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Hamilton's rule has played a central role the modern understanding of the
evolution of social behavior. The core idea is that the evolution of altruistic
behavior depends on assortment. If individuals interact at random, Hamilton
argued in his seminal 1964 paper, the e�ect of such behavior on social partners
does not change the relative �tness of genes in the population, while the �tness
costs always fall on individuals carrying genes that cause the behavior, and thus
these genes cannot spread. However, if individuals interact assortatively, then
individuals carrying such genes are more likely to bene�t from the altruistic
behaviors of others, and if such bene�ts exceed the cost, altruistic behavior
can spread. Hamilton further argued that the probability that two individuals
carried the same gene by common descent was the right measure of assortment,
so that an altruistic gene could spread if rb− c > 0 where −c is the incremental
�tness e�ect on the actor, b the incremental �tness e�ect on the recipient, and
r is the probability that the two individuals share the same allele by common
descent.

These ideas have generated controversy ever since. During the late 1970's
and early 1980's, Hamilton was criticized by a number of population geneti-
cists (e.g. Uyenoyama and Feldman 1980) and it soon became evident that
Hamilton's rule precisely predicts evolutionary outcomes only when there is no
inbreeding, selection is weak, and the e�ects of genes on �tness are additive (e.g.
Grafen 1985). After a period of quiescence, the last decade has seen renewed
controversy about Hamilton's rule (Nowak et al 2010, Abbot et al 2011, van
Veelen et al 2017). In their excellent review, Birch and Okasha (2016) con-
clude that there are three distinct versions of Hamilton's rule. The original
version is only accurate in a narrow range of circumstances, an approximate
version in which weak selection allows nonadditive �tness e�ects to dealt with
using Hamilton's rule as an approximation that is frequently useful for predict-
ing phenotypic evolution (e.g. Frank 1998), and a general version in which the
incremental �tness e�ects in Hamilton's rule are replaced by partial regression
coe�cients that predict how an actor's genotype and the genotype of its social
partners a�ect �tness on average across the population (Queller 1992, Gardner
West Wild 2011) and that according to some proponents yields a universal law
that predicts evolutionary outcomes even when selection is strong and �tness
e�ects are not additive.

Here will illustrate these issues in the context of a problem that is important
in human evolution, the evolution of cooperative institutions. When groups of
individuals interact repeatedly, systems of contingent reward and punishment
can stabilize a vast range of social arrangements�cooperative production of
public goods, systems of property rights, obligations toward kin�often referred
to as institutions (Young 2015). We will show that in this context knowing r
may not be su�cient to predict evolutionary outcomes even as an approxima-
tion when selection is weak and suggest a computationally practical alternative
for such problems (Schonmann & Boyd 2016; also see Schonmann Vicente &
Caticha, Schonmann, Boyd &Vicente 2014, Boyd, Schonmann & Vicente 2014).
We will also explain why this result is consistent with Gardner, West, and Wild's
(2011) claim that the general form of Hamilton's rule is always correct, but we
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will also suggest that the general rule is misleading in this case.
Humans live in groups in which social interactions are repeated many times.

Individuals share food, engage in coalitions, construct shared facilities, and de-
fend their group from members of other groups. Repeated interaction allows
behavioral strategies in which an individual's behavior is contingent on the
previous behavior of other individuals. Of particular interest are contingent
strategies that support cooperation. Individuals can reward those who have co-
operated in the past, or punish those who don't participate in group defense. If
the long run bene�ts of sustained cooperation exceed the short term bene�ts of
defection, then contingent strategies supporting cooperation can be evolution-
arily stable. Such equilibria can explain the persistence of cooperation among
unrelated individuals. When they are common, contingent strategies may not
be altruistic because rare defectors have lower �tness (Gardner, West & Wild
2007). Contingent cooperation in sizable groups is particularly important in the
study of human evolution (e.g Trivers 1971, Hagen & Hammerstein 2006).

In many settings the ancestral condition is noncooperative. This means that
to explain the evolution of cooperation it is necessary to explain how contingent
strategies supporting cooperation can increase when rare. In this setting, con-
tingent cooperative strategies are typically altruistic. When groups are formed
at random, rare cooperators �nd themselves alone in their group in which other
group members are unconditional defectors. The contingent cooperator pays
the cost associated with intitial cooperation but does not gain any long run
bene�t, and as a result when cooperators are rare, they are selected against.
In a similar way, strategies that punish contingent on others punishing, must
punish or make a costly signal of intent to punish in order to determine how
many punishers there are in the group (Boyd, Gintis & Bowles 2010).

Contingent strategies supporting cooperation or punishment are often thresh-
old functions. For example, in the iterated public goods game, a plausible strat-
egy is to cooperate during the �rst period, and then cooperate if θ of the n− 1
other individuals in the group cooperated on the previous interaction, other-
wise defect (e.g. Joshi 1987, Boyd & Richerson 1988). Plausible punishing
strategies also incorporate thresholds (Boyd and Richerson 1992, Boyd, Gintis
& Bowles 2010). Such threshold strategies create sharp non-linearities in �tness
as a function of the number of cooperators in a group, and as a result, knowing
relatedness does not allow the calculation of expected �tness unless population
structure is also taken into account.

To see why, consider a simple threshold �tness function. Suppose that indi-
viduals interact in groups of size n, and that there are two haploid genotypes,
A and N. A focal A type individual in a group in which k of the other n − 1
individuals in the group are A types has �tness

wAk =

{
w0 − c if k < θ

w0 + b− c if k ≥ θ
and an N type has �tness

wNk =

{
w0 if k + 1 < θ

w0 + b if k + 1 ≥ θ
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Thus, A types pay a cost c toward a collective enterprise. If there are θ + 1 A

types in the group, the collective enterprise succeeds and produces a bene�t b
to each individual. If not, it fails and produces no collective bene�ts.

We want to determine the conditions under which rare A types can invade
a population in which N is common. We assume that groups are formed as-
sortatively so that like-types are more likely to be found together in groups
than chance alone would dictate and that local density dependent competition
is weak enough that its e�ects on relative �tness can be ignored. Then the
expected �tness of the common N types is approximately w0 because they will
rarely be in groups with even a single A type. The expected �tness of rare A

types is:

wA = w0 − c+ bPr(k ≥ θ|A) (1)

where Pr (k ≥ θ|A) is the conditional probability that there are θ or more A

types among other members of the group containing the focal A type. If
groups are formed at random, this probability is zero, and cooperators can-
not invade. However, if groups are formed assortatively, A types will invade if
c < bPr (k ≥ θ|A). As you would expect assortment allows the costly, group
bene�cial behavior to increase. Schonmann & Boyd (2016) show how to extend
this result to account for local and global population regulation.

Knowing only the relatedness in groups does not allow you to calculate the
probability that there are θ or more cooperators amonthe g other members
of the group. Nowadays, relatedness is de�ned as the regression of genotypic
value of an individual's social partners on the individual's genotypic value. Put
another way, given the genotypic value of a focal individual, relatedness gives
the expected genotypic value of its social partners. This means that given
that an individual is a cooperator, relatedness predicts the expected number
of cooperators among the other members of the group. However, knowing the
expected number of cooperators does not allow you to predict the probability
that there are θ or more cooperators among other group members because very
di�erent probability distributions can have the same mean. This is not just a
mathematical possibility. Variation in group size, mating system, and popula-
tion structure can yield groups with the same average relatedness, but di�erent
probability distributions over numbers of cooperators.

Thresholds are not a necessary part of this phenomenon; it will occur any-
time �tness is a non-linear function of group composition. The pure threshold
function analyzed above maximizes the e�ect. This function may be an ap-
proximation to the �tness e�ects of several di�erent kinds of social interactions.
For example, con�ict between groups is often modeled using sigmoidal functions
(e.g. Choi and Bowles 2007). If one group has fewer �ghters than it's opponent
it is likely to lose a con�ict; if it has more, it is likely to win the con�ict. Some
productive processes may yield sigmoidal one period payo� functions. For ex-
ample, it may take θ workers to raise a roof, but adding more than θ doesn't
help much. When such interactions are repeated, contingent strategies that co-
operate as long as θ or more individuals cooperated during the last interaction
will lead to a sharp threshold-like �tness functions. Other kinds of interactions
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lead to �tness functions that are intermediate between the pure threshold model
and the more typical linear public goods game. For example, the iterated linear
public goods game leads to a kinked, nonlinear function (Boyd Schonmann &
Vicente 2014). When interactions are repeated many times, the kink is very
sharp, and therefore relatedness will not be enough. Instead it is necessary to
sum the expected payo�s conditioned on whether there are fewer or more than
the threshold number of cooperators.. It is also the case that these �tness func-
tions are not well approximated by a linear �tness function even when selection
is weak (Schonmann Boyd & Vicente 2014).

How can this result be squared with Gardner, West and Wild's (2011) claim
that the general form of Hamilton's rule is universally true? The answer is that
in their regression formulation Hamilton's rule takes the form

rβv,g′|g + βv,g|g′ > 0 (2)

where βv,g|g′ and βv,g′|g are the slopes in a multiple regression of �tness against
the individuals own genotypic value and the genotypic value of its social part-
ners, respectively, taken over the whole population. Relatedness appears to
measure assortment as it did in Hamilton's original formulation, but this ap-
pearance is deceiving. The form of Hamilton's rule is preserved because (as
is shown in the appendix) these regression coe�cients are complex expressions
that depend on marginal �tness e�ects and information about the distribution
of types across groups. For example the e�ect on social partners is given by

βv,g′|g =
bPr (k ≥ θ)

(
E
(

k
n−1 |k ≥ θ

)
− q
)
− (−c+ bPr (k ≥ θ)) r(

1
n−1 +

(
n−2
n−1

)
r
)
− r2

where q is the frequency of A types in the population and E
(

k
n−1 |k ≥ θ

)
is the

expected fraction of A types given that there are at least θ. The expression
for βv,g|g′ is similar. If these expressions are substituted into (2) they yield the
condition given in (1). However, neither regression coe�cient can be calculated
without knowledge of the complete probability distribution of the number of A
types among social partners because they depend on information about patterns
of assortment as well as the �tness e�ects of behavior. Gardner, West and Wild
(2011) are well aware of this fact, but argue that the regression approach is the
correct formulation because it provides a single unifying law that describes how
natural selection shapes behavior. We doubt the usefulness of general universal
laws in the study of complex phenomena, and think that, in this case at least,
the regression approach conceals more than it reveals. Since the two approaches
are mathematically equivalent, the decision about which to use is a matter of
taste, but whatever approach is taken, a knowledge of r is not enough to predict
the direction of evolution because r is not su�cient to predict the distribution
of cooperators across groups.

This is not a happy fact. When two individuals interact repeatedly, relat-
edness is enough to determine whether contingently cooperative strategies can
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invade noncooperative populations, and thus theory can be combined with em-
pirical generalizations about background levels of relatedness to generate useful
predictions about whether reciprocating strategies are likely to increase when
rare. For example, Axelrod and Hamilton (1981) argued that plausible levels
of background relatedness and lengths of interaction made it likely that tit-for-
tat and similar strategies in the iterated two person prisoner's dilemma could
increase when rare. When individuals interact in larger groups this is not so
easy. One of us (R.B.) attempted to circumvent this problem by assuming that
rare contingent cooperating strategies were sampled independently into groups
with a constant probability r leading to a binomial distribution of the number
of cooperators among the other n − 1 individuals in a group with a focal co-
operator (Boyd and Richerson 1988, Boyd, Gintis & Bowles 2010). However,
this approach is inadequate because the processes that generate background
relatedness lead to strong statistical interdependencies, and as a result using
the binomial underestimates (sometimes badly) the likelihood that cooperative
strategies will increase when rare (Schonmann & Boyd 2016). The best ap-
proach would be to model the actual processes by which groups are formed, but
this may be di�cult for both empirical and technical reasons. It would be nice
to have a back-of-the-envelope method that would allow a quick estimate of how
likely it is that contingent cooperation and punishment could increase.

We suggest the following: Analyses of the evolution of cooperation have
often assumed that low levels of relatedness due to viscous population e�ects
allow the invasion of rare reciprocating strategies (e.g Hamilton 1975). Thus,
we need an expression for the distribution of types across groups in a viscous
population. Schonmann and Boyd (2016) derived such an expression in an
island model that allows for arbitrary levels of selection migration and local and
global population regulation. While this expression is a bit unwieldy, we have
also shown that when groups are large, migration rates are low, and selection
is weak, the fraction of groups in which a fraction k/ (n− 1) of the other group
members are cooperators has a beta distribution with parameters α = 1 and
β = 2nm ≈ 1−r

r .Moreover, as can be seen in �gure 1, this beta distribution is an
adequate approximation to the exact distribution of cooperators for groups as
small as ten and fairly high migration rates. A more formal test of the adequacy
of the beta approximation is given in Schonmann and Boyd (2016). Thus, given
an estimate of r, the expectation of a nonlinear �tness function can be easily
computed using the appropriate beta distribution.

In the spring of 1982, the �rst author happened to be sitting next to W.
D. Hamilton at a conference held at Northwestern University. This was a time
when Hamilton's work was being subjected to heavy criticism by a number of
population geneticists. The speaker, Robert Abugov, sketched a population
genetic model which described the circumstances under which selection max-
imized inclusive �tness. When Abugov was done, Hamilton leaned over and
said that if his rule was only true when selection was weak and �tness e�ects
were additive, he was quite happy. In the next few years, Alan Grafen, David
Queller and others showed that Hamilton's rule applies more widely than this,
so perhaps Hamilton was unnecessarily modest. However, it is worth keeping
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The beta approximation is useful even when groups are small and migration
rates are high. The �gure compares the exact probability distribution (solid
lines) of the number of cooperators among other group members in an island
model to the beta probability density approximation (open circles). The exact
distribution assumes that there is no selection, groups have 10 individuals and
migration is equal to 0.25, 0.1 and 0.05. The beta distribution has parame-
ters α = 1 and β = 2nm which means that expected fraction of cooperators
among the other other individuals in a group of a focal cooperator is r. Values
of the beta density were converted to discrete probabilities by multiplying by
1

n−1 . Taking di�erences between exact values of the cumulative beta distribu-
tion yields qualitatively similar results.

mind that all mathematical models of evolutionary processes are necessarily
much simpler than the phenomena that they represent, and, in this light, per-
haps Hamilton's pragmatic modesty should serve as a model for contemporary
evolutionary theorists.
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Appendix: Computing regression coe�cients

The goal is to calculate the regression terms in display (5) in Gardner et al
(2011) (= GWW). We have found that the pure threshold strategy can increase
when rare if

bPr(k ≥ θ)− c > 0

According to GWW the general rule is

βv,g|g′ + rβv,g′|g > 0

where the betas are the slopes in of a multiple regression of �tness against an
individuals own genetic value [g =0,1] and the genetic value of its social partners,
the fraction of A types among other members of its group g′ = k

n−1 . Here we
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show two conditions relate. We start with the de�nition from GWW

βv,g|g′ =

cov(v,g)
var(g) −

cov(v,g′)
var(g′)

cov(g′,g)
var(g)

1− (cov(g′,g))2

var(g′)var(g)

=
cov (v, g) var(g′)− cov(v, g′)cov(g′, g)

var (g′) var (g)− cov(g′, g)2

where for an A type

vA,k =

{
−c if k < θ

−c+ b if k ≥ θ
and for an N type

vN,k =

{
0 if k < θ + 1

b if k ≥ θ + 1

Similarly

βv,g′|g =

cov(v,g′)
var(g′) −

cov(v,g)
var(g)

cov(g′,g)
var(g)

1− (cov(g′,g))
var(g′)var(g)

2

=
cov (v, g′) var(g)− cov(v, g)cov(g′, g)

var (g′) var (g)− cov(g′, g)2

Assume that q is the frequency of A types in the population. Assume q is very
small. First compute the variances,

var(g) = q(1− q) ≈ q

and

var(g′) =

(
1

n− 1
+

(
n− 2

n− 1

)
r

)
var(g) ≈ q

(
1

n− 1
+

(
n− 2

n− 1

)
r

)
Next the covariances.

cov(g, g′) =

n−1∑
k=0

(
(Pr (k|g = 1) q)

(
k

n− 1

)
· 1 + (Pr (k|g = 0) (1− q))

(
k

n− 1

)
· 0
)

−E(g)E(g′)

The second term in the sum is zero because g = 0. The expectations of g
and g′ are equal to q. Let pkbe the conditional probability that k of the other
individuals are A types given that the focal is an A type.

cov(g, g′) = q

n−1∑
k=0

(
k

n− 1

)
pk − q2

= q (r + (1− r)q)− q2

= rq − rq2

= rq(1− q)
≈ rq
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Then individual covariance is

cov(v, g) =

n−1∑
k=0

((Pr (k|g = 1) q) · 1 · vA,k + (Pr (k|g = 0) (1− q)) · 0 · vN,k)

−q
n−1∑
k=0

(Pr (k|g = 1) qvA,k + Pr (k|g = 0) (1− q)vN,k)

Since Pr(k|g = 0) is zero for k > 0 and vN,0 = 0 the second term in both sums
are zero. Then

cov(v, g) = q

n−1∑
k=0

(Pr (k|g = 1) vA,k)− q2
n−1∑
k=0

(Pr (k|g = 1) vA,k)

= q (1− q)
n−1∑
k=0

pkvA,k

= q(1− q)

(
−c+ b

n−1∑
k=θ

pk

)
≈ q (−c+ bPr (k ≥ θ))

Next the covariance of �tness with the genetic value of partners

cov(v, g′) =

n−1∑
k=0

(
(Pr (k|g = 1) q)

(
k

n− 1

)
vA,k + (Pr (k|g = 0) (1− q))

(
k

n− 1

)
vN,k

)

−q
n−1∑
k=0

(Pr (k|g = 1) qvA,k + Pr (k|g = 0) (1− q) vN,k)

Again the second terms in both sums are zero. Thus

cov(v, g′) =

n−1∑
k=0

(
(Pr (k|g = 1) q)

(
k

n− 1

)
vA,k

)
− q

n−1∑
k=0

(Pr (k|g = 1) qvA,k)

=

n−1∑
k=0

pk

(
q

(
k

n− 1

)
− q2

)
vA,k

= −c
n−1∑
k=0

pk

(
q

(
k

n− 1

)
− q2

)
+ b

n−1∑
k=θ

pk

(
q

(
k

n− 1

)
− q2

)

= b

n−1∑
k=θ

pk

(
q

(
k

n− 1

)
− q2

)
= qbPr (k ≥ θ)

(
E

(
k

n− 1
|k ≥ θ

)
− q
)
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We can now calculate the regressions

βv,g|g′ =
q (−c+ bPr (k ≥ θ)) q

(
1

n−1 +
(
n−2
n−1

)
r
)
− qbPr (k ≥ θ)

(
E
(

k
n−1 |k ≥ θ

)
− q
)
rq

q
(

1
n−1 +

(
n−2
n−1

)
r
)
q − r2q2

=
(−c+ bPr (k ≥ θ))

(
1

n−1 +
(
n−2
n−1

)
r
)
− rbPr (k ≥ θ)

(
E
(

k
n−1 |k ≥ θ

)
− q
)

(
1

n−1 +
(
n−2
n−1

)
r
)
− r2

Similarly

βv,g′|g =
qbPr (k ≥ θ)

(
E
(

k
n−1 |k ≥ θ

)
− q
)
q − q (−c+ bPr (k ≥ θ)) rq

q
(

1
n−1 +

(
n−2
n−1

)
r
)
q − r2q2

=
bPr (k ≥ θ)

(
E
(

k
n−1 |k ≥ θ

)
− q
)
− (−c+ bPr (k ≥ θ)) r(

1
n−1 +

(
n−2
n−1

)
r
)
− r2

Thus

βv,g|g′ + rβv,g′|g =
(−c+ bPr (k ≥ θ))

((
1

n−1 +
(
n−2
n−1

)
r
)
− r2

)
(

1
n−1 +

(
n−2
n−1

)
r
)
− r2

= −c+ bPr (k ≥ θ)

and thus conditions (1) and (2) in the text are equivalent. Notice that r is
relevant because it will tend to be positively correlated with Pr (k ≥ θ).


