mediator’s recommendations are the following:17

Par1:  = 12. ( ) = (05 05); ( ) = {(07 03) with probability 58, (05 05) otherwise};
( ) = {(05 05) with probability 12,  otherwise}. The probability of peace is 78 = 0875
Par0:  = 13. ( ) = (05 05); ( ) = {(07 03) with probability 34,  otherwise}; ( ) =

. The probability of peace is 79 = 0778.

Note that when  is low, ’s temptation to lie is particularly strong because of the high probability

of being matched to an  type and benefiting from the mediator’s asymmetric recommendation in

favor of an  message. Hence the mediator must refuse to mediate more often at lower , with the

counterintuitive conclusion that the probability of peace under optimal mediation is lower at lower .

With  = 12,   2 − 1, and the optimal mediation program includes obfuscation: an  type

who sent message  and receives recommendation (05 05) does not know whether the opponent sent

message  or message . Under sincerity, acceptance is preferable in the former case, and war in the

latter; given the mediator’s program, the  type is just indifferent and in equilibrium accepts. With

 = 13, on the other hand,   2− 1, and in the sincere equilibrium the mediation program reveals

the opponent’s type: following message , either the mediator refuses to mediate, or recommends

(07 03), making clear that the opponent is .

Experimentally, the difference makes the two parametrizations interesting. Theory tells us that it is

the possibility of obfuscation that renders the mediator indispensable; but obfuscation also complicates

subjects’ problem. Collecting data under both  = 12 and  = 13 allows us to study how subjects

react to the optimal mediation programs in the two cases.

16We cannot rule our that other, non-truthful equilibria, may lead to lower peace. HMS compare mediation without

commitment and unmediated communication in their online appendix, and conclude that the two are equivalent if we

restrict attention to standard truthful revelation mechanisms.
17The program depends on the pair of messages only: ( ) is treated symmetrically to ( ).
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There are other possible but less compelling reasons for the two parametrizations. The optimal

program under  = 13 corresponds to the optimal correlated equilibrium of the unmediated commu-

nication game. If such an equilibrium had predictive power in the lab, theory would predict a larger

difference in the frequency of peace between optimal mediation and direct communication under Par1

than under Par0. In practice, however, with subjects limited to uncorrelated equilibria, this differ-

ence between the two parametrizations need not follow. Similarly, Proposition 2 predicts that in the

subject-mediator treatment, in the absence of commitment, truthful equilibria exist if  = 12 but not

if  = 13. Thus there exist equilibria such that the difference in sincerity between optimal mediation

and subject-mediation is larger under Par0 than under Par1. However, the multiplicity of equilibria

means that the difference need not hold in the lab.18

We ran the experiment at Columbia’s Experimental Lab for the Social Sciences (CELSS) with

subjects recruited through the lab’s ORSEE recruitment system (Greiner, 2015). Most subjects were

undergraduate students at Columbia University and Barnard College. The experiment lasted about

90 minutes and earnings ranged from $16 to $37, with an average of $28 (including a $10 show-up

fee) Experimental procedures were standard and are described in detail in the Appendix, where the

instructions for one of the treatments are also reproduced.19

Subjects in each experimental session were exposed to a single parametrization, either  = 12 or

 = 13, but to four different treatments, varying the communication and mediation protocol. Each

treatment was presented as a separate part of an experimental session, consisting of multiple rounds,

and instructions for each part were read just before that part began. To avoid decimals, the size of

the resource was set to 100. We implemented the following design.

No-communication (NC)

In the no-communication treatment (NC) there was no message stage. Subjects were matched in

pairs, randomly and anonymously, and independently assigned types by the computer according to

. After learning their type, each player expressed one of the feasible demands  ∈ {30 50 70 }.
If the two demands were compatible, they were satisfied; if not, the resource shrank and was shared

according to the players’ types. Each subject was informed of the opponent’s demand, and of the

final outcome (and thus learnt the opponent’s type). Across rounds, types were reassigned and pairs

18The equilibria characterized in Section 6 make the ambiguity transparent. In the direct communication equilibria,

the difference in the ex ante probability of peace relative to optimal mediation can be larger or smaller in Par1 relative

to Par0, depending on the equilibrium. In the subject-mediator equilibria, players may be more or less truthful in Par1

relative to Par0, depending on the equilibrium.
19The experiment was programmed in ZTree (Fischbacher, 2007).
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rematched. We began all sessions with ten rounds of the NC treatment because their relative simplicity

helped the subjects understand the game. Although those rounds were rewarded, we consider them

akin to practice rounds.

Unmediated communication (UC)

The UC treatment corresponds exactly to the unmediated communication game described in the

previous section. After being randomly matched in pairs and assigned a type according to , all

subjects sent their partner a message, chosen among {  }. After messages were exchanged, demands
were chosen, again within the set {30 50 70 }; demands were satisfied if compatible, if not, the
resource shrank and was allocated according to players’ types. As in the NC treatment, each subject

was informed of the opponent’s demand, and of the final outcome (and thus learnt the opponent’s

type). In each session, we played 20 rounds of the UC treatment, but changed the order of the

treatment.

Computer mediator (CM)

In the computer mediation treatment, we introduced the mediator, delegating the mediator’s role

to the computer and implementing the optimal mediation program. After having been randomly

matched in pairs and assigned types, each subject sent to the computer-mediator a private message

chosen among {  }. The computer then either accepted to mediate and recommended a division of
the resource, or refused to mediate:  ∈ {{30 70} {50 50} {70 30} }. The decision was a function
of the two messages, according to the optimal HMS program. The mediator’s program relevant to the

parametrization used in the session was projected on the lab screen during instructions and remained

on the screen throughout all rounds of the treatment (Figure 1).

The instructions (and the screen) also told the subjects that the computer would interpret silence

according to the prior. Unless the computer chose , the recommendation was conveyed to each

subject who then chose, separately, either to accept it or reject. If the computer issued a recommended

allocation, it was implemented only if accepted by both players. If not, or if the computer chose ,

the resource shrank and was allocated according to players’ types.

Players were told their payoff from the round, and thus always learnt their opponent’s type in

case of war, but not if a peaceful division was agreed upon. If the computer mediator proposed a

peaceful division, subjects always learnt the opponent’s message when  = 13, but not necessarily

when  = 12. Each session included 20 rounds of the CM treatment, again varying the order of the

treatment, as described below.
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Figure 1: The Computer Mediator program

Human mediator (HM)

In the HM treatment, in each round subjects were randomly matched in groups of three; two players

and one mediator. The round proceeded following the mediation game rules, but without constraining

the mediator to any specific program and without communicating any such program to the players.

After privately learning their type, players 1 and 2 each sent a confidential message  ∈ {  } to
the mediator. The mediator knew , but had no additional information. Upon receiving the messages,

the mediator issued a recommendation  ∈ {{30 70} {50 50} {70 30} }. Unless  = , each of the

two players, independently, could either accept the recommendation or reject it. If both accepted, the

recommendation was implemented; if not or if  = , conflict followed, the resource shrank to 70 and

was allocated according to the player’s types. All subjects learnt the outcome of the game—whether

the recommendation was made and accepted, and in all cases their payoffs; but they did not learn the

opponent’s message and, unless there was conflict, the opponent’s type.

We rewarded the mediator according to the following schedule: the mediator earned 60 if a rec-

ommendation was made and accepted, 20 if the recommendation was made but was rejected, and 40

if the mediator refused to mediate. Thus the mediator’s incentive to refuse to mediate was stronger

when mediation was more likely to fail; if rejection is most probable when the two players have both

reported message , the indirect effect is to discipline the ’s type by checking its temptation to

send message . The numerical values for the mediator’s payoffs were kept constant across the two

parametrizations.

As under all previous treatments, players always learnt the opponent’s type in case of conflict, but
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not if a peaceful division was achieved. In addition, since the mediator’s program was not announced

to the players and most probably was not consistent across mediators, they could not deduce the

opponent’s message from the mediator’s recommendation with any confidence.

At each round, the three players were matched randomly, but under the constraint that all subjects

played the role of mediator for an equal number of rounds. In each session, subjects played 30 rounds

of the HM treatment, 10 rounds as mediator and 20 as players.

Because our main focus is on the comparison between the UC and the CM treatments, we varied

the order of treatments so as to treat UC and CM symmetrically. We ran 12 experimental sessions,

each with 12 subjects, with the following experimental design:

Parametrization and order of treatments

Sessions  Order

s1-s3 1/2 1: NC, UC, HM, CM

s4-s6 1/3 1: NC, UC, HM, CM

s7-s9 1/2 2: NC, CM, HM, UC

s10-s12 1/3 2: NC, CM, HM, UC

Number of subjects, groups and rounds per session

Order # Subjects # Groups per Treatment # Rounds Groups x Rounds

1: NC, UC, HM, CM 12x3 6,6,4,6 10,20,30,20 60,120,120,120

2: NC, CM, HM, UC 12x3 6,6,4,6 10,20,30,20 60,120,120,120

Because we always ordered NC first and, as mentioned, treated it as a practice treatment, we do

not compare its results to the other treatments and do not discuss it in the text. For completeness,

we describe the NC data as well as the equilibria of the NC game in the online Appendix.

4 Experimental Results

When comparing unmediated communication and mediation, the theory makes two broad qualitative

predictions. The optimal mediation program can lead to: (1) more sincerity, and to (2) more frequent

agreement. The CM treatment implements the program that can support the best equilibrium, but

whether the results are observed in the lab depends on the predictive power of such an equilibrium.
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Figure 2: Messages by type and treatment

Whether the predictions extend to the human mediator treatment, with inexperienced mediators and

inexperienced players, is an interesting but still more speculative question.

We begin by reporting our results on sincerity.

4.1 Sincerity

The two panels of Figure 2 report the frequencies of different messages in the two parametrizations,

 = 12 and  = 13, for the three treatments, UC, HM and CM. In each panel, the  type’s

messages are reported on the left, and the  type’s messages on the right. The data are aggregated

over all sessions and both orders of treatments. Confidence intervals are calculated from standard

errors clustered at the individual level.

The figure makes clear a number of regularities. First, although we never see full sincerity,  types

send message  with high frequency in all treatments and for both parametrizations. In all treatments

more than 80 percent of all  types send message  when  = 12; more than 65 percent do so when

 = 13. There is no detectable treatment effect. Second, there is less sincerity but a clear treatment

effect for  types: the frequency of  messages from  subjects goes from 31 percent in UC to 57

percent in CM if  = 12, and from 30 to 64 percent if  = 13. The difference is significant both

quantitatively and statistically. The HM treatment too sees higher frequency of sincere  messages,

relative to UC: 38 percent with  = 12 and 49 with  = 13. Third, the option of sending a silent
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message is used relatively little: it is always less than 15 percent of messages sent by either type.20

As shown in the first column of Table 1, a linear probability model confirms what the figures

show.21

 types are less sincere than  types, and for  types treatment effects are present and significant:

sincerity is lowest under UC, intermediate under HM and highest under CM. In addition,  types,

but not  types, are more sincere when  = 12, and both types learn to become more sincere with

experience in the session, but the effect is very small.

The data show the extent to which subjects assigned different types report their type sincerely in

the different experimental treatments. However, sincerity does not map directly into the information

conveyed: how much information a message transmits depends on the use of that same message by

the opposite type. To take an extreme example, suppose  types are fully sincere and always send

message ; yet, if  types always lie, no information is conveyed by an  message because all types

always send message .22 How much a message moves the posterior probability of a given type relative

to the prior depends on the use of the message by both types.

The Kullback Leibler (KL) measure of dispersion provides an answer to exactly that question.23

Figure 3 reports, for the three treatments and the two parametrizations, the corresponding KL mea-

sures for messages  and , expressed as fractions of the maximum value for each parametrization and

averaged over the relevant sessions.

20Using data from Order 1 and Order 2, our design allows us to compare the UC and CM treatment between subjects,

when the two treatments are run in rounds 11-30 in a session, and thus on subjects with identical experience. Figure

13 in the online Appendix replicates Figure 2 and shows the same regularities.
21Results are unchanged under a probit model. We report all regression results in the paper as estimated from a

linear probability model; in all cases we have verified that qualitative results are unchanged under probit.
22This is clearly the case whenever all types send the same message with equal frequency.
23For the two messages  and , the respectve KL measures are:

() = Pr(|) log

Pr(|)
Pr()


+Pr(|) log


Pr(|)
Pr()


() = Pr(|) log


Pr(|)
Pr()


+Pr(|) log


Pr(|)
Pr()


KL measures are always non-negative and equal 0 when the posterior equals the prior (no information has been

conveyed). In our setting, maximal values are − log() for () and − log(1− ) for ().
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Dependent variable:

Honesty Silence

(1) (2)

TreatmentHM −0.039 −0.042∗∗
(0.028) (0.020)

TreatmentCM 0.005 −0.049∗∗
(0.034) (0.021)

Order2 0.009 −0.069∗∗∗
(0.040) (0.025)

Parameter1 0.142∗∗∗ −0.015
(0.042) (0.026)

TypeLow −0.354∗∗∗ −0.029
(0.082) (0.039)

Period 0.002∗∗∗ −0.001∗∗∗
(0.001) (0.0004)

TreatmentHM:TypeLow 0.181∗∗∗ −0.012
(0.042) (0.021)

TreatmentCM:TypeLow 0.298∗∗∗ 0.038

(0.055) (0.028)

Order2:TypeLow −0.025 0.018

(0.062) (0.021)

Parameter1:TypeLow −0.198∗∗∗ −0.005
(0.063) (0.022)

TypeLow:Period −0.0002 0.001

(0.001) (0.001)

Constant 0.611∗∗∗ 0.212∗∗∗

(0.057) (0.041)

Observations

Observations 8,640 8,640

R2 0.158 0.024

Adjusted R2 0.157 0.022

Residual Std. Error (df = 8628) 0.453 0.288

Note: ∗p0.1; ∗∗p0.05; ∗∗∗p0.01

The excluded category in the regression is H in treatment UC with q=1/3 under Order 1. Standard

errors are clustered at the individual level.

Table 1: Sincerity and Silence
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Figure 3: KL measures

Although it remains true that the treatment conveying most information is CM, the lesson from

the KL measures is more nuanced than the previous figures suggest. The high sincerity of the 

types does not translate into high information from the  message, since the same message is also

used by the  types. Message  on the other hand, is more informative even though sincerity is

less common among ’s because few are the  types who send message . The importance of the

interaction in the use of the messages between the two types becomes very clear when comparing the

two parametrizations. Even though ’s tend to be more sincere with  = 13, the more common use

of message  by  types severely reduces the information transmitted by the messages, relative to the

 = 12 parametrization.

Finally, our experimental design allows subjects to send a silent message. As figure 2 shows, silent

messages are used sparingly—the highest frequency is 14 percent by  types in UC, with  = 12.

Estimation of a linear probability model shows that silence is used more frequently in UC, when

communicating directly, and its frequency declines with experience (Table 1, column 2). The reduced

use of silence under Order 2 is probably due to the early experience with the mediation treatments

(recall that UC is the last treatment under Order 2).

4.2 Peace

Figure 4 reports the frequency of peace across treatments, for the two parametrizations, as well as 95

percent confidence intervals (with standard errors clustered at the session level). Whether  = 12 or

 = 13, there is no significant difference across treatments. In both cases, treatment HM results in
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Figure 4: Frequency of peace.

least frequent peace and UC in most frequent peace, but the effects are small.24 In both cases, the

highest theoretical frequency under CM (87 percent with  = 12, and 78 percent with  = 13) is

not within the confidence interval. The difference between the two parametrization is in the direction

the theory predicts, with higher peace in all treatments under  = 12, but none of the differences are

statistically significant.

The estimation of a simple linear model of the frequency of peace, isolating treatment, order and

parameter effects, qualifies the results slightly but does not change the main message. We report the

results below, where we also add the round number, to control for learning, and the pair types. (The

default treatment is UC, Order 1, Par0, and when looking at different pair types, the default pair is

. Standard errors are clustered by pairs.) As expected, peace is highest between  −  pairs,

and lowest between  − pairs, it is higher under  = 12, and increases significantly but very little

over time. Across treatments,  and  are comparable, while peace is significantly lower under

 .25

24Ordering the numbers as {}, the frequencies of peace in the data are: {057 050 055} if  = 12,

and {049 040 046} if  = 13.
25 In the online Appendix, Figure ?? reports the frequency of peace in CM and UC between subjects, when both

treatments are played second in the session (the conclusion is identical). We also report in the online Appendix the

regression results with the full set of interaction terms. We find that the low performance of the  treatment is

driven by the unusually low frequency of agreement when one or, especially, when both players are of type  .

20



Dependent variable:

IsPeace

(1) (2)

TreatmentHM −0.082∗∗∗ −0.085∗∗∗
(0.020) (0.018)

TreatmentCM −0.025 −0.019
(0.020) (0.018)

Order2 0.005 0.012

(0.018) (0.016)

Parameter1 0.087∗∗∗ 0.186∗∗∗

(0.018) (0.016)

PairTypeHigh-Low 0.293∗∗∗

(0.018)

PairTypeLow-Low 0.606∗∗∗

(0.018)

Round 0.001∗∗∗ 0.001∗∗∗

(0.0004) (0.0003)

Constant 0.435∗∗∗ 0.042

(0.026) (0.026)

Observations 4,320 4,320

R2 0.015 0.191

Adjusted R2 0.013 0.190

Residual Std. Error 0.497 (df = 4314) 0.450 (df = 4312)

Note: ∗p0.1; ∗∗p0.05; ∗∗∗p0.01

Table 2: Peace

5 Optimal Mediation Induces More Sincerity but not More

Peace. Why?

Theory gives us precise hypotheses for two of the treatments, UC and CM. What can we learn from

comparing the experimental results to the theoretical predictions in these two cases? The lesson from

the data is unambiguous: because of the messages by  types, sincerity is higher, and the messages

more informative, under CM. But peace is not. We can represent both observations in a single graph.

Call  the frequency with which a type  player sends a truthful message, and  the frequency

with which the player is silent. Recall that in CM the computer interprets silent messages according

to the prior. Thus b =  + (1− ) is the frequency of all messages sent by  subjects that are

read as  by the computer, and b =  +  is the frequency of all messages sent by  subjects

that are read as  by the computer.
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Figure 5: Sincerity and peace in UC (yellow) and CM (red) sessions. The green cubes are theoretical

equilibria.

We construct descriptive figures of the data by imputing the same interpretation of silence in UC,

i.e. by supposing that subjects too interpret silence according to the prior.26

For each experimental session, Figure 5 reports b on the horizontal x-axis, b on the depth axis

y, and the frequency of peace on the vertical z-axis. Panel A refers to  = 12 , panel B to  = 13.

Each sphere corresponds to a session; yellow spheres report results for UC treatments, and red spheres

for CM treatments. The two green cubes correspond to the theoretical equilibria with highest peace

in the two treatments27 (the green cube centered among the yellow spheres refers to UC; the green

cube corresponding to b = 1, b = 1 represents the HMS equilibrium in CM). As shown earlier, the

two treatments on average yield similar values for b . Here, yellow and red spheres align similarly
along the y-axis (not easily readable in the figure), but are clearly differentiated along the x-axis, and

the orientation of the figures highlights the two clusters, almost fully distinct, with lower b values
for UC, and higher b values for CM. However, the spheres are not organized by color on the vertical
axis—the frequency of peace. There is no systematic variation between the two treatments.

Why wasn’t the promise of optimal mediation realized in the data? Figure 6 gives some indications

26Recall that the frequency of silence is low and comparable across the two treatments in both parametrizations

(Figure 2).
27For UC, the green cube corresponds to the equilibrium with highest peace among the equilibria characterized in

Section 6.2.
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of where the problems lie. The figure plots, for each parametrization, the causes of war under CM

in the data. The yellow column corresponds to the computer’s refusals to mediate in the data; the

orange column to mediator’s refusals if all subject had been sincere; green columns indicate rejections

of the computer’s offer by  types, and blue columns by  types, organized according to the offer.28

In the optimal mediation equilibrium, all messages are sincere, all offers are accepted, and war only

follows from the mediator’s refusal to mediate. In the data, not all messages are sincere and not all

recommendations are accepted, and the figure reflects both types of deviations.

Figure 6: Causes of war

With both parametrizations, dominated actions ( rejecting 50, either type rejecting 70) are rare.

When  = 12, excess war has two main causes. The first is the lack of full sincerity of  types,

reflected in the higher frequency of refusals to mediate. The second, more striking, is the high number

of rejections of offers of 50 by  types: sincere  types rejected more than one third of all 50 offers

they received. The subtlety of the obfuscation appears not to work in the lab.

When  = 13, all ( )messages and 1/4 of ( )messages result in refusals to mediate. Although

’s are more sincere than under  = 12, ’s reporting of  messages is punished harshly: there are

228 instances of refusals to mediate in the data; there would have been less than half, 107, if all ’s

had been sincere (keeping ’s messages unchanged). Offers are also sometimes rejected, especially by

28The figures report individual rejections of offers. Because a single rejection is sufficient to trigger war, there can be

some double counting: two individual rejections can amount to a single offer being turned down.
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 types masquerading as ’s and receiving offers of 30 or 50, but the total number of rejections is less

than half the computer’s refusals to mediate.29

The lack of full sincerity in the lab is hardly surprising; what is surprising is the fragility of medi-

ation in achieving peace. One possible explanation is that the CM treatment has multiple equilibria.

The HMS equilibrium is the equilibrium with highest peace, but, given the mediation program, how

sensitive are the other equilibria to less than full truthfulness?

5.1 Multiple equilibria under computer mediation

Keeping fixed the mediator’s program, we study the equilibria of the CM treatment in undominated

strategies.30 We concentrate on equilibria where, regardless of message: (i) all players accept 70; (ii)

 players always accept 50; (iii)  players always reject 30. Denoting by  a player of type  who

sent message , what remains to be determined are the acceptance strategies of  and  players

offered 50, and of  players offered 30, as well as the first stage message strategies for both types.

We simplify notation by denoting by  the probability of an  type accepting 50, and by  the

probability of an  type accepting 30 (the offer of 30 can only follow an  message). As before, we

denote by b the probability that type  ∈ {} is truthful (corrected for silence).
We report the full set of equilibria in the Appendix; here we concentrate on equilibria that do not

contradict grossly the experimental data. In particular, in the data, having sent message ,  types

accept 30 more than 89 percent of the times if  = 12, and 80 percent of the times if  = 13. In line

with this observation, we focus here on equilibria with  = 1. By selecting such equilibria, we also

rule out equilibria where b  b, in clear contradiction to our data. The equilibria are reported in
the following table:

29By sending message , untruthful  types do reduce the frequency of mediators’ refusals. However, by then rejecting

the offer of 50, the positive impact on peace is fully undone: keeping ’s messages constant, ’s lack of sincerity reduces

the refusals to mediate from 294 to 228, but 79 subsequent offers of 50 are then rejected.
30Because our focus is understanding the experimental results, we characterize the equilibria for the specific parameter

values used in the experiment. The analysis generalizes to arbitrary  and , keeping in mind that Par1 corresponds to

  (2 − 1) and Par0 to   (2 − 1), the mediation program corresponds to Lemma 3 in HMS, and we maintain the

assumptions   (2 − 1) and 2  (1− ).
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Figure 7: Equilibria under CM

 = 12  = 13

 = 1  = 1b = 1b = 1  = 1b = 1b = 1
 = 0  = 1b = 1b = 1  = 0  = 1b ∈ (0 1)b = 13 + (23)b
 = 0  = 0b = 0b ≤ 415  = 0b = 0b ≤ 13
 = 0  = 0  = 1b ∈ (0 1)b = 415 + (615)b
 = 0  = 0  = 1b = 1b ∈ [23 1)

Table 4. Equilibria under CM

and represented graphically in Figure 7. The x axis is b, the y-axis is b , and the ex ante
probability of peace is on the vertical z-axis.

For both parametrizations, the first equilibrium in Table 4 is the HMS equilibrium, identified by

the green cubes in Figure 7; the other equilibria correspond to the red lines. For both  = 12 and

 = 13, there are equilibria supporting any frequency of peace, between 0 and the highest frequency,

corresponding to the HMS equilibrium (78 with  = 12, and 79 with  = 13). Similarly, for both

values of , there are equilibria spanning any frequency of truthfulness, from 0 to 1, for ’s and almost

as large a range for ’s. This then is our first observation: keeping fixed the mediator’s program,

equilibrium behavior under CM is compatible with a large range of messages and outcomes.

Beyond depicting such wide variation, the most striking feature of the figure is the discontinuity
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in the locus of equilibria under  = 12. The mediation program uses obfuscation, and the HMS

equilibrium entails  = 1: sincere  types accept the (50 50) offer with probability 1. The figure

shows that the equilibrium is fragile: if there is any deviation in the messages from full sincerity by

either type, including any use of the silent message, the peace probability falls discontinuously.

The discontinuity does not depend on the specific parameters used in the experiment but applies

over the whole parameter region for which obfuscation is part of the optimal mediation program. And

because it is obfuscation that makes the HMS equilibrium superior to any equilibrium of the direct

communication game, the observation is of interest beyond the specific experiment.31 We phrase it in

the following proposition for generic parameter values in the appropriate range. In line with the HMS’

model, Proposition 3 ignores the option of silent messages. We include the possibility of silence in the

Appendix, where the result in the proposition is part of the equilibria characterization, specialized to

the experimental design and parameters.32

The relevant restrictions are (2 − 1)    (2 − 1). Following Lemma 3 in HMS, the optimal
mediation program is then the following: ( ) = (12 12); ( ) = {(12 12) with probability 
and ( 1− ) otherwise}; ( ) = {(12 12) with probability  and  otherwise} where:

 =

µ
1− 

2 − 1
¶µ

1 +  − 2
 − 

¶
(1)

 =

µ
1− 



¶µ
1 +  − 2

 − 

¶

As above, we use  () to denote the probability that type  () accepts 12. The following

proposition holds:

Proposition 3. Suppose (2− 1)    (2− 1). Then: (i)  = 1 =⇒ { = 1  = 1}. (ii)
If   1 or   1, then  = 0. (iii) { = 1  = 1};  = 1.

Proof. Call ∆(12) the expected differential gain from accepting rather than rejecting 12 for

player , an  player who sent message . Player ’s opponent is indexed by . Since all  types

31Obfuscation is also at the core of Meirowitz et al. (2019), showing that the prospect of mediation with obfuscation

reduces the incentives for militarization.
32HMS allow for some probability   12 that  prevails in case of conflict. Since we have set  = 0 throughout, we

do not reintroduce it here, but we have verified that the discontinuity is robust to the generalization.
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always accept 12, it is not difficult to see that:

∆(12) = (12− 2)[Pr( is  and  |(12 12) ) +Pr( is  and  |(12 12) )] +

+(12− ) Pr( is  |(12 12) )

Solving the probabilities:

Pr( is  and  |(12 12) ) =
Pr( is  and  and (12 12)|)

Pr((12 12)|) =

=


 [ + (1− )(1− )] +  [(1− ) + (1− )]

Pr( is  and  |(12 12) ) =  (1− )

 [ + (1− )(1− )] +  [(1− ) + (1− )]

and:

Pr(|(12 12) ) = (1− ) + (1− )(1− )]

 [ + (1− )(1− )] +  [(1− ) + (1− )]


Substituting (1) and simplifying,   0⇐= ∆(12) ≥ 0 or:

(1− ) +
(1− )

(2 − 1)(1− ) ≥ (1− ) +
(2 − 1)(1− )2

(1− )
(1− ) (2)

The left-hand side of (2) is always weakly increasing in  and , and maximal at  =  = 1

and  = 1, while the right-hand side is minimal at  = 1. Hence the condition is mostly likely to

be satisfied at these values, at which it simplifies to (1− ) = (1− ), holding with equality. Thus if

  0, then  = 1,  = 1,  = 1. If either   1 or   1, then  = 0. In addition, even at

 = 1,  = 1, a second equilibrium exists with  = 0: full sincerity is necessary but not sufficient

for  = 1. ¤

Keeping the mediation program constant, any expected deviation from full sincerity by others

induces the  type to always reject 12— = 0. In fact, even with full sincerity a second equilibrium

exists where  = 0. The intuition is straightforward: when offered 12, ’s best option is to accept

if the opponent is  and reject if the opponent is , conditional on the opponent accepting. If other

’s are expected to reject, always rejecting is a best response, even if all are sincere. And even if other

’s are expected to accept, rejecting is a best response if the posterior probability that the opponent

is , conditional on the mediator’s recommendation, is high enough—and simple calculations show this
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must indeed be the case for any deviation from full truthfulness by either type.

Proposition 3 is very relevant for a lab experiment and possibly for actual applications of mediation

plans: expecting some lying with positive probability seems inevitable. The proposition tells us that,

for the relevant range of parameter values, no peace probability in the neighborhood of the HMS

equilibrium can then be expected. Under the optimal mediation program, the ex-post participation

constraint of an  type offered 12 is binding; any deviation leads to the violation of the constraint.33

Yet, what is interesting is that the discrete jump in the expected frequency of peace is limited to

the mediation program that exploits obfuscation. As shown in Figure 7, panel B, in the absence

of obfuscation under  = 13 there is no discontinuity in the locus of equilibria around the full

sincerity point: a small probability of untruthful messages leads to a lower probability of peace, but

the equilibrium analysis shows that compliance of sincere types with the mediator’s recommendations

is not affected. This is true if  = 13, or more broadly   (2 − 1), and the optimal mediation
program does not include obfuscation, but is also true if   (2 − 1) and the mediation program is

optimized under the constrain of no obfuscation. The reason is that in the absence of obfuscation the

ex post participation constraints for a sincere  type offered 12 and a sincere  type offered (1− )

are slack, and remain slack in the presence of lies; the ex post participation constraints for a sincere

 type offered  is binding under full sincerity and remains binding along the equilibrium locus in

the presence of lies.34

5.2 Sincerity and peace: data v/s equilibrium predictions

Do the multiple equilibria explain the relatively poor performance of mediation in the CM treatment?

The figure below superimposes the data, aggregated by session, to the equilibria in Figure 7. As

33 Interestingly, the obfuscation equilibrium with  = 12 is trembling-hand perfect. Perfection arises because of the

latitude left to the specification of the error processes. As long as the probability of trembles in ’s acceptance strategies

is high enough, relative to the probability of the other trembles, the equilibrium is perfect. (See the dicussion in the

Appendix).
34Without obfuscation, subjects learn their opponent’s message from the mediator’s recommendations. Hence for

example ∆(12) becomes:

∆(12) = (12− 2)


 + (1− )(1− )
 +

+(12− )
(1− )(1− )

 + (1− )(1− )

Thus, ∆(12) ≥ 0 if:
(1− ) ≥ (2 − 1)(1− )(1− )

Whether   (2−1) or   (2−1), there always are  1 and  1 such that accepting 12 is superior to rejecting

it if  = 1,  ∈ ( 1), and  ∈ (  1). With  = 12 and  = 07, the optimal mediation program in the absence

of obfuscation corresponds to: ( ) = (12 12); ( ) = (07 03); ( ) = (12 12) with probability 15, and 

otherwise. The expected frequency of peace is 08 (v/s 0875 with obfuscation).
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before, the horizontal axes measures b and b , (sincerity, corrected for silence), and the vertical axis
the frequency of peace (or the ex ante probability in the theoretical model). The equilibria correspond

to the red lines, with the equilibrium with highest expected peace—the HMS equilibrium—denoted by

the green cube. The data are represented by red spheres.

The 3D figures allow us to represent directly the three variables at the heart of the mechanism,

sincerity by either type and peace. As we already know, in both parametrizations and all sessions, all

three variables fall short of the HMS equilibrium. But relative to the other equilibria, the deviations

go in opposite directions: with  = 12, holding b fixed to the experimental values, the data have
more frequent peace and more sincere  types than the theory predict; with  = 13, two sessions

sit almost exactly on the equilibrium line, but for the remaining four the opposite is true: holding

b fixed, the data have less peace and less sincerity from  types than the corresponding theoretical

equilibria.

Figure 8: CM. Data and equilibria.

With  = 13, untruthful messages by ’s are followed by recommendations of either (50 50) or

(30 70), which are then rejected.35 Had those messages been sincere, some would have been followed

by recommendations of (70 30), which could have resulted in peace. But note that peace was only

35Both types  and  reject 50 more than 80 percent of the times, and reject 30 100 percent of the times.
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Figure 9: Individual subjects. Frequency of accepting 50 when ;  = 12.

likely if the opponent was an ,36 in which case accepting the mediator’s recommendation or going

to war is equivalent for the  player. The loss of efficiency comes at very little cost to the  player,

a point to which we will return below.

With  = 12, peace is instead higher than equilibrium predicts. In all equilibria with less than

perfect truthfulness  types never accept 50—in the data, aggregating over all sessions, the frequency

of acceptances is just below 60 percent, with high dispersion across subjects. Figure 9 shows the

disparity in individual strategies. The vertical axis is the frequency of acceptance of 50 by an  type;

the x and y-axes are b and b , and the red line at the bottom is the equilibrium line.37 There are

72 subjects in all, and each is represented in the figure by the subject’s frequency of truthfulness (as

an  and as an ), and acceptance of 50 when ; the volume of each sphere is proportional to the

number of individual subjects the sphere represents. The green sphere corresponds to the 5 subjects

who always played (1,1,1)—the HMS equilibrium strategies. There are 4 subjects at (1,1,0) (also an

equilibrium point); the overwhelming majority of the rest are individual subjects. The figure shows

clearly that only few subjects reject the offer consistently.

Why are  types accepting 50, against the theory’s predictions? Two explanations seem plausible.

First, subjects could be risk averse. The optimal mediation program would differ under risk aversion,

36Recall that the computer mediator always walks out after messages ( ).
37The figure does not distinguish on the basis of the subject’s message, but close to 90 percent of all messages were .
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but we can still ask how risk averse subjects would respond to the program implemented by the

computer mediator. Rejecting the mediator’s recommendation increases risk, and indeed risk aversion

can induce a sincere  type to accept 50. Proposition 3 does not hold under risk aversion.38

We did not explicitly elicit measures of risk aversion, but we can deduce them from subjects’

behavior in other treatments of the experiment—a methodology with the advantage of not disturbing

the experiment or creating experimenter demand effects. Recall that we started each session with

10 rounds of direct demands without communication (NC). In the NC treatment, demanding 30 is

dominated for an  (and we observe it only once, out of 356 demands) but is not dominated and is

the minimum risk strategy for an . Under  = 12,  types demand 30 30 percent of the times; for

reference, the unique equilibrium of the NC game under risk neutrality has  types demanding 30

with more than 70 percent probability (see the Appendix). Across subjects, the correlation between

the frequency of accepting 50 when  in CM and demanding 30 when  in NC is, if anything,

negative: b = −039 (with 95 percent  = [−058−017]). In the HM treatment, recall that refusing

to mediate guarantees the mediator a riskless payoff of 40—we expect risk averse mediators to walk

out with high frequency. Under  = 12, following messages ( ), human mediators walk out 36

percent of the times; as we describe in Section 6.1, the HM game has many equilibria, but in the

equilibrium we found that best explains the data, the corresponding frequency under risk neutrality

is in fact higher (0.535). Across subjects, we find no correlation between the frequency of accepting

50 when  in CM and walking out after ( ) in HM: b = −013 (with  = [−036 011]). All
together, these numbers do not make a case for risk aversion.

A second possible explanation for the behavior we observe is that the actions chosen by the subjects

come at little cost. Given the behavior of others, how far are subjects from best responding? We

address this question in the next section.

38Under the CM program,

∆(50) = [(50)− (35)][4 + 3(1− )] +

+[(50)− (70)](4− )

It is not difficult to verify that the constraint now has slack at full sincerity and ∆(50) ≥ 0 is possible under some
lying. Note however that the truthful equilibrium where  types always reject 50 ( = 0  = 0  = 1  = 1)

continues to exist.
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5.3 Neighborhood of best responses

Dominated actions are rare in the data. If we ignore them, each player of given type faces two

decisions: the message, b if  and b if , and the acceptance of 50 if , , and of 30 if , .39 For
each session, we calculated the average strategies played by others in a session. We then calculated the

expected payoff of an  type as function of b and , and correspondingly of an  type as function

of b and . Given type, the differences across subjects and sessions were minor, and our findings

can be summarized in the figures below, drawn for a representative subject of each type,  and ,

playing against the average strategies in each of the two parametrizations (averaged over all sessions).

Figures 10 and 11 are contour plots reproducing the loss from not best responding, as percentage of

the maximum possible payoff. Figure 10 refers to  = 12 and Figure 11 to  = 13; in both cases

the left panel refers to an  type, and the right panel to an  type. The horizontal axes in the two

panels correspond to the message choices, b and b; the vertical axis to the acceptance decisions, 
and . The shades of the different contours indicate the expected loss, from below 2.5 percent for the

lightest shade, to above 25 percent for the darkest. The circles superimposed on the plots correspond

to individual subject observations, with the size of the circle proportional to the number of subjects

with choices at the specific point in the plot.40

Figure 10: Losses relative to best responding,  = 12

In Parameter 1 sessions ( = 12), there is clear asymmetry in the range of possible losses between

39Again conflating  and  if  = 12.
40 In each panel, the small red dot reports the average strategy for players of the corresponding type.
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Figure 11: Losses relative to best responding.  = 13

 and  types: at most 10 percent of maximum payoff for ’s, more than 25 percent for  types.

For an  type, losses depend primarily on ; as b increases, the frequency of offers of 50 declines

and so does the sensitivity of expected losses to  (hence the upward sloping contours). For  types,

losses can be significant if high sincerity, high b, is matched with low compliance, low . Note that

full sincerity (b = 1) and full compliance with the mediator ( = 1) are best response strategies in
the data, given the behavior of others. But this is not true for  types: a sincere  type does better

by rejecting 50, as the equilibrium analysis suggested. The loss however is small.

In Parameter 0 sessions ( = 13), there is no asymmetry in potential losses between ’s and

’s.  types are never offered 50 if sincere; hence the value of  makes little difference at high b .
As sincerity declines, accepting 50 is increasingly costly, with potential losses reaching 15 percent at

b = 0 and  = 1.  types are only offered 30 if sincere; thus  has no impact on expected losses

at low b. At higher sincerity, however, accepting 30 becomes a preferable choice, and at b = 1

losses are monotonically declining in . With  = 13, for both types full sincerity and compliance

with the mediator’s recommendations are the payoff maximizing choices in the lab. In the absence of

obfuscation, as is the case for the mediator program with  = 13, lack of full sincerity by others does

not affect the optimal strategies. Some robustness is built into the mediation mechanism.

It is also true, however, that in the lab we did not see full sincerity and compliance with the

mediator under either  = 12 or  = 13. One possible reason is that under both parametrizations,

deviations from best responding had little cost. With  = 12, 93 percent of  subjects and just
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below two thirds (64 percent) of  subjects lost less than 5 percent from their failure to best respond

to the empirical frequency of their opponents’ play. With  = 13, the corresponding fractions are 92

percent for  subjects, and again 64 percent for  subjects.

The observation raises a question: are losses low because the range of possible losses in the game

is limited, or because subjects choose strategies that limit their losses? How badly would subjects had

fared if they had acted randomly?

We tested the null hypothesis of random play by running Kolmogorov-Smornov tests, corrected

for discreteness, comparing random messages to the distribution of observed messages, and random

acceptance decisions to the distribution of observed acceptances, by player’s type and by parame-

trization.41 All eight resulting tests strongly reject the hypothesis that subjects’ choices were random

(  0001 in all cases).

Figure 12 compares CDF’s of losses, in the data (in blue), and under random decision-making (in

orange) for each player’s type and the two parametrizations.

The figure shows clearly the higher frequency of small losses in the data.With the exception of

 players in parameter 1, where, as shown by the contourplots, potential losses are always limited,

experimental subjects are experiencing much lower losses than erratic play would induce. If subjects

were playing randomly, the fractions of  players experiencing losses of not more than 5 percent would

be less than 10 percent when  = 12 and less than 20 percent when  = 13. Experimental subjects

are playing strategies that although not best responses are not far from them, in payoff space.

6 The HM and UC treatments

The focus of the experiment was the CM treatment, but evaluating the effectiveness of the optimal

mediation program requires the comparison to other treatments. Propositions HMS, 1, and 2 yield our

main theoretical predictions. Beyond the broad results in the propositions, we have studied equilibria

of the UC and HM games played in the lab. For both treatments, the main challenge is the large

number of possible equilibria. In this section, we report briefly on some such equilibria and discuss how

41 Ignoring silence, both messages and acceptances are binary variables—each individual observation is either 0 or 1—and

because of randomness, the data show different numbers of realizations for different subjects. For each choice  = 

we thus have a sample of (  ) individuals, with  realizations for each individual . We construct a corresponding

random data set by drawing a sample of  subjects, each with  realizations equally likely to be 0 or 1. We compare

the empirical distribution to the random distribution via a KS test. We repeat the procedure 1,000 times. The p-value

we report is the fraction of KS tests reporting a probability higher than 5 percent that the samples are drawn from the

same population.
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Panel B: q=1/3

Panel A: q=1/2

Figure 12: CDF’s of losses, given observed play by others - data (blue) versus random decision-making

(orange)

they fare, relative to the experimental data. All details of the derivations are in the online Appendix.

6.1 Human Mediation

The HM treatment was exploratory—without a known mediation program, without repeated interac-

tions or mediator’s commitment, the problem for the subjects is very difficult. It is interesting to see

how subjects were able to use mediation under these conditions. Figures 2 and 4 as well as Tables 1

and 2 provide some answers to this question: relative to CM, sincerity is lower under HM, especially

for  subjects, and so is peace, especially under  = 13. Is the lack of commitment the origin of

those results?

We begin by comparing the mediation program we observe under HM to the corresponding program

and behavior under CM. Table 5 summarizes the two mediation programs.42

42Silence is rare in both treatments. Under CM it is translated automatically into either  or  according to the prior;

we make the same assumption under HM. In the ( ) row, under HM we only count (70 30) if 70 is offered to the 

player; as a result the ( ) rows under HM sum to slightly less than 1.
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 = 12  

(50 50) (70 30)  (50 50) (70 30) 

( ) 078 006 016 1 0 0

( ) 025 059 014 0375 0625 0

( ) 062 003 035 05 0 05

 = 13  

(50 50) (70 30)  (50 50) (70 30) 

( ) 077 001 021 1 0 0

( ) 028 043 026 0 075 025

( ) 048 003 050 0 0 1

Table 5: The HM and CM mediation programs

The two programs are qualitatively similar. In particular, note HM’s more frequent refusals to

mediate at lower , in line with the optimal program. We do not see a tendency towards refusals

to mediate (), minimizing concerns about distortions due to risk aversion. On the contrary, we see

HM’s bias towards peace in the effort to mediate after ( ) messages, even under  = 13.

Table 6 reports the players’ strategies in the lab in the two mediation treatments, as well as

the realized peace frequencies. For both values of , the players’ strategies are similar, but for two

systematic differences (bolded in the table): in HM,  is less sincere and  is more willing to accept

50 (especially after message ).

 = 12

b b     

 084 041 068 052 088 067 050

 089 062 064 028 089 − 055

 = 13

b b     

 068 054 054 050 069 058 040

 069 071 − 017 080 − 046

Table 6. Observed players’ strategies and outcomes, HM and CM
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The obvious question then is whether these regularities reflect equilibrium behavior in the HM

game—for example, we know from Proposition 2 that supporting full sincerity in the absence of com-

mitment is impossible under  = 13, and we do observe less sincerity under  = 13. The game

has many equilibria; we focus here on two types of equilibria in which dominant acceptance strategies

are followed (both players accept 70,  accepts 50, and  rejects 30), and, in line with the data,

( ) = (50 50) and  players are sincere ( = 1).43 The first type of equilibria exists for both

parametrizations; the second exists only for  = 12. (The precise characterization is in the online

Appendix).

Equilibria 1. Par1 and Par0:  = 12 and  = 13. The mediator recommendations are: ( ) =

(50 50), ( ) = (70 30), ( ) = , and, when a recommendation is made, it is always accepted.

 types are fully sincere (  = 1). With  = 12,  types are fully sincere as well (  = 1), and

 = 34. With  = 13,  = 23, and  = 5681 = 069.

With  = 12, this is the full sincerity and full compliance equilibrium of Proposition 2. As stated

in the Proposition, full sincerity and full compliance cannot be sustained with  = 13; however an

equilibrium exists where the mediator’s recommendations, conditional on messages, are unchanged,

and the players always comply, but  players are only sincere with probability 23.

When  = 12 and there is less of a need to discipline  types’s messages via refusals to mediate,

the mediator need not walk out with probability one after messages ( ). A second type of equilibria

exists:

Equilibria 2.Par1:  = 12. The mediator recommendations are: ( ) = (50 50), ( ) =

(70 30), ( ) =  with probability  = 0535 and ( ) = (50 50) with probability 1− ; when

a recommendation is made, it is always accepted; at the message stage:  = 1 and  = 0565.

 = 0605.44

Relative to observed actions in Tables 5 and 6, equilibria 2 for  = 12 provide plausible predictions.

In response to ( ), HM in the lab refuses to mediate somewhat too rarely, but  subjects lie more

than expected and recommendations are too often rejected, inducing lower peace than predicted.

Equilibria 1 find less support in the data: when  = 12, we do not see full sincerity by the  type;

when  = 13, HM’s recommendations are qualitatively in line with the equilibrium and, as remarked

43The focus on equilibria with  = 1 has a stronger rationale. It can be shown that any equilibrium in which

( ) = (50 50) with probability 1, ( ) = (70 30) with positive probability,   0, and   1−  −  ( says

 more often than does ) involves full sincerity from the  type.
44As shown in the online Appendix, the strategies described can be supported by different beliefs about off-equilibrium

acceptance strategies. Hence the plural term "equilibria".
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earlier, we do see an increase in refusals to mediate, but such refusals remain too low following ( ),

and too high following the other pairs of messages.

6.2 Unmediated communication

The UC game is a bargaining game with cheap talk messages. Even restricting attention to un-

correlated equilibria in undominated strategies, this game too admits a large number of equilibria,

cautioning us from giving too much weight to the equilibria described below. Yet, for an experiment,

the equilibria we discuss have a priori desirable properties: they are simple, in the precise sense that

demand strategies are either conditioned on type only, or on type and a single set of messages (as op-

posed to both messages sent and received); they include equilibria where messages are uninformative

and thus also hold in the absence of communication; and finally they yield a stark and very useful

prediction: although each equilibrium set is large, the probability of peace is constant across the whole

set.

Proposition A2 in the online Appendix characterizes the equilibria below for arbitrary  and .

Here we describe their main qualitative features, when specialized to the experimental parameters.

For  = 13, a particularly intuitive class of equilibria exists in which demand strategies are

pure and do not depend on messages:  types always demand 70, and  types always demand 50.

The equilibria impose constraints on the posterior probabilities of opponent’s types, given messages,

and these constraints limit the range of acceptable message strategies. Denoting by (0) the

probability that type  who sent message  and received message 0 demands :

Equilibria 1. Par0:  = 13. At the demand stage: 70(0) = 1, 50(0) = 1. At the

message stage, for any (+) ∈ (0 1),  ∈ [max(0 1−−(43))min(1 (43)(1−−))],
 ≤ (43). The ex ante probability of peace,  , equals (1− )2 = 49 = 0444.

Note that the equilibrium set includes fully uninformative messages ( = 1 −  − ,  =

) and the demand strategies remain equilibrium strategies of the game without communication.

Communication, even when informative, plays no role: the peace probability is constant over the full

range of acceptable messages.

As shown in Table 7, this class of equilibria explains the data reasonably well, whether in terms of

message and demand strategies or peace. Such equilibria however do not exist for  = 12. We need

to allow ’s demand strategies to be mixed:

Equilibria 2. Par1 and Par0:  = 12 and  = 13. At the demand stage: 70(0) = 1,

38



70(0) = 2
h
1− 3

7

³
1

1−

´i
= 1−30( 0), where  is the posterior probability a player is

 given message .45 At the message stage, for any (+) ∈ (0 1),  ∈ [(   ) (   )]
and  ∈ [() ()]. The ex ante probability of peace,  , equals 0586 if  = 12, and 0345
if  = 13.

The boundaries on the message strategies are not very illuminating, and we leave them to the online

Appendix. For both values of , they include fully uninformative messages, implying that demand

strategies remain equilibria in the game without communication. In fact, for  = 12, these are the

only equilibria that exist without communication. Again, even when messages are informative, the

ex ante peace probability remains constant: the mixing probabilities at the demand stage effectively

nullify the information provided by the message.

The probability of peace is lower with  = 13 than in the case of  = 12 under both sets of

equilibria: the smaller likelihood that the opponent is  makes  types more aggressive and results

in more frequent conflict. Because of the large possible range of equilibrium messages, and hence of

mixing probabilities over demands, lower peace under  = 13 is the only treatment effect that can

be claimed with some confidence. It is indeed observed in the data (see Table 3).46

The predictions of the second class of equilibria are reported in Table 7 as well, with demand

strategies anchored by the observed point values for ,  , , and  .

The second set of equilibria can explain observed peace and messages, but not demand strategies,

especially for  subjects. Under both parametrizations,  types in the lab tend to demand 50.

With  types demanding 70, such a demand yields (1− )50, and thus is inferior to demanding and

guaranteeing oneself 30 if   25 (or more generally, if   (2 − 1)): the first class of equilibria
existing with  = 13 cannot be supported with  = 12.

45Hence for example

 =


 + (1− )(1−  − )


46 In addition, the hypothesis of equal probability of peace in the absence of communication is supported by the data

from the initial experimental rounds with no communication. See the discussion of the NC data in the online Appendix.

39



 = 13

   70() 70( ) 70( ) 70( ) 50()

data 049 074 010 071 011 021 013 072

equil1 044 [05 074] ≤ 019 1 0 0 0 1

equil2 035 [019 080] [005 039] 1 091 057 085 0

 = 12

   70() 70( ) 70( ) 70( ) 50()

data 057 081 012 052 002 015 014 073

equil2 059 [047 080] [002 013] 1 095 0 007 0

Table 7. Unmediated Communication: Data and Equilibria

We conclude this section by representing graphically our data from the three treatments in the 3D

figure we have used repeatedly, reporting sincerity (adjusted for silence) on the horizontal axes, and

peace on the vertical axis. Each sphere corresponds to an experimental session; red spheres correspond

to CM, blue to HM and yellow to UC. The figure shows clearly the increase in ’s sincerity in moving

from UC to HM to CM, the constancy of the peace frequency across the treatments, and the higher

variance in peace across sessions for HM, probably mirroring the high complexity of the treatment.

All data.  = 12 All data.  = 13
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7 Conclusions

[To be completed]

- We find that subjects are significantly more sincere under CM than under UC or HM, but the

frequency of peace is comparable across all three treatments, and for both parametrizations.

- We believe there are sevral reasons for the result:

- First, the optmal mediation program under CM suffers from multiple equilibria,

- Second, the primary theoretical reason for the superiority of mediation to direct communication is

the possibility of obfuscation. But the optimal mediation program with obfuscation is fragile:

the locus of equilibria in the neighborhood of the highest-peace equilibrium is discontinuous in

outcomes. Any positive probability of lying by the opponent, no matter how small, causes a

discontinuous upward jump in the frequency of conflict.

- There is no such discontinuity if the mediation program does not include obfuscation.

- Yet both mediation programs, with and without obfuscation, fall short of their best theoretical

promise.

- In our data, subjects deviate from equilibrium strategies but the deviations cause them only small

losses.

- The small losses do not reflect low incentives in the game, but "good-enough" play, given the

empirical play of the other subjects. We reject very strongly the hypothesis of random subject

choices. And if subjects were playing randomly they would incur substantially higher losses.

- The third reason for our results is that "good-enough" play under CM is consistent with a frequency

of peace that does not differ significantly from what they achieve under direct communication.
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Goltsman, M., J. Hőrner, G. Pavlov, and F. Squintani, 2009, "Mediation, Arbitration and Nego-

tiation", Journal of Economic Theory 144, 1397—1420.

Greiner, B., 2015, "Subject Pool Recruitment Procedures: Organizing Experiments with ORSEE".

Journal of the Economic Science Association,1, 114—125.
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8 Appendix

8.1 Mediation without Commitment: Proposition 2

Proposition 2. Assume   (2−1). If the mediator cannot commit to refuse mediation, a truthful
equilibrium exists if and only if  ≥ (2− 1). If   (2 − 1) the probability of peace is strictly lower
than can be achieved by a mediator with commitment power.

Proof. In line with the experimental design described later, we call the mediator without commit-

ment the Human Mediator (HM). We focus on a Perfect Bayesian Equilibrium (PBE) in undominated

strategies and begin by establishing the following Lemma:

Lemma A1. Assume   (2 − 1) If a truthful equilibrium exists, it must take the following

form: (i) Following messages ( ), HM offers (12 12) with any probability 50 ∈ [0 1] and (,1−)
with probability 1−50, randomizing uniformly which player is offered . The offer is always accepted.

(ii) Following ( ), HM offers (,1−), which is always accepted. (iii) Following ( ), if HM prefers

walking out to rejection, then HM walks out; if HM is indifferent between walking out and rejection,

HM will either walk out or make any offer, but the offer is always rejected.

Proof of Lemma A1. Suppose both types of player are sincere. In any PBE in undominated

strategies,  accepts 12. Thus, following ( ), HM can maximize payoffs by offering (12 12) which

will be accepted with probability 1 (w.p. 1); hence HM will never walk out. Following ( ), HM can

offer ( 1− ) with positive probability only if it is accepted w.p. 1.

Following ( ), if HM offers ( 1 − ), it will be accepted w.p. 1; this must so because either

( 1− ) is not offered after ( )—in which case it reveals to  that the opponent is —or it is offered

after ( ), in which case it must be accepted w.p. 1, and thus must be accepted w.p. 1 after ( ),

because the two information sets cannot be distinguished. Hence after ( ) HM does not walk out.

Can it be that HM mixes between ( 1 − ) and (12 12) (both with positive probability)? Since

( 1 − ) would be accepted w.p. 1, (12 12) can only be offered with positive probability if it is

accepted w.p. 1. But then, following ( ), HM would offer (12 12) w.p. 1 since it would be

accepted w.p. 1 (and ( 1− ) would be rejected w.p. 1 (since ’s always reject 1− ). But then, it

would not be an equilibrium for  to be sincere (by saying ,  would receive a strictly higher payoff

if the other player is ). Thus, it must be that, if ( ) is followed by ( 1 − ) with some positive

probability, then the probability must equal 1. In other words, ( ) must be followed by ( 1 − )
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w.p. 1 or w.p. 0.

Is it possible that ( ) is followed by ( 1− ) w.p. 0? Suppose so. First, if ( ) is followed by

(12 12) w.p.1, it will be rejected w.p.1 by the  type. To see this note that an  who sent message

 will accept 12 only if:

Pr( |(12 12))Pr( accepts 12)(12− 2) + Pr( |(12 12))(12− ) ≥ 0⇐⇒

Pr( |(12 12))Pr( accepts 12)(12− 2) ≥ Pr( |(12 12))( − 12)⇐⇒

Pr(12 12|)Pr( accepts 12)(1− ) ≥ Pr(12 12|)(1− )(2 − 1)

If Pr(12 12|) = 1, the condition becomes:

Pr(12 12|) Pr( accepts12) ≥
µ
1− 



¶µ
2 − 1
1− 

¶

But: µ
1− 



¶µ
2 − 1
1− 

¶
 1⇐⇒  

2 − 1


which is satisfied in the model. Hence if ( ) is followed by (12 12) w.p.1, (12 12) is always

rejected by the  type. Hence HM will not offer (12 12) w.p.1.

Can it be that HM mixes between (12 12) and  (walking out), both with positive probability,

following ( )? This requires HM to be indifferent between the two offers. But recall that, following

( ), ( 1− ) would be accepted w.p. 1. If HM prefers peace to , then ( 1− ) dominates both

 and any mixture that assigns positive probability to . Hence it must be that, following ( ), HM

offers ( 1− ) w.p.1.

Following ( ), an offer of ( 1 − ) will be rejected (because players are sincere and  never

accepts 1− ). Can HM offer (12 12) with positive probability? If sincere  players expect others

sincere  players to accept (12 12) with positive probability, then it is uniquely optimal for them to

accept. But then offering (12 12) is uniquely optimal for HM. But this cannot be part of a sincere

equilibrium because then  would strictly prefer to lie. Hence, if HM prefers  to rejection HM must

walk out following . If HM is indifferent between walking out and rejection, then HM may offer

anything (or walk out), but any offer must be rejected.

Two final observations conclude the proof. First, note that if such an equilibrium exists for an

arbitrary 50 ∈ [0 1], then the equilibrium exists for all 50 ∈ [0 1]: following ( ), both (12 12)
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and ( 1 − ) are always accepted, and ’s expected payoff from messaging  against a sincere 

opponent is 50 · (12) + (1− 50)[2 + (1− )2] = 12 for all 50. Second, by construction of

the candidate equilibrium strategies, HM is optimizing given others’ behavior. ¤

We now return to the proof of Proposition 2. To complete such a proof, we need two additional

steps. First, we must verify that the truthful equilibrium of Lemma A1 exists if and only if  ≥ (2−1).
Second, we need to establish that the probability of peace in such an equilibrium is strictly lower than

under optimal mediation with commitment.

Sincerity. First, note that is indifferent between messaging  and  for any 50. After messaging

,  is offered  against , and accepts, and is brought to war against , for a total expected payoff

of (1− ) + 2. If  messages ,  is offered (1− ) when opposite a sincere , and rejects, and

either 12 or (1− ) or  when opposite a sincere , and rejects all but , for the same total expected

payoff of (1− ) + 2. Alternatively,  could send a silent message. Because silent messages are

not sent in a truthful equilibrium, we need to specify off equilibrium beliefs. Suppose that any silent

message is interpreted by HM as  with some probability  ∈ [0 1] and as  with the complementary
probability (1− ). Since  is indifferent between messages  and , deviation to silence cannot be

advantageous for the  player, for any .

It remains to check that sincerity is a best response for the  type. Under sincerity, ’s expected

payoff is (1 − ) + (1 − )(12). If  send message , ’s expected payoff is (0) + (1 − ) ≤
(1 − ) + (1 − )(12) ⇐⇒  ≥ 2 − 1, the condition required in the proposition. It then also
follows that, if  ≥ (2− 1), deviation to silence cannot be profitable for any . The first part of the
proposition is established.

Peace. In the truthful equilibrium of Lemma A1, the probability of peace is 1− 2. In the optimal

equilibrium under mediation with commitment, the probability of peace is (1 − )2( − ) (from

HMS’s Lemma 3). But 1− 2  (1− )2( − )⇐⇒ (2 − 1)    (2 − 1).¤

8.2 Multiple Equilibria under CM (at the experimental parameter values)

We characterize players’ equilibrium strategies keeping fixed the mediator’s mechanism as programmed

under CM.We consider the multi-agent representation of the extensive form game and concentrate on

equilibria that satisfy two requirements. First, to avoid indeterminacies in Bayesian updating that

are not relevant to explaining our experimental data, we focus on equilibria where the probability of
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observing either message,  or , is always positive, if possibly arbitrarily small (that is, we rule out

the corners ( = 0  = 1) and ( = 1  = 0)).
47 . Second, we select equilibria in undominated

strategies where, regardless of message: (i) all players accept 70; (ii)  players always accept 50; (iii)

 players always reject 30. Denoting by  a plyer of type  who sent message , what remains to

be determined are the acceptance strategies of  and  players offered 50, and of  players offered

30, as well as the first stage message strategies for both types. We simplify notation by denoting by

 the probability of an  type accepting 50, and by  the probability of an  type accepting 30.

As before, we denote by  the probability that type  ∈ {} is truthful and by b the probability
that a message sent by type  is read as  by the computer mediator when silence is accounted for.

Because the mediation program does not include obfuscation under  = 13, that case is simpler

and it is helpful to analyze it first.

8.2.1 Parameter 0:  = 13

We begin by ignoring the option of silent messages; at the end of the subsection we show how the

results generalize when silent messages are included. Consider first the acceptance decisions. When

 = 13, a player announcing  faces either  = , if the mediator refuses to mediate, or  = 70,

which the player always accepts. Hence non-trivial acceptance decisions only concern  offered 50

and  offered 30. In both cases accepting is optimal if the opponent is an , but rejecting is optimal

if the opponent is .

The mediation program has no obfuscation: given the mediator’s recommendation, each player

knows the message sent by the opponent. (i) Consider first an  offered 30 (who thus knows that the

opponent, , sent message ). The player’s own acceptance strategy is relevant only if the opponent

accepts. But the opponent is offered 70 and all accept 70; hence conditioning on the opponent’s

acceptance yields no additional information on the opponent’s type. The posterior probability of the

opponent’s type is straighforward48:

Pr(  |) = 2(1− )

2(1− ) + 
(3)

47When allowing for silence, an equivalent restriction is to select equilibria with an arbitrarily small but positive

probability of silence.
48The restriction to equilibria with positive probability of observing either message rules out  = 1 and  = 0

(all types always say ), thus guaranteeing that (3) is well-defined. A similar observation applies to other posterior

probabilities below, and is not repeated.
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In any equilibrium in which all accept 70,  player  will accept 30 with positive probability only if

( 30) ≥ ( 30) where:

( 30) = 30

( 30) = 35Pr( = |)

Substituting (3):

3 = 1−  =⇒  ∈ [0 1] and (4)

3  1−  =⇒  = 0, 3  1−  =⇒  = 1

Note that since we are considering the acceptance decision for a player of type  who sent message

, in equilibrium the condition is only relevant when   0. If  = 0, the condition anchors

off-equilibrium behavior.

(ii) Consider now an  who is offered 50 (and thus knows that the opponent, , sent message ).

 players always accept 50, but  players may not. Thus conditioning on ’s acceptance can yield

relevant information. Consider a candidate equilibrium where the  player expects other  players

to accept 50 with some probability  ∈ [0 1]. It is immediate that:

( 50)−( 50) =

= 15Pr(    |50 )− 20Pr(    |50 )

where:

Pr(    |50 ) =
(1− )

(1− ) + 2
 (5)

Pr(    |50 ) = Pr(  | ) = 2

2 + (1− )

Hence:

15(1− ) = 20(2) =⇒  ∈ [0 1] and (6)

15(1− )  20(2) =⇒  = 1, 15(1− )  20(2) =⇒  = 0
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As above, since we are considering the acceptance decision for a player of type  who sent message

, in equilibrium the condition is only relevant for   1. If  = 1, the condition anchors off-

equilibrium behavior: an  type who deviated and sent message , would anticipate that when the

mediator’s recommendation of (50 50) is received, his future self would know, given  = 1, that 

is an , and thus would reject the recommendation. Note also that  = 0 is self-enforcing: if all 

types who sent message  reject the equal split, then the only type who would accept is an ; but then

 prefers to reject.

We can now move back to the message stage:  = 1 if ()  (), and  ∈ [0 1] if
() = () (and similarly,  = 1 if ()  (), and  ∈ [0 1] if () = ()).

Recalling that  is the probability that  accepts 30 and  = 13, the relevant expected utility

equations are:

() = (13) [35 + (1− )(354 + 35(34))] + (23) [70 + (1− )70] = (13)35 + (23)70(7)

() = (13)
£
35 + (1− )(

2
 50 + (1− 2 )35)

¤
+ (23) [(50 + (1− )70) + (1− )70]

() = (13)[(34)30 + (1− )50] + (23)[50 + (1− )(354 + (34)(30 + 35(1− )))]

() = (13)[(0) + (1− )(0)] + (23)[(354 + (34)(70 + (1− )35)) + (1− )35]

Four conditions, ((3), (5), and the relevant expected utilities comparisons), together with the con-

straints  ∈ [0 1],  ∈ [0 1],  ∈ [0 1],  ∈ [0 1], and the no-indeterminacy conditions ( = 0 =⇒
 6= 1) and ( = 1 =⇒  6= 0) determine the equilibrium values of , ,  and  The derivation
is straightforward, although considering all different possible cases is cumbersome. Solving a specific

case helps to build intuition. Suppose  = 0 and  = 1. Then: (i) () = () for all  ,

—an  type is indifferent over any message; (ii)  = 1 if   13 + (23) and  ∈ [0 1] if
 = 13+(23); (iii) for any  ∈ [0 1] and  = (13)+(23),  = 0 and  = 1 satisfy (6) and
(4). Thus indeed there exist a continuum of equilibria such that message strategies are:  ∈ [0 1],
 = 13 + (23); and acceptance strategies are:  types only accept 70,  types always accept

all offers.
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The full set of equilibria is as follows:

()  = 1  = 1  = 1;

()  = 0  = 1  ∈ (0 1)  = 13 + (23);

()  = 0  = 47  ∈ (0 1)  = 13− 3;

()  = 0  = 0  ≤ 13

Equilibrium (i) is the HMS equilibrium.

Silence The equilibria above ignored the option of Silence. We show here that when we account for

Silence all results above apply with a simple transformation of variables.

With  = 13, the mediator’s mechanism has no obfuscation and thus if a recommendation is

made, it reveals to each player how the mediator has read the two messages. Call b a message read

as  by the computer mediator, and recall that under treatment CM, the rule according to which

silent messages are read by the computer is specified. Consider for example the problem of player 

who sent message , received recommendation (30 70), and wants to evaluate the probability that

opponent is . From the recommendation, player  knows that the opponent’s message was b, i.e.
was read as  by the computer. Then, as usual denoting by  the probability that type  sends a

silent message:

Pr(  |b) =
Pr(b |  ) Pr()

Pr(b |  ) Pr() + Pr(b |  ) Pr()
=

[1−  −  + (13)](23)

[1−  =  + (13)](23) + [ + (13) ](13)

2(1− b)
2(1− b) + b

With a change in variable, the formula is identical to (3). The conclusion extends to all results in the

previous section, reinterpreted by substituting b and b for  and . Summarizing, the computer
can read the subject’s true type with probability 1 only if  = 0; otherwise, in equilibrium  and

 are jointly determined. Using b and b in updating the opponent’s expected type, given the
recommendation, acceptance strategies remain unchanged.
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8.2.2 Parameter 1:  = 12

Again we begin by ignoring the option of silence, which we will discuss at the end of the subsection.

Consider first acceptance decisions:  types offered 30, and  and  types offered 50.

(i) Consider first type  offered 30. The player knows that the opponent sent message  and

will accept 70 regardless of type. Thus conditioning on acceptance offers no information. Taking into

account  = 12:

Pr(  |(30 70) ) =
1− 

1−  + 

Pr(  |(30 70) ) =


1−  + 

 accepts with positive probability if:

30Pr(  |(30 70) ) ≥ 5Pr(  |(30 70) )

or :

6  1−  =⇒  = 1, 6  1−  =⇒  = 0, and 6 = 1−  =⇒  ∈ [0 1] (8)

(ii) Consider now type , receiving recommendation (50 50). Under the mediation mechanism,

the player does not know the message sent by the opponent.

The relevant posterior probability is:

Pr(   and accepts 50|(50 50) ) = Pr(   (50 50)  accepts 50|)
Pr((50 50) |)

where:

Pr(   (50 50)  accepts 50|) =

= Pr((50 50)|     ) Pr(   and accepts 50|  ) Pr(|  ) Pr()+

+ Pr((50 50)|     ) Pr(   and accepts 50|  ) Pr( |  ) Pr() =

= ((2) + (38)(1− ))(12)
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and:

Pr((50 50)|) = Pr(   (50 50)|) + Pr(   (50 50)|)

Substituting the relevant probabilities, and taking into account that  types always accept 50:

Pr(  |(50 50)  accepts 50 ) = 4 + 3(1− )

4 + 3(1− ) + 4(1− ) + 3

and

Pr(  |(50 50)  accepts 50 ) = 1− Pr(  |(50 50)  accepts 50 ) =

=
4(1− ) + 3

4 + 3(1− ) + 4(1− ) + 3


 will accept 50 with positive probability if:

15Pr(  |(50 50)  accepts 50 ) ≥ 20Pr(  |(50 50)  accepts 50 ) (9)

or:

15(4 + 3(1− )) = 20(4(1− ) + 3) =⇒  ∈ [0 1]

15(4 + 3(1− ))  20(4(1− ) + 3) =⇒  = 0, (10)

15(4 + 3(1− ))  20(4(1− ) + 3) =⇒  = 1 (11)

Condition (9) corresponds to (2) in the text, specialized to the experimental parameters.

(iii) Similarly, an  type who sent message  and is offered a (50 50) split, will compute the

posterior probability:

Pr(  |(50 50)  accepts 50 ) =

=
3 + 8(1− )

3 + 8(1− ) + 3(1− ) + 8

and will accept 50 with positive probability if:

15Pr(  |(50 50)  accepts 50 ) ≥ 20Pr(  |(50 50)  accepts 50 )
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or:

15(3 + 8(1− )) = 20(3(1− ) + 8) =⇒  ∈ [0 1]

15(3 + 8(1− ))  20(3(1− ) + 8) =⇒  = 0 (12)

15(3 + 8(1− ))  20(3(1− ) + 8) =⇒  = 1

Conditions (8), (11), and (12) pin down the three probabilities , , and  as functions of  and

. Given these probabilities, the comparison of expected utilities at the message stage determines

equilibrium  and . If  = 1, by Proposition 3,  = 1,  = 1. But if  = 1, then  = 1

by (8). The equilibrium in weakly undominated strategies then corresponds to the HMS equilibrium.

Outside of such an equilibrium,  = 0. Imposing  = 0, the relevant expected utilities are:

() = (12)[35 + (1− )((58)35 + (38)(50 + 35(1− )))] + (12)70

() = (12)[35 + (1− )(50
2
 + 35(1− 2 ))] +

+(12)[(50 + (1− )70) + (1− )((58)70 + (38)(50 + 70(1− )))] (13)

() = (12)[(58)30 + (1− )50] + (12)[50 + (1− )((58)(30 + 35(1− )) + (38)50)]

() = (12)[(1− )((38)50] +

+(12)[((58)(70 + 35(1− )) + (38)50) + (1− )(502 + 352)]

As before, four conditions, (12), (8), and the relevant expected utilities equations, determine ,

,  and  . One preliminary observation simplifies the identification of the equilibria:

Lemma A2. If  = 12, there exist no equilibrium where   0.

Proof. The proof is in two steps. (1) Suppose first  ∈ (0 1). Then, from (12):

6(1− ) = 3 + 5 =⇒  = 1−
µ
3 + 5

6

¶
(14)

Substituting (14) in (13), we find that for any :

()−() = (532)(3 + 5)(3 + 5)  0
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But then  = 1 and (14) is violated. Thus  ∈ (0 1) is impossible.49

(2) Suppose then  = 1. From (12), it follows that:

 ≤ (12)− (56) (15)

Note that there cannot be an equilibrium with  = 1 if  prefers sincerity and thus  = 1. But

from (13):

()−() = (516)[(47− 5)− (50 + 30) + (18− 30)]

an expression that is minimal at  maximum value. Substituting (15):

()−()  0⇐= (548)[66 + 30 + (179− 165)]  0

The condition is always satisfied. Hence  = 1; but then by (15) there cannot be an equilibrium

with  = 1, and the Lemma is proven.¤

Proposition 3 and Lemma A2 establish  = 0 and, unless  = 1 and  = 1,  = 0. Studying

(13) and (8), we can identify the full set of equilibria:50

()  = 1  = 1  = 1  = 1;

()  = 0  = 1  = 1  = 1;

()  = 0  = 0  = 0  ≤ 415;

()  = 0  = 0  = 1  ∈ (0 1)  = 415 + (615);

()  = 0  = 0  = 1  = 1  ∈ [23 1);

()  = 0  = 0  ∈ (0 37)  = 3(18− 35)  = (16)(1− 3(18− 35));

()  = 0  = 0  = 16  ≤ 536

Equilibrium (i) is the HMS equilibrium.

49We are imposing  = 0. But  = 1 =⇒ ( = 1, = 1). On the equilibrium path,  is irrelevant; off-

equilibrium, by (12) an  player who lied would still reject 50.
50Equilibrium (iii) has message probabilities  = 0 and  ≤ 415; if   16, the equilibrium is supported by the

(sequentially rational) belief that were  to send message  and be offered 30, at the acceptance stage the offer would

be rejected, if  ∈ (16 415], the equilibrium is supported by the rational belief that the offer would be accepted.
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Silence As in the case of  = 13, with silence interpreted by the computer mediator according

to the prior, the equilibria characterized above extend to the possibility of silent messages with a

simple change of variable:  becomes b in all equations above and it is b that is determined in
equilibrium (that is,  and  are jointly determined).

Although the conclusion continues to hold, with  = 12, there is one complication: when messages

are obfuscated by the mediator, a subject who sent a silent message will not know not only what

message the opponent sent but also how the subject’s own message was read by the computer. The

reason this complication does not invalidate the previous analysis is that, in the absence of silence,

equilibrium acceptance strategies depend only on type. More precisely, given the focus on equilibria

in undominated strategies, the only acceptance strategies that could depend on the message sent are

 and .
51 But, barring full sincerity,  =  = 0 in all equilibria:  types reject 50 regardless of

whether they sent message  or . When silent messages are used, full sincerity is impossible, and for

all b and b equilibria must exist where  types reject 50 regardless of how their message has been

read by the computer. Hence, denoting by  the probability that an  type who sent a message

 accepts 50, there must be equilibria with  =  =  = 0: all  types reject 50. It follows

that, substituting b for  , the equilibria described above remain equilibria when silent messages
are possible.

8.3 Trembling-hand Perfection

As mentioned in the text, if (2− 1)    (2− 1), the best equilibrium under optimal mediation

is trembling-hand perfect (even while fragile in the sense of Proposition 3). Consider the following.

A perfect equilibrium cannot include weakly dominated strategies. Thus, if the equilibrium is

perfect, all accept ,  always accepts 12, and  always rejects (1− ), all of which are in line with

the HMS equilibrium. The  type ex-post participation constraint is slack in equilibrium; the three

incentive constraints that bind in equilibrium and could be violated in the presence of trembles are

the  type acceptance of 12, following message , the  type truthfulness constraint, and the 

type truthfulness constraint including the possibility of double deviation (i.e.sending message  and

then rejecting a recommendation of 12). We write below the three conditions that must be satisfied

51Recall that the recommendation (70 30) can only follow messages that have been read as ( ). Hence there is no

uncertainty on how one’s own message (or for that matter, the opponent’s) has been read. The possibility of silence

affects the updating probability on the opponent’s type and makes  a function of ,  . With this change in variable,
the equilibrium conditions in (8) can be rewritten as before.
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for the prescribed strategies to be best responses, given trembles around equilibrium behavior. We

then show that a vector of trembles exists such that all conditions are satisfied. Throughout we use

the notation  () to denote the probability that an  () player who sent message  accepts

the offer of .

Consider first the acceptance strategy for a sincere  type who is offered 12 and in the HMS

equilibrium accepts it. Call  player , and  the opponent. Then:

(accept 12) ≥ (reject 12) ⇐⇒

(12− 2)Pr( accepts and is | (12 12)) ≥ ( − 12)Pr( accepts and is | (12 12))

or, borrowing from the proof of Proposition 3 in the text:

(12− 2)
h


12

 +  (1− )
12



i
≥ ( − 12)(1− )

h
(1− )

12

 + 
12



i

where, from (1) in the text:

 =

µ
1− 

2 − 1
¶µ

1 +  − 2
 − 

¶
 =

µ
1− 



¶µ
1 +  − 2

 − 

¶

Consider trembles such that: 
12

 = 1 − 

12



, 
12

 = 

12



, 
12

 = 1 − 

12



, 
12

 = 1 − 

12



,

 = 1−  ,  = 1−  . We want to know whether there exist a vector 1 = {12


, 

12



, 

12



,



12



,  , } such that:

lim
1−→0

h
(12− 2)

³
(1−  )(1− 


12



) + 12


´
+

− ( − 12)(1− )
³
(1− 


12



) +  (1− )(1− 

12



)
´i
≥ 0

Set 

12



= 
12

 ,  = , 12


= 
12

 , 

12



= 
12

 ,  = , 12


= 
12

 , where
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{12 ,  , 
12

 , 
12

 , , 
12

 } is a vector of positive constants. Condition (??) becomes:

lim
−→∞

h
(12− 2)

³
(1− )(1− 

12

 ) +  ()(
12

 )
´
+

− ( − 12)(1− )
³
()(1− 

12

 ) +  (1− )(1− 
12

 )
´i
≥ 0

We also need to verify that there exists trembles such that both types prefer to be truthful. For a

player of type  we require () ≥ () where:

() = ( [(1−  )(1− )
1−
 +  (12)

12

 
12

 ] + (1− )[12)
12

 
12

 ]) +

+(1− )([(12)(
12

 )2 + (2)(1− (12 )2)] +

+(1− )[(1−  )((1− )1−  + (2)(1− 1− )) +  ((12)
12

 
12

 + 2(1− 
12

 
12

 ))])

and:

() = ( [(12)
12

 
12

 ] + (1− )[(1−  )(
1−
 ) +  (12)

12

 
12

 ] +

+(1− )([(1−  )(
1−
  + (2)(1− 1− )) +  ((12)

12

 
12

 + (2)(1− 
12

 
12

 ))] +

+(1− )[((12)(
12

 )2 + (2)(1− (12 )2)) + (1− )(2)]

For a player of type , we require () ≥ () where:

() = ( [(1− )(2) + ((12)(
12

 )2 + (2)(1− (12 )2)] + (1− )[ ((12)
12

 
12

 +

+(2)(1− 
12

 
12

 )) + (1−  )(



1−
 + (2)(1− 

1−
 ))]) +

+(1− )([(1−  ) +  ((12)
12

 
12

 + (1− 
12

 
12

 ))] +

+(1− )[(1− ) + ((12)
12

 
12

 + (1− 
12

 
12

 ))])
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and:

() = ( [(1−  )((1− )
1−
 + (2)(1− 

1−
 )) +

+ ((12)
12

 
12

 + (2)(1− 
12

 
12

 ))] + (1− )[(12)(
12

 )2 + (2)(1− (12 )2)]) +

+(1− )([(12)
12

 
12

 + (1− 
12

 
12

 )] + (1− )[(1−  )((1− )1−  + (1− 1− )) +

+ ((12)
12

 
12

 + (1− 
12

 
12

 ))])

As above, set  = 1− , 
12

 = 1− 
12

 , 
12

 = 
12

 , 1− = 1− ,  = 1 − ,


12

 = 1−12 , 
12

 = 1−12 , 1− = 1−1− , and recall  = 1−,  = 1−. We
want to verify that there exist a vector of positive constants {   12   

12

  1−  
12

  1−  
12

  }
such that (??) is satisfied, as well as:

lim
−→∞

[()−()] ≥ 0

and:

lim
−→∞

[()−()] ≥ 0

It is not difficult to find a vector that satisfies the conditions at the experimental parameter values

if  = 12 and  = 07, as in our experimental paramterization. For example, all three conditions

are satisfied at { = 1  = 1 
50
 = 1 70 = 1 50 = 1 30 = 1 50 = 4 30 = 8 50 = 8 70 = 4}.

The equilibrium is perfect as long as beliefs assign higher probability to  types’ trembles that result

in rejections, and low probability to deviations from truthfulness and to trembles in ’s acceptance

strategies. The result is not surprising: as Proposition 3 leads us to expect, the condition most

difficult to satisfy is the acceptance of offer 50 by  types in the presence of noise in behavior. Even

in the presence of noise, however, acceptance is a best response if the probability of deviations fron

truthfulness and from other ’s accepting is low, relative to the probabiity of rejections by  types.

The positive conclusion reflects the latitude in the choice of trembles.

The result is not limited to the experimental parameter values. We have verified numerically that

the vector of trembles identified above support trembling-hand perfection for arbitrary  and  in the

interval (2 − 1)    (2 − 1), with 2  1− .
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9 Online Appendix.

9.1 Human mediation treatment: equilibria

We concentrate on equilibria where:  = 1, ( ) = {50 50} w.p.1, and dominant acceptance
strategies are taken (both players accept 70,  accepts 50, and  rejects 30). We prove the following

proposition, which corresponds to the equilibria discussed in the text.

Proposition HM.

(i)

Par1:  = 1
2
. There is an equilibrium in which ( ) =  w.p. 1;  = 1;  sufficiently low,

 = 0,  = 1,  arbitrary;  =
3
4
.

Par0:  = 1
3
. There is an equilirbium in which ( ) =  w.p. 1;  =

2
3
;  sufficiently low,

 = 0,  = 1,  sufficiently low;  =
56
81
≈ 0691.

(ii) Par1:  = 1
2
. There is an equilibrium in which ( ) =  w.p.  ≈ 0535, ( ) = {50 50}

w.p. 1− ;  ≈ 0565;  ≈ 0580,  = 0,  = 1,  arbitrary;  ≈ 0605.

To prove the proposition, we make use of Lemma A3 below. The significance of this lemma is

that the equilibrium selection, together with the restriction that, in equilibrium, ( ) = {70 30}
w.p. greater than 0, implies that in any PBE: (1) ( ) = {50 50} w.p. 1, which is accepted w.p.
1, (2) ( ) = {70 30} w.p. 1., which is accepted w.p. 1, (3)  = 0, (4)  = 1, and (5)  = 1

if ( ) = {70 30} w.p. greater than 0 (otherwise any  is optimal for ). Hence, in addition to

confirming the optimality of  = 1 and finding an optimal , it remains only to determine (a) HM’s

strategy following  , and (b) , ’s probability of accepting 50 after messaging . Furthermore,

the optimality conditions for (a) and (b) are given by part (v) of the lemma.

Lemma A3. In any PBE such that  = 1, ( ) = {50 50} w.p.1, dominant acceptance
strategies are taken, and ( ) = {70 30} w.p.0, the following must hold: (i) if ( ) = {70 30}
w.p. greater than 0, then  = 1 and thus ( ) = {70 30} is accepted w.p. 1; (ii) if ( ) = {70 30}
w.p. greater than 0 (randomizing which player receives 30), then  = 1; (iii) if ( ) = {70 30}
w.p. greater than 0, then ( ) = {70 30} w.p. 1; (iv) if ( ) = {70 30} w.p. greater than 0, then
 = 0; and (v):
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• HM prefers ( ) = {70 30} to ( ) =  if and only if

(1− ) ≥
1

2
⇐⇒

 ≤ 1− 2
1− 

if  = 1

where  =


+(1−)(1−) ∈ [ 1]

• HM prefers ( ) = {50 50} to ( ) =  if and only if

2
2
 + 2(1− ) + (1− )

2 ≥ 1
2


where  =


+(1−)(1−) ∈ [ 1]

• HM prefers ( ) = {50 50} to ( ) = {70 30} if and only if

2
2
 + 2(1− ) + (1− )

2 ≥ (1− )

where  =


+(1−)(1−) ∈ [ 1]

• If ( ) = {70 30} w.p. greater than 0 and ( ) = {50 50} w.p. greater than 0, then 

prefers to accept 50 after messaging  if and only if

 ≥ 1− 3
4
(



1− 
)

Proof. (i) Define ∆30 as the expected utility difference between accepting and rejecting 30 for

 who messages . Assuming  = 1, that dominant acceptance strategies are taken, and ( ) =

{70 30} w.p. greater than 0 (which implies Bayes rule applies),

∆30 ∝ 30(30− (1− )(1− )5)− ̃30(1− )5

where 30 is the probability with which ( ) = {70 30} and ̃30 is one-half the probability with
which ( ) = {70 30} (i.e. the probability {70 30} is offered and it is this player who is offered 30).
Thus, if ̃30 = 0 and 30  0, ∆30  0.
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(ii) If ( ) = {70 30} w.p. greater than 0, then players who message  and receive 30 know
the other player messaged . Since we assume  = 1, the belief that the other player is  is given

by  =


+(1−)(1−) , which is between  and 1. Since the other player will always accept 70, the

expected payoff of accepting is 30. The expected payoff of rejecting is 0+(1−)35, which is strictly
less than 30.

(iii) Since ( ) = {70 30} is accepted with probability one by part (i), it cannot be that ( ) =
 with positive probability since it yields a lower payoff for HM.

We suppose that ( ) = {50 50} with positive probability in equilibrium, and derive a contra-
diction. Since ( ) = {70 30} is accepted with probability one, ( ) = {50 50} must be accepted
with probability one (or else HM would never offer it). Hence, if ( ) = {50 50} with positive
probability, it is accepted with probability one (same information set for those who message ).

Case 1: Suppose ( ) = {50 50} with probability 0. This cannot be an equilibrium since

( ) = {50 50} yields a strictly higher payoff for HM than ( ) =  and ( ) = {70 30} (
type will always reject 30).

Case 2: Suppose ( ) = {50 50} with positive probability. Since this yields a higher payoff for
HM than ( ) =  and ( ) = {70 30}, it must be that ( ) = {50 50} w.p. 1. But this
cannot be an equilibrium because then the -type would strictly prefer to message  (all offers are

accepted and types messaging  would sometimes get more), and then the  type would prefer to

reject an offer of 50.

(iv) Assuming  = 1 and that ( ) = {70 30} w.p. greater than 0, which implies ( ) =
{70 30} w.p. 1 by part (iii), if  deviates and messages  and receives 50, she knows her opponent is

 and hence it is strictly optimal to reject, i.e.  = 0.

(v) For simplicity, subtract 20 from HM’s payoffs so that rejection yields 0, walking out yields 20,

and acceptance yields 40. Let , 50, and 70 be HM’s expected payoffs from walking out,

offering {50 50}, and offering {70 30}, respectively, after observing  . These are given as

 = 20

50 = 40[
2


2
 + 2(1− ) + (1− )

2]
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70 = 40[(1− )]

HM prefers ( ) = {70 30} to ( ) =  if and only if

40(1− ) ≥ 20 ⇐⇒

(1− ) ≥
1

2

If  = 1, then this condition becomes

(1− ) ≥
1

2
⇐⇒

(1− )(1− )

 + (1− )(1− )
≥ 1
2
⇐⇒

(1− )(1− ) ≥ 1
2
{ + (1− )(1− )} ⇐⇒

(1− )(1− ) ≥  ⇐⇒

1−  ≥ 

1− 
⇐⇒

1− 2
1− 

≥ 

HM’s other indifference conditions are immediate.

Define ∆50 as the expected utility difference between accepting and rejecting 50 for  who

messages . Assuming  = 1, that dominant acceptance strategies are taken, ( ) = {70 30} w.p.
greater than 0 (which implies ( ) = {50 50} w.p. 0 by part (iii)), and ( ) = {50 50} w.p.
greater than 0, then

∆50 ∝50{15− (1− )(1− )20}

50{(1− )15− (1− )20}
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and thus

∆50 ≥ 0 ⇐⇒

15− (1− )(1− )20 ≥ 0 ⇐⇒

 ≥ 1− 3
4
(



1− 
)

This concludes the proof of the Lemma.

Proof of Proposition HM.

(i) We search for equilibria in undominated strategies in which  = 1, ( ) = {50 50} w.p. 1,
( ) = {70 30} w.p. greater than 0, and ( ) =  w.p. 1.

In such an equilibrium, by Lemma A3, it must be that ( ) = {70 30} w.p. 1 and  = 1.

Assuming all of these conditions, the expected payoffs to  of messaging  and , respectively, are:

 = {30 + (1− )(50 + (1− )0)}+ (1− ){50 + (1− )30}

= 30 + (1− )(30 + 20)

= 30 + 30 + 20− 30− 20

= 30 + 20− 20

and

 = {0 + (1− )0}+ (1− ){70 + (1− )(35)}

= (1− ){35 + 35}

= 35 + 35− 35− 35
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and so

 ≥  ⇐⇒

30 + 20− 20 ≥ 35 + 35− 35− 35 ⇐⇒

15 ≥ 5 + 15− 35 ⇐⇒

35− 5 ≥ (15− 15)

35− 5
15− 15

≥ 

Hence, if  = 1
2
 this is always satisfied strictly, meaning it must be that  = 1.

If  = 1
3
, then the condition becomes  ≥  ⇐⇒ 2

3
≥ . If

2
3
 , then    and

it must be that  = 1, a contradiction. If
2
3
 , then    and it must be that  = 0, a

contradiction. Hence it must be that  =
2
3
.

Following  , HM must prefer to walk out rather than offer {70 30}:

(1− ) ≤
1

2

When  = 1
2
,  = 1 and  = 1, so this condition is satisfied for any . When  = 1

3
,  =

2
3
and

 =
3
7
, so the condition is satisfied for sufficiently low .

Following  , HM must prefer to walk out rather than offer {50 50}:

2
2
 + 2(1− ) + (1− )

2 ≤ 1
2

which is satisfied for both values of  for sufficiently low .

Finally, we must now check that  = 1 is optimal. First note that if  messages  and receives

50, it is optimal for her to reject, i.e.  = 0, since she will be facing an  type and so she would

receive 70. So  will always reject 50 and below and accept 70 and above. Hence, no matter the

message she sends, she will always receive 35 against an -type and 70 against an -type. So  is

indifferent between messages, meaning  = 1 is optimal in particular.

Summarizing, for  = 1
2
, there is an equilibrium involving  = 1,  sufficiently low,  = 0,

 = 1,  arbitrary, and the resulting probability of peace is 1− 2 = 3
4
. The resulting probability of
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peace is 1− 2 = 3
4
. For  = 1

3
, there is an equilibrium involving  =

2
3
,  sufficiently low,  = 0,

 = 1,  sufficiently low, and the resulting probability of peace is

1− (2 + 2(1− )(1− ) + (1− )2(1− )
2) =

1− (1
9
+ 2(

1

3
)(
2

3
)
1

3
+ (

2

3
)2(
1

3
)2) =

1− (1
9
+
4

27
+
4

81
) =

1− ( 9
81
+
12

81
+
4

81
) =

1− 25
81
=

56

81
≈ 0691

(ii) We search for equilibria in undominated strategies in which  = 1, ( ) = {50 50} w.p. 1,
( ) = {70 30} w.p. greater than 0, and ( ) =  w.p.  ∈ (0 1) and ( ) = {50 50} w.p.
1− .

By Lemma A3, since ( ) = {70 30} w.p. greater than 0 and ( ) = {50 50} w.p. greater
than 0, ( ) = {70 30} w.p.1 and  prefers to accept 50 after messaging  if and only if

 ≥ 1− 3
4
(



1− 
)

Following  , HM must be indifferent between walking out and offering {50 50}:

2
2
 + 2(1− ) + (1− )

2 =
1

2


If  = 0, then this cannot be satisfied (the LHS is (1− )
2, and  ∈ [ 1]). If  = 1, then this can

also not be satisfied as the LHS equals 2+2(1− )+(1−)2 = 2+2−22+1−2+2 = 1.

Hence, a necessary condition is that

 = 1− 3
4
(



1− 
)
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Plugging this into HM’s indifference condition yields a non-linear equation in  where the LHS is

strictly increasing in . Solving the equation numerically gives a unique solution for each parameter

value:

•  = 1
2
:  ≈ 0580 and  ≈ 0565

•  = 1
3
:  ≈ 0580 and  ≈ 0783

Since  ∈ (0 1), we must have that  = , where

 = {30 + (1− )(50 + (1− )0)}+ (1− ){50 + (1− )30}

= 30 + (1− )(30 + 20)

= 30 + 30 + 20− 30− 20

= 30 + 20− 20

and

 = {(0 + (1− )50) + (1− )0}

+ (1− ){70 + (1− )(35 + (1− )50)}

= (1− )50 + (1− ){70 + (1− )(50− 15)}

= (1− )50 + (1− ){70 + 50− 15 − 50 + 15}

Equating  =  gives an equation in  where the RHS is strictly decreasing in . For  =
1
3
,

and the values of  and  we found, there is no solution in , and thus no equilibrium. For  =
1
2
,

there is a solution,  ≈ 0535.
We must check that HM prefers walking out to offering {70 30}:

(1− ) ≤
1

2


For the value of  we found,  ≈ 0697, and so this is satisfied for any .
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Finally, we must now check that  = 1 is optimal. First note that if  messages  and receives 50,

it is optimal for her to reject, i.e.  = 0, since she will be facing an  type and so she would receive

70. So if she messages , she will receive 70 against an  who messages , 70 against an  who messages

 (she would be offered 30, which she will reject), and 35 against an  ( messages , so she will be

offered 30 which she will reject). So messaging  gives  a payoff of  = (1− )70+35 = 70−35.
If instead, she messages , then against another , either HM will walk out in which case she gets

35 or she will be offered 50, which she is indifferent between accepting and rejecting; suppose she

rejects and receives 35. Against an  who messages , she will be offered 70 which she will accept

and receive (the  will accept 30 ( = 1) by Lemma HM. Against an  who messages , either HM

will walk out in which case she gets 70 or she will be offered 50, which she is indifferent between

accepting and rejecting; suppose she rejects and receives 70. Hence, messaging  gives  a payoff of

 = (1− )70 + 35 = 70− 35. So  is indifferent between messages, meaning  = 1 is optimal

in particular.

Summarizing, for  = 1
3
, there is no equilibrium. For  = 1

2
, there is an equilibrium involving

 ≈ 0565,  ≈ 0580,  = 0,  = 1,  arbitrary,  ≈ 0535, and the resulting probability of
peace is

2(1− )
2+

2(1− ){(1− )(1− ) + }+

(1− )2{(1− )
2(1− ) + 2(1− ) + 2} ≈ 0605

9.2 Unmediated communication in the lab: equilibria

We focus on equilibria in undominated strategies where no player demands , and, given 2 

1 − ,  types never demand 1 − . The logic guiding the characterization of the equilibria is

straightforward. Whether different demand strategies are best responses to each other depends on

the posterior probabilities of the opponent’s types, given the messages. The necessary restrictions

on the posterior probabilities amount to restrictions on the probabilities  and  . In equilibrium,

messages are random, and both types are indifferent over sending any of the three messages. Denote
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by (0) the probability that type  who has sent message and received message0 demands

. Then:

Proposition A2.

(1) For any   (2− 1), 2  1− , there exist equilibria in undominated strategies such that,

at the demand stage:

(0) = 1 for all 0

(0) = 1− 1−( 0) = 2
µ
1− 1− 

(1− )

¶

where  is the posterior probability that a player who sent message  is of type , or:

 =
(1−  − )

(1−  − ) + (1− )
;  =



 + (1− )(1−  − )
;  =



 + (1− )


At the message stage, ( + ) ∈ (0 1),   0, and for any such  and ,  and  satisfy

the constraints

 ≥ max

∙µ
3 − 2
2(1− )

¶µ
1− 



¶
(1−  − ) 1−  −

µ
2 − 1
1− 

¶µ
1− 



¶


¸
(16)

 ≤ min

∙µ
2 − 1
1− 

¶µ
1− 



¶
(1−  − ) 1−  −

µ
3 − 2
2(1− )

¶µ
1− 



¶


¸
 ∈

∙µ
3 − 2
2(1− )

¶µ
1− 



¶


µ
2 − 1
1− 

¶µ
1− 



¶


¸
( + ) ∈ (0 1)

Given  and , the ex ante probability of peace,  is constant and given by:

 =
[(5− )− 2][2− (3− )]

2


(2) If  ≤ 2 − 1, there exist equilibria in undominated strategies such that, at the demand stage:

(0) = 1 for all 0

12(0) = 1 for all 0
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At the message stage, ( + ) ∈ (0 1),   0, and for any such  and ,  and  satisfy

the constraints

 ∈
∙
1−  −

µ
2 − 1
1− 

¶µ
1− 



¶


µ
2 − 1
1− 

¶µ
1− 



¶
(1−  − )

¸
 ≤

µ
2 − 1
1− 

¶µ
1− 



¶
 (17)

( + ) ∈ (0 1)

The ex ante probability of peace is  = (1− )2.

Proof.

The logic of the proof is straightforward, but the derivation is cumbersome. We begin by proving

result (1). It is convenient to start by ruling out the option of silence. Suppose  ∈ { }.
(1). Step 1. Suppose  ∈ { } only. Denote by |0() the expected share of a player of type

 who sent message , received message 0 and demands , where  ∈  = {1−  12 }, the set of
possible (undominated) demands. Ignoring silence, there are eight different (|0) combinations,

which we distinguish by labels:  ≡ ( |);  ≡ ( |);  ≡ ( |);  ≡ ( |);  ≡ (|);
 ≡ (|);  ≡ ( |);  ≡ ( |). These labels correpond to the information state a player
moves from when expressing a demand, including the player’s privately known type, and can be used

to identify players at that stage of the game. Call  the probability that  demands , and similarly

for the other labels:  for ,  for ,  for ,  for ,  for  ,  for , and  for . Because

labels depend on the messages exchanged, only some matches are possible:  can be matched either

with another  or with a  (and similarly  can only be matched with  or with another );  can

be matched either with another  or with an  (and similarly  can only be matched with  or with

another  );  can be matched with either  or ,  can be matched with either  or ,  can be

matched with either  or , and finally  can be matched with either  or .

Charaterizing demand strategies, as function of type and messages, amounts to comparing expected

shares for different demands, taking into account the possible matches and the opponent’s expected

demand. Which demand results into a higher expected share depends on the demand strategy used

by the opponent and on the posterior probabilities of the different types, given the messages. Two

preliminary observations are useful: (1) Any player can guarantee herself 1−  by demanding it. (2)
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Given 2  1−  and the restriction on players never playing , demanding 1−  is dominated for

any  player (since war against an  yields , and war against an  yields 2  1− ). Demands

of 1−  by  players are ignored in what follows.

Thus for example  and ’s expected shares, for different demands, are given by:

(1− ) = 1− 

(12) = (1− )2 + (1− )[(1− )2 + (2)]

() = (1− 12 − ) + (1− )[(1− 12 − ) + (12 + )(2)]

(12) = [(1− )2 + (2)] + (1− )[(1− )2 + ]

() = [(1− ) + (2)] + (1− )

where, in the absence of silence, , the posterior probability that the opponent is after the opponent

has sent message , is given by:

 =
(1− )

(1− ) + (1− )

Note that if  = 1−  the messages are fully uninformative, and  =  = .

In characterizing equilibria that are relevant for the lab, allowing for a small but positive probability

of any message is a simple and realistic means of guaranteeing that posterior probabilities are always

well-defined. In other words, we select equilibria such that any information state allowed by the

structure of the game is reached with positive probability along the equilibrium path. When silence

is ruled out, we impose  ∈ (0 1), with open bounds.
The equations corresponding to the other labels can be written in similar fashion and are not

reported here.

Demand stage.

At the demand stage, given messages, the following demands are mutual best responses.

 and : (1)  demands ;  demands  if  ≤ (3 − 2), mixes between  and 1 −  if

 ∈ ((3− 2) (2− 1)), and demands 1−  if  ≥ (2− 1). (2)  demands ;  demands 12

if  ≤ 2 − 1. (3)  demands 12;  demands 12 if  ≥ (2 − 1).
 and  : (1)  demands ;  demands  if  ≤ (3 − 2), mixes between  and 1 −  if
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 ∈ ((3 − 2) (2 − 1)), and demands 1−  if  ≥ (2 − 1). (2)  demands ;  demands

12 if  ≤ 2 − 1. (3)  demands 12;  demands 12 if  ≥ (2 − 1).
, ,  and : (1) Both  and  demand ,  demands 1− and  demands  if  ≤ (2−1)

and  ≥ (3−2). (2) Both  and  demand ,  demands 1− and  demands  if  ≤ (2−1)
and  ≥ (3 − 2). (3) Both  and  demand , and both  and  mix between 1 −  and  if

 ∈ [(3 − 2) (2 − 1)] and  ∈ [(3 − 2) (2 − 1)]. (4) Both  and  demand ,  and

 demand 12 if  ≤ 2 − 1 and  ≤ 2 − 1.
Message stage

Consider now the problem for an  and an  type, choosing which message to send at the message

stage. The objective is to maximize the expected share of the pie, which we now denote as  () for

a player of type  who sends message . We use the symbol b to indicate the expected share of

player with label  at the allocation stage under mutual best response demand strategies. Thus:

() = [(1− ) + (1− )]b + [ + (1− )(1− )]b
() = [(1− ) + (1− )]b + [ + (1− )(1− )]b (18)

() = [(1− ) + (1− )]b + [ + (1− )(1− )]b
() = [(1− ) + (1− )]b + [ + (1− )(1− )]b

The terms in square brackets are the probabilities of being matched with an opponent who sends

message  (the first term) or  (the second term).

Equilibria

Consider the following candidate equilibria: { ∈ (0 1),  ∈ (0 1),  =  =  =  = 1,

 = 1− 1− =  = 1− 1− =

= 2
³
1− 1−

(1−)
´
∈ (0 1),  = 1 − 1− =  = 1 − 1− = 2

³
1− 1−

(1−)
´
∈ (0 1)}. That

is, a set of equilibria indexed by  and  where: all  types always demand  at the demand

stage, regardless of messages; all  types mix between demanding 1 −  and demanding  at the

demand stage, with strictly positive mixing probabilities that depend on the message sent; all types,

 and , send an untruthful message with positive probability. If such an equilibrium exists, thenb = b = b = b = 1− , b = b = (2) + (1− ), and b = b = (2) + (1− ).

It follows from 21 above that randomizing between a truthful and untruthful message is indeed a best

response. From the analysis of the demand strategies above, we know that the conjectured solution
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imposes constraints on the posterior probabilities  and . More precisely, we require:

 ∈ [(3 − 2) (2 − 1)] (19)

 ∈ [(3 − 2) (2 − 1)]

For any  ∈ (0 1), ruling out silence, conditions 19 correspond to the restrictions on  identified
in Proposition A2 (inequalities (16), with  =  = 0).

Finally, call  the probability that an  player demands (1− ), unconditional on message, or:

 ≡ 1−  − (1− )

Given  = 2
³
1− 1−

(1−)
´
and  =

³
1− 1−

(1−)
´
, we find:

 =
2− (3− )

(1− )
= ( )

The probability that an  player demands (1− ) depends on  and , but not on the message sent:

even when the message is informative, that is, away from the babbling line  = 1− , the mixing

probabilities at the demand stage effectively nullify the information provided by the message. The

probability of the opponent demanding (1 − ) does not vary with the message. Hence neither does

the ex ante probability of peace, denoted by  :

 = 2(1− )+ (1− )2[1− (1− )2] =

=
[(5− )− 2][2− (3− )]

2

The semi-pooling equilibria where types partially distinguish themselves through their messages do

not have higher peace than the corresponding equilibria with babbling52, or in the absence of com-

munication.

Step 2. Adding silence:   0   0.

Adding silent messages does not affect the logic of the derivation above. It complicates the analysis

because new information states must be considered at the demand stage, reflecting players who either

52We say "corresponding" equilibria with babbling because we have not ruled out other equilibria where the messages

are fully uninformative but are used as coordinating devices.
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received or sent (or both sent and received) a silent message. Consider for example a player labeled

2( |), an  player who sent an  message and received a silent message. 2 can be matched

either with 1( |) or with 1( |) (with index 1 denoting a player who sent a silent message,
and 2 denoting a player who received it). Replicating the steps above, it is not difficult to verify that

mixing between  = 1−  and  =  is a best response for 2 if 1 demands  with certainty and

1 randomizes between  (with probability 1) and 1−  (with probability 1− 1) as long as:

1 = 2

µ
1− 1− 

(1− )

¶
∈ [0 1]

where  is the posterior probability that an opponent who sent a silent message is . Or:

 =


 + (1− )

The constraint 1 ∈ [0 1] correspond to  ∈ [(3 − 2) (2 − 1)], or:

 ∈
∙
3 − 2
2(1− )

µ
1− 



¶


2 − 1
1− 

µ
1− 



¶


¸
(20)

for  ∈ [0 1− ].

Condition (20) must be satisfied, together with conditions 19. With   0,   0, and imposing

( + ) ∈ (0 1), the conditions amount to the boundaries on  and  reported in Proposition

A1. The boundaries continue to include the possibility of babbling: ( = 1 −  − ,  = ).

Note that the open boundaries   0, ( + ) ∈ (0 1) guarantee that the all posterior probabilities
are well-defined.

Now consider the message choices for an  player. Taking silence into account, expected shares

become:

() = [(1− ) + (1−  − )]b + [(1− ) +  ]b2 + [ + (1− )(1−  − )]b
() = [(1− ) + (1−  − )]b + [(1− ) +  ]b2

+ [ + (1− )(1−  − )]b(21)
() = [(1− ) + (1−  − )]b1 + [(1− ) +  ]b + [ + (1− )(1−  − )]b1

where we use label 1 for player ( |), 2 for ( |), and  for ( |). In the candidate
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equilibrium, all expected shares at the demand stage, conditional on messages and on best response

demand strategies, equal (1− ). Thus the player is indifferent over all three messages, and messages

can be randomized. The same observation applies to an  player, who thus again is indifferent. The

randomization over the messages is supported.

As above, call  the probability that an  player demands (1− ), unconditional on message, or:

 ≡ 1−  − 1 − (1−  − )

where 1 is the probability with which an  player demands  after a silent message, or 1 =

2
³
1− 1−

(1−)
´
. Given  = 2

³
1− 1−

(1−)
´
and  =

³
1− 1−

(1−)
´
, once again we find:

 =
2− (3− )

(1− )
= ( )

As before,  does not depend on the message sent, and hence is not affected by the possibility of a

silent message. As before, even informative communication has no impact on the ex ante probability

of peace  :

 =
[(5− )− 2][2− (3− )]

2

(2). Result (2) follows from the identical logic. It is not difficult to verify that, at the demand stage,

all  players demanding  and all  players demanding 12 are mutual best responses if  ≤ 2− 1,
 ≤ 2 − 1, and, when incorporating the possibility of silence,  ≤ 2 − 1. The inequalities

correspond to constraints (17) in the proposition. As long as these constraints are satisfied, messages

are irrelevant and mixing over messages is indeed a best response at the message stage. ¤

With  = 07, conditions (16) become:

 ∈ [max [(16)(1−  − ) 1−  − (43)] min[(43)(1−  − ) 1−  − (16)]

 ∈ [(16) (43)]

if  = 12, and:

 ∈ [max [(13)(1−  − ) 1−  − (83)] min[(83)(1−  − ) 1−  − (13)]

 ∈ [(13) (83)]
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Figure 13: UC and CM: sincerity with equal experience.

if  = 13.

The constraints corresponding to the second equilibrium, if  = 13, are reported in the text.

9.3 Additional Experimental Results

9.3.1 Sincerity and Peace in UC and CM, between Subjects

We report here evidence on sincerity and the frequency of peace in UC and CM, comparing sessions

where the two treatments are played by subjects in rounds 11-30, i.e. just after the NC treatment,

and with the same experience.

9.3.2 The No Communication (NC) rounds

All subjects started a session by playing 10 rounds of the unmediated treatment without any com-

munication. After being matched in pairs and independently assigned types, each subject submit-

ted a demand in the set {1 −  12  }; if the two demands were compatible, the resource was
split accordingly, if not, conflict followed, the resource shrank to  and was split according to the

subjects’types—2 to each if the types were equal,  to  and 0 to  otherwise.
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Dependent variable:

IsPeace

TreatmentHM 0.082∗∗

(0.037)

TreatmentCM −0.028
(0.032)

Order2 0.066∗∗

(0.029)

Parameter1 0.154∗∗∗

(0.025)

PairTypeHigh-Low 0.322∗∗∗

(0.049)

PairTypeLow-Low 0.635∗∗∗

(0.053)

Period 0.0002

(0.001)

TreatmentHM:PairTypeHigh-Low −0.129∗∗∗
(0.047)

TreatmentCM:PairTypeHigh-Low 0.011

(0.040)

TreatmentHM:PairTypeLow-Low −0.300∗∗∗
(0.047)

TreatmentCM:PairTypeLow-Low 0.016

(0.042)

Order2:PairTypeHigh-Low −0.082∗∗
(0.035)

Order2:PairTypeLow-Low −0.050
(0.037)

Parameter1:PairTypeHigh-Low 0.066∗∗

(0.033)

Parameter1:PairTypeLow-Low −0.002
(0.033)

PairTypeHigh-Low:Period 0.0002

(0.001)

PairTypeLow-Low:Period 0.002∗∗

(0.001)

Constant 0.017

(0.037)

Observations 4,320

R2 0.206

Adjusted R2 0.203

Residual Std. Error 0.446 (df = 4302)

Note: ∗p0.1; ∗∗p0.05; ∗∗∗p0.01

The default treatment is UC (ignoring NC), Order 1, q = 1/3, and when looking at different pair

types, the default pair is HH. Standard errors are clustered by pairs.

Table 3: Peace
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Panel A: q=1/2 Panel B: q=1/3

Figure 14: UC and CM: frequency of peace with equal experience.

These initial 10 rounds were always played before any other treatment and had the goal of fa-

miliarizing subjects with the computer interface and the bargaining game, in a simpler environment.

For completeness, we briefly report here the theoretical results for the NC game as well as the main

regularities observed in the data.

As mentioned in the text, the UC equilibrium demand strategies described in Section 6.2 are

equilibrium demand strategies under NC if the posterior probability of the opponent being  is set

equal to the prior, i.e. to . Denoting by ( ) the probability that type  demands , and by  the

ex ante probability of peace, the equilibria under NC are as follows:

Par1:  = 12. There is a unique equilibrium: 70() = 1; 70() = 029 and 30() = 071;

 = 0586.

Par0:  = 13. There are three equilibria: (1) 70() = 1; 50() = 1;  = 0444. (2) 70() =

1; 70() = 071 and 30() = 029;  = 0345. (3) 70() = 1; 70() = 033, 50() = 038, and

30() = 029;  = 0409.

The equilibrium under Par1, as well as the first two equilibria under Par0 can be obtained from

the UC equilibria discussed in Section 6.2. We have not attempted to characterize a UC equilibrium

under Par0 that would parallel the third equilibrium above.

The frequency of peace observed in the data is 0556 under  = 12 (with s.e.’s clustered at the

session level, the 95 percent  is [0454 0657]), and 0528 under  = 13 (with  = [0468 0587]);

thus peace fits the prediction quite well for  = 12 and is higher than expected under  = 13. (The

77



predicted treatment effect, with higher peace under  = 12, is observed in the data, but with large

confidence intervals). On the other hand, as shown in Table YY, demand strategies in the lab align

qualitatively with the first equilibrium under  = 13 but deviate from predictions otherwise, in great

part because in no other equilibrium does the  type demand 50 with high probability, a regularity

we instead see consistently in the data.

 = 12

demand 70 50 30 

 data 066 029 0003 004

equil 1 0 0 0

 data 007 063 030 0

equil 029 0 071 0

 = 13

demand 70 50 30 

 data 080 014 0 006

equil1,2,3 1 0 0 0

 data 010 085 004 001

equil1 0 100 0 0

equil2 071 0 029 0

equil3 033 038 029 0

Table 9: Data from the initial NC rounds.

9.4 Experimental procedures and instructions

Upon entering the lab, subjects were seated at random computer posts, divided by partitions; each

subject was identified exclusively by a randomly assigned id and all communication among subjects

took place exclusively via computers. After subjects were seated and consent forms were signed, the

experimenter read the instructions aloud and showed images of the experimental screenshots, answer-

ing aloud and publicly any question that did arise. We reproduce here instructions and screenshots

for a representative Parameter 1, Order 1 session.

MEDIATION INSTRUCTIONS

Four parts: NC, UC, M, MC.

PAR1:  = 12;  = 07.

(Payoffs for HM: M=60, W=40, m=20).

Make yourself comfortable, put your phones away, and please don’t talk or use the computer.

Thank you for agreeing to participate in this experiment.
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You will be paid for your participation privately and in cash, at the end of the experiment. Your

earnings during the experiment are denominated in POINTS. For this experiment every 100 POINTS

earns you 10 DOLLARs. The experiment will consist of multiple rounds. At the end, five rounds

will be selected randomly, and you will be paid the sum of your earnings over those five rounds. Pay

attention to each round because it may well end up being one of those for which you will be paid.

If you have any questions during the instructions, please raise your hand.

The experiment studies a game of negotiation: you will be matched with another person, and the

two of you will decide how to share a resource worth 100 points. In case of disagreement, the resource

shrinks to 70 points (think of the 30 points lost as time and resources wasted to disagreement). You

will be randomly assigned types, High or Low, and how the resource is divided in case of disagreement

will depend on your types.

I will describe each part of the experiment before it starts.

PART 1

We begin with PART 1.

At the start of each round, the computer will assign you a type, which, as we said, can be either

High or Low. The two types are equally probable: each person is likely to be H with probability 1/2,

and L with probability 1/2.

You will see a screenshot like this: [SCREENSHOT ON TYPE]

Here, as at several other points during the experiment, you will move to the next screen by clicking

the Continue button. Please remember to do so.

After having been assigned your type, you will be randomly matched with another person in the

room. You will not know which person you are matched to, nor will you know the person’s type.

Knowing your type does not give you any information about your match’s type. All you know is that

he or she is equally likely to be H or L with probability 1/2 each. Your type and your match’s type

matter because they affect how the resource is shared in case of Disagreement.

After having been informed of your assigned type, you will be asked to say how much of the

resource you demand for yourself. Remember that the resource is worth 100. You can ask for 30, 50,

70, or you can Walk Out of the negotiation.

• If your demand and the demand of your match are compatible (i.e. do not sum to more than

100), then they will satisfied. You will receive what you asked for, and the round will end.
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• If the two demands are instead incompatible (they sum to more than 100), or if one of you

Walks Out, then there is Disagreement. The resource shrinks from 100 to 70 points. The reduced

resource is then allocated automatically by the computer. If one of you is H and the other is L, then

H receives the full 70 points, and L receives 0. If both of you are H, or both of you are L, then each

receives one half of the reduced resource, that is, 35 points. This will conclude the round.

The screen where you express your demand will look like this:

[SCREENSHOT: NO COMMUNICATION DEMAND]

Notice that you have a reminder of your type on the upper left corner.

Disagreement occurs if either of you chooses W (Walk Out), or if the two of you choose (70, 50),

or (70, 70). Remember: If there is disagreement, the resource shrinks from 100 to 70 points.

After the two demands have been submitted, you will be told your match’s demand; whether there

is Agreement or Disagreement, and your payoff for the round.

If there is Agreement, your payoff will equal your demand. Your screen will look like this [SCREEN-

SHOT: OUTCOME WITH AGREEMENT].

If there is disagreement, your payoff will depend on your type and your match’s type. Your screen

will look like this [SCREENSHOT: OUTCOME WITH DISAGREEMENT]. In this example, you

asked for 70 and your match asked for 50 points. The two demands were incompatible, and the

resource shrank to 70 points in total. Your payoff consists of 0 points which indicates that your match

is of type H and you are of type L.

This will conclude the round. We will then move to the next round: you will again be assigned a

type randomly (H or L with equal probability of 1/2), and will be matched randomly with another

person in the room. The type you were in round 1 or the person you were matched with do not

influence in any way the type you are assigned in round 2 or your new match. The experiment will

then continue as described earlier.

The REMINDER slide summarizes this part of the experiment.

Are there any questions?

We will begin with two practice rounds. You will not be paid for these rounds, whose purpose is

only to familiarize yourself with the computer interface and the rules of the experiment.

[OPEN ZTREE; copy program]

Please double-click on the icon marked Leaf16 on your desktop. If asked, click RUN.
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If you have any questions from now on, raise your hand, and an experimenter will come and assist

you.

RUN PRACTICE ROUNDS: [RUN; START TREATMENT]

We have now concluded the practice rounds. Are there any questions? Remember that you will

not be paid for these rounds.

CLOSE THE TREE

Please click Alt F4. Then double-click on the icon marked Leaf16 and if asked click RUN.

We will now begin the experiment. The first part will last 10 rounds.

[RUN; START TREATMENT]

PART 2

We will now move to the second part of the experiment. Part 2 will run in a similar fashion to

part 1. At the start of each round, the computer will again assign you a type, High or Low, with

equal probability of 1
2
each. You will again be matched randomly with another person in the room,

whose type you will not know.

Now, unlike in Part 1, after types are assigned and matches are made, you will be asked to send

a message to your match, communicating your type. You have three options: High, Low, or Silence.

You can be truthful, or not truthful, as you choose, or you can be silent. The screen you will see will

look like this:

[SCREENSHOT: SEND MESSAGE] As before, in the upper blue strip is a reminder of your type.

You will then receive the message sent by your match, which again can be either H or L or S. After

having seen the message, you will be asked to say how much of the resource you demand for yourself.

Remember that the resource is worth 100 points. As in Part 1, you can ask for 30, 50, 70, or you

can Walk Out of the negotiation. Payoffs will work exactly as in the previous round: you will receive

what you asked if the two demands do not sum up to more than 100 (and thus there is Agreement); if

the demands sum up to more than 100, there is Disagreement, the resource shrinks to 70 points and

is allocated according to your type and the type of your match.

The only difference with respect to Part 1 is your ability to send a message communicating your

type before deciding on your demands.

The screen where you express your demand will look like this:

[SCREENSHOT: DEMAND] Note that blue strip at the top now reminds you both of your type

and of the message you have sent. The screen also communicates to you the message your partner
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has sent.

After the two demands have been submitted, you will be told your match’s demand; whether there

is Agreement or Disagreement, and your payoff for the round.

This will conclude the round. We will then move to the next round: you will again be assigned a

type randomly (H or L, each with equal probability 1/2), and will be matched randomly with another

person in the room. The experiment will then continue as described earlier.

The Reminder slide will remain projected to remind you of the rules.

Part 2 will last 20 rounds.

Please move the cursor to the top left corner of your screen. Click and the Continue button will

appear at the bottom right corner. Click Continue and begin Part 2.

PART 3.

We will now move to the third part of the experiment.

At the start of each round, you will be matched randomly in groups of three people. One person

in the group will be called Mediator. The Mediator receives confidential messages and makes rec-

ommendations on how the other two people in the group–who will be called the two Players–are

to share the resource. For convenience, the two Players will sometimes be identified as Player 1 and

Player 2, but 1 and 2 are just labels with no other meaning.

The computer will tell you if you are the Mediator or a Player.

After the match has occurred, the two Players will be randomly assigned a type. As before, each

type can be either H or L with equal probability, and which type is assigned to one Player has no

influence on the type assigned to the other Player. If you are a Player, you will know your own type,

but will not know the other Player’s type. If you are the Mediator, you will not know the type of

either Player. Everyone knows that a Player is assigned type H or L with equal probability of 1
2
each.

After matches are made and roles and types are assigned, if you are a Player, you will be asked to

send a message communicating your type, as you did in Part 2. As before, you have three options:

High, Low, or Silence. The difference is that now you will send the message to the Mediator, and not

to the other Player in your group. As before you can be truthful, or not truthful, or you can be Silent.

The screen will look like this:

[SCREENSHOT: SEND MESSAGE]

The message you send to the Mediator is confidential and will not be seen by the other Player.
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Once the two messages are received by the Mediator, the Mediator can make a recommendation

on how to share the resource, or can choose to Walk Out of the mediation.

• If the Mediator makes a recommendation and both Players accept it, then there is Agreement,

the resource is shared according to the recommendation, and the Mediator earns 60 points.

• If one or both Players reject the recommendation, then there is Disagreement, the resource

shrinks to 70 points and is allocated by the computer to the two Players according to their type, as

in Parts 1 and 2. In case of Disagreement, the Mediator’s payoff is 20 points.

• If the Mediator Walks out of the negotiation, the Disagreement scenario is triggered au-

tomatically: the resource shrinks, and the Players’ payoffs depend on their type, as in the regular

Disagreement case. However if Disagreement is triggered by the Mediator Walking out, the Media-

tor’s payoff is 40 points (as opposed to 20 when Disagreement comes from the Players rejecting the

Mediator’s recommendations).

The reminder slide that remains projected during this part of the experiment will remind you of

the rules.

Note that the Mediator can make a recommendation but has no power to force the Players to

accept it.

The Mediator’s screen will look like this:

[SCREENSHOT: MEDIATOR’S CHOICE]. The screen shows the two messages received from the

two Players, and the options the Mediator has for a feasible recommendation. The first number

indicates the amount recommended for Player 1, and the second the amount recommended for Player

2. The choices are (50,50), (30,70), (70, 30). Alternatively, the Mediator can choose to Walk Out of

the mediation task.

The Mediator’s choice is then transmitted to the two Players.

If the Mediator has chosen to Walk Out, then each Player will see a screen like this:

[SCREENSHOT: MEDIATOR WALKED OUT].

At the same time, the Mediator will also see a screen repeating the decision to Walk Out and

reporting the Mediator’s corresponding payoff. [SCREENSHOT: YOU WALKED OUT].

If the Mediator has made a recommendation, each Player’s screen will look like this: [SCREEN-

SHOT: PLAYER’S RESPONSE TO THE MEDIATOR’S PROPOSAL]. The Player is asked whether

to accept or reject the recommendation.
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Each Player is then told whether the other Player accepted the recommendation, and the final

outcome of the mediation, including the Player’s payoff for the round. [SCREENSHOT: OUTCOME

FOR PLAYER, AGREEMENT].

At the same time, the Player’s decisions and the outcome are communicated to the Mediator. The

Mediator is also reminded of the messages received and the recommendation made. [SCREENSHOT:

OUTCOME FOR MEDIATOR, AGREEMENT]. Because the outcome is Agreement, the Mediator

earns 60 points.

This concludes the round. We will then move to the next round, where groups of three will again

be formed randomly, and roles will be assigned randomly. Although roles are assigned randomly and

groups are formed randomly, each of you will be Mediator for the same number of rounds. Types

are then assigned, again randomly, with each Player being of type H or L with equal probability of 1
2

each. The experiment will then continue as just described.

[SCREENSHOT: REMINDER SLIDE SUBJECT MEDIATOR]

Part 3 will last 30 rounds.

Are there any questions?

Please move the cursor to the top left corner of your screen. Click and the Continue button will

appear at the bottom right corner. Click Continue and begin Part 3.

PART 4

Part 4 is almost identical to Part 3. The only difference is that the Mediator is played by the

computer.

As in Part 3, the two Players in each group send their messages to the Computer-Mediator, the

Mediator chooses whether to Walk Out or to make a recommendation, and each Player decides whether

to accept or to reject the Mediator’s recommendation.

If either the Mediator Walks Out or one or both Players reject the Mediator’s recommendation,

then there is Disagreement, the resource shrinks to 70 points and is allocated according to Players’

types (divided equally if the Players are of the same type, given fully to the H type if the two Players

have type H and L).

If the Mediator makes a recommendation and both Players accept it, then there is Agreement, the

recommendation is implemented, each Player earns the corresponding points.

The Computer Mediator follows the following plan:

If the two messages are (L, L), it recommends (50, 50).
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If they are (H, L), it recommends either (70, 30) with probability 5/8 or (50, 50) with probability

3/8.

If they are (H, H), it recommends either (50, 50) with probability 1/2 or Walks Out with probability

1/2.

If the computer receives a Silent message from a player, it interprets it interprets it according to

the likely frequency of each type–as an H with probability 1/2 and an L with probability 1/2. Thus

if, for example, the two messages are (S,L), the computer reads them as (L,L) with probability 1/2

(and acts accordingly) or as (H,L) with probability 1/2 (and acts accordingly).

[SCREENSHOT COMPUTER MEDIATOR PLAN]

This screenshot will remain up throughout Part 4 to remind you of the Computer Mediator plan.

After each round, you will be rematched randomly with another player, and types will be reas-

signed.

Part 4 will last for 20 rounds.

Are there any questions?

Please move the cursor to the top left corner of your screen. Click and the Continue button will

appear at the bottom right corner. Click Continue and begin Part 4.

[Before the end of the last round: remind them to remain with the final screen with their earnings].

END OF THE EXPERIMENT

This is the end of the experiment. You should now see a popup window, which displays your total

earnings. Please divide the number of points by 10, round up to the nearest dollar, and record this

on your payment receipt sheet. Please also enter $10.00 on the show-up fee row. Add your earnings

and the show-up fee and enter the sum as the total. Finally, please record your Computer ID on the

form. Add some not intelligible signature. When you are done, click “Continue”.

[Run Questionnaire]

We will pay each of you in private in the next room in the order of your computer numbers. Please

do not use the computer; be patient, and remain seated until we call you to be paid. Do not converse

with the other participants. Thank you for your cooperation.

[SAVE DATA and erase from folder]
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