A Theory of Auctions with Endogenous Valuations

Alex Gershkov, Benny Moldovanu, Philipp Strack

April 14, 2018

Revenue Maximization in Auctions	April 14, 2018 1 / 28
----------------------------------	-----------------------

Brief Summary I

- Revenue maximization in multi-unit auctions where bidders have non-linear preferences in the allocation
- Micro-Foundation: auction preceded by costly investments that affect values.
- In turn, investments affected by the auction => endogenous values
- Technical difficulty: "Realization-by-realization" maximization not possible =>
- Relatively complex optimization under feasibility constraint (reduced auctions).

- Solution via insights from Majorization Theory, originally due to Hardy, Littlewood and Polya (1929).
- Main Tool: "An Integral Inequality" by Ky Fan and G.G.Lorentz (1954).
- Main insights:
 - sufficient conditions for the optimality of standard auctions;
 - comparative statics about the dependence of the optimal reserve price on demand and supply;
 - how to iron if you must.

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0,1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0,1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0, 1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0, 1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0, 1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

- $m \ge 1$ identical units, and $n \ge m$ ex-ante symmetric bidders.
- Bidder i ∈ {1,...,n} = N has type θ_i ∈ Θ = [θ, θ], demands at most 1 object.
- Types are *I.I.D.* according to $F : \Theta \rightarrow [0, 1]$, density f > 0.
- $p_i = p_i(\theta_i)$ is the expected **interim probability** that agent *i* with type θ_i receives an object in a mechanism.
- The utility of *i* with type θ_i is given by

 $h(p_i, \theta_i) - y_i$

• Assume
$$h(0, \cdot) = 0$$

• A *mechanism* specifies a set of reports *R_i* for each agent, and a mapping from reports to an allocation and transfers:

$$x: \prod_{i\in N} R_i \to X = [0,1]^n; \quad y: \prod_{i\in N} R_i \to \mathbb{R}^n.$$

Given a mechanism (x, y) agent *i* picks an optimal report r_i .

• We restrict attention to *symmetric mechanisms* that are invariant to permutations of agents' names.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where A is compact set.
- Depending on θ_i , *i* has preferences over:
 - ber action $a_i \in A$;
 - If the contraction $x_i, x \in X = \{0, 1\}^n$;
 - her transfer y_i.
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - her action $a_i \in A$;
 - 2) her allocation $x_i, x \in X = \{0, 1\}^n$;
 - 3 her transfer y_i .
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - her action $a_i \in A$;
 - her allocation x_i , $x \in X = \{0, 1\}^n$;
 - 3 her transfer y_i .
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - her action $a_i \in A$;
 -) her allocation x_i , $x \in X = \{0, 1\}^n$;
 - her transfer y_i.
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - ber action $a_i \in A$;
 - 2 her allocation $x_i, x \in X = \{0, 1\}^n$;
 - (3) her transfer y_i .

• Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - **)** her action $a_i \in A$;
 - 2 her allocation x_i , $x \in X = \{0, 1\}^n$;
 - (3) her transfer y_i .
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - ber action $a_i \in A$;
 - 2 her allocation x_i , $x \in X = \{0, 1\}^n$;
 - (3) her transfer y_i .
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

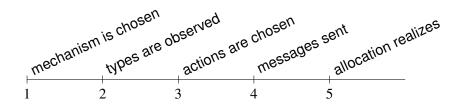
- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

- Agent *i* takes private action $a_i \in A \subseteq \mathbb{R}$, where *A* is compact set.
- Depending on θ_i , *i* has preferences over:
 - **)** her action $a_i \in A$;
 - 2 her allocation x_i , $x \in X = \{0, 1\}^n$;
 - (3) her transfer y_i .
- Utility function of the form:

$$x_i v(a_i, \theta_i) - y_i - c(a_i)$$
.

- *c* are increasing in *a*; *v* is is super-modular, non-negative and increasing in *a* and *θ*.
- There exists an action $a = 0 \in A$ such that c(a) = 0.

Micro-Foundation: Timing



- The designer commits to a mechanism;
- Each agent privately observes her type;
- Each agent privately chooses an action;
- Each agent sends a message to the mechanism;
- Depending on the messages, an allocation and transfers are realized.

Micro-Foundation: Reduction to Non-linear Preferences

- Studied in Kreps and Porteus (1979) and Machina (1984).
- Given mechanism (*x*, *y*), agent *i* conditions her action on the report she plans to send. Reporting problem equivalent to

$$\max_{r_i \in R_i} \left(\left\{ \max_{a_i \in A} \mathbb{E} \left[x_i(r) \mid \theta_i \right] v(a_i, \theta_i) - c(a_i) \right\} - \mathbb{E} \left[y_i(r) \mid \theta_i \right] \right) \,.$$

Define

$$p_i(r_i) = \mathbb{E}\left[x_i(r_i, r_{-i})\right] \,.$$

to be the interim probability with which *i* receives an object, and

$$h(p_i, \theta_i) = \max_{a_i \in A} p_i v(a_i, \theta_i) - c(a_i).$$

to be the utility *i* receives when she takes the optimal action.

• The reporting problem of agent *i* is equivalent to the "reduced form" problem where *i* has non-linear preferences over *p_i*.

Incentive Compatibility & Revenue

• Lemma: It follows from

$$\frac{\partial^2 h(p,\theta)}{\partial p \partial \theta} \ge 0$$

that incentive compatibility \Leftrightarrow monotonicity of p together with an envelope condition on interim expected utility.

• **Lemma:** The revenue in any symmetric, IC mechanism where the participation constraint is binding for the lowest type is given by

$$n\int_{\Theta}H(\theta,p(\theta))f(\theta)\,d\theta\,.$$

where the generalized "virtual value" $H : [\underline{ heta}, \overline{ heta}] imes [0, 1] o \mathbb{R}$ is defined by

$$H(\theta, p) := h(p(\theta), \theta) - h_{\theta}(p(\theta), \theta) \times \frac{1 - F(\theta)}{f(\theta)}$$

Incentive Compatibility & Revenue

• Lemma: It follows from

$$\frac{\partial^2 h(p,\theta)}{\partial p \partial \theta} \ge 0$$

that incentive compatibility \Leftrightarrow monotonicity of p together with an envelope condition on interim expected utility.

• **Lemma:** The revenue in any symmetric, IC mechanism where the participation constraint is binding for the lowest type is given by

$$n\int_{\Theta}H(\theta,p(\theta))f(\theta)\,d\theta\,.$$

where the generalized "virtual value" $H : [\underline{\theta}, \overline{\theta}] \times [0, 1] \rightarrow \mathbb{R}$ is defined by

$$H(heta,p) := h(p(heta), heta) - h_{ heta}(p(heta), heta) imes rac{1-F(heta)}{f(heta)}$$

The Feasibility Constraint

 Theorem (Che,Kim,Mierendorff, 2013): A symmetric, interim allocation rule q : [0,1] → [0,1] represents a feasible allocation iff for each t ∈ [0,1],

$$\int_{t}^{1} q(s)ds \leq \frac{1}{n} \sum_{i=0}^{n} \min\{i, m\} \binom{n}{i} (1-t)^{i} t^{n-i}$$

Lemma: It holds that

$$\sum_{i=0}^{n} \min\{i, m\} \binom{n}{i} t^{n-i} (1-t)^{i} = n \int_{t}^{1} \phi_{m,n}(t) dt$$

where

$$\phi_{m,n}(t) = \sum_{i=0}^{m-1} \binom{n-1}{i} t^{n-1-i} (1-t)^i$$

is the probability that at most m - 1 out of n - 1 agents have a type larger than t

Revenue Maximization in Auctions

The Feasibility Constraint

 Theorem (Che,Kim,Mierendorff, 2013): A symmetric, interim allocation rule q : [0, 1] → [0, 1] represents a feasible allocation iff for each t ∈ [0, 1],

$$\int_{t}^{1} q(s)ds \leq \frac{1}{n} \sum_{i=0}^{n} \min\{i, m\} \binom{n}{i} (1-t)^{i} t^{n-i}$$

Lemma: It holds that

$$\sum_{i=0}^{n} \min\{i, m\} \binom{n}{i} t^{n-i} (1-t)^{i} = n \int_{t}^{1} \phi_{m,n}(t) dt$$

where

$$\phi_{m,n}(t) = \sum_{i=0}^{m-1} \binom{n-1}{i} t^{n-1-i} (1-t)^i$$

is the probability that at most m - 1 out of n - 1 agents have a type larger than t

Revenue Maximization in Auctions

April 14, 2018

The Revenue Maximization Problem

- Define quantile $t = F^{-1}(\theta)$, probability $q(t) = p(F^{-1}(t))$, virtual value $G(t,q) := H(F^{-1}(t),q)$.
- The revenue maximization problem (for symmetric mechanisms) is given by:

$$\max_{q} \int_{0}^{1} G(t, q(t)) dt \text{ subject to:}$$

$$q(t) \in [0, 1] \text{ for all } t \in [0, 1]$$

$$q \text{ non-decreasing}$$

$$(2)$$

$$q(s) ds \leq \int_{t}^{1} \phi_{m,n}(t) dt, \text{ for all } t \in [0, 1]$$

$$(3)$$

Majorization

• For non-decreasing $p, q \in L^1(0, 1)$ we say that q majorizes p, denoted by $p \prec q$ if:

1.
$$\int_{t}^{1} p(v)dv \leq \int_{t}^{1} q(v)dv \text{ for all } t$$

2.
$$\int_{0}^{1} p(t)dt = \int_{0}^{1} q(t)dt$$

- We say that *q* weakly majorizes *p*, denoted by *p* ≺_w *q* if 1. holds (but not necessarily 2.).
- If $p \prec_w q$ there exists $q' \leq q$ such that $p \prec q'$.
- $p \prec q$ if and only if p = Tq where T is a doubly stochastic operator.

The Fan-Lorentz Integral Inequality I

• **Theorem:** Let L(t, p) be a real-valued function defined on $[0, 1] \times [0, 1]$ such that

- 1 *L* is convex in p;
- 2 *L* is super-modular in (t, p);

Let $p, q: [0, 1] \rightarrow [0, 1]$ be two non-decreasing functions such that $p \prec q$. Then

$$\int_0^1 L(t,p(t))dt \le \int_0^1 L(t,q(t))dt$$

The Fan-Lorentz Integral Inequality II

- The *orbit* $\Omega(q) = \{p : p \prec q\}$ is weakly compact and convex.
- By the Bauer Maximum Principle (1958) a continuous, convex functional on Ω(q) attains its maximum on an extreme point of Ω(q).
- $p \in \Omega(q)$ is extreme iff $p = q \circ \omega$ where ω is a measure-preserving transformation of [0, 1] (Ryff, 1967).
- FL assert that all convex functionals satisfying $\frac{\partial^2 L}{\partial t \partial p} \ge 0$ attain their maximum on $\Omega(q)$ at

$$q \circ Id = q.$$

• Theorem: Suppose that the "virtual utility" H satisfies

$$rac{\partial^2 H}{(\partial p)^2} \geq 0$$
 and $rac{\partial^2 H}{\partial heta \partial p} \geq 0$

Then the optimal allocation awards the *m* objects to the agents with the highest types, conditional on these exceeding a threshold θ^* that satisfies

$$H(\psi_{m,n}(\theta^*),\theta^*)=0.$$

where $\psi_{m,n} := \phi_{m,n} \circ F$.

• For every feasible p , $p \prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

• Hence, by the FL Theorem

$$\int_{0}^{1} H(p(\theta), \theta) d\theta \leq \int_{0}^{1} H((1_{[\widehat{\theta}, 1]} \times \phi)(\theta), \theta) d\theta$$

- Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.
- As $H(0, \theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

• Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• For every feasible
$$p$$
 , $p \prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

• Hence, by the FL Theorem

$$\int_{0}^{1} H(p(\theta), \theta) d\theta \leq \int_{0}^{1} H((1_{[\widehat{\theta}, 1]} \times \phi)(\theta), \theta) d\theta$$

• Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.

• As $H(0, \theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

• Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• For every feasible
$$p$$
 , $p\prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

Hence, by the FL Theorem

$$\int_0^1 H(p(\theta), \theta) d\theta \leq \int_0^1 H((\mathbf{1}_{[\widehat{\theta}, 1]} \times \phi)(\theta), \theta) d\theta$$

- Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.
- As $H(0, \theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• For every feasible
$$p$$
 , $p\prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

Hence, by the FL Theorem

٠

$$\int_{0}^{1} H(p(heta), heta) d heta \leq \int_{0}^{1} H((1_{[\widehat{ heta},1]} imes \phi)(heta), heta) d heta$$

• Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.

• As $H(0, \theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• For every feasible
$$p$$
 , $p\prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

Hence, by the FL Theorem

٠

$$\int_{0}^{1} H(p(heta), heta) d heta \leq \int_{0}^{1} H((1_{[\widehat{ heta},1]} imes \phi)(heta), heta) d heta$$

- Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.
- As $H(0,\theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

Thus, the first order condition is

$$H(\phi_{m,n}(\theta^*),\theta^*)=0.$$

• For every feasible
$$p$$
 , $p\prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

Hence, by the FL Theorem

٠

$$\int_{0}^{1} H(p(heta), heta) d heta \leq \int_{0}^{1} H((1_{[\widehat{ heta},1]} imes \phi)(heta), heta) d heta$$

- Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.
- As $H(0, \theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• For every feasible
$$p$$
 , $p\prec_w \phi_{m,n}$.

• This implies that $p \prec 1_{[\widehat{\theta},1]} \times \phi_{m,n}$ for some $\widehat{\theta} \in [0,1]$.

Hence, by the FL Theorem

$$\int_{0}^{1} H(p(heta), heta) d heta \leq \int_{0}^{1} H((1_{[\widehat{ heta},1]} imes \phi)(heta), heta) d heta$$

- Revenue maximizer has the form $1_{[\hat{\theta},1]} \times \phi_{m,n}$.
- As $H(0,\theta) = 0$ the problem becomes

$$\max_{\hat{\theta}} \int_{\hat{\theta}}^{1} H(\phi_{m,n}(\theta),\theta) \, .$$

Thus, the first order condition is

$$H(\phi_{m,n}(\theta^{\star}),\theta^{\star})=0.$$

• Recall the "regular", linear case of Myerson (1979) where

$$\begin{split} H(p,\theta) &= p\left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) \\ \frac{\partial^2 H}{(\partial p)^2} &= 0; \ \frac{\partial^2 H}{\partial \theta \partial p} = \frac{d}{d\theta} \left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) \geq 0 \end{split}$$

The optimal cut-off type (equals the reserve price in standard auctions) is independent of the number of agents and objects in the linear framework!

Revenue N	Maximization in	Auctions
-----------	-----------------	----------

Theorem: The optimal cut-off type defined by

 $H(\psi_{m,n}(\theta^{\star}),\theta^{\star})=0.$

- Proof: Follows from the properties of φ_{m,n}(θ) and the implicit function theorem.
- Intuition (Micro-Foundation): An increase in n decreases the chance of getting an object. In turn, this reduces investments and values, Hence the revenue from each individual.
- In particular, the type that yields zero revenue must go up.
- Inverse effect of the number of objects m.

Theorem: The optimal cut-off type defined by

 $H(\psi_{m,n}(\theta^{\star}),\theta^{\star})=0.$

- **Proof:** Follows from the properties of $\phi_{m,n}(\theta)$ and the implicit function theorem.
- Intuition (Micro-Foundation): An increase in *n* decreases the chance of getting an object. In turn, this reduces investments and values, Hence the revenue from each individual.
- In particular, the type that yields zero revenue must go up.
- Inverse effect of the number of objects *m*.

Theorem: The optimal cut-off type defined by

 $H(\psi_{m,n}(\theta^{\star}),\theta^{\star})=0.$

- **Proof:** Follows from the properties of $\phi_{m,n}(\theta)$ and the implicit function theorem.
- Intuition (Micro-Foundation): An increase in *n* decreases the chance of getting an object. In turn, this reduces investments and values, Hence the revenue from each individual.
- In particular, the type that yields zero revenue must go up.
- Inverse effect of the number of objects *m*.

Theorem: The optimal cut-off type defined by

 $H(\psi_{m,n}(\theta^{\star}),\theta^{\star})=0.$

- **Proof:** Follows from the properties of $\phi_{m,n}(\theta)$ and the implicit function theorem.
- Intuition (Micro-Foundation): An increase in *n* decreases the chance of getting an object. In turn, this reduces investments and values, Hence the revenue from each individual.
- In particular, the type that yields zero revenue must go up.
- Inverse effect of the number of objects *m*.

Theorem: The optimal cut-off type defined by

 $H(\psi_{m,n}(\theta^{\star}),\theta^{\star})=0.$

- **Proof:** Follows from the properties of $\phi_{m,n}(\theta)$ and the implicit function theorem.
- Intuition (Micro-Foundation): An increase in *n* decreases the chance of getting an object. In turn, this reduces investments and values, Hence the revenue from each individual.
- In particular, the type that yields zero revenue must go up.
- Inverse effect of the number of objects *m*.

Implementation via Uniform-Price Auctions

Theorem: Assume that the seller uses a uniform (m + 1)-price auction with reserve price \mathcal{R} , and define $\theta'_{m,n}$ by:

$$\frac{h\left(\psi_{m,n}(\theta'_{m,n}), \theta'_{m,n}\right)}{\psi_{m,n}(\theta')} = \mathcal{R}$$

The profile of bidding strategies

$$b_i(heta) = b_{m,n}(heta) = egin{cases} rac{\partial h(\psi_{m,n}(heta), heta)}{\partial p} & heta \geq heta'_{m,n} \ 0 & heta < heta'_{m,n} \,. \end{cases}$$

constitutes a symmetric, pure strategy equilibrium.

- **2** For each fixed type θ , the equilibrium bid $b_{m,n}(\theta)$ increases in *m* and decreases in *n*.
- The uniform price auction is revenue maximizing if the reserve price is set to

$$\mathcal{R}^* = \frac{h\left(\psi_{m,n}(\theta^*), \theta^*\right)}{\psi_{m,n}(\theta^*)}$$

Implementation via Pay-Your-Bid Auctions

Theorem: Assume that the seller uses a discriminatory pay-your-bid price auction with reserve price \mathcal{R} , and define $\theta'_{m,n}$ by:

$$\frac{h\left(\psi_{m,n}(\theta'_{m,n}), \theta'_{m,n}\right)}{\psi_{m,n}(\theta')} = \mathcal{R}$$

1. The profile of bidding strategies

$$\beta(\theta) = \begin{cases} \mathcal{R}\frac{\psi_{m,n}(\theta')}{\psi_{m,n}(\theta)} + \frac{1}{\psi_{m,n}(\theta')} \int_{\theta'}^{\theta_i} \psi'_{m,n}(z) \frac{\partial h(\psi_{m,n}(z),z)}{\partial p} dz & \theta \ge \theta' \\ 0 & \theta < \theta' \end{cases}$$

constitutes a symmetric, pure strategy equilibrium. 2. The discriminatory auction is revenue maximizing if the reserve price is set to

$$\mathcal{R}^* = \frac{h\left(\psi_{m,n}(\theta^*), \theta^*\right)}{\psi_{m,n}(\theta^*)}$$

Theorem: Assume that the environment is convex super-modular, that $\frac{\partial^2 h}{\partial \theta^2} \leq 0$, and that *F* is convex and twice differentiable. Then the optimal reserve price

$$\mathcal{R}^* = rac{h\left(\psi_{m,n}(heta^*), heta^*
ight)}{\psi_{m,n}(heta^*)}$$

Revenue Maximization in Auctions	April 14, 2018	21 / 28
----------------------------------	----------------	---------

Illustration: Additively Separable Investments

• Assume that *v* satisfies:

$$v(a,\theta) = a + \theta$$

Then

$$h(p, \theta) = \max_{a \in A} p(a + \theta) - c(a)$$

• Take an arbitrary selection $a^{\star}(p) \in \arg \max_{a \in A} p a - c(a)$. Then, *h* is given by

$$h(p,\theta) = p\theta + pa^{\star}(p) - c(a^{\star}(p)) = p\theta + g(p) \,,$$

where

$$g(p) = pa^{\star}(p) - c(a^{\star}(p))$$

is convex.

Revenue Maximization in Auctions

Revenue with Additively Separable Investments

Expected Revenue:

$$n\int \left[p(\theta)(\theta - \frac{1 - F(\theta)}{f(\theta)}) + g(p(\theta))\right] f(\theta)d\theta$$
.

Note that

$$\frac{\partial^2 H}{(\partial p)^2} = g''(p) \ge 0 \text{ and}$$
$$\frac{\partial^2 H}{\partial \theta \partial p} = \frac{d(\theta - \frac{1 - F(\theta)}{f(\theta)})}{d\theta} \ge 0$$

where the latter holds if the standard virtual value is increasing.

Revenue Maximization in Auctions	April 14, 2018	23 / 28
	, ipini i i, 2010	20/20

Optimal Reserve Price with Additively Separable Investments

Corollary :

• Assume that $J(\theta) = \theta - \frac{1-F(\theta)}{f(\theta)}$ is increasing. Then both the Uniform-Price and the Pay-Your-Bid auction with reserve price

$$\mathcal{R}^* = \frac{1 - F(\theta^*)}{f(\theta^*)}$$

where θ^* solves

$$\theta^* + \frac{g(\psi_{m,n}(\theta^*))}{\psi_{m,n}(\theta^*)} = \frac{1 - F(\theta^*)}{f(\theta^*)}$$

are symmetric, revenue maximizing mechanisms.

Solution is addition, the hazard rate $\frac{f(\theta)}{1-F(\theta)}$ is increasing, then the optimal reserve price decreases in the number of agents *n* and increases in the number of units *m*.

Similar analysis for multiplicative values

$$a \in \mathbb{R}_+, v(a, \theta) = a \cdot \theta, c(a) = b \cdot a^l/l$$

or the case with entry cost

$$a\in\{0,1\},\,v(a,\theta)=a\cdot\theta,\,c(a)=b\,a\,.$$

Relaxing Super-modularity

- If ∂H/∂∂∂p ≥ 0 does not hold, we may get other extreme points as maximizers of the FL inequality.
- Need to get insight into the extreme points of the set

$$\Omega_{\mathbf{mon}}(\phi) = \left\{ p : p \prec \phi = \sum_{i=0}^{m-1} \binom{n-1}{i} t^{n-1-i} (1-t)^i \land p \text{ monotone} \right\}$$

• Lemma: If *p* is an extreme point of $\Omega_{\text{mon}}(\phi)$ and $p' \neq 0$ on an interval, then $p = \phi$ on that interval.

Ironing

- Assume *p* extreme point of $\Omega_{\text{mon}}(\phi)$, p = d on $[\theta_1, \theta_2]$ and $p = \phi$ elsewhere.
- By majorization, p(θ₂) < φ(θ₂). If p < φ on [θ₁, θ₂], then p cannot be an extreme point.
- Assume then that $p(\theta_3) = q(\theta_3)$ for $\theta_3 \in (\theta_1, \theta_2)$. Then, for *p* to be extreme it must hold that:

$$\int_{\theta_1}^{\theta_3} (d - \phi(\theta)) d\theta = \int_{\theta_3}^{\theta_2} (\phi(\theta) - d) d\theta \Leftrightarrow$$
$$d = \frac{\int_{\theta_1}^{\theta_2} \phi(\theta) d\theta}{\theta_2 - \theta_1}$$

- Optimal auction design in an environment with non-linear preferences
- Combined mechanism design techniques with tools from majorization theory.
- Obtained new insights about incentives in auctions preceded by costly actions that affect values.
- Illuminated and generalized old results.
- Asymmetric mechanisms ? Information Acquisition ?