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Brief Summary I

1 Revenue maximization in multi-unit auctions where bidders have
non-linear preferences in the allocation

2 Micro-Foundation: auction preceded by costly investments that
affect values.

3 In turn, investments affected by the auction =⇒ endogenous
values

4 Technical difficulty: "Realization-by-realization" maximization not
possible =⇒

5 Relatively complex optimization under feasibility constraint
(reduced auctions).

Revenue Maximization in Auctions April 14, 2018 2 / 28



Brief Summary II

1 Solution via insights from Majorization Theory, originally due to
Hardy, Littlewood and Polya (1929).

2 Main Tool: "An Integral Inequality" by Ky Fan and G.G.Lorentz
(1954).

3 Main insights:
i. sufficient conditions for the optimality of standard auctions;
ii. comparative statics about the dependence of the optimal reserve

price on demand and supply;
iii. how to iron if you must.
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The Reduced Form Model

m ≥ 1 identical units, and n ≥ m ex-ante symmetric bidders.

Bidder i ∈ {1, . . . , n} = N has type θi ∈ Θ = [θ, θ], demands at
most 1 object.

Types are I.I.D. according to F : Θ→ [0, 1] , density f > 0.

pi = pi(θi) is the expected interim probability that agent i with
type θi receives an object in a mechanism.

The utility of i with type θi is given by

h(pi, θi)− yi

where h is increasing in both variables, super-modular and
convex in pi, and where yi is a monetary payment.

Assume h(0, ·) = 0
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Mechanisms

A mechanism specifies a set of reports Ri for each agent, and a
mapping from reports to an allocation and transfers:

x :
∏
i∈N

Ri → X = [0, 1]n ; y :
∏
i∈N

Ri → Rn .

Given a mechanism (x, y) agent i picks an optimal report ri.
We restrict attention to symmetric mechanisms that are invariant
to permutations of agents’ names.
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Micro-Foundation: Costly Investments

Agent i takes private action ai ∈ A ⊆ R , where A is compact set.

Depending on θi, i has preferences over:
1 her action ai ∈ A;
2 her allocation xi, x ∈ X = {0, 1}n ;
3 her transfer yi.

Utility function of the form:

xi v(ai, θi)− yi − c(ai) .

where c(a) is the cost of a.

c are increasing in a ; v is is super-modular, non-negative and
increasing in a and θ.

There exists an action a = 0 ∈ A such that c(a) = 0.
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Micro-Foundation: Timing

1

mechanism is chosen

2

types are observed

3

actions are chosen

4

messages sent

5

allocation realizes

1 The designer commits to a mechanism;

2 Each agent privately observes her type;

3 Each agent privately chooses an action;

4 Each agent sends a message to the mechanism;
5 Depending on the messages, an allocation and transfers are

realized.
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Micro-Foundation: Reduction to Non-linear
Preferences

Studied in Kreps and Porteus (1979) and Machina (1984).
Given mechanism (x, y), agent i conditions her action on the
report she plans to send. Reporting problem equivalent to

max
ri∈Ri

({
max
ai∈A

E [xi(r) | θi] v(ai, θi)− c(ai)

}
− E [yi(r) | θi]

)
.

.

Define
pi(ri) = E [xi(ri, r−i)] .

to be the interim probability with which i receives an object, and

h(pi, θi) = max
ai∈A

pi v(ai, θi)− c(ai) .

to be the utility i receives when she takes the optimal action.
The reporting problem of agent i is equivalent to the "reduced
form" problem where i has non-linear preferences over pi .

Revenue Maximization in Auctions April 14, 2018 8 / 28



Incentive Compatibility & Revenue

Lemma: It follows from
∂2h(p, θ)
∂p∂θ

≥ 0

that incentive compatibility ⇔ monotonicity of p together with an
envelope condition on interim expected utility.

Lemma: The revenue in any symmetric, IC mechanism where the
participation constraint is binding for the lowest type is given by

n
∫

Θ
H(θ, p(θ))f (θ) dθ .

where the generalized “virtual value" H : [θ, θ]× [0, 1]→ R is

defined by

H(θ, p) := h(p(θ), θ)− hθ(p(θ), θ)× 1− F(θ)

f (θ)
.
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The Feasibility Constraint

Theorem (Che,Kim,Mierendorff, 2013): A symmetric, interim
allocation rule q : [0, 1]→ [0, 1] represents a feasible allocation iff
for each t ∈ [0, 1],∫ 1

t
q(s)ds ≤ 1

n

n∑
i=0

min{i,m}
(

n
i

)
(1− t)i tn−i .

Lemma: It holds that
n∑

i=0

min{i,m}
(

n
i

)
tn−i(1− t)i = n

∫ 1

t
φm,n(t)dt

where

φm,n(t) =

m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i

is the probability that at most m− 1 out of n− 1 agents have a
type larger than t
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The Revenue Maximization Problem

Define quantile t = F−1(θ), probability q(t) = p(F−1(t)) , virtual
value G(t, q) := H(F−1(t), q) .

The revenue maximization problem (for symmetric mechanisms) is
given by:

max
q

∫ 1

0
G(t, q(t))dt subject to:

q(t) ∈ [0, 1] for all t ∈ [0, 1] (1)
q non-decreasing (2)∫ 1

t
q(s)ds ≤

∫ 1

t
φm,n(t)dt, for all t ∈ [0, 1] (3)
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Majorization

For non-decreasing p, q ∈ L1(0, 1) we say that q majorizes
p, denoted by p ≺ q if:

1.
∫ 1

t
p(v)dv ≤

∫ 1

t
q(v)dv for all t

2.
∫ 1

0
p(t)dt =

∫ 1

0
q(t)dt

We say that q weakly majorizes p, denoted by p ≺w q if 1. holds
(but not necessarily 2.).

If p ≺w q there exists q′ ≤ q such that p ≺ q′.

p ≺ q if and only if p = Tq where T is a doubly stochastic operator.
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The Fan-Lorentz Integral Inequality I

Theorem: Let L(t, p) be a real-valued function defined on
[0, 1]× [0, 1] such that

1 L is convex in p;
2 L is super-modular in (t, p);

Let p, q : [0, 1]→ [0, 1] be two non-decreasing functions such that
p ≺ q. Then ∫ 1

0
L(t, p(t))dt ≤

∫ 1

0
L(t, q(t))dt
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The Fan-Lorentz Integral Inequality II

The orbit Ω(q) = {p : p ≺ q} is weakly compact and convex.
By the Bauer Maximum Principle (1958) a continuous, convex
functional on Ω(q) attains its maximum on an extreme point of
Ω(q).

p ∈ Ω(q) is extreme iff p = q ◦ ω where ω is a measure-preserving
transformation of [0, 1] (Ryff, 1967).

FL assert that all convex functionals satisfying ∂2L
∂t∂p ≥ 0 attain their

maximum on Ω(q) at
q ◦ Id = q.
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The Optimal Mechanism

Theorem: Suppose that the “virtual utility" H satisfies

∂2H
(∂p)2 ≥ 0 and

∂2H
∂θ∂p

≥ 0

Then the optimal allocation awards the m objects to the agents
with the highest types, conditional on these exceeding a threshold
θ? that satisfies

H(ψm,n(θ∗), θ∗) = 0.

where ψm,n := φm,n ◦ F.
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Proof (Sketch, uniform distribution) :

For every feasible p , p ≺w φm,n .
This implies that p ≺ 1

[θ̂,1]
× φm,n for some θ̂ ∈ [0, 1].

Hence, by the FL Theorem∫ 1

0
H(p(θ), θ)dθ ≤

∫ 1

0
H((1

[θ̂,1]
× φ)(θ), θ)dθ

Revenue maximizer has the form 1[θ̂,1] × φm,n.

As H(0, θ) = 0 the problem becomes

max
θ̂

∫ 1

θ̂
H(φm,n(θ), θ) .

Thus, the first order condition is

H(φm,n(θ?), θ?) = 0 .

Verifying that the objective is quasi-concave yields the result.
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The Linear Special Case

Recall the “regular", linear case of Myerson (1979) where

H(p, θ) = p
(
θ − 1− F(θ)

f (θ)

)
∂2H
(∂p)2 = 0;

∂2H
∂θ∂p

=
d
dθ

(
θ − 1− F(θ)

f (θ)

)
≥ 0

The optimal cut-off type (equals the reserve price in standard
auctions) is independent of the number of agents and objects in
the linear framework!

Revenue Maximization in Auctions April 14, 2018 17 / 28



Comparative Statics : Optimal Cut-Off

Theorem: The optimal cut-off type defined by

H(ψm,n(θ?), θ?) = 0.

increases in the number of agents n and decreases in the number of
objects m.

Proof: Follows from the properties of φm,n(θ) and the implicit
function theorem.

Intuition (Micro-Foundation): An increase in n decreases the
chance of getting an object. In turn, this reduces investments and
values, Hence the revenue from each individual.

In particular, the type that yields zero revenue must go up.

Inverse effect of the number of objects m.
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Implementation via Uniform-Price Auctions

Theorem: Assume that the seller uses a uniform (m + 1)−price
auction with reserve price R, and define θ′m,n by:

h
(
ψm,n(θ′m,n), θ′m,n

)
ψm,n(θ′)

= R

1 The profile of bidding strategies

bi(θ) = bm,n(θ) =

{
∂h(ψm,n(θ),θ)

∂p θ ≥ θ′m,n
0 θ < θ′m,n .

constitutes a symmetric, pure strategy equilibrium.
2 For each fixed type θ, the equilibrium bid bm,n(θ) increases in m

and decreases in n.
3 The uniform price auction is revenue maximizing if the reserve

price is set to

R∗ =
h (ψm,n(θ∗), θ∗)

ψm,n(θ∗)
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Implementation via Pay-Your-Bid Auctions

Theorem: Assume that the seller uses a discriminatory pay-your-bid
price auction with reserve price R, and define θ′m,n by:

h
(
ψm,n(θ′m,n), θ′m,n

)
ψm,n(θ′)

= R

1. The profile of bidding strategies

β(θ) =

{
Rψm,n(θ′)

ψm,n(θ) + 1
ψm,n(θ′)

∫ θi
θ′ ψ

′
m,n(z)∂h(ψm,n(z),z)

∂p dz θ ≥ θ′

0 θ < θ′
.

constitutes a symmetric, pure strategy equilibrium.
2. The discriminatory auction is revenue maximizing if the reserve
price is set to

R∗ =
h (ψm,n(θ∗), θ∗)

ψm,n(θ∗)
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Comparative Statics: Optimal Reserve Price

Theorem: Assume that the environment is convex super-modular, that
∂2h
∂θ2 ≤ 0, and that F is convex and twice differentiable. Then the optimal
reserve price

R∗ =
h (ψm,n(θ∗), θ∗)

ψm,n(θ∗)

decreases in the number of agents n and increases in the number of
objects m.
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Illustration: Additively Separable Investments

Assume that v satisfies:

v(a, θ) = a + θ

Then
h(p, θ) = max

a∈A
p (a + θ)− c(a)

.

Take an arbitrary selection a?(p) ∈ arg maxa∈A p a− c(a). Then, h is
given by

h(p, θ) = pθ + pa?(p)− c(a?(p)) = pθ + g(p) ,

where
g(p) = pa?(p)− c(a?(p))

is convex.
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Revenue with Additively Separable Investments

Expected Revenue:

n
∫ [

p(θ)(θ − 1− F(θ)

f (θ)
) + g(p(θ))

]
f (θ)dθ .

Note that

∂2H
(∂p)2 = g′′(p) ≥ 0 and

∂2H
∂θ∂p

=
d(θ − 1−F(θ)

f (θ) )

dθ
≥ 0

where the latter holds if the standard virtual value is increasing.
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Optimal Reserve Price with Additively Separable
Investments

Corollary :

1 Assume that J(θ) = θ − 1−F(θ)
f (θ) is increasing.Then both the

Uniform-Price and the Pay-Your-Bid auction with reserve price

R∗= 1− F(θ∗)

f (θ∗)

where θ? solves

θ∗ +
g(ψm,n(θ?))

ψm,n(θ?)
=

1− F(θ∗)

f (θ∗)

are symmetric, revenue maximizing mechanisms.
2 If, in addition, the hazard rate f (θ)

1−F(θ) is increasing, then the optimal
reserve price decreases in the number of agents n and increases
in the number of units m.
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Other Environments

Similar analysis for multiplicative values

a ∈ R+, v(a, θ) = a · θ, c(a) = b · al/l

or the case with entry cost

a ∈ {0, 1}, v(a, θ) = a · θ, c(a) = b a .
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Relaxing Super-modularity

If ∂H
∂θ∂p ≥ 0 does not hold, we may get other extreme points as

maximizers of the FL inequality.

Need to get insight into the extreme points of the set

Ωmon(φ) =

{
p : p ≺ φ =

m−1∑
i=0

(
n− 1

i

)
tn−1−i(1− t)i ∧ p monotone

}

Lemma: If p is an extreme point of Ωmon(φ) and p′ 6= 0 on an
interval, then p = φ on that interval.

Revenue Maximization in Auctions April 14, 2018 26 / 28



Ironing

Assume p extreme point of Ωmon(φ), p = d on [θ1, θ2] and p = φ
elsewhere.

By majorization, p(θ2) < φ(θ2). If p < φ on [θ1, θ2], then p cannot be
an extreme point.

Assume then that p(θ3) = q(θ3) for θ3 ∈ (θ1, θ2). Then, for p to be
extreme it must hold that:∫ θ3

θ1

(d − φ(θ))dθ =

∫ θ2

θ3

(φ(θ)− d)dθ ⇔

d =

∫ θ2
θ1
φ(θ)dθ

θ2 − θ1
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Conclusion

Optimal auction design in an environment with non-linear
preferences

Combined mechanism design techniques with tools from
majorization theory.

Obtained new insights about incentives in auctions preceded by
costly actions that affect values.

Illuminated and generalized old results.

Asymmetric mechanisms ? Information Acquisition ?
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