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Abstract

The storable votes mechanism is a voting method for committees that meet periodically to consider a
series of binary decisions. Each member is allocated a fixed budget of votes to be cast as desired over
the sequence of decisions. This provides incentives for voters to spend more votes on those decisions that
matter to them more, typically generating welfare gains over standard majority voting with non-storable
votes. Equilibrium strategies have a very intuitive feature—the number of votes cast must be monotonic in
the voter’s intensity of preferences—but are otherwise difficult to calculate, raising questions of practical
implementation. We present experimental data where realized efficiency levels were remarkably close to
theoretical equilibrium predictions, while subjects adopted monotonic but off-equilibrium strategies. We
are led to conclude that concerns about the complexity of the game may have limited practical relevance.
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1. Introduction

In binary decision problems, simple voting schemes where each voter has one vote to cast
either for or against a proposal allow voters to express the direction of their preferences, but
not their strength. This remains true if several binary decisions are taken in series, and voters are
asked to cast their vote over each, independently of their other choices.1 It is possible, however, to
elicit voters’ strength of preferences through voting mechanisms where voting choices are linked.
Casella (2005) proposes a mechanism of this sort that has the advantage of being extremely
simple: storable votes allow each voter to allocate freely a given total budget of votes over several
consecutive decisions. Each decision is then taken in accordance with the majority of votes cast,
but voters are allowed to cast multiple votes over the same decision, as long as they respect their
budget constraint. Thus votes function as a kind of fiat money, playing a role similar to that of
transfer payments in more familiar mechanism design problems: voters are induced to cast more
votes over those decisions they care more about, increasing their probability of having their way
exactly where it matters to them most. As stressed by Jackson and Sonnenschein (in press), this
linkage principle has broad applicability to any voting context where the group is making more
than one decision, with the potential for substantial efficiency gains.2

We are aware of no historical examples of pure storable votes institutions, but the storable
votes mechanism is related to a scheme that is not uncommon: cumulative voting, where each
voter distributes a fixed budget of votes across a field of candidates in a single multi-candidate
election. Storable votes can be thought of as a version of cumulative voting applied not to a single
election with multiple choices, but to a series of binary decisions taking place over time.3

In Casella (2005) voters receive no initial endowment but can accumulate a bank of votes
by abstaining on the early votes. That paper discusses conditions under which such a form of
storable votes increases efficiency relative to a standard sequence of simple (non-storable) votes.
Here we modify the model by endowing voters with an initial stock of votes and derive theo-
retical results for the extended model. But we also address a more central question. Although
the intuition behind storable votes is immediate, voters must play a complicated dynamic game,
comparing the marginal effect of an extra vote on the probability of being pivotal today to its
effect on the probability of being pivotal sometime in the future, a trade-off that must depend
on the whole distribution of voting choices by all committee members. If storable votes were to

1 If voting is optional and costly, then strength of preference is indirectly expressed through the choice to abstain or
vote (for example, Börgers, 2004). But it can be ranked in two classes only—stronger or weaker than the cost of voting.
In addition, biases will result if the cost of voting is correlated with voters’ preferences (Campbell, 1999; Osborne et al.,
2000).

2 Jackson and Sonnenschein (in press) construct more complex rules that lead to first best efficiency as the number of
decision problems becomes large. By a “voting context,” we mean a public decision problem where direct side payments
are not possible. The standard mechanism design approach (e.g. Crémer et al., 1990) allows unlimited side payments and
assumes quasi-linear utility functions.

3 The idea of cumulative voting has a long history (Dodgson, 1884), and has been promoted as a fair way to give voice
to minorities (Guinier, 1994). Cumulative voting was the norm in the Illinois Lower House until 1980, it is commonly
used in corporate board elections, and in recent years has been adopted as remedy for violations of fair representation in
local elections. See Sawyer and MacRae (1962) for an early discussion of the experience in Illinois, Brams (1975) and
Mueller (1989) for more theoretical surveys, Issacharoff et al. (2001) and Bowler et al. (2003) for descriptions of recent
experiences. Other voting mechanisms that allow strength of preferences to affect outcomes are peremptory challenges in
jury selection (Brams and Davis, 1978), voting by successive veto (Mueller, 1978 and Moulin, 1982), and, less formally,
vote trading and log-rolling (Ferejohn, 1974; Philipson and Snyder, 1996; Piketty, 1994). For comparisons to storable
votes, see the discussion in Casella (2005).
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be used in practical decision-making, would voters be able to solve the problem well enough to
achieve something resembling the theoretical properties of the voting mechanism? To address
this point, we conducted a laboratory experiment.

Our most important finding is that the efficiency improvements predicted by the theory were
observed in the data: the realized experimental efficiencies tracked the theoretical predictions
almost perfectly across all treatments. The result is particularly remarkable in light of the fact
that the actual choice behavior of the subjects did not track the theory nearly as closely. Equi-
librium strategies in this game require voters to cast a number of votes that, for each decision,
is increasing in the intensity of their preferences, and take the form of thresholds, or cutpoints,
that determine how many votes to cast as a function of valuation. While monotonicity is very
intuitive and characterizes all best response strategies with storable votes, calculating the equi-
librium thresholds is much more complex. In our data, nearly all subjects adopted approximately
monotonic strategies (with a small number of errors), but the same cannot be said of the thresh-
olds equilibrium values: the best fitting cutpoint rules varied across subjects, and even the average
estimated cutpoint rule was typically different from the equilibrium cutpoint.

The two observations—realized efficiency that matches the theory and choice behavior that
does not—together suggest a robustness of the storable votes mechanism. Monotone voting
strategies must be used in order to realize the efficiency gains, but monotone behavior is sim-
ple and intuitive, and in real committee settings, voters would be more experienced than our
subjects. The potential usefulness of storable votes in practical applications is a difficult policy
question, but our experiment provides an encouraging initial probe.

In order to account for some of the behavioral deviations from the theory, we estimated several
different models of stochastic choice behavior. We find that logit equilibrium provides a close
description of the subjects’ strategies and easily outperforms a range of plausible alternative
models. The model not only allows for stochastic choice, with the likelihood of errors negatively
correlated to foregone expected payoff, but also endogenizes the equilibrium payoff in a way that
is similar to Nash equilibrium.

The paper proceeds as follows. In the next section we describe the theoretical model and
its main properties; Section 3 describes the experimental design and the theoretical predictions
of the model with the parameter values used in the experiment; Section 4 presents the results;
Section 5 concludes.

2. The model

A group of n individuals meets regularly over time to vote up or down each period t a pro-
posal Pt , with t = 1, . . . , T . In the Storable votes mechanism, voters allocate a given initial stock
of votes across the different proposals. In each period, each voter casts a single regular vote for
or against proposal Pt , but in addition, voter i is endowed at time 0 with B0

i bonus votes and
any bonus votes cast by i in period t are added to his regular vote in that period. The decision
of how many votes to cast is made sequentially, period by period, after each voter observes his
valuation for the current proposal. Thus in the first period voter i casts 1 regular vote, plus any
number of bonus votes, bi1 between 1 and B0

i , resulting in a total vote in the first period equal to
xi1 = 1 + bi1. In the second period, i casts his regular vote plus any number of bonus votes, bi2,
between 1 and B1

i = B0
i − bi1, resulting in a total vote xi2 = 1 + bi2, and so forth. Voters cast

their votes simultaneously, but once the decision is taken the number of votes that each member
has spent—and thus the number of votes remaining—is made public. Each period, the decision
is taken according to a simple majority of votes cast, with ties broken randomly.
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Individual i’s valuation over proposal Pt is summarized by the variable vit , drawn each period
from a distribution Fit (v) defined over a support [v, v], with v < 0 < v. A negative realization
of vit indicates that individual i opposes proposal Pt . When a proposal is voted upon, each
individual i receives utility ui equal to |vit | if the vote goes in the desired direction, and 0
otherwise. In this paper, we make several assumptions about the distribution functions, Fit , that
simplify both the theory and the laboratory environment:

(i) vit is identically and independently distributed both across periods and across individuals;
(ii) the common distribution function F(v), defined over [−1,1], is continuous, atomless and

symmetric around 0;

F is common knowledge, and in each period each player observes his own current valua-
tion, vit . The realized valuations of the members of the group other than i are not known to i,
nor are i’s own future valuations.4

Individuals choose each period how many votes to cast to maximize the sum of expected
utilities over all proposals. Given F,n,B0, T the storable votes mechanism defines a multistage
game of incomplete information, and we study the properties of the perfect Bayesian equilibria
of this game.

Because valuations are not correlated over time, the direction of one’s vote holds no informa-
tion about the direction of future preferences and cannot be used to manipulate other players’
future voting strategies. Assuming in addition that players do not use weakly dominated strate-
gies, the direction of each individual vote will be chosen sincerely: all xit votes are cast in favor
of proposal Pt if vit > 0 and all xit votes are cast against proposal Pt if vit < 0. The game how-
ever remains complex: it is a dynamic game where preferences are realized over time and the
information over the stock of votes held by all other members is updated each period; and it is
non-stationary because the horizon is finite. This said, the basic intuition is simple and strong:
storable votes should allow voters to express the intensity of their preferences. This intuition is
reflected in the formal properties that the equilibrium can be shown to possess.

We focus on strategies such that the number of votes each individual chooses to cast each
period, xit , depends only on the state of the game at t , which is the profile of bonus votes each
voter has still available, B = (B1, . . . ,Bn), and the number of remaining periods, T − t . Hence
we refer to (B, t) as the state of the game and denote strategies by xit (vit ,B, t). Equilibrium
strategies have the following properties:

1. Monotonicity. We call a strategy monotonic if, at a given state, the number of votes cast
is monotonically increasing in the intensity of preferences, |vit |. For any number of voters n,
horizon length T , and state (B, t), all best response strategies are monotonic.

The proof follows closely the proof in Casella (2005), with a slightly different model, and is
omitted here,5 but monotonicity is very intuitive: for any number of votes cast by the other voters,
the probability of obtaining one’s favorite outcome must be increasing, if possibly weakly, in the
number of votes one casts. Hence, everything else equal, if it is optimal to cast x votes when the

4 As discussed in Casella (2005), the informational assumptions were inspired by the example that motivated the idea
of storable votes: The Governing Council of the European Central Bank, meeting every month to decide whether to
change interest rates or maintain the status quo.

5 The proof can be found in Casella et al. (2003).
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valuation attached to a given decision is |v|, it cannot be optimal to cast fewer votes than x when
the valuation is higher than |v|.

2. Equilibrium. The game has a perfect Bayesian equilibrium in pure strategies. All equilib-
rium strategies are monotone cutpoint strategies: at any state (B, t) and for any voter i with
ki = Bi + 1 available votes there exists a set of cutpoints {ci1(B, t), ci2(B, t), . . . , ciki

(B, t)},
0 � cix � cix+1 � 1, such that i will cast x votes if and only if |vit | ∈ [cix, cix+1].

The existence of an equilibrium is proved in Casella (2005). Once that is established, the char-
acterization of the equilibrium strategies follows directly from monotonicity. If all best response
strategies are monotonic, equilibrium strategies must be monotonic, and given a fixed number of
available votes and a continuum of possible valuations, they must take the form of monotonic
cutpoints. The cutpoints depend on the state of the game and two or more may coincide (some
feasible numbers of votes may never be cast in equilibrium at a given state). The equilibrium
need not be unique.

The monotonicity of the equilibrium cutpoints supports our intuitive understanding of how
storable votes might lead to welfare gains relative to non-storable votes (the reference case where
each voter casts one vote each period). Very simply, by shifting votes from low to high realiza-
tions of |v|, a voter shifts the probability of obtaining the desired outcome towards decisions over
which he feels more intensely. The effect appears clearly, and can be proved rigorously, in the
transparent case of two voters for any arbitrary horizon length. With more than two voters, mat-
ters are more complicated because the number of asymmetric states—states where voters have
different stocks of available votes—multiplies. In these states voting strategies are asymmetric,
and in comparing across different voters, a larger number of votes cast need not always correlate
with stronger preferences, breaking the link that underpins the expected welfare gains. As dis-
cussed in Casella (2005), and as intuition suggests, the welfare gains appear to be robust when
the horizon is long enough, and the option value of a vote sufficiently important, or when the
group is not too small. In fact, for any number of voters and proposals, there always exists a co-
operative strategy such that the storable votes mechanism ex ante Pareto-dominates non-storable
votes. In what follows we concentrate on symmetric games where all voters are given the same
endowment of bonus votes (B0

i = B0 for all i), and consider symmetric equilibria where voters
play the same strategy when they are in the same state.

3. Welfare. Call EV0(B
0) the expected value of the game at time 0, before the realization of

any valuation, when votes are storable and each voter has a stock of B0 bonus votes, and EW0
the corresponding value with non-storable votes. Then: (i) For n = 2, EV0(B

0) > EW0 for all
T > 1, with EV0(B

0)/EW0 monotonically increasing in T . (ii) Let the valuations’ distribution
F(v) be uniform. Then for all n � 2 and B0 > 1, there exists a monotonic cutpoint strategy
profile xC

t (vit ,B, t) such that EV C
0 (B0) > EW0 for all T > 1.

(The proofs are omitted here but can be found in Casella et al., 2003.)
With two voters, equilibrium strategies always result in expected welfare gains, relative to

non-storable votes. Indeed, as shown in Casella et al., 2003, a stronger result holds: all strictly
monotonic strategies, including simple rules-of-thumb, lead to expected welfare gains (for exam-
ple, partitioning the interval of possible intensities [0,1] into as many equally sized sub-intervals
as the number of available votes). If the two voters choose the same rule-of-thumb, than the result
holds for each voter individually; if instead they choose different but monotonic strategies, then
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the result holds in the aggregate: total expected welfare will be higher, although not necessar-
ily each individual expected welfare. With more than two voters, ex ante welfare gains can be
guaranteed by choosing cutpoints cooperatively.

3. Experimental design

All sessions of the experiment were run either at the Hacker SSEL laboratory at Caltech or
at the CASSEL laboratory at UCLA, with enrolled students who were recruited from the whole
campus through the laboratory web sites. No subject participated in more than one session. In
each session, all subjects were initially allocated T bonus votes to spend over T successive
proposals (in addition to one regular vote for each proposal): B0

i = T for all i. There were two
main treatment variables: the number of voters in a group, n; and the number of proposals, T .
Overall we considered six different treatments: n = 2,3,6 for each of two possible horizons
T = 2,3.6 The experimental design is given in Table 1.

After entering the computer laboratory, the subjects were seated randomly in booths sepa-
rated by partitions and assigned ID numbers corresponding to their computer terminal7; when
everyone was seated the experimenter read aloud the instructions, and questions were answered
publicly.8 The session then began. Subjects were matched randomly in groups of n each. Valu-
ations were drawn randomly by the computer independently for each subject and could be any
integer value between −100 and 100 (excluding 0),9 with equal probability. Each subject was
shown his valuation for the first proposal and asked to choose how many votes to cast in the
first election. After everyone in a group had voted, the computer screen showed to each subject
the result of the vote for the group, and the number of votes cast by all other group members.

Table 1
Experimental design

Session n T Subject pool # Subjects Rounds

c1 2 2 Caltech 10 30
c2 2 2 Caltech 10 20
c3 2 3 Caltech 10 30
c4 2 3 Caltech 8 30
c5 3 2 Caltech 12 30
c6 3 3 Caltech 9 30
c7 6 2 Caltech 12 30
u1 2 2 UCLA 16 30
u2 2 3 UCLA 20 30
u3 3 2 UCLA 21 30
u4 3 3 UCLA 18 30
u5 6 2 UCLA 18 30
u6 6 3 UCLA 18 30

6 In addition to our core treatments, we ran one session at UCLA with n = 2, T = 2 but B0
i

= 3 for all i. We discuss it
separately, later in the text.

7 We used the Multistage Game software package developed jointly between the SSEL and CASSEL labs. This open
source software can be downloaded from http://research.cassel.ucla.edu/software.htm.

8 A sample of the instructions from one of the sessions is reproduced in Casella et al. (2003).
9 In the first session, c1, one subject was assigned a valuation of 0 due to a programming error, which was corrected

for later sessions. This observation is treated as missing data.

http://research.cassel.ucla.edu/software.htm
http://research.cassel.ucla.edu/software.htm
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Table 2
Equilibrium and efficiency

T = 2 (2 bonus votes)

n (c12, c23) surplus sv surplus nsv surplus svC (cC
12, cC

23)

2 (50,50) 37 0 44 (33,66)
3 (35,67)A, (50,50)B , (0,100)N 82.6A 80.4B 85.7N 85.7 89 (50,100)
4 (44,56) 83.3 73.2 84.5 (38,74)
5 (50,50)B , (0,100)N 86B 88.3N 88.3 90.8 (56,100)
6 (45,55) 86.5 80.8 88.5 (43,82)
7 (50,50)B , (0,100)N 87.5B 88.6N 88.6 91.1 (58,100)

T = 3 (3 bonus votes)

n (c12, c23, c34) surplus sv surplus nsv surplus svC (cC
12, cC

23, cC
34)

2 (37,75,100) 52.6 0 58.2 (37,73,100)
3 (47,66,84)A, (48,66,84)B , (47,69,84)N 80.7A,B,N 85.7 89.3 (48,87,100)
4 (49,64,83) 84.6 73.2 88.3 (41,76,100)
5 (53,65,77)* 85.7 88.3 91.8 (56,100,100)
6 (54,64,76) 86.1 80.8 91.1 (45,81,100)
7 (56,65,73)* 86.3 88.6 92.3 (56,100,100)

* Although there are multiple equilibria in some of the second period subgames, the differences in first period cutpoints
and expected welfare disappear when cutpoints are discretized. The experimental treatments are in bold.

Valuations over the second proposal were then drawn, and the session continued in the same
fashion. After T proposals, subjects were rematched and a new sequence of T proposals oc-
curred. Each session consisted of 30 such sequences (rounds).10 Subjects were paid privately at
the end of each session their cumulative valuations for all proposals resolved in their preferred
direction, multiplied by a predetermined exchange rate. Average earnings were about $25.00 an
hour.

The parameters of the experiment mirrored closely the theoretical model, with the distribu-
tion F(v) uniform over [−100,100]. To construct a benchmark upper bound for efficiency, we
calculated expected earnings if the decision were always resolved in favor of the side having the
highest total valuation (i.e. expected ex post efficiency).11 Because subjects in the experiments
were not given the option of voting against their preferred decision, ex post efficiency and ex-
pected equilibrium payoffs are normalized using a lower bound, or “zero-efficiency” point that
recognizes unanimity. We define this lower bound by the expected earnings if the decision is
random whenever preferences are not unanimous.12 We then measure surplus by the proportion
of the difference between the lower bound and the upper bound that is achieved. The equilibrium
cutpoints are shown in column 2 of Table 2, for different values of n (those corresponding to
our experimental treatments are in bold; a few other values of n are also given for comparison).
Theoretical surplus with simple majority rule (non-storable votes) is shown in column 4. The
cooperative cutpoints are given in the last column, and the surplus at these cutpoints in the next
to last column.

10 With one exception: session c2 at Caltech had 20 rounds.
11 See Appendix A.
12 Other measures are possible—for example, expected earnings if the decision is always resolved in favor of the side
having the lowest total valuation. The results are unchanged.
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The first half of Table 2 reports the theoretical predictions in the case of two consecutive pro-
posals and two bonus votes (T = 2). When the second (final) proposal is put up for a vote, all
remaining votes are cast; thus the only strategic decision is how many votes to cast over the first
proposal, from a minimum of one to a maximum of three. The equilibrium strategy is summa-
rized by the equilibrium cutpoints in the second column, indicating at which valuations a voter
switches from casting one vote to casting two (c12) and from casting two to casting three (c23):
in the case of two voters, for example, the two cutpoints coincide at |v| = 50, indicating that
casting two votes is never an equilibrium strategy. The normalized surplus measure in equilib-
rium is reported in the third (storable votes) and fourth (non-storable votes) columns. In the case
of two voters, storable votes allow voters to appropriate 37 percent of the possible surplus over
randomness, while non-storable votes lead to a random outcome whenever the two voters dis-
agree. If voters chose their cutpoints cooperatively, the expected surplus share would rise to the
number in the fifth column, and the cutpoints would be those reported in the last column (the
superscript C stands for “cooperative”). With two voters, the cooperative strategy is to cast one
vote for valuations smaller than 33, two votes between 33 and 66, and three votes above. This
strategy is not an equilibrium, and individual deviations would be profitable, but if the two voters
used this rule they could expect to appropriate 44 percent of possible surplus.

A few observations are instructive. When n = 2, the equilibrium is particularly simple: as said
above, each voter should cast one vote if his realized valuation over the first proposal is below
the mean, and three votes otherwise—he should never split his bonus votes. The equilibrium
strategy is dominant: not only is the equilibrium unique, but each voter’s best response strategy
is not affected by the other voter’s strategy.13 Unique equilibria also hold when n equals 4 or 6,
but now the equilibrium strategy is not dominant. When n is odd, the equilibrium is not unique.
For the case n = 3, if voters 1 and 2 each cast two votes, the third voter is pivotal only if the other
two voters have opposing valuations, but in this case he is pivotal regardless of the number of
votes cast, and this is true in both periods. Thus always casting two votes (c12 = 0, c23 = 100) is
an equilibrium, and the outcome then is identical to non-storable votes. One can see immediately
that the result holds for all n odd, if T = 2. But other equilibria exist too, the more robust being
c12 = c23 = 50 (never cast two votes, and switch from one to three votes at the mean valuation)
which again can be shown to exist for all n odd.14

The efficiency difference between storable and non-storable votes is greatest in the case of
two voters, although it remains positive, if declining, for all n even. When n is odd and small
and the horizon is short, non-storable votes may yield a higher equilibrium surplus than storable
votes. Typically, storable votes lead to states where the number of available votes differs across
voters; in some cases, for example in the terminal period, the number of votes cast does not
reflect the relative intensity of preferences across voters, and if a minority of the voters comes to
dominate this last choice, the efficiency implications can be undesirable. And since non-storable
votes perform quite well with n odd, the higher efficiency of storable votes in symmetrical states
need not be enough to overcome the problem that can arise in asymmetrical states. However,
although not shown in the table, as the number of voters increases, the storable votes mechanism
eventually is more efficient than non-storable votes, whether n is odd or even.

13 With n = 2 and T = 2, casting one more vote always increases a voter’s probability of being pivotal at t = 1 by
exactly the same amount it reduces it at t = 2. Thus the voter’s optimal strategy is to spend all bonus votes in t = 1 if
|vi1| > 50 and save them all otherwise.
14 Unlike in the two-player game, this strategy is not dominant.
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The efficiency of storable votes can be improved by choosing the cutpoints cooperatively, in
which case, as stated earlier, the storable votes mechanism always dominates non-storable votes
in terms of ex ante welfare. In general, the cooperative strategy has voters casting two votes for
a larger range of valuations than the equilibrium strategy, while casting three votes becomes less
likely and never occurs when n is odd.15

The second half of Table 2 summarizes the theoretical predictions when three successive pro-
posals are considered, and voters are given three initial bonus votes (T = 3). We report here the
equilibrium and the cooperative cutpoints for the first proposal only, when voters can cast any
number of votes between 1 and 4.16 Two features of the equilibrium are worth noticing. First,
although we know from the T = 2 case that some of the second period subgames have multiple
equilibria, the equilibrium cutpoints induced in the first proposal election are empirically indis-
tinguishable, once we constrain them to be discrete numbers (with the exception of the 3-voter
case). The same conclusion applies to expected equilibrium payoffs: the second period multi-
plicity of equilibria does not translate into detectable multiplicity in expected surplus. Second, as
one would expect when the horizon lengthens, the equilibrium cutpoints are now strongly asym-
metrical, relative to the mean valuation: voters are always at least twice as likely to use no bonus
votes than to use all three. Still, with the exception of the 2-voter case, there is a sizable range of
valuations for which using all bonus votes is an equilibrium, in clear contrast to the cooperative
strategy, where casting four votes should never occur. Indeed for n = 5 and n = 7, the expected
payoff is maximized when voters cast at most on bonus vote on the first election.17

If votes are non-storable, lengthening the horizon has no effect on the expected surplus: valu-
ations are independent and the one-period game repeats itself. The longer horizon has an effect
when votes are storable. For n = 2, we have stated earlier that ex ante expected welfare cannot
decrease in T , but in several of the other treatments Table 2 shows it declining, if only slightly.
A similar result appears in Casella (2005) for the case n = 3, in a different specification of the
storable votes mechanism. In that model the effect of a longer horizon is non-monotonic: after
an initial decline with T = 3, expected welfare increases with the number of proposals. We have
not solved the present model for more than three proposals, but the reader should not extrapolate
from Table 2 that increasing the number of proposals must lead to lower expected welfare. As
for the cooperative solution, moving from two to three proposals increases, in all treatments, the
share of the efficient surplus that voters can expect to appropriate.18

We chose the experimental treatments according to two criteria. First, we selected cases with
clearly different theoretical predictions, particularly in terms of efficiency. Second, we wanted to

15 The intuition is clear for n = 3. Ruling out three votes at t = 1 rules out the possibility of the two states (1,1,2) and
(1,1,3) at t = T = 2, the only states where a single voter can possibly override the opposition of the other two in a vote
that does not reflect valuations (because T is the terminal period).
16 The equilibrium cutpoints for the second proposal depend on the state. With the number of possible states at t = 2
equal to 4n , we have chosen not to report the cutpoints in the paper. They are available from the authors. (See also the
Appendix in Casella et al., 2003.)
17 The cooperative strategy maximizes the expected payoff taking into account the whole path of the game. In this
specific game, we can solve the problem backward, recognizing that voters will play the appropriate cooperative strategy
in any future state (but for the last proposal, when all remaining votes are cast).
18 Table 2 reports the results of the theoretical model where F(v) is continuous. We have verified that all equilibria
in Table 2 remain equilibria with the discrete distribution used in the experimental treatment (with no probability at 0),
with the following minor corrections: (1) for T = 2, n = 6, the first cutpoint becomes 46; (2) for T = 3, n = 2, it is 36;
(3) for T = 3, n = 3, all equilibria are (48,66,85); (4) finally for T = 3, n = 4, the third cutpoint is 84. All cooperative
strategies remain identical.
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compare “simple” treatments, where equilibrium strategies are more straightforward, with more
complex ones, where either the larger number of voters, or the longer horizon, or both, complicate
calculations. Our efficiency criterion lead us to three choices: 2-voter treatments, where storable
votes do much better than non-storable votes; 6-voter treatments where the efficiency differences
are less pronounced, and 3-voter treatments, where again surplus differences between the two
mechanisms are moderate, but now go in the opposite direction. As for the complexity of the
game, the 2-voter 2-proposal case leads to the simplest equilibrium (a unique equilibrium in
dominant strategies where bonus votes are never split), while increasing the number of voters
from two to three to six increases the difficulty of computing equilibrium strategies. Even more
so does increasing the number of proposals: calculating equilibrium strategies in the 3-proposal
treatments, especially with three and six voters, is objectively difficult.

4. Results

Our motivation for investigating storable votes in the laboratory is that theory suggests it can
produce efficiency gains over standard sequential voting. Given the complex structure of the
equilibrium, and the highly strategic behavior predicted by game theory, it is not obvious that
these gains will be achieved. Therefore, we begin by presenting our results on efficiency. Later
we analyze individual choice behavior.

4.1. Efficiency

How do realized outcomes compare to the efficiency predictions of the theory? The short—
and perhaps surprising—answer from our data is that realized payoffs match the theoretical
predictions almost perfectly in all of our treatments, for all group sizes and number of proposals.
The theory is highly successful in predicting both the welfare effects of storable votes and the
mechanism’s sensitivity to environmental parameters.

Figure 1(a) reports realized vs. predicted surplus levels in all sessions. The horizontal axis
is the normalized surplus associated with equilibrium payoffs, where the equilibrium payoff is
the (ex post) payoff that the subjects would have obtained had they all played the equilibrium
strategies, given the actual valuation draws in the experiment. The vertical axis is the normalized
surplus calculated from realized aggregate payoffs in the experiment.19 There is one data point
for each session, with the lighter points corresponding to UCLA sessions and the darker points to
Caltech; the larger dots are 3-proposal sessions and the smaller dots 2-proposal sessions. Points
on the 45◦ line represent sessions where the realized aggregate payoff equals the theoretical
prediction, and points above (below) the line are sessions with realized payoffs above (below) the
equilibrium payoff. Overall, the realized efficiencies align nicely with the theoretical predictions.
The largest deviation from the equilibrium payoff is the 3-voter 3-proposal treatment at UCLA,
but the subject pool does not appear to be an important factor for aggregate efficiency, nor is
there evidence that the higher complexity of the 3-proposal game results in systematically lower
payoffs.

To make a more formal statement of how well the data tracks the theory, we fit a regression
line to the data in Fig. 1(a). The slope is not significantly different from one and the intercept is

19 The ex post efficient and the random payoffs—the reference points of our surplus measure—are both calculated from
the actual experimental valuations. Random payoffs are obtained from aggregating 50 percent of individuals’ valuations
whenever subjects are not unanimous.
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(a)

(b)

Fig. 1. Realized vs. theoretical surplus. All experiments. (a) Aggregate data by session. Caltech data in black; UCLA
data in gray (green in the web version). The larger circles correspond to the T = 3 experiments. (b) Group data. Caltech
data in black; UCLA data in gray (green in the web version).

not significantly different from zero, at the 5 percent level.20 The R2 is equal to 0.975. A second
way of seeing how well the aggregate efficiency data track the theory is to look at comparative

20 The estimated constant is 3.37 with a standard error of 2.88, and the estimated slope is 0.92 with a standard error of
0.043.
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static predictions. Across all six treatments (in fact, each session of each treatment is actually a
“subtreatment” since the random draws are different, implying slightly higher or lower theoreti-
cal predictions), the data mirror the theory well, whether the share of potential surplus that voters
are expected to appropriate is in the lower range (below 60 percent, for all 2-voter treatments),
or in the higher range (above 80 percent for the 3 and 6-voter treatments). The experimental data
respond to changes in the environment as the theoretical model does.

A possibility that must be considered is whether perhaps the close fit of the aggregate pay-
offs to the theoretical payoffs is masking a large variance in more disaggregated data. Given our
measure of surplus, the natural unit to be evaluated is the group—the committee voting over a se-
quence of proposals, and Fig. 1(b) replicates the previous figure at the group level (in the absence
of systematic differences, no distinction is made here between 2 and 3-proposal treatments).21

The smaller number of draws for each group translates into a larger range of outcomes, but the
figure does not show an unexpected level of dispersion. If we fit a regression line to the group
data, the R2 equals 0.85, the slope is again not significantly different from one and the intercept
barely positive, at the 5 percent level.22

From a practical standpoint, the interesting question is whether the storable votes mechanism
is a desirable and workable voting mechanism, and more concretely whether it leads to better

Fig. 2. Comparison to non-storable votes. Circles are n = 2 experiments, squares n = 3 and triangles n = 6. Caltech data
in black; UCLA data in gray (green in the web version).

21 Because individual voters are rematched after each series of votes, the group has no fixed identity—in any experiment
the composition of a committee identified by the same label (for example committee 1) is unstable. Aggregating the
payoff to a committee with given label in any single experiment is just an averaging device smoothing the noise in each
individual round.
22 The estimated constant is 6.62 with a standard error of 3.08, and the estimated slope is 0.93 with a standard error of
0.05.
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outcomes than non-storable votes. In our experiments, subjects were able to extract on average
93 percent of the available welfare gain over non-storable votes. But we can also compare more
directly the outcomes from the two mechanisms. Figure 2 plots realized aggregate surplus in
each experiment versus aggregate surplus had subjects cast a single vote in all elections, with
the realized valuations, distinguishing among treatments according to group size. Once again,
the experimental results across different treatments match the theoretical predictions: the larger
gains from storable votes appear in the 2-voter experiments, while the difference between the
two mechanisms is much smaller for 3-voter and 6-voter sessions. Storable votes are associated
with higher surplus than non-storable votes in all treatments, with the exception of three of the 3-
voter sessions. The average surplus gain over non-storable votes is 38 percent in 2-voter sessions,
4 percent with 6 voters and −3 percent with 3 voters.23

4.2. Individual behavior

We turn now to individual behavior. Did the theory predict outcomes so well because individ-
uals indeed followed the equilibrium strategies?

4.2.1. Two-proposal sessions
We begin by analyzing our data in the 2-proposal treatments (T = 2), because this is the

simplest case: the only decision concerns the first proposal and there is only one relevant state—
each voter has three available votes. Figure 3 displays the voting behavior of a sample of subjects
from 2-proposal sessions. Each graph summarizes the behavior of one subject. The horizontal
axis is the (absolute) valuation of proposal 1, and the vertical axis the number of votes cast in
election 1. The dots correspond to the 30 rounds of decision/valuation pairs for that subject.

The figure is organized in three subclasses, according to how strictly subjects followed
monotonic strategies. The first subject at the very top is perfectly monotonic: the number of
votes cast at higher valuations is always at least as large as the number cast at lower valuations.
This behavior is present in our data, but less frequent than the behavior shown in the second
subclass: subjects who are almost perfectly monotonic: the minimum number of voting choices
that would have to be changed to achieve perfect monotonicity is very small, one or two in the
examples shown here. As we discuss in more detail below, almost perfect monotonicity is by far
the most common pattern in the data. Finally, the last subject in the figure is a rare example of
apparently erratic behavior.

Figure 3 also illustrates a second important feature of our data: monotonicity is consistent
with a wide range of individual behaviors. Cutpoints need not be interior (see the subject casting
3 votes at almost all valuations), and if they are interior, they need not replicate the theoreti-
cal equilibrium cutpoints (c12 = c23 = 50 is the dominant strategy in this treatment). The most
common behavior we observed in the data is followed by the second subject in the figure: cast
one vote at low valuations, two at intermediate valuations and three at high ones (with a few
monotonicity violations), but the best-fitting cutpoints differed across subjects, and clearly dif-
fered from Nash equilibrium. Thus, while monotonicity on the whole is strongly supported by
the data, Nash equilibrium behavior is not. In what follows, we systematically explore the extent
to which these features are confirmed in the whole data set.

23 The range of outcomes in 2-voter sessions reflect the empirical variability in the frequency of unanimous preferences,
a likely scenario with two voters.
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Fig. 3. Data from some example individuals (n = 2, T = 2). Each panel corresponds to an individual subject.
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Fig. 4. Empirical frequency of votes for 2-proposal experiments.

Monotonicity Figure 4 displays the observed frequency of the three possible voting decisions
(cast one, two, or three votes) as function of (absolute) valuation in the three treatments n =
2,3,6, aggregated over all sessions. We have partitioned all draws of (absolute) valuations into
bins with an equal number of sample points in each bin, and plotted the observed frequency of
the voting choice corresponding to each bin, so that the total equals one.

In all treatments, the observed frequency of “vote 1” decisions is close to one at very low valu-
ations and approaches zero for valuations close to 100; the reverse is true for “vote 3” decisions,
while two votes are mostly cast at intermediate valuations. The frequencies are not perfectly
monotonic—for example, in the 2-voter game we observe a higher frequency of one’s for val-
uations between 45 and 50 than between 40 and 45 (or between 95 and 100 than between 80
and 85). But the apparent violations are not per se very meaningful. Although the figure is an
informative summary of the aggregate features of the data, it does not allow us to read individ-
ual behavior: a subject who always casts three votes, for example, follows a weakly monotonic
strategy, but could induce an apparent violation of monotonicity in the figure if he happened not
to draw intermediate valuations (while a subject who does violate monotonicity in his or her
individual strategy need not induce an upward jump in these curves if that behavior is more than
compensated by that of others).

Figure 5 shows the histograms of all individuals’ error rates for each treatment—the minimum
number of voting decisions that for each subject would have to be changed to achieve perfect
monotonicity. As a comparison, the last histogram is obtained from a simulation where each
voter casts one, two, or three votes with equal probability at all valuations (with 21 subjects and
30 rounds).24 In the random simulation, only two voters have an error rate (just) below 40%; in
contrast, in the actual data the number of subjects with error rates below 40% is 35 out of 36
in the 2-voter game, 30 out of 33 in the 3-voter game, and 30 out of 30 in the 6-voter game. In
every session, more than half of the subjects had error rates below 10% (i.e., zero, one, or two
violations of monotonicity out of 30 decisions).

A natural question is whether subjects are learning to employ monotonic strategies as they
gain experience. We divided the data for each treatment into two subsamples—rounds 1–10
and 11–30—and calculated the error minimizing cutpoints separately for each subsample. The
percentage of subjects with error rates below 5 percent increases in the later rounds, going from

24 With three possible choices the error rate associated with random behavior tends to 2/3 asymptotically, but is lower
in the small sample simulation because of the ex post estimation of the best-fitting cutpoints.
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Fig. 5. Histograms of individual subjects’ error rates for 2-proposal experiments (cutpoints estimated to minimize each
subject’s error rate). The vertical axis is the number of subjects; the scale in each panel is the relative frequency.

45 percent to above 60 percent on average over the three treatments, and reaching at least 50
percent for each treatment in the second subsample.25

Cutpoints The data support the hypothesis of monotonic strategies. A more difficult question
is whether the estimated cutpoints are consistent with the theoretical equilibrium cutpoints. Fig-
ure 6 reports the estimated cutpoints for the three treatments. The horizontal axis measures the
cutpoint at which a subject switches from one to two votes (c12), and the vertical axis the cut-
point from two to three votes (c23); points on the diagonal correspond to strategies such that the
two cutpoints coincide (never cast two votes). Monotonicity is built into the definition of the cut-
points and the estimation method, and implies that all estimated cutpoints must lie on or above

25 Error rates do not distinguish between violations with small impact on payoffs (hesitations over the correct voting
strategy at intermediate valuations) and those revealing more fundamental confusion about the game (casting bonus
votes at very low valuations and not casting any at very high valuations). A measure of the severity of the monotonicity
violations is the minimum average error distance (that is, the average error distance that results from cutpoints estimated
to minimize such a distance). We find some differences between the Caltech and UCLA subject pools (over all treatments,
there are 2 Caltech subjects (out of 44) with average error distance larger than 5, but there are 9 UCLA subjects, out
of 55). But combining the two subject pools, the results are very similar to those obtained from minimizing and counting
error rates. We also estimated for each subject an ordered logit model of the number of votes cast against the (absolute)
valuation. The model yields best-fit curves and estimated cutpoints, and identifies violations of monotonicity as voting
“errors.” The results are virtually identical to those reported in the text.
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Fig. 6. Individuals’ cutpoints, estimated to minimize error rates for 2-proposal experiments (circles show theoretical
equilibrium values).

Table 3
Median cutpoints

Population n # Subjects Median c12, c23 Equil. c12, c23 Coop. c12, c23

Caltech 2 10 36, 68 50, 50 33, 66
Caltech 2 10 38, 58 50, 50 33, 66
UCLA 2 16 37, 62 50, 50 33, 66
Caltech 3 12 36, 70 35, 67* 50, 100
UCLA 3 21 38, 73 35, 67* 50, 100
Caltech 6 12 32, 66 45, 55 43, 82
UCLA 6 18 30, 65 45, 55 43, 82

* Equilibrium cutpoints closest to the observed cutpoints.

the diagonal. The three corners of the box consistent with monotonicity correspond to weakly
monotonic strategies: the axes origin corresponds to “always cast three votes,” the top left corner
to “always cast two votes,” and the top right corner to “always cast one vote.” The darker symbols
refer to Caltech subjects, the lighter ones to UCLA. For both subsamples the figure shows large
dispersion in the estimated cutpoint values around the equilibrium values.26

Table 3 summarizes the median cutpoints in each of the 2-proposal sessions (a statistic we
use instead of the mean because of outliers), together with the equilibrium cutpoints and the
cooperative cutpoints.

The most noticeable feature of the table is the similarity of the observed cutpoints across
treatments, a similarity that contrasts with both equilibrium and cooperative predictions. The
table can suggest strategies approaching cooperation in the case of two voters, or approaching
the equilibrium predictions in the case of three (in both cases with added noise that is extraneous
to the theory). But when the three treatments are observed together, a rule-of-thumb behavior,
monotonic but noisy, seems a more convincing reading of the data—a point to which we return
later when estimating alternative models.

26 For some subjects, there are multiple cutpoints that minimize the number of monotonicity violations. The figure
presents cutpoints estimated at the lowest value consistent with minimizing each subject’s number of violations.
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The similarity of the cutpoints across treatments remains true if we divide the data into early
and late trials. The data suggest that learning, if it occurs, is weak: the distance between the
estimated and the equilibrium cutpoints tends to decline in the later rounds, but remains large.
For example, in the 2-voter treatments the distance falls in the late trials for 25 out of 36 subjects,
but the median cutpoints move only from (33,61) to (36,63) (relative to equilibrium values of
(50,50)).

4.2.2. Three-proposal sessions
When individuals vote over three successive proposals, in the first election everybody has the

same number of bonus votes. But in the second election the distribution of available bonus votes
depends on the voting decisions at t = 1, and the number of possible states multiplies. Describing
the equilibrium strategies in the second election is then complicated, and so in fact is describing
the data, because each state has to be evaluated separately. We discuss here the data from the first
election.27

The main features are very similar to those described in the 2-proposal sessions. With very
few exceptions, subjects employed monotonic strategies, with a small number of errors: in all
treatments, more than half of all subjects had error rates below 10 percent.28

But once again their strategies were more similar across treatments than theory suggests.
Figure 7 depicts the aggregate frequency of the different voting choices in the three treatments
(recall that the equilibrium cutpoints are presented in Table 2). Over a large range of valuations,
subjects cast one vote with high probability, while they were clearly reluctant to cast four votes.
To some extent, these choices match the theory: for example, in 2-voter sessions the equilibrium
strategy has voters never casting four votes, and in 6-voter sessions it has them casting one vote
for a majority of possible valuations. However, equilibrium strategies differ across treatments
more than the data: in the 2-voter treatments, the frequency of voting one seems too high, and in
the 6-voter treatments, the frequency of voting four too low.

Because we have set B0 = T , by adding one proposal we have also added one bonus vote. To
disentangle what the chosen strategies owe to the longer horizon per se, we have run a 2-proposal
2-voter session with three bonus votes. The frequency of the voting choices in the first election
of this treatment is presented at the bottom of Fig. 7. The figure shows clearly that the length of
the horizon does matter: as theory suggests, the propensity to cast three and four votes is much
higher in the 2-proposal session.29

4.3. Relationship between individual behavior and efficiency results

Given the individual behavior shown by our subjects, the efficiency results presented earlier
are surprisingly good. So much so, in fact, that one must wonder whether payoffs could be
rather insensitive to the strategies played. To check this possibility we have simulated the payoffs

27 The appendix of Casella et al. (2003) discusses the data from the second election in the n = 2 games, where the
number of states remains small enough to be tractable.
28 For comparison, we simulated a model with random voting (with 18 subjects and 30 rounds). The minimum error rate
was 45 percent, and the median 65 percent. With four possible choices the error rate associated with random behavior
tends to 3/4 asymptotically (although it is lower in the small sample simulation).
29 The session was run at UCLA with 20 subjects and 30 rounds. The dominant strategy is to cast one vote for valuations
smaller or equal to 50, and four votes otherwise.
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Fig. 7. Empirical frequencies of votes. 3-bonus votes.

that the subjects would have obtained in the experiments had they chosen the number of votes
randomly, over their feasible alternatives.30 In every treatment, the payoff would have been lower.

The result underscores the importance of monotonicity. Storable votes can lead to efficiency
gains because voters can express the intensity of their preferences by casting more votes when
their valuations are higher; even if the cutpoints are incorrect, as long as strategies are monotonic
(even with a few errors), outcomes will reflect strength of preference and the essence of the
mechanism is captured. And this is also why the efficiency results for the experiments are not
systematically different for the 3-proposal treatments: the higher complexity of the equilibrium
strategies has limited importance if subjects can approach the equilibrium payoffs by following
the simpler criterion of monotonicity.

In the case of two voters, the conjecture can be supported by formal argument: as shown in
Casella et al. (2003), the storable votes mechanism leads to higher expected aggregate payoffs,
relative to non-storable votes, whenever the two voters follow monotonic strategies for any arbi-
trary value of the thresholds, and strictly higher if at least one of the thresholds is strictly interior.
What we could not anticipate from the theory is how close to the equilibrium payoffs the exper-
imental payoffs would be. Nor could we anticipate that the central role of monotonicity in the
2-voter case would extend to our other experimental treatments.

What the experimental results emphasize is that as long as strategies are monotonic, the payoff
functions are rather flat at the top—the loss from not choosing the correct thresholds is small.
Figure 8(a) illustrates this point in a graph; we have drawn it for the more transparent case of two

30 The payoffs from randomization are the averages over 100 realizations (where each realization is a full 2 or 3-proposal
game). Subjects always cast all their votes in the last election.
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(a)

(b)

Fig. 8. Isopayoff curves n = 2, T = 2. The dots are estimated individual cutpoints. (a) The opponent plays the equilibrium
strategy. Each contour is a loss of 7.5 percent of potential payoff. (b) The opponent plays the average estimated strategy.
The isopayoff curve is drawn at the level of the equilibrium payoff.
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voters (and two proposals), but its lessons apply to all treatments. The figure depicts individual
expected isopayoff curves, when the other voter follows the equilibrium strategy. The horizontal
axis is the first cutpoint (c12), the vertical axis the second (c23). Recall that the equilibrium
strategy, and hence the highest payoff, corresponds to c12 = c23 = 50, the center of the square.
Every isopayoff contour, moving away from the center, indicates a payoff loss of 7.5 percentage
points, reaching down to the zero surplus associated with randomness (and in 2-voter treatments
with non-storable votes) at the three corners, with a cumulative loss of 37 percent. The dots in
the figure are the individual cutpoints estimated from the data and reported earlier in Fig. 6. The
figure makes precise our observation about the flatness of the expected payoff function: the area
within the first contour is large enough to encompass more than half of all of our data points.

Figure 8(a) ignores a second possible reason for the high off-equilibrium efficiency of the
data—the possibility that the observed strategies are in fact closer to the cooperative choices.
Figure 8(b) represents the individual expected isopayoff curve at the equilibrium level, again
in the case of two voters and two proposals, when the other voter is playing the (estimated)
average strategy. The lowest expected payoff is at the three corner points, and again corresponds
to the expected payoff with non-storable votes. The strategy c12 = c23 = 50 is dominant and
thus leads once more to the highest expected payoff, but now there is a whole region of (non-
equilibrium) cutpoints that yields higher than equilibrium expected payoff. Two thirds of our
estimated cutpoints (25 out of 36) belong to the region.

The bottom line of the analysis is clear. The efficiency gains from storable votes appear to
be robust with respect to deviations from equilibrium strategies, provided that subjects are using
monotone cutpoints. The next section explores more deeply the deviations from equilibrium
behavior by investigating several alternative models of aggregate behavior that allow for random
variations from monotone cutpoint strategies.

4.4. Quantal response equilibrium

The results above show that the basic monotone structure of strategies is reflected in the data,
but there are some clear violations of the theoretical predictions. We see some nonmonotonicities
for nearly every subject in every treatment, most estimated cutpoints differ from their equilibrium
values, and there is little support even for the dominant strategy in the simplest treatment (the
2-proposal, 2-voter scenario where bonus votes should never be split). All these features are
inconsistent with the perfect Bayesian equilibrium of the game.

In this section we estimate a stochastic choice model of behavior. While a standard procedure
such as logit or probit is a reasonable first step (and we have used it to check the robustness of
the cutpoint estimates reported so far), it is not completely adequate in the context of strategic
games. The reason is that stochastic behavior by one player changes the other players’ expected
payoffs from different strategies (even with dominant strategies), and therefore can change the
equilibrium. Moreover, even if stochastic behavior does not change players’ best responses, in
standard models of stochastic choice (such as logit) it will still affect the predicted stochastic
choices of the other players, because it changes their expected payoffs. Only in a stochastic
choice model where choice probabilities are unresponsive to payoffs would this interaction effect
not be present. Therefore, what is needed is a more elaborate model that incorporates not only
stochastic choices, but also the endogenous equilibrium effects.

Quantal response equilibrium (McKelvey and Palfrey, 1995, 1996, 1998) is a model that em-
bodies stochastic choice into the standard noncooperative game approach. It solves the problem
of stochastic choice interactive effects by looking at an equilibrium in which players’ choices re-
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act stochastically to expected payoffs, while (in equilibrium) the expected payoffs are themselves
a function of the stochastic choice behavior of the other players. This results in a generalization
of Nash equilibrium to allow for stochastic choice.

For a finite n-player game, let Ki be the number of strategies available to player i. Let σ =
(σ1, . . . , σn) ∈ Σ be a mixed strategy profile, and let ui :S → R be i’s payoff function. Denote
by Uik(σ ) the expected payoff to player i from using strategy k, when the other players are
using profile σ−i and let Ui(σ ) = (Ui1(σ ), . . . ,UiKi

(σ )). We define a quantal response function
as a mapping from utilities into choice probabilities, that is a function that maps Ui(σ ) into a
Ki -vector of choice probabilities for player i. As is typical in applications we require such a
function, Qi(Ui) = (Qi1(Ui), . . . ,QiKi

(Ui)), to be interior, continuous, and payoff responsive
(see McKelvey and Palfrey, 1995, for details).31 Interiority requires Qij (Ui) > 0 for all i, j ,
Ui ∈ R

Ki . Continuity requires Qi(Ui) to be continuous for all i, Ui ∈ R
Ki . Payoff responsiveness

requires: (1) Uij > Uik → Qij (Ui) > Qik(Ui) for all i, j , Ui ∈ R
Ki ; and (2) Qij (Ui) is weakly

increasing in Uij for all i, j . A quantal response equilibrium (QRE) is a strategy profile σ ∗ =
(σ ∗

1 , . . . , σ ∗
n ) ∈ Σ such that Qi(Ui(σ

∗)) = σ ∗ for all i.

4.4.1. Logit equilibrium
For estimation, we use a parametric version of QRE, logit equilibrium, which is the extension

of the standard logit choice model to multiperson strategic choice problems. A logit equilibrium
is a quantal response equilibrium in which the quantal response function is given by the standard
logit response function below:

Qij (Ui) = exp(λUij (σ ))∑Ki

k=1 exp(λUik(σ ))
, (1)

where the parameter λ governs the degree of payoff responsiveness. When λ = 0, strategies are
completely unresponsive to payoffs, and player i simply chooses each strategy with probability
1/Ki . When λ = ∞, players choose best responses, and the logit equilibrium converges to the
Nash equilibrium.32 Therefore, we can write a logit equilibrium as any strategy profile σ ∗ =
(σ ∗

1 , . . . , σ ∗
n ) ∈ Σ such that:

σ ∗
ij = exp(λUij (σ

∗))∑Ki

k=1 exp(λUik(σ ∗))
for all i, j.

As λ is varied over [0,∞), one traces out the logit equilibrium correspondence, that is, the set
of solutions to (1). This correspondence is upper hemicontinuous and its limit points, as λ tend
to ∞, are Nash equilibria. In this paper, we consider the logit equilibrium correspondence of the
storable votes game. Because of computational difficulties, we apply the logit equilibrium model
only to the 2-proposal treatments.33

31 Such response functions can be rationalized as a Bayesian equilibrium of a game of incomplete information with
privately observed i.i.d. payoff perturbations.
32 In most applications, it is assumed that λ is identical for all players, but this is not necessary. Heterogeneity with
respect to λ has been explored in McKelvey et al. (2000).
33 Quantal response equilibrium (and logit equilibrium) has also been defined for Bayesian games with continuous types
(McKelvey and Palfrey, 1996), games with continuous strategy spaces (Goeree et al., 1998), and games in extensive
form (McKelvey and Palfrey, 1998). The storable votes game described in the theoretical section combines all of these
elements. In the experiment however, strategies and types are finite, and we use the standard model in the estimation that
follows.
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We study two representations of the logit equilibrium, corresponding to two different mod-
els of strategy choice in the storable votes game. In one representation, strategies are behavior
strategies: a player must consider how many bonus votes to use conditional on his valuation
(and, in later stages of the game, on the history of voting on past proposals). In this case, we
apply the logit model to each discrete choice (0, 1, or 2 bonus votes) conditional on the play-
er’s (absolute) valuation. Each player’s strategy is characterized by 100 probability distributions
over 0, 1, or 2 bonus votes, strategies are cutpoint strategies: one for each possible (absolute)
valuation. In the second representation, we suppose players are choosing ex ante, among the
set of (weakly) monotone cutpoint strategies, before drawing valuations.34 A monotone cutpoint
strategy is a pair: given 100 possible valuations, there are 5050 distinct monotone strategies, and
a logit equilibrium will be represented as a probability distribution over all of these cutpoint
strategies. While the Nash equilibria are identical for the two representations, the logit equilib-
rium correspondences are quite different. Moreover, any logit equilibrium will imply a specific
probability distribution over actions (i.e., number of bonus votes used in the first proposal) as a
function of absolute valuation. As we see below, these probability distributions differ quite a bit
depending on the representation of strategies we use.

4.4.2. QRE estimation
Because the logit equilibrium implies a probability distribution over actions, we can use it as

a model to fit the data, by estimating the response parameter, λ, through standard maximum
likelihood estimation. The derivation of the likelihood function is described in Appendix B.
Table 4 presents the results of the estimation: the estimates for the behavior strategy model and
the cutpoint strategy model are reported in columns 4 and 6, respectively, and the corresponding
values of the log-likelihood function at the estimated value of λ are reported in columns 5 and 7,
respectively.

Several observations can be made. First, the data are generally noisier in the UCLA subject
pool, a fact reflected in both the value of the likelihood function and the estimated λ under
both models, but especially under the cutpoint model. Second, the cutpoint model generally fits
the data better in both subject pools, although the differences are not always significant. Third,
λ̂cut < λ̂beh in every session, a sensible result given that λ̂cut has some additional “rationality”
built into it: even with λcut = 0, players are still using monotone cutpoints (randomizing over
all such monotone cutpoint strategies with equal probability), and hence the predicted choice
behavior is highly responsive to valuation, as in the data. In contrast, if λbeh = 0, choice behavior
is completely random, and independent of valuation. Fourth, the estimated value of λ for both
models is increasing in n. We do not have a good explanation for this, but it is an interesting and
persistent finding.

Figures 9 and 10 show the implications of the QRE model for the probability distribution of
votes as a function of (absolute) valuation, for the behavior strategy model as well as the cutpoint
strategy model. Figure 9 shows, for session c1, the expected number of votes using the estimated
value of λ̂beh (0.46) and λ̂cut (0.25). The darker curve corresponds to behavior strategies, the
lighter one to cutpoint strategies. The data are superimposed, and each dot represents the empir-
ical average number of votes, as function of absolute valuation. From this graph, it is clear that
there is not much difference between the models in terms of expected number of votes cast.

34 Therefore the cutpoint model is a logit equilibrium of the game with a restricted set of strategies.
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Fig. 9. Expected number of votes in the two QRE models session c1. The darker curve is estimated from the behavior
strategies model, the lighter curve from the cutpoint strategies model.

However, the estimated distribution of votes cast is quite different in the two models. This is
shown in Fig. 10, which displays the relative frequencies of casting 1, 2, or 3 votes as function
of valuation for each session and for both QRE models. For each session, the graph on the left
is for behavior strategies, and the one on the right is for cutpoint strategies. In each graph, the
horizontal axis is absolute valuation, which ranges between 1 and 100, and the vertical axis is
choice probability, and ranges from 0 to 1. For each valuation, the two curves in the graph par-
tition the [0,1] interval into three subintervals, with the size of these subintervals corresponding
to the probability of casting exactly 1, 2, or 3 votes, respectively. Each graph is, for each session,
the estimated version of Fig. 4.

This figure illustrates quite clearly the implications of the estimates in Table 4. First, observe
that the third graph in the second column corresponds to the cutpoint model estimates for n = 2,
T = 2 when λ = 0.35 These are the predicted frequencies if behavior is monotone, but no addi-
tional rationality is assumed—players randomize over all monotonic cutpoints. Behavior remains
regular, with the probability of casting 1 vote approaching 1 for low valuations, the probability of

Table 4
Results of logit equilibrium estimation

Population n # Obs. λ̂beh − lnLbeh λ̂cut − lnLcut

Caltech 2 299 0.46 181 0.25 162
Caltech 2 200 0.52 108 0.32 102
UCLA 2 480 0.19 437 0.00 438
Caltech 3 360 0.81 248 0.37 248
UCLA 3 630 0.56 520 0.01 521
Caltech 6 360 1.66 203 0.84 200
UCLA 6 540 1.10 390 0.30 380

35 The fifth graph in the same column is very similar, since the estimated value of λ is 0.01.
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Fig. 10. QRE estimated choice frequencies. Behavior strategies on the left. Cutpoint strategies on the right.

casting 3 votes approaching 1 for high valuations, and the probability of casting 2 votes increas-
ing as valuations approach 50 (from either direction). Second, observe that in all cases the curves
for UCLA sessions are flatter than the corresponding curves for Caltech sessions, reflecting the



148 A. Casella et al. / Games and Economic Behavior 57 (2006) 123–154
fact that λ̂UCLA < λ̂Caltech in all sessions and for both models. Third, for intermediate ranges of v,
the probability of casting exactly 2 votes (the vertical distance between the two curves) is higher
in the cutpoint model than in the behavior strategy model. This is one reason for the better fit of
the cutpoint model.

4.4.3. Non-equilibrium models of stochastic choice
How well do our two logit equilibrium models fit the data compared to other plausible mod-

els? In addition to allowing us to better evaluate the results just described, the relative fit of the
different models will help us to understand better the properties of the data, and hence the be-
havior of the subjects. Although we must acknowledge the heterogeneity revealed by our earlier
description of the data, for consistency with the QRE estimations we limit ourselves to aggregate
models that assume homogeneous behavior on the part of the players.36

We consider four alternative stochastic choice models, all of which are based on monotone
behavior and all of which have at least one free parameter to estimate. In the first model, which
we refer to as aggregate best fit (ABF), all players are assumed to use monotone strategies with
an error rate that is not payoff dependent, but is assumed to be random over the alternative
strategies. The cutpoints are constrained to be the same for all players and are estimated from
the data. While the model is almost completely atheoretical (except to the extent that it assumes
monotone behavior), it provides both the most natural benchmark and a particularly challenging
comparison to QRE, which is instead based on a theoretical structure of equilibrium behavior. For
each session, we estimate three parameters: two cutpoints, c12, c23, and the error rate, ε (reported
in Appendix B). The second model is a variation on the Nash equilibrium that allows for errors,
but (like the cutpoint models) assumes that errors are unrelated to equilibrium expected payoffs:
individuals are assumed to choose their Nash equilibrium strategy with some probability, 1 − ε

and randomize over non-equilibrium actions otherwise. In contrast to QRE, the randomization
is not taken into account by the other players, so the model is not quite an equilibrium model.37

We call this the noisy Nash equilibrium (NNE) model. It has been investigated in other contexts
and typically fits data better than Nash equilibrium but worse than logit equilibrium. In line with
our earlier discussion of cooperation, the third model we study is a noisy version of cooperative
behavior: as in the NNE case, individuals are assumed to choose their cooperative cutpoints with
some probability, and randomize otherwise. We call this third model noisy cooperative behavior
(NCB). Finally, we consider a constrained ABF model where subjects are all assumed to use,
with some error, what we call “uniform cutpoint strategies.” That is, they are assumed to adopt
monotone cutpoint strategies that follow a simple rule of thumb: the range of possible valuations
is divided in intervals of equal size so that each possible strategy has the same probability ex ante.
In the case of T = 2, this corresponds to c12 = 33 and c12 = 66. Thus with some probability
subjects vote according to these cutpoints, and with some probability they randomize.38 The
likelihood function for the ABF model is given in Appendix B, and the likelihood functions
for the other two models are derived in a similar way. The (negative) log-likelihoods of these
alternative models are presented in Table 5.

36 Both QRE models we estimated assume that all subjects’ (mixed) strategies are identical and all subjects share the
same value of λ.
37 Actually, for the N = T = 2 it is an equilibrium model with error. To see this, recall that in this treatment (50,50) is
a dominant strategy. Therefore, in this case NNE is an equilibrium model with errors, much like QRE, but without the
assumption that choice probabilities are strictly monotone in expected payoffs.
38 33,66 are also the expected cutpoints if subjects choose cutpoints monotonically but randomly.
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Table 5
Alternative models. Log-likelihoods

Population n Obs. ABF QREcut QREbeh NNE NCB 33/66

Caltech 2 299 191 162 181 253 215 215
Caltech 2 200 108 102 108 154 128 128
UCLA 2 480 416 438 437 478 433 433
Caltech 3 360 267 248 248 323 374 287
UCLA 3 360 520 521 520 621 621 569
Caltech 6 360 228 199 203 293 260 238
UCLA 6 540 411 380 390 517 488 420

4.4.4. Discussion of estimation results
Table 5 indicates that both QRE models do much better than NNE—NNE is easily rejected.

This is not really surprising, in light of the earlier description of the data, and the estimation con-
firms our reading of the data. NCB also fares worse than either QRE model (with the exception of
the UCLA n = 2 session, which all models fit poorly, due to erratic behavior of a few subjects);
but it does almost uniformly better than NNE (again with a single exception). By construction,
the 33/66 model is identical to NCB in the 2-voter treatments, but would seem a more promis-
ing option in the other treatments, given the relative invariance of the observed cutpoints to the
number of voters. Indeed, 33/66 fits the data better than NCB when the two models differ and,
as expected, much better than NNE. More surprising is the inferior performance of 33/66 with
respect to either QRE model (but for session u1). Finally, both QRE models do much better than
ABF in the Caltech data; ABF does better in one UCLA session, but again it is the one session
where no aggregate model fits well. This is the most surprising result: it would seem that ABF
must outperform nearly any aggregate model, since, by definition, it estimates the cutpoints that
best fit the data. However, while the QRE estimated cutpoints place an additional constraint on
behavior (equilibrium), QRE, unlike ABF, allows errors to be correlated with expected payoffs
rather than just assuming all errors are equally likely. The QRE parameter, λ, is, loosely speak-
ing, an indicator of this correlation. Thus, for example, if vk

i1 ∈ (0, ĉ12], and thus no bonus votes
should be cast, the logit equilibrium likelihood function will assign a lower likelihood to bk

i1 = 2
than it assigns to bk

i1 = 1, since bk
i1 = 2 yields lower expected utility than bk

i1 = 1. In contrast, the
ABF likelihood function assigns the same likelihood to both of these observations. In the data, it
is clearly the case that errors are related to expected payoffs.39

All of these models are aggregate models in the sense that individuals are treated as represen-
tative agents. Using the approach of the earlier section, where one obtains a best fit separately
for each subject, one could improve significantly over all of the representative agent models.

Finally, we note that all of the models considered fit Caltech sessions better than UCLA ses-
sions. There is more unexplained variation in the UCLA data, in part at least because of the
presence of more outliers in the UCLA data.

39 In addition, the QREcut model implicitly allows for some heterogeneity in the data, since different players are using
different cutpoints in each round. The QREbeh model does not have a simple interpretation in terms of heterogeneity of
cutpoints.
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5. Conclusions

The results of the experiment suggest several conclusions. First, the efficiency calculations
based on the perfect Bayesian equilibrium model of behavior predicts almost perfectly the ag-
gregate surplus for all treatments. This conclusion holds true across subject pools, across time,
and across the various parametric environments.

Second, monotone cutpoint strategies, with some random deviation, appear to be used by the
vast majority of subjects, again in all treatments and in both subject pools. Monotone behavior
characterizes all best response strategies of the storable votes mechanism, but it is also highly
intuitive: “use more bonus votes if your preferences over the current proposal are more intense.”
Moreover, it is monotone behavior that leads to the welfare findings. The efficiency gains from
storable votes, compared to non-storable votes, derive from the ability of voters to shift the prob-
ability of obtaining their desired outcome towards those decisions that weigh more in their utility.
This happens precisely because subjects use monotone strategies.

Third, the cutpoint strategies, while typically monotone, are significantly different from the
perfect Bayesian equilibrium strategies, a fact we read as evidence of stochastic choice. We
fit a logit equilibrium model to the data for all treatments, with two alternative representations
of the subjects’ strategies, one that allows for all possible behavior strategies, and one that as-
sumes monotone cutpoint strategies. We compare their fit to four alternative models: a noisy
Nash model where Nash equilibrium strategies obtain with random errors; a noisy cooperative
model where subjects either behave cooperatively or make random errors; a uniform strategy
model where monotone cutpoints are such that feasible voting choices are all assigned equal
ex ante frequency, again with random errors, and a purely statistical model where aggregate
cutpoints are directly estimated from the data by minimizing monotonicity violations. The qual-
itative and quantitative features of the data are best organized by the logit equilibrium model,
underscoring the importance of modeling errors as negatively correlated with foregone pay-
offs.

The experimental treatment replicated the informational assumptions maintained in the the-
oretical model of storable votes proposed by Casella (2005). In particular, individuals do not
know the valuations of the other voters, or their own future valuation, and valuations are inde-
pendent across voters and proposals. There are obviously a wide variety of extensions to this
model that can be obtained by changing these assumptions in different ways. Thus, a question
of considerable merit is whether the basic intuition behind storable votes is robust: i.e., it often
produces welfare improvements over standard majority rule because it allows voters to express
preference intensities. While a definitive answer requires a great deal of work, we close with a
simple example indicating why we think the intuition is robust.

Consider a 2-voter 2-proposal world but with different informational assumptions. In partic-
ular suppose that each individual knows both his valuations. To make it interesting, assume that
preferences of the voters are opposed, so whenever one voter’s valuation for a proposal is pos-
itive, the other’s is negative and vice versa. This game has a unique pure strategy equilibrium,
where voters use all their bonus votes on the proposal they care about most (the one with the
highest absolute valuation), and this remains true regardless of whether the other’s valuations are
known or not; regardless of whether voting over the two proposals is simultaneous or not; re-
gardless of the joint distribution from which valuations are drawn. Except in the case where one
player’s absolute valuations are higher than the other player’s on both issues, this equilibrium
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implements the utilitarian optimum.40 In contrast, simple majority rule produces purely random
allocations, an outcome that is inferior (strictly inferior, as long as the correlation between valu-
ations, across players or across proposals for each player, is less than perfect).

We think this very simple example captures the essence of storable votes, without any of the
added features we used in the present paper. The key to the example is, as in our theoretical
model and in our experiments, monotonicity of the voting strategies. As long as monotonicity of
the equilibrium strategies is preserved, the outcomes will reflect intensity of preference, so it is
hard to imagine how or why the positive welfare implications we obtain here might somehow
become reversed as we vary the information structure and timing. We leave a deeper theoretical
study of the robustness of the mechanism to future research.
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Appendix A. Efficient yardstick

We define as ex post efficient a decision-making mechanism that resolves each election in
favor of the side with higher aggregate valuations. Consider for example the case n = 2. For each
proposal, half of the time the two voters agree, and the expected valuation is 50; half of the times
they disagree, and in the ex post-efficient resolution a voter wins only if his valuation is higher
than the other player’s. Hence for each proposal each voter’s expected utility from the efficient
allocation is:

EU∗(2) = 1

2
50 + 1

2

( 100∫
0

100∫
vj

vi

dvi

100

dvj

100

)
= 41.7. (A.1)

We can calculate expected utility under ex post efficiency in a similar manner for different
numbers of voters, keeping in mind that the density function of the sum w of n random variables,
each independently distributed uniformly over [0,100], is given by:

Pn(w) = 1

200(n − 1)!
n∑

k=0

(−1)k
(

n

k

)(
w − 100k

100

)n−1

sign(w − 100k), (A.2)

where sign(x) is the sign of x. For arbitrary n, expected utility from the efficient allocation is
then:

EU∗(n) =
(

1

2

)n−1

(50) +
n−2∑
k=0

(
n − 1

k

)(
1

2

)n−1

40 The exceptional case is one where the ideal solution is dictatorship, not voting. This case would not arise if we
normalized both players’ utilities so that the valuation on the issue they prefer least is equal to 0.
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×
[

50

100k∫
0

Pn−1(w)dw +
100(k+1)∫
100k

( 100∫
w−100k

v
dv

100

)
Pn−1(w)dw

]
. (A.3)

In contrast to storable votes, the expected efficient payoff has no temporal dimension: given
the assumed independent and identical distributions of the valuations, the expected utility under
ex post efficiency is the same for all proposals, and the expected utility from a sequence of T

proposals is simply the sum of T one-proposal expected utilities.
The zero-efficiency reference point is the expected individual payoff if the decision is random

unless all agree. With n voters, the probability of unanimity is (1/2)n−1. Thus the expected
payoff equals 50(1/2)n−1 + 25[1 − (1/2)n−1] = 25[1 + (1/2)n−1], and again is constant across
all proposals.

The expected utility from non-storable votes is equally constant across proposals. It must
equal the probability of having the proposal decided in one’s preferred direction multiplied by
the expected utility from such an outcome, before the valuation has been observed. Or:

EUns(n) = 50
n+I−1∑

k=(n+I−1)/2

(
n + I − 1

k

)(
1

2

)n+I−1

, (A.4)

where

I =
{

1 if n is even,

0 if n is odd.

Appendix B. Alternative models: estimation

Table B.1
Cutpoints and error rates

Population n Obs. ABF NNE
ε̂

CB
ε̂

33/66
ε̂c12 c23 ε̂

Caltech 2 299 38 70 0.20 0.32 0.24 0.24
Caltech 2 200 40 65 0.16 0.27 0.20 0.20
UCLA 2 480 39 63 0.33 0.45 0.36 0.36
Caltech 3 360 38 68 0.25 0.36 0.50 0.29
UCLA 3 630 39 74 0.30 0.43 0.43 0.36
Caltech 6 360 41 67 0.20 0.30 0.24 0.21
UCLA 6 540 32 65 0.26 0.40 0.36 0.27

B.2. Likelihood functions

B.2.1. Logit equilibrium likelihood function
For each model (behavior strategy or cutpoint strategy), we compute the logit equilibrium

correspondence as a function of the precision parameter, λ. To obtain the maximum likelihood
estimate of λ given a dataset (from a session) we can compute the likelihood of observing the data
for each value of λ̃, for each model, under the maintained hypothesis that the model is correct
and λ̃ is the true value of λ. This gives us a likelihood function (as a function of λ) that is directly
implied by the structure of the model.

Consider some set of data points from a session with some fixed value of n and T = 2. De-

note by σ ∗λ̂ the quantal response equilibrium of the game for this value of n and λ = λ̂. For
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each individual, i, in the session we have a collection of K observations of proposal 1 valuations
and bonus vote choices, denoted yi = (v1

i1, b
1
i1, . . . , v

K
i1, bK

i1). For any round, k, and any individ-
ual, i, the equilibrium specifies probabilities that individual i uses 0, 1, or 2 bonus votes for the

first proposal as a function of i’s first proposal value in that round. Denote these by σ ∗λ̂
0 (vk

i1),

σ ∗λ̂
1 (vk

i1), and σ ∗λ̂
2 (vk

i1). (These probabilities are assumed to be independent across individuals
and across rounds.) Letting y = (y1, . . . , yi, . . . , yI ), the log likelihood function, given λ̂, is:

L
(
y

∣∣ λ̂
) =

n∑
i=1

K∑
k=1

lnpr
(
bk
i1

∣∣ vk
i1, λ̂

) =
n∑

i=1

K∑
k=1

ln
(
σ ∗λ̂

bk
i1

(
vk
i1

) ∣∣ λ̂
)
.

The maximum likelihood estimate, λ̂, is the value of λ that maximizes this likelihood function
for the given data set. This is computed for each session and for each model.

B.2.2. ABF likelihood function
The estimation of the ABF model involves the estimation of three parameters: two cutpoints,

c12, c23, and an error rate, ε. The likelihood function is constructed in the following way. For
each individual, i, we have a collection of K observations of proposal 1 valuations and bonus
vote choices, denoted yi = (v1

i1, b
1
i1, . . . , v

K
i1, bK

i1): The log likelihood of this observation, given
cutpoint and error parameter estimates, ĉ12, ĉ23, and ε̂, is given by:

L
(
yi | ĉ12, ĉ23, ε̂
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)
,
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