

STATA Tutorial

to Accompany

Introduction to Econometrics

by James H. Stock and Mark W. Watson

STATA Tutorial to accompany Stock/Watson Introduction to Econometrics

Copyright © 2003 Pearson Education Inc.

Adopters of Stock/Watson, Introduction to Econometrics, may modify the information in
this tutorial exclusively for the purpose of their classes.

 1

STATA is a powerful statistical and econometric software package. This tutorial is an
introduction to some of the most commonly used features in STATA. These features
were used for the statistical analysis reported in Chapters 3-11 of Introduction to
Econometrics. This tutorial provides the necessary background to reproduce the results
in Chapters 3-11 and to carry out related exercises.

1. GETTING STARTED

STATA is available for computer systems such as Windows, Mac, and Unix. Your
professor will tell you how to access STATA at your university. Most of you will be
using STATA on Windows computers. To access STATA on these computers, you need
to double-click on the STATA icon. This icon will probably be labeled Intercooled Stata
X, where X is a number indicating the version of STATA available on your system. (All
of the results in Chapters 3-11 of Introduction to Econometrics were computed using
Intercooled STATA 7.)

Once you have started STATA, you will see a large window containing several smaller
windows. At this point you can load the dataset and begin the statistical analysis.
STATA can be operated “interactively” or in “batch mode.” When you use STATA
interactively, you type a STATA command in the STATA Command window and hit the
Return/Enter key on your keyboard. STATA executes the command and the results are
displayed in the STATA Results window. Then you enter the next command, STATA
executes it, and so forth, until the analysis is complete. Even the simplest statistical
analysis will involve several STATA commands.

When STATA is used in batch mode, all of the commands for the analysis are listed in a
file, and STATA is told to read the file and execute all of the commands. These files are
called do files by STATA and are saved using a .do suffix. For example, all of the
STATA commands for the analysis in Chapter 4 of the text are contained in a file called
ch4.do available on the Web site. When STATA executes this file, all of the empirical
results for Chapter 4 are produced.

Using STATA in batch mode has two important advantages over using STATA
interactively. First, the do file provides an audit trail for your work. The file provides an
exact record of each STATA command. Second, even the best computer programmers
will make typing or other errors when using STATA. When a command contains an
error, it won’t be executed by STATA, or worse, it will be executed but produce the
wrong result. Following an error, it often necessary to start the analysis from the
beginning. If you are using STATA interactively, you must retype all of the commands.
If you are using a do file, then you only need to correct the command containing the error
and rerun the file. For these reasons, you are strongly encouraged to use do files, and this
tutorial will discuss STATA used in this way.

 2

2. DO-FILE INGREDIENTS AND KEY COMMANDS

A STATA do file has four different kinds of commands or ingredients:

1. Administrative commands that tell STATA where to save results, how to manage
computer memory, and so forth

2. Commands that tell STATA to read and manage datasets

3. Commands that tell STATA to modify existing variables or to create new variables

4. Commands that tell STATA to carry out the statistical analysis

There are many commands within each category. A list of some of the most useful
commands is given at the end of this tutorial.

This section and the next will work through five examples of do files. After you have
worked through these examples, you will have a good basic understanding of STATA.

To begin, you need to download the do files. These files are called files stata1.do,
stata2.do, … , stata5.do and are available on the Web site. Create a folder (or directory)
on your computer called statafiles and download the do files to this folder. You also
need to download the file caschool.dta to this folder.

The do files are “text” or “ascii” files. They can be read with any text editor. For
example, if you are using Windows, you can use Notepad to edit these files. If you use a
word processor such as MS Word, make sure that you save the files using the Save as
type “Text Only” option, and save them using the suffix .do.

The file stata1.do contains seven lines of text

log using \statafiles\stata1.log, replace
use \statafiles\caschool.dta
describe
generate income = avginc*1000.
summarize income
log close
exit

The first line is an administrative command that tells STATA where to write the results
of the analysis. STATA output files are called log files, and the first line tells STATA to
open a log file called stata1.log in the folder (or directory) statafiles. If there is already a
file with the same name in the folder, STATA is instructed to replace it.

The second and third lines concern the dataset. Datasets in STATA are called dta files.
The dataset used in this example is caschool.dta, which you downloaded to the folder
statafiles. The second line tells STATA the location and name of the dataset to be used

 3

for the analysis. The third line tells STATA to “describe” the dataset. This command
produces a list of the variable names and any variable descriptions stored in the dataset.

The fourth line tells STATA to create a new variable called income. The new variable is
constructed by multiplying the variable avginc by 1000. The variable avginc is
contained in the dataset and is the average household income in a school district
expressed in thousands of dollars. The new variable income will be the average
household income expressed in dollars instead of thousands of dollars.

The fifth line of the program tells STATA to compute some summary statistics (mean,
standard deviations, and so forth) for income. The STATA command for this is
summarize.

The last two lines close STATA. The command log close closes the file stata1.log that
contains the output. The command exit tells STATA that the program has ended.

To execute this do file, first open STATA on your computer. (Double-click on the
Intercooled STATA icon on a Windows computer. Follow your professor’s instructions
for opening STATA on other computers.) Click on the File menu, then Do, and then
select the file \statafiles\stata1.do. This will run the do file. You can see the program
being executed in the STATA Results window. You might see that the program
execution pauses and that –– more –– is displayed at the bottom of the Results window.
If this happens, push any key on the keyboard and execution will continue. (We will get
rid of this annoyance with a STATA command in the next example.) You can exit
STATA by clicking on the File menu and then Exit. STATA will ask you if you really
want to exit. Respond “Yes”. Your output will be in \statafiles\stata1.log. Open this
file using a text editor, and you will see the statistical output.

This example has used six STATA commands:

log using
use
describe
generate
log close
exit

These commands are summarized at the end of this tutorial.

The next section introduces several more STATA commands in four other do files. After
you work through these examples, you will understand the elements of STATA.

 4

3. MORE EXAMPLES

stata2.do

Here are the commands in stata2.do

delimit ;
***;
* Administrative Commands;
***;
set more off;
clear;
log using \statafiles\stata2.log,replace;
***;
* Read in the Dataset;
***;
use \statafiles\caschool.dta;
describe;
***;
* Transform data and Create New Variables;
***;
**** Construct average district income in $'s;
generate income = avginc*1000;
***;
* Carry Out Statistical Analysis;
***;
***** Summary Statistics for Income;
summarize
 income;
***;
* End the Program ;
***;
log close;
exit;

The file stata2.do carries out exactly the same calculations as stata1.do; however it uses
four features of STATA for more complicated analyses. The first new command is
delimit ;. This command tells STATA that each STATA command ends with a
semicolon. If STATA does not see a semicolon at the end of the line, then it assumes that
the command carries over to following line. This is useful because complicated
commands in STATA are often too long to fit on a single line. stata2.do contains an
example of a STATA command written on two lines: near the bottom of the file you see
the command summarize income written on two lines. STATA combines these two
lines into one command because the first line does not end with a semicolon. While two
lines are not necessary for this command, some STATA commands can get long, so it is
good to get used to using this feature.

A word of warning: if you use the # delimit ; command, it is critical that you end
each command with a semicolon. Forgetting the semicolon on even a single line means
that the do file will not run properly.

The second new feature in stata2.do is that many of the lines begin with an asterisk.
STATA ignores the text that comes after *, so that these lines can be used to describe
what the do filing is doing. Notice that each of these lines ends with a semicolon. If the

 5

semicolon had not been included, then STATA would have included the next line as part
of the text description.

The third new feature in the file is the command set more off . This command
eliminates the need to type a key whenever STATA fills the Results window, so that
– more – will no longer be displayed in the Results window.

Finally, the last new command is clear . This command erases any data already in
STATA’s memory. It is a good idea to use the clear command before starting a new
analysis.

stata3.do

Here are the commands in stata3.do

delimit ;
***;
* Administrative Commands;
***;
set more off;
clear;
log using \statafiles\stata3.log,replace;
***;
* Read in the Dataset;
***;
use \statafiles\caschool.dta;
describe;
***;
* Transform data and Create New Variables;
***;
generate testscr_lo = testscr if (str<20);
generate testscr_hi = testscr if (str>=20);
***;
* Carry Out Statistical Analysis;
***;
* Compute statistics for test scores;
summarize testscr;
ttest testscr=0;
ttest testscr_lo=0;
ttest testscr_hi=0;
ttest testscr_lo=testscr_hi, unequal unpaired;
***;
* Repeat the analysis using STR = 19;
***;
replace testscr_lo = testscr if (str<19);
replace testscr_hi = testscr if (str>=19);
***;
* Carry Out Statistical Analysis;
***;
* Compute statistics for test scores;
ttest testscr_lo=testscr_hi, unequal unpaired;
***;
* End the Program ;
***;
log close;
exit;

 6

This file introduces three new features. First, it creates new variables using only a
portion of the dataset. Two of the variables in the dataset are testscr (the average test
score in a school district) and str (the district’s average class size or student-teacher
ratio). The STATA command generate testscr_lo = testscr if (str<20)
creates a new variable testscr_lo that is equal to testscr, but this variable is only
defined for districts that have an average class size of less than twenty students (that is,
for which str<20). Similary testscr_hi is a new variable that is equal to class size for
districts with average class sizes greater than or equal to twenty students (str>=20).

The statement str<20 is an example of a “relational operation.” STATA uses several
relational operators:

 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 == equal to
 ~= not equal to

The second new STATA feature in this file is the command ttest. This command
constructs tests and confidence intervals for the mean of a population or for the difference
between two means. This command is used two different ways in the program. The first
use is ttest testscr=0. This command computes the sample mean and standard
deviation of the variable testscr, computes a t-test that the population mean is equal to
zero, and computes a 95% confidence interval for the population mean. (In this example
the t-test that the population mean of test scores is equal to zero is not interesting, but the
confidence interval for the mean is.) This same command is used for testscr_lo and
testscr_hi. The second form of the command is
ttest testscr_lo=testscr_hi, unequal unpaired, which is used to test the
hypothesis that testscr_lo and testscr_hi come from populations with the same
mean. That is, this command computes the t-statistic for the null hypothesis that the
mean of test scores for districts with class sizes less than twenty students is the same as
the mean of test scores for districts with class sizes greater than twenty students. This
command uses two “options” that are listed after the comma in the command. These
options are unequal and unpaired. The option unequal tells STATA that the variances
in the two populations may not be the same. The option unpaired tells STATA that the
observations are for different districts, that is, these are not panel data representing the
same entity at two different time periods. As written, this command carries out the
comparison of means from different populations described in Section 3.4 of the text.

The third new feature in this file is the command replace. This appears near the bottom
of the file. Here, the analysis is to be carried out again, but using 19 as the cutoff for
small classes. Since the variables testscr_lo and testscr_hi already exist (they
were defined by the generate command earlier in the program), STATA cannot
“generate” variables with the same name. Instead, the command replace is used to
replace the existing series with new series.

 7

stata4.do

Here are the commands in stata4.do

delimit ;
***;
* Administrative Commands;
***;
set more off;
clear;
log using \statafiles\stata4.log,replace;
***;
* Read in the Dataset;
***;
use \statafiles\caschool.dta;
describe;
**;
***** Table 4.1 ******;
**;
summarize str testscr, detail;
***;
**** Figure 4.2;
***;
graph testscr str;
**;
***** Correlation ******;
**;
correlate str testscr;
**;
***** Equation 4.7 and 4.26 ******;
**;
regress testscr str, robust;
**;
***** Equation 4.33 ******;
**;
generate d = (str<20);
regress testscr d, robust;
log close;
clear;
exit;

This file reproduces the empirical results shown in Chapter 4 of the text. It contains
several features of STATA that have not been used in the previous examples. First, the
summarize command is now written using the option detail, which provides more
detailed summary statistics. The command is written as
summarize str testscr, detail. This command tells STATA to compute summary
statistics for the two variables str testscr. The option detail produces detailed
summary statistics that include, for example, the percentiles that are reported in Table
4.1.

The command graph testscr str constructs a scatterplot of testscr versus str.
This scatterplot is shown in Figure 4.2 in the text.

The command correlate str testscr tells STATA to compute the correlation
between str testscr.

 8

The command regress testscr str, robust tells STATA to run an OLS regression
with testscr as the dependent variable and str as the regressor. The option robust
tells STATA to use heteroskedasticity-robust formulas for the standard errors of the
regression coefficient estimators.,

The section of the do file that produces the results in Equation (4.33) contains two new
features. First, it creates the binary (or indicator, or dummy) variable d using the STATA
command generate d = (str<20). The variable d is equal to 1 if the expression in
parentheses is true (that is, when str<20) and is equal to 0 if the expression is false (that
is, str•20). STATA allows you to use any of the relational operators listed above (<,
>, <=, etc.).

stata5.do

Here are the commands in stata5.do

delimit ;
***;
* Administrative Commands;
***;
set more off;
clear;
log using \statafiles\stata5.log,replace;
***;
* Read in the Dataset;
***;
use \statafiles\caschool.dta;
desc;
**;
***** Table 5.1 ******
**;
gen str_20 = (str<20);
gen ts_lostr = testscr if str_20==1;
gen ts_histr = testscr if str_20==0;
gen elq1 = (el_pct<1.94);
gen elq2 = (el_pct>=1.94)*(el_pct<8.78);
gen elq3 = (el_pct>=8.78)*(el_pct<23.01);
gen elq4 = (el_pct>=23.01);
ttest ts_lostr=ts_histr, unp une;
ttest ts_lostr=ts_histr if elq1==1, unp une;
ttest ts_lostr=ts_histr if elq2==1, unp une;
ttest ts_lostr=ts_histr if elq3==1, unp une;
ttest ts_lostr=ts_histr if elq4==1, unp une;
**;
***** Eq 5.9 ******
**;
reg testscr str, r;
**;
***** Eq 5.10 ******
**;
reg testscr str el_pct, r;
**;
***** Eq 5.18 ******
**;
replace expn_stu = expn_stu/1000;
reg testscr str expn_stu el_pct, r;
* Diplay Covariance Matrix;
vce;

 9

* F-test reported in text;
test str expn_stu;
***;
******* Correlations reported in text;
***;
cor testscr str expn_stu el_pct meal_pct calw_pct;
***;
******* Table 5.2;
***;
* Column (1);
reg testscr str, r;
display "Adjusted Rsquared = " _result(8);
* Column (2);
reg testscr str el_pct, r;
dis "Adjusted Rsquared = " _result(8);
* Column (3);
reg testscr str el_pct meal_pct, r;
dis "Adjusted Rsquared = " _result(8);
* Column (4);
reg testscr str el_pct calw_pct, r;
dis "Adjusted Rsquared = " _result(8);
* Column (5);
reg testscr str el_pct meal_pct calw_pct, r;
dis "Adjusted Rsquared = " _result(8);
*;
***;
******* Appendix -- rule of thumb f-statistic;
***;
reg testscr str expn el_pct;
test str expn;
reg testscr el_pct;
log close;
clear;
exit;

This file produces all of the empirical results from Chapter 5 of the text. STATA allows
you to abbreviate commands when there is no possibility of confusion, and this file uses
abbreviations for STATA commands throughout (generate is abbreviated gen, regress
is abbreviated reg, and so forth). It contains four new commands.

The first two new commands are in the analysis of Equation 5.18. The command
reg testscr str expn_stu el_pct, r computes the regression reported in Equation
5.18. The command vce asks STATA to print out the estimated variances and
covariances of the estimated regression coefficients. The command test str expn_stu
asks STATA to carry out the joint test that the coefficients on str and expn_stu are
both equal to zero.

The third new command is in the analysis of Table 5.2. When STATA computes an OLS
regression, it computes the adjusted R-Squared (2R) as described in Section 5.10 of the
text. However, it does not automatically print the adjusted R-squared in the log file. The
command display "Adjusted Rsquared = " _result(8) tells STATA to display
(or print out) the adjusted R-Squared.

 10

Other Examples

You will find other examples of do files on the text Web site. You can download
STATA do files to reproduce all of the analysis in Chapters 3-11. You will also find
STATA do files for Chapters 12-14. Chapters 12-14 concern time series data, and
STATA programming for time series is somewhat more complicated than for cross-
sectional or panel data. EVIEWS and RATS are econometric programs specifically
designed for time series data, and the Web site contains EVIEWS and RATS programs
for Chapters 12-14.

4. MISCELLANEOUS TOPICS

Examining Data in STATA Datasets

It is often useful to examine the data in a STATA dataset. For example, the dataset
caschool.dta contains the California test score data analyzed in Chapters 4-7, and you
might want to see the test scores or class size for a particular school district. There are
two ways to examine the data in STATA. To examine the data on the screen you can use
the Data Editor or Data Browser. The Data Editor displays all of the variables in a
dataset in spreadsheet format; that is, in a format like Excel. The Data Editor can also be
used to add more data to a dataset or to correct errors in a data set. Data can be entered
into the Data Editor’s spreadsheet using the keyboard or by cutting and pasting. The
Data Browser is just like the Data Editor, except that it does not allow you to modify the
existing data set. If you want to look at the dataset, it is safer to use the Data Browser
because that way it is impossible to change the data inadvertently.

To use to Data Editor or Browser, first load the dataset into STATA. This can be done by
typing the command use dataset.dta in STATA’s Command Window, where
dataset.dta contains the location and name of the dataset that you want to examine.
For example, to examine the California test score dataset you would type
use \statafiles\caschool.dta. The Editor or Browser can be opened by clicking on
the appropriate icon at the top of the main STATA window. The Editor icon looks like a
spreadsheet, and the Browser icon looks like a spreadsheet with a magnifying glass on
top of it. You can also open the Editor by clicking on the main Window menu and then
Data Editor.

The data can also be printed in the log file. To do this, put the command list variable
name list in the do file, where variable name list is a list of the names of the
variables to be printed. For example, to print the data on testscr and str from
caschool.dta, insert the command list testscr str into any of the do files in the
last section. A word of caution: if you use the command list without a variable list,
STATA will print all of the variables in the log file. If the dataset is large, this will
produce a very large log file.

 11

Creating STATA Datasets

All of the data used in the text are available in STATA datasets. These data can read into
STATA with the use command. When you study other datasets, they need to be
converted into STATA data files (.dta files). There are several ways to do this
conversion. Two are discussed here.

The computer program StatTransfer converts Excel, Lotus, Access, and other popular
formats into STATA data files. If StatTransfer is available at your university, use it.

If StatTransfer is not available, then use the following procedure:

(1) Put your data into an Excel spreadsheet.
(2) Save the Excel spreadsheet as a csv (comma delimited) file.
(3) Use the STATA command insheet to read the data into STATA. Then save the

data as a STATA data file.

Here is an example:

(1) Create an Excel file with this format.

str testscr
17.89 690.80
21.52 661.20
18.70 643.60
17.36 647.70
18.67 640.85
21.41 605.55
19.50 606.75

This file contains 7 observations on the variables str and testscr. The Excel file must
have this special format: the first row must contain the variable names, then the data must
be listed in the other rows with no blanks.

(2) In Excel save this file using Save as Type CSV (Comma delimited) using the
name mydata.csv. If you look at the file mydata.csv using a text editor, you will see

str,testscr
17.89,690.80
21.52,661.20
18.70,643.60
17.36,647.70
18.67,640.85
21.41,605.55
19.50,606.75

These are data from the Excel file, but in a different format.

(3) Run the following STATA do file.

 12

delimit ;
clear;
log using convert.log,replace;
insheet using mydata.csv;
save mydata.dta, replace;
log close;
exit;

The command insheet using mydata.csv reads in the data file created in step 2. The
command save mydata.dta, replace saves the data as a STATA dataset with the
name mydata.dta replacing any other dataset with that name. The data set can now be
read into STATA using the command use mydata.dta.

This example used mydata as the name of the dataset. You can replace this with the
name of your choosing.

Increasing Memory

On many computers STATA is set up so that it uses a limited amount of the computer’s
memory. If your STATA analysis requires more memory than is allocated, you will get a
message that says something like no room to add more observations.

When this happens you need to increase the amount of memory available to STATA. To
do this, follow these two steps. First, find out how large your dataset is. For example,
suppose that you have a large dataset stored in the file \statafiles\bigdata.dta. If you
type

describe using \statafiles\bigdata.dta

STATA will print a description of the dataset bigdata.dta in the STATA Results
window. For this example, STATA prints the results

Contains data
 obs: 2075
 vars: 380
 size: 6,308,000

in the STATA Results window. This says the dataset contains 380 variables, each with
2075 observations, and requires 6.308 megabytes of memory. To make sure STATA has
enough memory to read this dataset and carry out the statistical analysis, put the
command

set memory 8m

at the top of your do file. This tells STATA to set aside 8 megabytes of memory for the
data. (Only 6.308m is needed to read the dataset, but additional memory may be required
when new variables are generated.)

 13

On most computers, STATA is configured so that it can run OLS regressions that contain
up to forty regressors. This is sufficient for nearly all applications. However, if you have
an application that requires more than forty regressors, you will need to use the STATA
command set mat #, which is described in Section 6.

5. GETTING MORE INFORMATION ABOUT STATA

STATA has detailed help files available for all STATA commands. You can access these
by clicking on the Help menu in STATA.

STATA commands are described in detail in the STATA User’s Guide and Reference
Manual. You should be able to find these in the computer lab or at your computer center.

STATA provides a comprehensive Web site at www.stata.com.

Finally, you can find several good STATA tutorials on the Web. An easy way to find a
list is to do a Google search for Stata tutorial.

 14

6. A SUMMARY OF SELECTED STATA COMMANDS

This section lists several of the most useful STATA commands. Many of these
commands have options. For example, the command summary has the option detail and
the command regress has the option robust. In the descriptions below, options are
shown in square brackests []. Many of these commands have several options and can be
used in many different ways. The descriptions below show how these commands are
commonly used. Other uses and options can be found in STATA’s Help menu and in the
other resources listed in Section 5.

The list of commands provided here is a small fraction of the commands in STATA, but
these are the important commands that you will need to get started. They will allow you
to do all of the analysis contained in Chapters 3-7 of the text. Chapters 8-14 use
specialized commands for panel data, probit and logit regression, instrumental variables
regression, and time series analysis. These specialized commands can be found in the do
files for these chapters. A detailed description of these specialized commands can found
in STATA’s Help menu and in the other resources listed in Section 5.

Administrative Commands

delimit

delimit sets the character that marks the end of a command. For example, the
command # delimit ; tells STATA that all commands will end with an asterisk.
This command is used in do files.

clear

This command deletes/erases all variables from the current STATA session.

exit

In a do file, exit tells STATA that the do file has ended. If you type exit in
STATA’s Command window, then STATA will close.

log

This command controls STATA log files, which is where STATA writes output.
There are two common uses of this command. The first is

log using filename [,append replace]

This opens the file given by filename as a log file for STATA output. The
options append and replace are used when there is already a file with the same
name. With append, STATA will append the output to the bottom of the existing
file. With replace, STATA will replace the existing file with the new output
file.

log close
This closes the current log file.

 15

set mat #

This sets the maximum number of variables that can be used in a regession. The
default maximum is 40. If you have many, many observations and want to run a
regression with 45 variables, then you will need to use the command set mat #
where # is a number greater than 45.

set memory #m

This is used in Windows and Unix versions of STATA to set the amount of memory
used by the program. See the discussion in Section 4 above.

set more off

This tells STATA not to pause and display the –more- message in the Results
window.

Data Management

describe

This describes the contents of data in memory or on disk. A related command is
describe using filename, which describes the dataset in filename.

drop list of variables

This deletes/erases the variables in list of variables from the current STATA
session. For example, drop str testscr will delete the two variables str and
testscr .

keep list of variables
This deletes/erases all of the variables from the current STATA session except those
in list of variables. Alternatively, it keeps the variables in the list and drops
everything else. For example, keep str testscr will keep the two variables str
and testscr and delete all of the other variables in the current STATA session.

list list of variables

This command tells STATA to print all of the observations for the variables listed in
list of variables .

save filename [, replace]

This tells STATA to save the dataset that is currently in memory as a file with name
filename. The option replace tells STATA that it may replace any other file with
the name filename. See the example in Section 4 of this tutorial.

use filename

This tells STATA to load a dataset from the file filename .

 16

Transforming and Creating New Variables

New variables are created using the command generate, and existing variables are
modified using the command replace.

Examples:

generate newts = testscr/100

creates a new variable called newts that is constructed as the variable testscr divided
by 100.

replace testscr = testscr/100

changes the variable testscr so that all observations are divided by 100.

You can use the standard arithmetic operations of addition (+), subtraction (–),
multiplication (*), division (/), and exponentiation (^) in generate/replace commands.
For example,

generate ts_squared = testscr*testscr

creates a new variable ts_squared as the square of testscr. (This could also have
been accomplished using the command generate ts_squared = testscr^2 .)

You can also use relational operators to construct binary variables. For example,
stata4.do included the command

generate d = (str<20);

which created the binary variable d that was equal to 1 when str<20 and was equal to 0
otherwise.

Standard functions can also be used. Three of the most useful are:

abs(x) computes the absolute value of x
exp(x) provides the exponentiation of x
ln(x) computes the natural logarithm of x

For example, the command

generate ln_ts = ln(testscr)

creates the variable ln_ts, which is equal to the logarithm of the variable testscr.

Finally, logical operators can also be used. For example,

generate testscr_lo = testscr if (str<20);

 17

creates a variable testscr_lo that is equal to testscr, but only for those observations
for which str<20.

Statistical Operations

correlate list of variables

This command tells STATA to compute the correlation between each of the variables
in list of variables.

graph

Tells STATA to produce a graph. STATA can produce several kinds of graphs,
including histograms, pie charts, box plots, and scatterplots. The command to
produce a scatterplot is graph varname1 varname2, where varname1 and varname2
are the names of the series to be plotted. The STATA commands for other types of
graphs can become complicated. These are explained in the resources listed in
Section 5.

predict newvarname [, residuals]

When this command follows the regress command, the OLS predicted values or
residuals are calculated and saved under the name newvarname. When the option
residuals is used, the residuals are computed; otherwise the predicted values are
computed.

Example:

regress testscr str expn_stu el_pct, robust
predict tshat
predict uhat, residuals

In this example testscr is regressed on str, expn_stu, el_pct (first
command); the fitted values are saved under the name tshat (second command),
and the residuals are saved under the name uhat (third command).

regress depvar list of variables [if expression] [,robust noconstant]

Carries out an OLS regression of the variable depvar on list of variables.
When if expression is used, then the regression is estimated using observations for
which expression is true. The option robust tells STATA to use the
heteroskedasticity-robust formula for the standard errors of the coefficient estimators.
The option noconstant tells STATA not to include a constant (intercept) in the
regression.

Examples:

regress testscr str, robust

regress testscr str expn_stu el_pct, robust

summarize [list of variables] [, details]

 18

Computes summary statistics. If the command is used without a list of variables, then
summary statistics are computed for all of the variables in the dataset. If the
command is used with a list of variables, then summary statistics are computed for all
variables in the list. If the option details is used, more detailed summary statistics
(including percentiles) are computed.

Examples:

summarize testscr str

computes summary statistics for the variables testscr and str.

summarize testscr str, detail
computes detailed summary statistics for the variables testscr and str.

test

This command is used to test hypotheses about regression coefficients. It can be used
to test many types of hypotheses. The most common use of this command is to carry
out a joint test that several coefficients are equal to zero. Used this way, the form of
the command is test list of variables where the test is to be carried out on the
coefficients corresponding to the variables given in list of variables.

Example:

regress testscr str expn_stu el_pct, robust
test str expn_stu

In this example testscr is regressed on str, expn_stu, and el_pct (first
command), and a joint test of the hypothesis that the coefficient on str and
expn_stu are jointly equal to zero is carried out (second command).

ttest

This command is used to test a hypothesis about the mean or the difference between
two means. The command has several forms. Here are a few:

ttest varname = # [if expression] [, level(#)]

Tests the null hypothesis that the population mean of the series varname is equal
to #. When if expression is used, then the test is computed using observations
for which expression is true. The option level(#) is the desired level of the
confidence interval. If this option is not used, then a confidence level of 95% is
used.

 19

Examples:

ttest testscr=0;

Tests the null hypothesis that the population mean of testscr is equal to 0
and computes a 95% confidence interval.

ttest testscr=0, level(90);

Tests the null hypothesis that the population mean of testscr is equal to 0
and computes a 90% confidence interval.

ttest testscr=0 if (str<20);

Tests the null hypothesis that the population mean of testscr is equal to 0
and computes a 95% confidence interval only using observations for which
str<20.

ttest varname1 = varname2 [if expression] [, level(#) unpaired unequal]

Tests the the null hypothesis that the population mean of series varname1 is equal
to the population mean of series varname2. When if expression is used, then
the test is computed using observations for which expression is true. The option
level(#) is the desired level of the confidence interval. If this option is not
used, then a confidence level of 95% is used. The option unpaired means that
the observations are not paired (they are not panel data), and the option unequal
means that the population variances may not be the same. (Section 3.4 of the text
describes the equality of means test under the unpaired and unequal
assumption.)

Examples:

ttest testscr_lo=testscr_hi, unequal unpaired

Tests the null hypothesis that the population mean of testscr_lo is equal to
the population mean of testscr_hi and computes a 95% confidence interval.
Calculations are performed using the unequal variance and unpaired formula
of Section 3.4.

ttest ts_lostr=ts_histr if elq1==1, unpaired unequal

Tests the null hypothesis that the population mean of population is equal to
the population mean of ts_histr and computes a 95% confidence interval.
Calculations are performed for those observations for which elq1 is equal to
1. Calculations are performed using the unequal variance and unpaired
formula of Section 3.4.

