A Theory of Auctions with Endogenous Valuations J

Alex Gershkov, Benny Moldovanu, Philipp Strack

April 14,2018

Revenue Maximization in Auctions April 14,2018 1/28



Brief Summary |

@ Revenue maximization in multi-unit auctions where bidders have
non-linear preferences in the allocation

© Micro-Foundation: auction preceded by costly investments that
affect values.

© Inturn, investments affected by the auction = endogenous
values

© Technical difficulty: "Realization-by-realization" maximization not
possible —

© Relatively complex optimization under feasibility constraint
(reduced auctions).
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Brief Summary Il

@ Solution via insights from Majorization Theory, originally due to
Hardy, Littlewood and Polya (1929).

© Main Tool: "An Integral Inequality" by Ky Fan and G.G.Lorentz
(1954).

© Main insights:
@ sufficient conditions for the optimality of standard auctions;
@ comparative statics about the dependence of the optimal reserve
price on demand and supply;
@ how to iron if you must.
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The Reduced Form Model

@ m > 1 identical units, and n > m ex-ante symmetric bidders.
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The Reduced Form Model

@ m > 1 identical units, and n > m ex-ante symmetric bidders.

@ Bidderic {1,...,n} =N hastype §; € © = [0, 6], demands at
most 1 object.

@ Types are I.1.D. according to F : © — [0, 1], density f > 0.

@ p; = pi(0;) is the expected interim probability that agent i with
type 6; receives an object in a mechanism.

@ The utility of i with type 6; is given by
h(pi, 0;) — yi

where h is increasing in both variables, super-modular and
convex in p;, and where y; is a monetary payment.

@ Assume h(0,-) =0

Revenue Maximization in Auctions April 14,2018 4/28



Mechanisms

@ A mechanism specifies a set of reports R; for each agent, and a
mapping from reports to an allocation and transfers:

x:HRi—>X:[O,1}”; y:HRl-—>]R".
ieEN ieEN
Given a mechanism (x,y) agent i picks an optimal report r;.

@ We restrict attention to symmetric mechanisms that are invariant
to permutations of agents’ names.
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Micro-Foundation: Costly Investments

@ Agent i takes private action a; € A C R, where A is compact set.
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Micro-Foundation: Costly Investments

@ Agent i takes private action a; € A C R, where A is compact set.

@ Depending on 6;, i has preferences over:

@ her action ¢; € 4;
@ her allocation x;, x € X = {0,1}";
© her transfer y;.

@ Utility function of the form:
xiv(ai, 0;) — yi — c(a;) -
where c(a) is the cost of a.

@ c are increasing in a ; v is is super-modular, non-negative and
increasing in a and 6.

@ There exists an action a = 0 € A such that c(a) = 0.
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Micro-Foundation: Timing

QO
S QO
© (_‘,\(\0 0‘0‘5@(\] 066 o a\\ie'v
‘ S
O \\Z S e\ .age \‘\0(\
e e o &5 o
| “\GG 1\\!Q | 30\\ 1‘(\3 1 aX\O
1 2 3 4 5

@ The designer commits to a mechanism;
© Each agent privately observes her type;
© Each agent privately chooses an action;

© Each agent sends a message to the mechanism;

© Depending on the messages, an allocation and transfers are
realized.
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Micro-Foundation: Reduction to Non-linear
Preferences

@ Studied in Kreps and Porteus (1979) and Machina (1984).

@ Given mechanism (x,y), agent i conditions her action on the
report she plans to send. Reporting problem equivalent to

o ({ma B () 161 90000 — clad } ~E Dt 1)
@ Define
pi(ri) = E [xi(ri,r—i)] .
to be the interim probability with which i receives an object, and
h(pi, 0;) = max pi v(ai, 0;) — c(a;) .

to be the utility i receives when she takes the optimal action.
@ The reporting problem of agent i is equivalent to the "reduced
form" problem where i has non-linear preferences over p; .

Revenue Maximization in Auctions April 14,2018 8/28



Incentive Compatibility & Revenue

@ Lemma: /It follows from
2
opot  —
that incentive compatibility < monotonicity of p together with an
envelope condition on interim expected utility.
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Incentive Compatibility & Revenue

@ Lemma: /It follows from
2
opod  —
that incentive compatibility < monotonicity of p together with an
envelope condition on interim expected utility.
@ Lemma: The revenue in any symmetric, IC mechanism where the
participation constraint is binding for the lowest type is given by

n /@ H(O, p(0))f(0) db .

where the generalized “virtual value” H : [,0] x [0,1] — R is
defined by

H(0,p) == h(p(0),0) — ho(p(6),0) x
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The Feasibility Constraint
@ Theorem (Che,Kim,Mierendorff, 2013): A symmetric, interim

allocation rule q : [0, 1] — [0, 1] represents a feasible allocation iff
foreacht € [0, 1],

/t L y(s)ds < % gmin{i, m) (’:) (1= 1)
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The Feasibility Constraint
@ Theorem (Che,Kim,Mierendorff, 2013): A symmetric, interim

allocation rule q : [0, 1] — [0, 1] represents a feasible allocation iff
foreacht € [0, 1],

/t L y(s)ds < % gmin{i, m) (’:) (1= 1)

@ Lemma: /t holds that

zkm&m%) =0 [ omatia

where X
«— (n—1 n—1—i i
mat) =3 (" )i -
is the probability that at most m — 1 out of n — 1 agents have a
type larger than ¢
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The Revenue Maximization Problem

@ Define quantile t = F~!(9), probability ¢(¢) = p(F~'(¢)) , virtual
value G(t,q) : H(F*l(t),q).

@ The revenue maximization problem (for symmetric mechanisms) is
given by:

1
Inax/ G(t,q(t))dt subject to:
0

q
q(r) € [0,1] forall 7 € [0, 1] (1)
g non-decreasing (2)
/1 q(s)ds < /1 Oma(t)de, forall t € [0, 1] (3)
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Majorization

@ For non-decreasing p,q € L'(0,1) we say that ¢ majorizes
p, denoted by p < ¢ if:

1 1
1. / p(v)dv < / q(v)dv for all ¢
t t

2. 1p(t)dt = 1 q(r)dt
0 0

@ We say that ¢ weakly majorizes p, denoted by p <,, ¢ if 1. holds
(but not necessarily 2.).

e If p <, g there exists ¢ < ¢ suchthatp < 4.
@ p < ¢gifandonly if p = Tqg where T is a doubly stochastic operator.
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The Fan-Lorentz Integral Inequality |

@ Theorem: Let L(z,p) be a real-valued function defined on
[0,1] x [0, 1] such that
@ Lis convex in p;
@ L is super-modular in (¢,p);

Letp,q: [0,1] — [0, 1] be two non-decreasing functions such that
p < q. Then

1 1
| tpnar < [ Lisga
0 0
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The Fan-Lorentz Integral Inequality

@ The orbit Q(q) = {p : p < q} is weakly compact and convex.

@ By the Bauer Maximum Principle (1958) a continuous, convex
functional on Q(g) attains its maximum on an extreme point of

Q(q).

@ p € Q(q) is extreme iff p = g ow where w is a measure-preserving
transformation of [0, 1] (Ryff, 1967).
@ FL assert that all convex functionals satisfying % > 0 attain their
maximum on Q(q) at
gold =gq.
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The Optimal Mechanism

@ Theorem: Suppose that the “virtual utility” H satisfies
0*H 0’H
> — >0
@p2 = 2" aoap =

Then the optimal allocation awards the m objects to the agents
with the highest types, conditional on these exceeding a threshold

0* that satisfies
H(mn(6%),0) = 0.

where ¢, == ¢pmpuo F.
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Proof (Sketch, uniform distribution) :

@ For every feasible p, p <y dmy -
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Proof (Sketch, uniform distribution) :

@ For every feasible p, p <y dmy -
@ This implies that p < 1[51] X ¢m,, for some = [0, 1].
@ Hence, by the FL Theorem

/H(p d9</H L X 6)(0),6)df

@ Revenue maximizer has the form l[é R Gmn-
@ As H(0,6) = 0 the problem becomes

1
max [ H(0na(6).6).
6 Jo
@ Thus, the first order condition is

H(¢m,n(e*)7 9*) =0
@ Verifying that the objective is quasi-concave yields the result. [l
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The Linear Special Case

@ Recall the “regular”, linear case of Myerson (1979) where

- - F(0)
no.0) = p(o- ")
OPH O*H d 1—F(0)
o = % om0 ) 20

The optimal cut-off type (equals the reserve price in standard
auctions) is independent of the number of agents and objects in
the linear framework!

Revenue Maximization in Auctions April 14,2018 17/28



Comparative Statics : Optimal Cut-Off

Theorem: The optimal cut-off type defined by
H (Y (0%),0) = 0.

increases in the number of agents n and decreases in the number of
objects m.
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Comparative Statics : Optimal Cut-Off

Theorem: The optimal cut-off type defined by
H (Y (0%),0) = 0.
increases in the number of agents n and decreases in the number of
objects m.
@ Proof: Follows from the properties of ¢,,,(¢) and the implicit
function theorem.

@ Intuition (Micro-Foundation): An increase in n decreases the
chance of getting an object. In turn, this reduces investments and
values, Hence the revenue from each individual.

@ In particular, the type that yields zero revenue must go up.

@ Inverse effect of the number of objects m.

Revenue Maximization in Auctions April 14,2018 18/28



Implementation via Uniform-Price Auctions

Theorem: Assume that the seller uses a uniform (m + 1)—price
auction with reserve price R, and define 0, ,, by:

h (wm,n (91/11,11) ’ ein,n)
¢m,n (9,)

@ The profile of bidding strategies

=R

Oh(1hm.n(6),0)
= 020,

= Ym,n

0 <0

bi(0) = by u(0) = {
constitutes a symmetric, pure strategy equilibrium.
@ For each fixed type 6, the equilibrium bid b,, ,() increases in m
and decreases in n.
© The uniform price auction is revenue maximizing if the reserve
price is set to
h (Y (60%), 6
R = M ma(67),6)
Ymn(60*)
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Implementation via Pay-Your-Bid Auctions

Theorem: Assume that the seller uses a discriminatory pay-your-bid
price auction with reserve price R, and define 0,,, by:

h (wm,n( m n)’ 01,11 n)

=R
Ymn(0)
1. The profile of bidding strategies
wm,n ah 'd)m n( ) )
IB(G) _ qum,n(( 9/ fgl mn sz 9 2 9/ .
0 6 <o

constitutes a symmetric, pure strategy equilibrium.

2. The discriminatory auction is revenue maximizing if the reserve
price is set to

h (Ymn(07),07)

R* =
Y (6%)

Revenue Maximization in Auctions April 14,2018 20/28



Comparative Statics: Optimal Reserve Price

Theorem: Assume that the environment is convex super-modular, that
&*h

32 <0, and that F is convex and twice differentiable. Then the optimal
reserve price

R (W (0%),0%)
R T e (07)

decreases in the number of agents n and increases in the number of
objects m.
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lllustration: Additively Separable Investments

@ Assume that v satisfies:

v(a,0) =a+06

@ Then
h(p,0) = max p (a+0)—c(a)

@ Take an arbitrary selection a*(p) € argmax,ca pa — c(a). Then, his

given by
h(p,0) = p0 + pa*(p) — c(a*(p)) = pd + g(p) ,
where
g(p) = pa*(p) — c(a*(p))
is convex.
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Revenue with Additively Separable Investments

@ Expected Revenue:

[ [pwxe L FO) L o)) 610

f(9)
@ Note that
O*H
Gpr ~ &) 20 and
1—F(6
O*H _ d(o — f(é'())) >0
900 do =

where the latter holds if the standard virtual value is increasing.
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Optimal Reserve Price with Additively Separable
Investments

Corollary :
Q@ Assume that J(0) = 6 — 1;(%()9) is increasing. Then both the
Uniform-Price and the Pay-Your-Bid auction with reserve price
1 — F(6%)
Rf=—~—
f(0%)

where 0* solves

* g<wm,n(9*)) 1 — F(07)
LN (7 R T (2

are symmetric, revenue maximizing mechanisms.

@ If, in addition, the hazard rate lf (15()9) is increasing, then the optimal
reserve price decreases in the number of agents n and increases

in the number of units m.
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Other Environments

@ Similar analysis for multiplicative values
acRy,v(a,0)=a-0,cla)=b-d/l
@ or the case with entry cost

ac€{0,1},v(a,0)=a-0, c(a) =ba.
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Relaxing Super-modularity

o If aea > 0 does not hold, we may get other extreme points as
maximizers of the FL inequality.

@ Need to get insight into the extreme points of the set

m—1
Qmon(¢) = {p p<o= Z <ni 1>t"1i(1 —0' A p monotone}
i=0

@ Lemma: If p is an extreme point of Qmen(¢) and p’ # 0 on an
interval, then p = ¢ on that interval.
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Ironing

@ Assume p extreme point of Qmen(¢), p =d on [01,6,] and p = ¢
elsewhere.

@ By majorization, p(6,) < ¢(6,). If p < ¢ on [0y, 62], then p cannot be
an extreme point.

@ Assume then that p(63) = q(63) for 63 € (01, 6,). Then, for p to be
extreme it must hold that:

03 0,
/ (d— o(0)d0 = / (6(6) — d)do

91 93
0
L oo
0, — 0,

Revenue Maximization in Auctions April 14,2018 27/28



Conclusion

@ Optimal auction design in an environment with non-linear
preferences

@ Combined mechanism design techniques with tools from
majorization theory.

@ Obtained new insights about incentives in auctions preceded by
costly actions that affect values.

@ llluminated and generalized old results.

@ Asymmetric mechanisms ? Information Acquisition ?
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