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Abstract

We study how violations of structural assumptions like expected utility and exponential dis-

counting can be connected to reference dependent preferences with set-dependent reference points,

even if behavior conforms with these assumptions when the reference is fixed. This is done with the

introduction of a unified framework under which both general rationality (WARP) and domain-

specific structural postulates (e.g., Independence for risk preference, Stationarity for time pref-

erence) are jointly relaxed using a systematic reference dependence approach. The framework

allows us to study risk, time, and social preferences collectively, where behavioral departures from

WARP and structural postulates are explained by a common source—changing preferences due to

reference dependence. In our setting, reference points are given by a linear order that captures the

relevance of each alternative in becoming the reference point and affecting preferences. In turn,

they determine the domain-specific preference parameters for the underlying choice problem (e.g.,

utility functions for risk, discount factors for time).

1 Introduction

The standard model of choice in economics faces two separate strands of empirical challenges. First,

structural assumptions such as the expected utility form (Independence) and exponential discounting

(Stationary) are violated in simple choice experiments, most notably the Allais paradox and present

bias. Second, and separately, studies have shown that choices are affected by reference points, result-

ing in “non-rational ” behavior that violates the weak axiom of revealed preferences (WARP). With
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few exceptions, these two classes of prominent departures from standard models have been studied

separately, and independently for each domain of choice, propelling models that seek to explain one

phenomenon in isolation of the others.1

In this paper, we propose a unified framework in which failures of WARP and violations of

structural assumptions, across the risk, time, and social domains, are jointly explained by reference

dependency. This allows us to study different types of documented departure from standard models

as related to one another, and in doing so suggests new empirical directions.

The intuition comes from a simple observation: If decision makers have preferences (e.g., utility

functions, discount factors) that depend on a reference point, then even if they are otherwise stan-

dard and maximize exponentially discounted expected utility, they would still violate both WARP

and structural assumptions like the Independence and Stationarity axioms from time to time—when

reference points change.

Working with choice behavior, we provide the axiomatic foundation for a set of four mod-

els—generic choice, risk preference, time preference, and social preference—in which behavioral anoma-

lies are explained by a common source: changing preferences due to reference dependence. In these

models, reference points are endogenously determined by reference orders, which rank each alternative

by their relevance in becoming the reference point and affecting preferences.

To illustrate, consider a decision maker who contradicts expected utility theory by exhibiting

increased risk aversion in the presence of safer options. This narrative is consistent with a myriad of

anomalous choice documented in Herne (1999); Wakker & Deneffe (1996); Andreoni & Sprenger (2011),

and prominently Allais (1953)’s paradox.2 This behavior can be explained without fully rejecting the

expected utility form—that decision makers maximize the expectation of some utility function for each

choice problem—but by allowing for reference dependent utility functions. We propose, in the risk

domain, that a decision maker’s utility function depends on the safest available alternative, which

reflects changing risk aversion. When the safest alternative is fixed, standard expected utility holds.

But when reference point changes, then the safer the reference, the more concave the utility function.
1For reference dependence, see for example Kahneman & Tversky (1979), Kőszegi & Rabin (2006), Masatlioglu & Ok

(2005), Masatlioglu & Ok (2013), Ok et al. (2015), and Dean et al. (2017). For models weakening the expected utility
form see Quiggin (1982), Bell (1982); Loomes & Sugden (1982), Chew (1983); Fishburn (1983); Dekel (1986), Gul (1991),
and Cerreia-Vioglio et al. (2015). For models weakening the discounted utility form see Loewenstein & Prelec (1992),
Laibson (1997) and Frederick et al. (2002). For models that use reference dependency to explain violations of structural
assumptions, see for example Kőszegi & Rabin (2007), Ortoleva (2010). An exception where both WARP and structural
assumptions are relaxed is Bordalo et al. (2012).

2In the Allias paradox, a decision maker is drawn to the safe option when it is available, contradicting the irrelevance
of common consequence assumption in standard expected utility theory. We will (re)introduce the Allais paradox and
discuss the application of our model in Section 3. Herne (1999); Wakker & Deneffe (1996); Andreoni & Sprenger (2011)
document other behaviors consistent with our risk model, discussed in Section 3.
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We then show that the same concept can be applied to time preference and social preference. Hence,

we have a “unified framework”.

The framework we propose has two persistent components: (i) a complete and transitive binary

relation that determines which is the reference point and (ii) preference parameters (e.g., utility func-

tions, discount rates) that depend on the reference point.

Our first step is a general representation theorem for choices in a generic domain: Ordered Refer-

ence Dependent Utility (ORDU) (Section 2). In this model, the decision maker uses a reference order

to identify the reference alternative of a choice problem. In turn, this determines a utility function

that she maximizes. Hence, it is as if that alternatives are ranked by their relevance in affecting pref-

erences, and the underlying preference is determined by the alternative ranked highest in this order

among those that are available.

The key behavioral postulate underlying the model is Reference Dependence (RD): it posits that if

we fix the reference point, WARP holds. Since we do not know which is the reference point, we scarcely

posit that there is one option in every choice problem such that if we keep said option when taking

subsets, WARP holds. To illustrate, consider two choice sets B ⊂ A such that WARP is violated; for

instance, when an alternative is available in both A and B but is only chosen from A. Our axiom

RD makes the behavioral assumption that the reference alternative of A is not present in B, causing

a change in reference and WARP violation. Hence for any choice set A, RD demands that choices

from subsets of A satisfy WARP as long as a certain (reference) alternative remains present. A formal

definition is provided in Section 2. This axiom, along with a standard continuity assumption when X

is infinite, characterizes the ORDU representation.

Next, we consider the special case of risk preference in Section 3. Here the postulate becomes: pre-

serving one of the safest alternatives in a choice set preserves WARP and the Independence condition.

This follows the same intuition we had above: maintaining the reference point, normative postulates

hold; for risk preference, this includes Independence. We call this Risk Reference Dependence. A sec-

ond axiom, Monotone Risk Aversion, requires that if we add alternatives to a choice problem, choices

can only become more risk averse, since an even safer reference increases risk aversion. Together with

standard continuity and first order stochastic dominance we obtain the Avoidable Risk Expected Utility

(AREU) representation (formally presented in Section 3), in which a decision maker’s utility function

depends on the safest alternative available, and safer references lead to more concave utility functions.

We then turn to the time domain in Section 4. The standard model for time preferences is Expo-

3



nentially Discounted Utility, yet it is routinely challenged in empirical studies in which consumers tend

to exhibit less patience in short-term decisions, or present bias.3 We propose a model in which the

decision maker has a single utility function, maximizes exponentially discounted utility, but uses a dis-

count factor indexed by the earliest available payment in a choice problem. The availability of a sooner

alternative makes the decision maker impatient. The key axiom, Reference Dependent Stationarity, is

the counterpart of RD, where now we require WARP and Stationarity to hold only when we preserve

the earliest alternative. The reference effect is characterized by the axiom Increasing Patience, which

simply posits that symmetrically advancing the options can only increase delay aversion. The resulting

model gives rise to the well-known violation of dynamic consistency, in which the same delay between

consumption is tolerable in the future but not in the present.

The application for social preference is studied in Section 5. Often viewed as a desire to be fair,

subjects in economics and psychology experiments display behavior consistent with increased altruism

when a more equitable split of payment is available.4 In this setup, an alternative is an allocation for the

decision maker and another individual. A natural measure of equity is the (normalized) ratio between

the incomes, and attainable equity is therefore the maximum of such measure in a choice problem. As

is standard for choices involving money, we use quasi-linear utility as foundation, but introduce the

innovation that utility for money shared is increasing in attainable equity. This modification reflects our

unified framework adapted to this setting—the presence of certain alternatives, as given by a reference

order, affects the underlying preference for sharing. Like before, the main axiom Reference Dependent

Social Preference posits the conformity with WARP and quasi-linear preferences when we preserve the

most-equal option. A second axiom, Increasing Altruism, posits that decision makers are weakly more

willing to share when more options are added to a choice problem, which can only increase attainable

equity. In addition to capturing changing altruism, the model also explains increased sharing when

splitting a fixed pie due to the availability of a more equitable division, as well as increased tendency

to forgo a larger pie in favor of sharing a smaller one.

In our applications, failures of WARP and violations of structural assumptions are tightly linked.

For example in the risk domain, adding full WARP to our model implies full compliance with Indepen-

dence, and vice-versa. Therefore, our model departs from standard expected utility only when both

WARP and Independence fail. Equivalent results obtain for the time and social domains. These find-

ings separate our work from models that weaken a structural assumption but maintains WARP—the
3See for example Laibson (1997), Frederick et al. (2002), and Benhabib et al. (2010).
4See for example Ainslie (1992), Rabin (1993), Nelson (2002), Fehr & Schmidt (2006), and Sutter (2007).
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equivalence of a stable preference, it also suggests that necessary violation of WARP in our models

is the behavioral manifestation of changing preferences. It hence provides a new perspective to study

classic paradoxes like Allais and present bias.

In relation to the existing literature, we first note that reference points are not exogeneously

observed in our models. This strikes a fundamental difference in primitives/datasets to prospect theory

by Kahneman & Tversky (1979), the endowment effect by Kahneman et al. (1991), and models of status

quo bias led by Masatlioglu & Ok (2005).5 Our models belong to a separate set of literature built on

endogenous reference, where reference points are neither part of the primitive nor directly observable,

such as in Kőszegi & Rabin (2006) and Ok et al. (2015). Unlike these models, our reference alternatives

are given by a reference order. With this added structure, reference points—albeit unobservable—can

be easily pinned down. Subsection 2.3 discusses in details the differences between ORDU and these two

work, whereas Subsection 2.2 discusses the identification of our reference points and the consequent

out-of-sample predictions via the reference order.

Our most general model, in which choices are over generic alternatives, is most similar in spirit

and concurrent to Kıbrıs et al. (2018) albeit having different axiomatimization. Their paper focuses on

choices over generic alternatives and contains no counterpart to our applications in the risk, time, and

social domains. Their axiom depicts a conspicuity ranking between any two alternatives: if dropping

x in the presence of y results in a WARP violation, then dropping y in the presence of x does not. Our

approach is different and more involved, as it requires comparison between multiple choice problems

differing by more than one alternative. However, this allows us to accommodate a wide range of behav-

ioral postulates (in addition to WARP), such as the Independence and Stationarity conditions, with

which we deliver reference-dependent expected utility and reference-dependent exponential discounting

respectively. Moreover, their model is limited to a finite set of alternatives, whereas we allow the set

to be any separable metric space. This is not (just) a technical contribution, as the added generality

is indispensable for choices over lotteries.

We compare our applications in risk, time, and social preferences to existing models in their

respective sections. However our main contribution is, instead of a single model that captures a

specific departure from standard theory, a unified framework. The closest work that resembles a

unified framework is salience, pioneered by Bordalo et al. (2012, 2013), in which options are evaluated

differently depending on which attribute is salient. We are different in that our framework comprises
5For other models of status quo bias, see Masatlioglu & Ok (2013) and Dean et al. (2017). Ortoleva (2010) extends

this idea to preferences under uncertainty.

5



of a systematic reference dependence approach of weakening normative postulates, with which we

apply universally to the risk, time, and social domains. This approach allows us to study reference

dependence in risk as related to reference dependence in time, and failure of WARP as related to

failure of structural assumptions. Indispensable to this innovation is the use of choice correspondences

as opposed to preference relations as primitive and foregoing WARP—the conventional “rationality”

assumption increasingly scrutinized by empirical evidence. Otherwise, behavior is summarized by

binary comparisons, leaving on the table useful information about how people make decisions in real-

life situations where they choose from more than two alternatives. This richer scope allows us to

utilize behavior from non-binary choice problems to study and explain anomalies traditionally found

in binary choice.

The remainder of the paper is organized as follows. In Section 2, we provide the axioms and the

representation theorem for a generic ordered-reference dependent utility representations. Later in that

section, we introduce a companion result to incorporate the accommodation of properties other than

WARP, and a template for additional structure in the reference order R. Section 3, Section 4, and

Section 5 each provides a representation theorem under this unified framework for the risk, time, and

social preference settings respectively, discusses the model’s implications, as well as compares it to

related models in the literature.

2 Ordered-Reference Dependence

We start with most general model, in which a decision maker chooses from generic alternatives.

2.1 Reference Dependent Choice

We introduce a reference-based approach of imposing a standard behavioral postulate. In this section,

said postulate is WARP.

Let X be an arbitrary set of alternatives, A the set of all finite and nonempty subsets of X, and c :

A → A, c (A) ⊆ A, a choice correspondence. Recall that c satisfies WARP if for all choices problems

A,B such that B ⊂ A, c (A) ∩B 6= ∅ implies c (A) ∩B = c (B).6

Even though choices may violate WARP, it may still be the case that they comply with it among

a subset of all choice problems S ⊂ A. We define this notion formally.
6For an arbitrary A, this definition of WARP is weaker than another popular version: x ∈ c (A), y ∈ c (B), and

x, y ∈ A ∩B implies x ∈ c (B). They are equivalent whenever A contains all doubletons and tripletons subsets of X.
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Definition 1. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies WARP over

S if for all A,B ∈ S,

B ⊂ A, c (A) ∩B 6= ∅ ⇒ c (A) ∩B = c (B) .

WARP is hence equivalent to the statement “c satisfies WARP over A.”

Our first axiom is a reference-based generalization of WARP.

Axiom 1 (Reference Dependence (RD)). For every choice problem A ∈ A, there exists an alternative

x ∈ A such that c satisfies WARP over S = {B ⊆ A : x ∈ B}.

Note that this axiom generalizes WARP, since “c satisfies WARP over A” implies “c satisfies

WARP over S” for any S ⊆ A.

We explain the intuition of Axiom 1. Suppose choices between choice problems A and B (⊂ A)

violate WARP; for example, y ∈ c (A) but y ∈ B\c (B). We postulate that this is due to a change in

reference point. Specifically, that the reference alternative of A must have been removed when take

subset B of A, that is, it is in the set A\B. Then, a natural limitation of WARP violations arise:

have we not removed the reference alternative of A when taking an arbitrary subset B of A, choices

would have complied with WARP. To put it differently, suppose that when taking subsets of A, if by

preserving some alternative x in this process choices from these subsets comply with WARP. x is hence

an endogenous candidate for “the reference alternative of A”.7 Axiom 1 demands that every choice

problem contains (at least) one candidate alternative that achieves this.

Next we provide an example of compliance. Consider the following choice correspondence for

X = {a, b, c, d}, where the notation {a, b, c, d} means b is chosen from the choice problem {a, b, c, d}.

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

This choice correspondence does not satisfy WARP globally (there are three instances of WARP

violations: (i) between {a, b, c, d} and {b, c, d}, (ii) {b, c, d} and {b, c}, and (iii) {a, c, d} and {c, d}).

Yet WARP is satisfied from choice sets that contain a. To reconcile with Axiom 1, when S = X, a is

a candidate reference alternative. This is also true for any choice set S that contains a. Likewise, for

S = {b, c, d}, d is a candidate reference, and this is true for any choice set S that contains d but not a.
7Using the language in Ok et al. (2015), this alternative can be called a potential reference alternative of A.
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The only choice set left to be checked is S = {b, c}, but since the only non-singleton subset of {b, c} is

itself, WARP is trivial.

Although Axiom 1 allows for WARP violations, it is falsifiable as long as |X| ≥ 3 (i.e., as soon as

WARP is non-trivial). For example, the following choice correspondence violates Axiom 1.

{a, b, c} {a, b} {b, c} {a, c}

In this example, instances of WARP violations are (i) between {a, b, c} and {a, b} and (ii) between

{a, b, c} and {b, c}. So when A = {a, b, c}, a does not preserve WARP since the first instance is not

excluded, b does not preserve WARP since neither instance is excluded, and c does not preserve WARP

since the second instance is not excluded. Hence the axiom does not hold.

Another way of “measuring” falsifiability is to count the number of observations (choice problems)

required to falsify an axiom. For standard WARP that number is 2: for example, when WARP is

violated between {a, b, c} and {a, b}. Whereas for Axiom 1, a weakening of WARP, that number is

3: for example {a, b, c}, {a, b}, and {a, c}, since the reference of {a, b, c} is in {a, b} and/or {a, c},

but WARP is violated both between {a, b, c}, {a, b} and between {a, b, c}, {c, b}.8 Thus reference

dependence makes Axiom 1 harder to reject relative to WARP by one additional observation.

When X is infinite, we also assume Continuity. Say (X, d) is a metric space.

Axiom 2 (Continuity). We say c : A → A satisfies Continuity if it has a closed-graph (with respect to

the Hausdorff distance): xn →d x, An →H A, and xn ∈ c (An) for every n = 1, 2, ... implies x ∈ c (A).9

2.2 Ordered-Reference Dependent Utility Functions

Let R be a complete and transitive binary relation, arg max
x∈A

R denotes the set {x ∈ A : xRy ∀y ∈ A}.

Definition 2 (Ordered-Reference Dependent Utility). c admits an Ordered Reference Dependent

Utility (ORDU) representation if there exist a complete, transitive, and antisymmetric reference order

R on X and a set of reference-indexed utility functions {ux : X → R}x∈A such that

c (A) = arg max
y∈A

ur(A) (y) ,

where r (A) = arg max
x∈A

R.

8This can be generalized: Axiom 1 is falsified when there are WARP violations between A,B1 and between A,B2

such that B1 ∪B2 = A, where A,B1, B2 ∈ A.
9By →H we mean convergence in the Hausdorff distance, defined by dH (X,Y ) =

max
{

supx∈X infy∈Y d2 (x, y) , supy∈Y infx∈X d2 (x, y)
}
.
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Proposition 1.

1. Let X be a finite set. c satisfies RD if and only if it admits an ORDU representation.

2. Let X be a separable metric space. c satisfies RD and Continuity if and only if it admits an

ORDU representation where c (A) = arg maxy∈A ur(A) (y) has a closed-graph.

ORDU represents a special type of context-dependent preferences. A decision maker’s prefer-

ence may change with the choice set, but depends only on its reference alternative, characterized

by reference-dependent utilities. Reference-dependent utilities are more restrictive than set-dependent

utilities, where each choice problem has its own utility function.10 When |X| is finite, there are at

most |X| distinct utility functions but around 2|X| choice problems, and this difference increases expo-

nentially in |X|. Furthermore, a linear order, called reference order, uniquely pins down the reference

point for each choice problem.

The reference order has natural interpretations in richer settings, as we demonstrate in the risk,

time, and social preference sections. When the setting is choices over generic alternatives, an interpre-

tation of the reference order is a subjective salience ranking of alternatives. The most salient alternative

determines the underlying preference used with the problem. In this setting, it is as if that the decision

maker’s attention is drawn to a certain salient alternative, and her preference ranking depends on that

alternative. It is the fact that her attention is not always drawn to the same (reference) alternative

that gives rise to WARP violations. But when she has the same reference alternative for a set of choice

problems, her choices are consistent with a stable preference ranking.

The suggestion that certain salient component of a choice problem affect choices is not new, for

example Bordalo et al. (2012, 2013). In their model, alternatives have attributes, and depending on

which alternatives are being compared certain attributes are more salient than others, and weighted

differently, from one choice problem to another. This is the source of WARP violations in their model.

In ORDU, attributes are not part of the primitive/model, allowing for a different characterization of

salience when the modeler either does not observe attributes or do not know the relevant attributes

that play in role in decision making.

Combining reference-dependent utilities with a reference order yields out-of-sample predictions.

For example, when the reference alternative in choice problem A is present in the choice problem

B ⊂ A, that alternative is still the reference, and the preference ranking remains the same. This is a
10Set-dependent utilities, that each choice problem A has a utility function uA (x) that is maximized, puts no restriction

on behavior, since we can simply set uA (c (A)) = 1 and uA (x) = 0 for all x 6= c (A).

9



feature of the reference order. So once we have identified the reference alternative r of A, we know

that subsets of A that contain r use the same utility function.

Furthermore, reference alternatives are identified whenever we observe WARP violation upon

removing them, since it is only through changes in references points that WARP violations arise.

For example if WARP is violated between A and B, and B = A\ {x}, then x is the reference of A.

Hence we infer the presence of reference points, and pin them down uniquely, through inconsistency

or incoherence in choice with respect to WARP. Instead, if a decision maker complies with WARP, the

idea that preferences are reference dependent cannot be substantiated.

Together, the model allows us to make out-of-sample predictions between two worlds: On one

end, the decision maker’s reference alternatives are not identifiable with choice data precisely because

she satisfies WARP and maximizes a single preference ranking; on the other end, the decision maker’s

choices are reference dependent and result in WARP violations, which allows us to identify reference

points and subsequently make predictions using the reference order.

The idea behind ORDU has natural applications. The rest of the paper demonstrates it in the

risk, time, and social preference domains. In each setting, a domain-specific interpretation is given to

the reference order. In the risk setting, the minimum amount of risk the decision maker must take,

as measured by the safest alternative in a choice problem, may influence risk aversion. In the time

setting, the earliest available payment characterizes the imminence of consumption, which may affect

the decision maker’s patience. In the social preference setting, how much a decision maker is allowed

to share may affect how generous she is, where greater attainable equity increases generosity. We

formally these models in Section 3, Section 4, and Section 5 respectively.

2.3 Comparison with other non-WARP models

We conclude this section with a summary discussion of ORDU as compared with other axiomatized

utility representations that model WARP violations. Technical details and complete characterizations

of the examples used are deferred to Appendix B.

Under comparable setups, ORDU neither nests nor is nested by any of the following models: (i)

Ok et al. (2015)’s revealed (p)reference, (ii) Kőszegi & Rabin (2006)’s reference-dependent preferences

(personal equilibrium), (iii) Manzini & Mariotti (2007)’s rational shortlist method, and (iv) Masatlioglu

et al. (2012)’s choice with limited attention.11 Our focus will be the former two, as they also use
11That is, for each of the four external models we consider, there are choice correspondences that admit ORDU but not

the eternal model and vice versa. Complete specifications of the choice correspondences used are provided in Appendix
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reference formation to explain choices. The latter two are models in which reference formation is not

used, but the addition (or removal) of alternatives directly contribute to WARP violations.

A key observation separates ORDU from other non-WARP models. In ORDU, reference points are

given by a reference order and choices maximize reference-dependent utilities. Thus, either c ({a, b})

or c ({b, c}) must agree with c ({a, b, c}) in terms of being consistent with the maximization of a single

utility function. This is because the reference point of {a, b, c} is either in {a, b} or in {b, c} (or in

both). In fact, since the reference point of A is in every subset of A that contains it, this condition

generalizes into Remark 1.

Remark 1. Suppose c admits an ORDU representation. Take any finite collection of choice problems

A1, ..., An. For some x ∈ A1∪A2∪ ...∪An, choices from the collection of choice problems {Ai : x ∈ Ai}

must comply with standard utility maximization.

Recall that notation “{a, b, c}” means choice problem {a, b, c}, from which a is chosen.

In Ok et al. (2015)’s ( endogeneous) reference dependent choice, the decision maker maximizes

a single utility function, but only chooses from alternatives that are better than the reference in all

(endogenously determined) attributes, where references do not necessarily come from an order. In

their model, a decoy d may block the choice of a in {a, b, d} and {a, c, d} due to the attraction effect,

where b and c are elevated since they are better than d in all attributes, but a isn’t. However, since

reference formation is more flexible, as contrasted with the use of a reference order in ORDU, d need

not be the decoy in {a, b, c, d}, resulting in the choice of a. Remark 1 excludes this behavior from

ORDU. Conversely, intransitive behavior in binary choice problems, such as {a, b} , {b, c} , {c, a}, can

be explained by ORDU but are ruled out by Ok et al. (2015), since the absence of a third alternative

impedes their decoy-effect from taking place. Hence the two models are not nested.

Kőszegi & Rabin (2006)’s reference-dependent preferences is another related model. Gul et al.

(2006) provided the axiomatic foundation for personal equilibrium (PE), in which a decision maker

has a joint utility function v : X × X → R and chooses PE (A) = {x : v (x|x) ≥ v (y|x) ∀y ∈ A}.

That is, the choice maximizes a reference-dependent utility function, and the reference point is itself

the eventually chosen alternative (hence “equilibrium”). This permits the following behavior: b is not

chosen in {a, b, c, d}, but is chosen in the subset {a, b, c}, in which d—an alternative better than b under

v (·|b)—was removed. Suppose further that d is chosen in {a, d} for the same reason—c is better than d

under v (·|d), but now c is removed. Remark 1 concludes that this behavior cannot be accommodated

B.
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by ORDU, a consequence of the reference order, where the reference point of {a, b, c, d} and {a, d}

must both be d under ORDU. Hence a WARP violation between these two choice problems rules out

ORDU. Conversely, an immediate implication PE is, if x ∈ c (A) and x ∈ B ⊂ A, then x ∈ c (B). A

simple intransitive choice pattern {a, b} , {b, c} , {c, a} is hence admissible by ORDU but not PE.12 We

conclude that the two models are not nested.

Non-nestedness between ORDU and Manzini & Mariotti (2007)’s rational shortlist method, as

well as between ORDU and Masatlioglu et al. (2012)’s choice with limited attention, are shown and

explained in Appendix B.

2.4 A unified framework for structural anomalies

Reference Dependence (Axiom 1) weakened WARP by demanding that WARP is satisfied among

choice problems that share a reference alternative (as opposed to all choice problems). This method of

generalizing an axiom is not only applicable to WARP, but also a wide range of behavioral properties

defined on choice behavior. For example, we can demand compliance with Independence in a similar

way, where Independence is not necessarily satisfied between every two choices, but is complied with

whenever the choices come from choice problems that have the same reference point.

This reference dependence approach of weakening an arbitrary postulate serves as the starting

point of our models in the risk, time, and social domains. In their respective sections, we adapt

Axiom 1 to postulates of the form “For every choice problem A, there exists an alternative x ∈ A such

that c satisfies T over S = {B ⊆ A : x ∈ B}”. T is “WARP and Independence” for the risk domain,

“WARP and Stationarity” for the time domain, and “WARP and quasi-linearity” for the social domain.

The result is as anticipated—ordered-reference expected utility, ordered-reference exponentially

discounted utility, and ordered-reference quasi-linear utility. In fact, the representation theorems for

all four models in the present paper start with a quintessential result in Appendix A, Lemma 2, which

demonstrates the wide applicability of our approach by accommodating a class of behavioral postulates

we call finite properties, of which WARP, Independence, Stationarity, quasi-linearity, transitivity, con-

vexity, monotonicity, stochastic dominance, etc. are examples. Then, complemented with additional

structure on reference orders, we obtain the reference-dependent versions of the corresponding utility

representations.

The next three sections are natural applications of this approach.
12Gul et al. (2006) shows that Kőszegi & Rabin (2006)’s personal equilibrium is equivalent to the maximization of a

complete (but not necessarily transitive) preference relation.
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3 Risk Preferences

We now turn to an application in the domain of risk, where we provide a utility representation, with

axiomatic foundation, that explains increased risk aversion when safer options are present than when

they are not. Consider a decision maker whose willingness to take risk depends on how much of it is

avoidable, as measured by the safest alternative among those that are available. This depends on the

underlying choice set: Sometimes, we have the option to fully avoid risk by keeping our asset in cash

or by buying an insurance policy, and so the safest option is quite safe. In other situations, all options

are risky and we are forced to take some risk, and so the safest option is quite risky. The premise of

our model, in the risk setting, is that a decision maker’s risk aversion may differ between these two

types of choice problems in a particular way: she could be more risk averse when risk is avoidable than

when it is not.

Suggestive evidence for this behavior is present in the literature. In the well-known paradox

introduced by Allais (1953), when one choice problem contains a safe option and the other does not,

subjects tend to chose the safer option in the former. This observation is consistent with increased

risk aversion when safer options are present. We provide a quick recap of the Allais paradox and its

relevance as pertain to our model when we discuss applications. We will also present a result that shows

that Allais-type behavior is the consequence of changing utility functions by concave transformations,

which characterizes greater risk aversion under the expected utility form.

In a separate setting meant to test for the compromise effect, Herne (1999) showed that the

presence of a safer option results in WARP violations in the direction of more risk averse behavior.

Wakker & Deneffe (1996) introduced the tradeoff method to elicit risk aversion without using a sure

prize and showed that the estimated utility functions are in general less concave relative to the standard

certainty equivalent / probability equivalent methods.13 Andreoni & Sprenger (2011) reinforces this

observation when the safest option is close to certainty.

3.1 Preliminaries

Consider a finite set of prizes X ⊂ R. Let ∆ (X) be the set of all lotteries over X endowed with the

Euclidean metric d2. Let A be the set of all finite and nonempty subsets of ∆ (X). We call A ∈ A a

choice problem. We take as primitive a choice correspondence c : A → A that gives, for each choice
13Certainty equivalent method finds the value of a sure prize such that a subject is indifferent to a fixed lottery.

Probability equivalent method fixes the sure prize and alters the probability of a lottery until the subject is indifferent.
Tradeoff method finds the indifferent point between two lotteries by varying one of the prizes.
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problem A, a subset c (A) ⊆ A. We make the following notational simplifications: Per convention, δx

denotes the lottery that gives prize x ∈ X with probability 1. For p, q ∈ ∆ (X) and α ∈ [0, 1], we

denote by pαq the convex combination αp + (1− α) q ∈ ∆ (X). Let b := max≥X and w := min≥X

denote the highest and lowest prizes respectively. We denote by q (x) the probability lottery q gives

prize x ∈ X.

3.2 Risk Reference Dependent Choice

Recall that in Section 2 we defined what it means for WARP to hold on an arbitrary set of choice

problems. We now do the same for Independence.

Definition 3. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies Independence

over S if for all A,B ∈ S and α ∈ (0, 1),

1. p ∈ c (A), q ∈ A, qαs ∈ c (B) and pαs ∈ B ⇒ pαs ∈ c (B), and

2. pαs ∈ c (A), qαs ∈ A, q ∈ c (B) and p ∈ B ⇒ p ∈ c (B).

In standard expected utility, c satisfies both WARP and Independence over A.

Now, we are interested in the behavior where changes in the safest available alternatives affect

risk aversion, but WARP and Independence are complied with whenever the safest alternatives of a

collection of choice problems are the same.

First we define what “the safest available alternative” means through the use of two partial orders.

A mean-preserving spread (MPS) is clearly not safest, this is our first order. However, mean-preserving

spread is a (very) partial order, and many lotteries are left unranked, making it hard to predict when

should WARP and Independence hold.

To account for this limitations we also deem riskier any lottery that is an extreme spread, our

second risk order, which we now define. We call p is an extreme spread of q (pESq) if p = βq +

(1− β) (α (δb) + (1− α) (δw)) for some β ∈ [0, 1] and α ∈ (q (b) , 1− q (w)). This captures lotteries

that assigned more probability to extreme prizes while being proportionally identical for intermediate

prizes. Extreme spread shares the core intuition of Aumann & Serrano (2008)’s risk index (which in

their paper only applies to gain-loss prospects), where lotteries are deemed safer than another in the

“economics sense”—if more-risk-averse decision makers prefer them whenever less-risk-averse decision

makers do.14

14For every q, the set of extreme spreads of q is small and lives entirely within the probability triangle containing q, δb,
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The two risk orders are compatible with each other but are not nested. Now we characterize the set

of alternatives that are not risky by these two measures. LetMPS (A) = {p ∈ A : ∃q ∈ A s.t. pMPSq}

and ES (A) = {p ∈ A : ∃q ∈ A s.t. pESq} denote the mean-preserving spreads and extreme spreads in

A respectively.

Definition. Define the least risky set of A by Ψ (A) := A\ (MPS (A) ∪ ES (A)).

We now replace Reference Dependence from Section 2 with a stronger axiom that demands (i)

reference-dependent compliance with both WARP and Independence and that (ii) the reference is a

least risky lottery.

Axiom 3 (Risk Reference Dependence (RRD)). For every choice problem A ∈ A, there exists p ∈

Ψ (A) such that c satisfies WARP and Independence over S = {B ⊆ A : p ∈ B}.

Axiom 3 identifies a candidate reference for choice problem A. If Ψ (A) = {p}, and B1 and B2

are subsets of A containing p, then neither a violation of WARP nor a violation of Independence is

produced between c (B1) and c (B2).

Like Reference Dependence (Axiom 1 in Section 2), Risk Reference Dependence postulates that

there is a reference point, in the sense that WARP holds in its presence. But it additionally postulates

that Independence also holds, and that this reference point is in Ψ (A)—a least risky lottery.15

Finally, note that Axiom 3 weakens the axioms of standard expected utility, which demands

compliance of WARP and Independence over the entire A.

3.3 Monotone Risk Attitude

Our motivation is that the decision maker’s choices vary only in terms of magnitude of risk aversion.

Moreover, increases in risk aversion are due to the presence of a safer alternative. Consider the following

axiom.

Axiom 4 (Monotone Risk Attitude). For any choice problems A,B ∈ A such that B ⊂ A,

δαr ∈ c (B) , pαr ∈ B, pβq ∈ c (A) , δβq ∈ A ⇒ δβq ∈ c (A) ,

and δw. In this probability triangle, it is exactly the set of lotteries such that a more risk loving decision maker would
prefer (over q) whenever a more risk averse one does, under the framework of standard expected utility. In particular,
it is a superset of mean-preserving spreads in this triangle. The intuition behind this notion is that, when probabilities
are allocated to the most extreme prizes, even if mean is not preserved, we should still deem the resulting lottery riskier.
Note that an extreme spread need not be a mean-preserving spread, and vice versa.

15This is where the decision maker’s subjectivity enters the model: For two lotteries not ranked by objective notions
of risk, one individual may deem one lottery riskier, whereas another individual disagrees. The axiom demands that a
reference point exists and is a least risky alternative, but in instances where |Ψ (A) | > 1, the decision maker’s choices
determine which lottery in Ψ (A) is the reference.
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where p, q, r ∈ ∆ (X), δ is a degenerate lottery, and α, β ∈ [0, 1].

It is standard that %1 is deemed more risk averse than %2 if for any degenerate alternative δ

and lottery p, δ %2 p ⇒ δ %1 p. Here we extend this definition to lotteries that are not entirely

riskless, but differ by a degenerate and (possibly) non-degenerate components: δαq and pαq (where

δ is a degenerate alternative).16 Under standard expected utility this extension is without loss, i.e.,

the two notions coincide.17 It is precisely because we depart from the standard expected utility model

that we require this extended definition—the choice between δ and p does not pin down the choice

between δαq and pαq due to changing risk aversion.

Axiom 4 postulates that as a choice problem expands, the decision maker is not more risk loving.

Our intuition is that the introduction of new alternatives can only reduce minimum risk / increase

avoidable risk, and consequently the decision maker views risk less favorably and becomes more risk

averse in the choices she makes. This is the source of Independence violation in our model, but only

one type of violation is allowed: that choices become more risk averse, where other channels remain

shut.

Note that standard expected utility satisfies this axiom trivially—an expected utility maximizer

can neither be more risk loving nor more risk averse between any two choice sets, a consequence of

the Independence axiom. Therefore, our departure from expected utility is to permit increased risk

aversion when new alternatives are added to a choice set.

Final two axioms are standard: that choice is continuous (defined in Section 2) and abides by first

order stochastic dominance.

Axiom 5 (FOSD). For any p, q ∈ ∆ (X) such that p 6= q and p first order stochastically dominates q,

p ∈ A implies q /∈ c (A).

3.4 Representation Theorem

We now introduce the utility representation.

Definition. We say an order R is risk-consistent if, whenever (i) p is a mean-preserving spread of q

or (ii) p is an extreme spread of q (or both), we have qRp.
16It is straightforward to show that pαq is obtained from δαq by moving probabilities from one prize to one or more

prizes. We hence deem δαq safer than pαq, and say that a more risk averse decision maker prefers δβq to pβq whenever
a less risk averse decision maker prefers δαr to pαr.

17This is the consequence of the Independence axiom of standard expected utility, in which δαq is chosen over pαq if
and only if δβr is chosen over pβr if and only if δ is chosen over p.
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Definition 4. c admits an Avoidable Risk Expected Utility (AREU) representation if there exist (i) a

complete, transitive, and antisymmetric reference order R on ∆ (X) and (ii) a set of strictly increasing

utility functions {up : X → [0, 1]}p∈∆(X), such that

c (A) = arg max
p∈A

Epur(A) (x) ,

where

• r (A) = arg max
q∈A

R,

• R is risk-consistent,

• qRp implies uq = f ◦ up for some concave f :[0, 1]→ [0, 1], and

• arg maxp∈A Ep
[
ur(A) (x)

]
has a closed-graph.

Proposition 2. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Risk Reference Dependence, Monotone Risk Attitude, FOSD and Continuity.

2. c admits an AREU representation.

Furthermore in every AREU representation, given R, up is unique for all p 6= (δb)
α

(δw).

When choices admit an AREU representation, it is as if the decision maker goes through the

following decision making process: Facing a choice problem, she first looks for the safest alternative

using R, which is risk consistent—it ranks safer alternatives higher. This determines the (Bernoulli)

utility function for the choice problem and she proceeds to choose the option that maximizes expected

utility. Moreover, the safer the reference, a more concave utility function is used, resulting in weakly

more risk averse choices. This generalizes the standard model where a decision maker chooses the option

that maximizes expected utility using a single utility function. It departs from standard expected utility

by allowing greater risk aversion when alternatives are added to a choice set, but prohibits any other

types of preference changes.

Note that utility functions in AREU are generically unique (up to an affine transformation). This

property guarantees that their relationships by concave transformations are not arbitrary, and choices

manifest changing risk aversions. Here, each utility function up is used to evaluate options for a set of

choice problems that deem p as the safest alternative. When p 6= (δb)
α

(δw), there are many of these

choice problems in which p is not the chosen alternative, making up non-arbitrary.
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3.5 Applications of AREU

We now show that AREU is compatible with the Allais paradox.

In experimental settings, subjects tend to choose the degenerate lottery p1 = δ3000 over the lottery

p2 = 0.8δ4000 + 0.2δ0, but choose q2 = 0.2δ4000 + 0.8δ0 over q1 = 0.25δ3000 + 0.75δ0. Note that the

second pair of options are derived from the first pair using a common mixture, q1 = 0.2p1 + 0.8δ0 and

q2 = 0.2p2 + 0.8δ0. Under expected utility theory, those who prefer p1 to p2 should prefer q1 to q2,

and vice versa. Hence choices of p1 and q2 is a direct contradiction of expected utility theory. This is

called the Allais paradox (and in particular the common ratio effect), a prominent “anomaly” in the

study of choices under uncertainty, began with Allais (1953).18

AREU is compatible with this phenomenon. Given a reference order R that deems the safest

alternative in the first choice problem—in which a sure prize is available—as safer, a decision maker is

more risk averse and uses a more concave utility function. That is, where A = {p1, p2} and B = {q1, q2},

we have ur(A) = f ◦ ur(B) for some concave transform f .19 It is because of this change in utility

function characterizing increased risk aversion that makes p1, the safe option, appealing in the first

choice problem. More generally, AREU captures the favoring of risk-free options whenever they are

available, similar to Kahneman & Tversky (1979)’s certainty effect.

However, AREU is incompatible with choices of p2 and q1—violation of expected utility theory

in the opposite direction. Since the decision maker is more risk averse in the first choice problem, if

instead p2 is chosen over p1, then q2 must be chosen over q1 in the second choice problem since a less

concave utility function will make q2 more appealing. Analogously, a choice of q1 implies a choice of

p1. To summarize, behaviors compatible with AREU are: (p1, q1), (p2, q2), and (p1, q2). The opposite

behavior in which the decision maker in more risk loving in the first choice problem, (p2, q1), is ruled

out.20 This stipulates a specific type of departure from standard expected utility—more risk aversion

in the presence of safer alternatives.

AREU’s compatibility with the Allais paradox is not limited to the above specification. Moreover,

it captures both the common ratio effect and the common consequence effect. We generalize the

previous arguments when |X| := |supp ({δ, p, q}) | = 3 in the following statement:
18This example is taken from Starmer (2000). Camerer (1995) and Starmer (2000) provide an in-depth survey.
19The choice in the first problem can be explained by a (Bernoulli) utility function uA if and only if, after normalization

(uA (0) = 0 and uA (4000) = 1), uA (3000) > 0.8. Similarly, the choice in the second problem can be explained by a
normalized utility function uB if and only if ub (3000) < 0.8. This is from solving uA (3000) > 0.8uA (4000) + 0.2uA ($0)
and 0.25uB (3000) + 0.75uB (0) > 0.2uB (4000) + 0.8uB (0) for uA (3000) and uB (3000). Furthermore, as long as
uA (3000) > uB (3000), we have uA = f ◦ uB for some concave f : [0, 1]→ [0, 1].

20This is consistent with the behavioral postulate referred to as Negative Certainty Independence in Dillenberger
(2010); Cerreia-Vioglio et al. (2015).
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Fact. Consider a degenerate lottery δ and a lottery p such that neither of them first order stochastically

dominates another. Consider lotteries δ′ = δαq and p′ = pαq for any α ∈ (0, 1) and lottery (degenerate

or otherwise) q. Suppose |X| = 3, then

1. If δ ∈ c ({δ, p}) and p′ ∈ c ({δ′, p′}), then

(a) For all u1, u2 : X → R such that u1 explains the first choice and u2 explains the second,

u1 = f ◦ u2 for some concave function f : R→ R.

(b) Moreover, the choices admit an AREU representation such that r ({δ, p})Rr ({δ′, p′}).

2. If the choices c ({δ, p}), c ({δ′, p′}) admit an AREU representation, then

(a) If p ∈ c ({δ, p}), then p ∈ c ({δ′, p′}).

(b) If δ′ ∈ c ({δ′, p′}), then δ ∈ c ({δ, p}).

Last we consider one other application of AREU. A known phenomenon in behavioral finance is

reaching for yield, in which investors invest less when the risk-free rate is higher, which is at odds

with the standard expected utility model with commonly used specifications such as those that exhibit

constant relative risk aversion. Lian et al. (2017) shows that this behavior is at odds with utility

functions exhibiting constant or decreasing absolute risk aversion, capturing a large class of utility

functions typically used in behavioral finance. The authors also provided evidence of this behavior.

AREU is consistent with this observation, and more specifically that the addition of a better sure

prize increases risk aversion. Consider a choice set A which contains a sure prize of $5 and choice

set B which is A with an added option: a sure prize of $7. Although risk is fully avoidable in both

choice problems due to the availability of sure prizes, it is intuitive that a decision maker may display

greater risk aversion in B. AREU captures this behavior using the specification δxRδy whenever x > y,

in which the decision maker maximizes expected utility with a more concave utility function when a

better sure prize is present. This extends the intuition of increased risk aversion from the addition of

safer alternative to the addition of safer and better alternatives.

3.6 Linkage between violations of WARP and violations of Independence

Risk Reference Dependence (Axiom 3) demands WARP and Independence over certain subsets of all

choice problems. Given an AREU choice correspondence, we now state the consequences of imposing

each of Transitivity, WARP, and Independence over the (entire) set of all choice problems A. It turns
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out adding any one of these assumptions bring us back to standard expected utility, giving us a formal

separation of AREU from the wide range of non-expected utility models in which WARP / complete

preference ranking is maintained.

First, we adapt Transitivity, typically defined on a preference relation, to the framework of choice.

Definition 5. Let c : A → A be a choice correspondence. We say c satisfies Transitivity over S ⊆ A

if for any {p, q} , {q, s} , {s, p} ∈ S,

p ∈ c ({p, q}) and q ∈ c ({q, s}) ⇒ p ∈ c ({q, s}) .

Transitivity on c is analogous to the standard definition of Transitivity on a preference relation

(where p % q and q % s⇒ p % s). In the framework of choice, c may satisfy Transitivity over the entire

collection of choice problems 2Y \ {∅} but violate WARP. For example: x ∈ c ({x, y}), y ∈ c ({y, z}),

x ∈ c ({x, z}), but z ∈ c ({x, y, z}). However, the reversed implication is true: If c satisfies WARP over

2Y \ {∅}, then c satisfies Transitivity over 2Y \ {∅}.21

We say c admits a utility representation if there exists U : ∆ (X) → R such that c (A) =

arg max
p∈A

U (p).

Proposition 3. Suppose c admits an AREU representation. The following are equivalent:

1. c satisfies Transitivity (over A).

2. c satisfies WARP (over A).

3. c satisfies Independence (over A).

4. c admits an expected utility representation.

5. c admits a utility representation.

This result states that AREU cannot independently accommodate Transitivity, WARP, or Inde-

pendence. Put it differently, although AREU weakens multiple postulates (WARP and Independence),

it is in fact a “tight” deviation from standard expected utility in that the reinstiution of either postulate

recovers the expected utility model.22 In particular, the intersection of AREU and models maintaining
21When S 6= 2Y \ {∅}, Transitivity and WARP are not nested. For instance take S = {{x, y} , {y, z} , {x, z}}, the

choice correspondence x ∈ c ({x, y}), y ∈ c ({y, z}), z ∈ c ({x, z}) satisfies WARP (over S) but not Transitivity.
22Transitivity and WARP do not imply one another. While obtaining Transitivity fromWARP requires little additional

assumptions, the other direction is typically difficult to achieve without explicitly assuming WARP. A classic example
of a choice correspondence that satisfies Transitive but not WARP is c ({a, b}) = {a}, c ({b, c}) = {b}, c ({a, c}) = a,
c ({a, b, c}) = b. In models of context-dependent choice, violations of WARP are sometimes accommodated alongside
violations of Transitivity, and in other cases they are accommodated whilst keeping Transitivity imposed.
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WARP, or equivalently a complete and transitive preference relation, is expected utility.

AREU is a model that explains non-expected utility behavior as a consequence of changing (risk)

preferences. To this end, Proposition 3 shows that AREU leaves no extra explanatory power in ex-

plaining the violations separately. Instead, the violations are inextricably linked to one another, and

resolving either one will bring us back to standard expected utility. When a choice correspondence ad-

mits a utility representation, choices are interpreted as the consequence of a stable preference ranking.

Proposition 3 formally states that AREU is in line with this interpretation—standard expected utility

ensues when preferences over lotteries are stable, and failure of expected utility is due to changing

preferences.

This sets us apart from the majority of non-EU models where Independence is weakened under

the assumption of WARP. In those cases, a single utility function is maximized, but it doesn’t take the

expected utility form. In our case, choices come from utility functions that conform with the expected

utility form, but there are many of them, which characterize changing preferences. This is the result

of a joint weakening of both WARP and Independence, the core idea of the unified framework we

propose. In the time and social domain, we show that the same results and arguments hold.

3.7 Comparison to other non-expected utility models

In this section, we investigate the consequence of adding various restrictions to AREU, and use them

to explore the relationship between AREU and other non-expected utility models of risk preferences.

3.7.1 AREU with Transitivity in a probability triangle

While Proposition 3 provides a strong separation between AREU and many non-EU models, we can

more meaningfully recover the extent to which AREU is related to other models by imposing Transi-

tivity “partially”. To this end, we turn our attention to Marschak-Machina triangles (also “probability

triangle”) for the next part of our analysis.

We will show that AREU is very close to Betweenness, a well-known property first introduced (on

preference relations) by Chew (1983); Fishburn (1983); Dekel (1986). Like expected utility, models of

betweenness preferences have the characteristic of linear indifference curves (or in higher dimensions,

hyperplanes). Their departure from standard expected utility is that the indifference curves need not

have the same slopes (resp. gradients). Since Betweenness is typically defined on a preference relation,

we first proceed to define Betweenness on a choice correspondence.
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Definition 6. Let c : A → A be a choice correspondence. We say c satisfies Betweenness over S ⊆ A

if for any {p, q} , {p, pαq} , {pαq, q} ∈ S and α ∈ (0, 1),

1. c ({p, q}) = {p} ⇒ c ({p, pαq}) = {p} and c ({pαq, q}) = {pαq},

2. c ({p, q}) = {p, q} ⇒ c ({p, pαq}) = {p, pαq} and c ({pαq, q}) = {pαq, q}.

We are ready for the first result when restricting attention to a Marschak-Machina triangle. For

any three prizes {a, b, c} ⊆ X, consider the set of all lotteries induced by them, ∆ ({a, b, c}). Let Ba,b,c

denote the set of all finite and nonempty subsets of ∆ ({a, b, c}). Note that Ba,b,c ⊆ A. Going forward,

we omit subscripts and use the notation B. We begin with a few standard definitions. Let p be a

mean-preserving spread of q. We say c is weakly risk averse (resp. risk loving) over B if {p, q} ∈ B

implies q ∈ c (A) (resp. p ∈ c (A)). If c ({p, q}) = {p, q} whenever {p, q} ∈ B, we say c is risk neutral.

We say that indifference curves fan out (resp. fan in) if they become weakly steeper (resp. flatter) in

the first order stochastic dominance direction.

Proposition 4. Suppose c admits an AREU representation. If c satisfies Transitivity over B, then:

1. c satisfies Betweenness over B.

2. c is either weakly risk averse over B, weakly risk loving over B, or risk neutral over B.

3. Indifference curves fan out if c is weakly risk averse.

4. Indifference curves fan in if c is weakly risk loving.

Proposition 4 connects AREU to linear indifferent curves—a property of standard expected utility.

Moreover, Proposition 4 also pins down the set of admissible indifferent curves. Even though AREU

allows a decision maker to have varying magnitudes of risk aversion, compliance with Transitivity would

bound the increase in risk aversion such that choices are either exclusively risk averse or exclusively risk

loving (in this probability triangle). In each case, a particular direction of fanning is also prescribed

(Figure 3.1). These results provide testable predictions for AREU, and separates it from other models,

which we discuss next.

3.7.2 Comparison to other non-expected utility models

Various alternatives to expected utility were introduced by Quiggin (1982), Chew (1983); Fishburn

(1983); Dekel (1986), Bell (1985); Loomes & Sugden (1986), Gul (1991), Kőszegi & Rabin (2007), and
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Figure 3.1: Let a < b < c. Dotted (red) lines are the mean-preserving spread lines. Solid (blue) lines
are indifferent curves. Referring to Proposition 4, the picture on the left corresponds to point 3 and
the picture on the right corresponds to point 4.

Cerreia-Vioglio et al. (2015). We now use Proposition 3 and Proposition 4 to study their relationship

to AREU.

The AREU model has a close relationship with betweenness preferences introduced by Chew

(1983); Fishburn (1983); Dekel (1986). Although the two intersect only at expected utility, a direct

application of Proposition 3, the two make similar predictions for binary choices when Transitivity is

added to AREU in a probability triangle.

Among models of betweenness preferences, Gul (1991)’s disappointment aversion is closest in

spirit to AREU, but the two predict different behavior. In disappointment aversion, the set of possible

outcomes of each lottery is decomposed into elevation prizes and disappointment prizes, and the utilities

from disappointment prizes are discounted using a function of the probability of disappointment. An

implication of disappointment aversion is the property of mixed fanning, in which indifference curves

first fan in and then fan out, for example. AREU cannot accommodate mixed fanning, a direct

application of Proposition 4, and so the two models differ in their coverage of non-expected utility

behavior.

For the same reason, AREU and Cerreia-Vioglio et al. (2015)’s cautious expected utility put fourth

different behavioral predictions. In their model, a decision maker evaluate each lottery as its worst

certainty equivalence under a set of (Bernoulli) utility functions. The result is a behavior that resembles

cautiousness. A property resembling mixed fanning is an implication of their model, where indifferent
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curves are steepest in the middle, a consequence of the axiom Negative Certainty Independence: p % δ

implies pαq % δαq.

Like AREU, Kőszegi & Rabin (2007)’s reference-dependent risk preferences uses reference points

to explain non-expected utility behavior. However, both the identification of reference points and

the consequence of changing reference points differ. In AREU, reference alternatives are given by

the safest alternatives in choice problems, and they serve as a proxy for changing risk preferences.

In Kőszegi & Rabin (2007), a decision maker is subjected to gain-loss utility relative to a reference

point, where the reference point is the lottery she expects to receive. We focus on choice-acclimating

personal equilibrium (CPE), in which reference points are endogenously set as the eventually-chosen

alternatives. Masatlioglu & Raymond (2016) shows that when a CPE specification satisfies first order

stochastic dominance, the implied behavior can be explained by the quadratic utility functionals of

Machina (1982); Chew et al. (1991). Yet, Chew et al. (1991) demonstrates that quadratic functionals

intersect with betweenness preferences only at expected utility, and hence the CPE model of Kőszegi

& Rabin (2007) intersects with AREU only at expected utility.23

The model closest to AREU, to my knowledge, is the context-dependent gambling effect by Ble-

ichrodt & Schmidt (2002). In their model, a decision maker’s preferences are explained by two

(Bernoulli) utility functions, one for comparisons that involve a riskless option and another for the

rest. Unlike AREU, their model only applies to binary decisions, which results in different axioms

and applicability. Furthermore, when a degenerate lottery is slightly perturbed into a non-degenerate

one, it produces a choice reversal, which seems implausible. Their model also does not accommodate

violations of expected utility in choice problems without a riskless option, such as variations of the

Allais paradox. Finally, while their axioms are separately imposed on binary decisions involving and

not involving riskless options, our axioms are imposed on the choice correspondence without such

discrimination.

4 Time Preferences

In this section, we provide an application of our unified framework for choices over delayed consump-

tion. The canonical model for this setting is Discounted Utility, axiomatized by Fishburn & Rubinstein

(1982), in which a decision maker evaluates each payment-time pair (x, t) by δtu (x). However, Dis-
23Similar conclusions of non-intersection with AREU (other than expected utility) can be made for Quiggin (1982)’s

rank dependent utility (see Chew & Epstein (1989)) and Bell (1985); Loomes & Sugden (1986)’s disappointment theory.
Some of these results, and a comprehensive summary, are provided by Masatlioglu & Raymond (2016).
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counted Utility has routinely failed experimental tests as subjects violate Stationarity: the choice

between two payments changes when the decision is made in advance, typically favoring the later op-

tion for the long-term decision.24 To accommodate this violation, we weaken the axioms of Fishburn

& Rubinstein (1982) using an approach analogous to Section 2’s Reference Dependence. The outcome

is a utility representation in which choices maximize exponentially discounted utilities using a discount

factor that depends on the timing of the earliest payment.

4.1 Preliminaries

Let X = [a, b] ⊂ R+ be an interval of non-negative payments and let T = [1, t̄] ⊂ R+ be an interval of

non-negative time points. X × T is the set of alternatives, where (x, t) ∈ X × T denotes a payment of

x at time t. We endow X × T with the standard Euclidean metric. Let A be the set of all finite and

nonempty subsets of X × T . Finally, let c : A → A, c (A) ⊆ A, be a choice correspondence.

We maintain the following standard axioms for time preference, that higher payments and sooner

payments are better.

Axiom 6.

1. Outcome Monotonicity: if x > y, then c ({(x, t) , (y, t)}) = {(x, t)}.

2. Impatience: if t < s, then c ({(x, t) , (x, s)}) = {(x, t)}.

4.2 Reference Dependent Patience

Time consistency in choice is captured by a well-known behavioral property called Stationarity. Under

Stationarity, a decision maker’s preference between two future payments is consistent regardless of

when the decision is made. For this reason, Stationarity is often deemed a normative postulate in

economic analysis.

Similar to what we did to WARP and Independence in previous sections, we first define what it

means for a choice correspondence c to satisfy Stationarity over a subset of all choice problems S ⊆ A.

Definition 7. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies Stationarity

over S if for all A,B ∈ S, a > 0,
24See for example Laibson (1997), Frederick et al. (2002), and Benhabib et al. (2010).
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(x, t) ∈ c (A) , (y, q) ∈ A, (y, q + a) ∈ c (B) , and (x, t+ a) ∈ B ⇒ (x, t+ a) ∈ c (B) .

Supplied with Axiom 6, a direct adaption of Fishburn & Rubinstein (1982) into the framework

of choice gives that c satisfies WARP and Stationarity over A if and only if it admits a (exponential)

Discounted Utility representation.

A choice correspondence that exhibits time inconsistency fails to satisfy Stationarity over A.

However, the choice correspondence may still satisfy Stationary over some subsets of A. Consider the

following axiom, which states that Stationarity is satisfied between any two choice problems that share

an earliest payment.

Axiom 7 (Reference Dependent Patience (RDP)). For any A,B ∈ A, if A and B share an earliest

payment, then c satisfies WARP and Stationary over {A,B}.

The axiom posits that a violation of WARP and Stationarity between two choice problems can

only occur if they do not share an earliest payment. If we interpret compliance with Stationarity

as having a stable level of patience, the axiom proposes that patience may depend on how soon any

payment can be attained. This allows us to capture behavior in which compliance with WARP and

Stationarity is not necessarily upheld between long-term and short-term choice problems, such as those

exhibited in time consistency experiments.

Note that this postulate can be rewritten in the style of Reference Dependence (Axiom 1) and

Risk Reference Dependence (Axiom 3) from previous sections, stated formally in the following lemma.

Lemma 1. Fix a choice correspondence c, the following are equivalent.

1. c satisfies Axiom 7.

2. For every choice problem A ∈ A and every earliest payment (x, t) in it, c satisfies WARP and

Stationarity over {B ⊆ A : (x, t) ∈ B}.

Albeit straightforward, the lemma reassures us that the unified method of weakening standard

postulates proposed in this paper is not dissimilar to demanding compliance between pairs of choice

problems.

In fact, their equivalence in this setting is due to two details. First, unlike our general model

(Section 2) and application in the risk domain (Section 3), in which the reference order is either
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fully or partly subjective, the reference points in the present setting is completely objective—the

earliest payments in the choice sets. Because of this objectivity, the reference order is pinned down

axiomatically, and the axiom does not involve an existential statement that allows for subjectivity in

determining reference points. Second, WARP and Stationarity are properties between pairs of choices

(and not more). This is not the case for all postulates. For example, Transitivity is an axiom that

is trivially satisfied between any pair of choices, but a violation can be found when more choices are

considered. Identifying this equivalence, and the reasons thereof, allows us to design more efficient

tests of the axioms in our unified framework.

4.3 Increasing Patience

We postulate that patience (may) increase when options are postponed.

Consider prizes x1 < x3 arriving at time t1 < t3 respectively. We posit that by postponing

the options by a > 0, the decision maker is (weakly) more patient and will choose (x3, t3 + a) over

(x1, t1 + a) if she chose (x3, t3) over (x1, t1). The postulate differs from Stationarity as it allows for

the choice of (x1, t1) over (x3, t3) but (x3, t3 + a) over (x1, t1 + a), or present bias. To summarize, it

allows for violation of Stationarity in one direction but not the other.

However, this falls short of capturing changes in patience. Difference in delay aversion between

individuals cannot be directly categorized into difference in discounting and difference in consumption

utility, an issue discussed in Ok & Benoît (2007). Just because a decision maker chooses a sooner

option, and another a later one, it is not conclusive that the first decision maker discounts more. It

could be that there is difference in consumption utility, where the first decision maker’s marginal utility

for money is a lot lower than that of the second decision maker inducing the choice of a sooner but

smaller prize.

We introduce a technique that allows us to “fix” consumption utilities and only allow discounting

to change. This can be used to characterize a set of individuals whose consumption utility is (as-if) the

same, and differ only in their patience level. For this paper, we use it to restrict the choice behavior

of a single individual to those that can be explained by a single consumption utility function while

allowing patience to vary.

Consider c ({(x, t) , (y, q) , (z, s)}) = {(x, t) , (y, q) , (z, s)}, where (x, t) gives the smallest payment

but arrives earliest, (z, s) gives the largest payment but arrives latest, and (y, q) is intermediate in both.

Now consider the new choice problem {(x, λt) , (y, λq) , (z, λs)}, where λ < 1; that is, all payments will
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now arrive at a (common) fraction of time. Under Stationarity, a decision maker only cares about the

delay between the alternatives and would now strictly prefer the latest option since the time-difference

between any two options is smaller. Yet it is ambiguous how a decision maker of the present model

would behave. On one hand, an earlier choice problem causes the decision maker to choose more

impatiently; on the other hand, delays between alternatives have decreased, which favor later options.

The competing forces render the choice ambiguous. The same competing forces occur when λ > 1: the

decision maker is more patient, but delays between options are larger. In these situations, we restrict

the decision maker’s behavior in the following way: if the decision maker chooses both the earliest and

the latest alternatives after such a transformation (and recall that he was indifferent between all three

before), then he also chooses the intermediate option in the new choice problem.

The same restriction is imposed when the transformation is of the form

{(x, λt− a) , (y, λq − a) , (z, λs− a)}. Note that only λ changes the delay between the options,

and a symmetrically shifts arrival time. Also, the only instance this restriction is non-trivial is when

the aforementioned competing forces are present: when “λ < 1 and λt − a < t”, where the decision

maker becomes less patient but she no longer has to wait as long for a better payment, and when

“λ > 1 and λt− a > t”, where she is more patient but also has to wait longer for a better payment.

This gives rise to the following axiom.

Axiom 8 (Increasing Patience). For all t1 < t2 < t3, A = {(x1, t1) , (x2, t2) , (x3, t3)}, and A′ =

{(x1, λt1 + a) , (x2, λt2 + a) , (x3, λt3 + a)},

1. c ({(x1, t1) , (x3, t3)}) = {(x3, t3)} ⇒ c ({(x1, t1 + a) , (x3, t3 + a)}) = {(x3, t3 + a)} for all a > 0,

2. c (A) = A and (x1, λt1 + a) , (x3, λt3 + a) ∈ c (A′) ⇒ (x2, λt2 + a) ∈ c (A′) for all λ, a ∈ R.

This postulate is trivially satisfied by a decision maker whose behavior fully complies with Station-

arity, since she can neither be more patient nor less patient when options are symmetrically postponed.

4.4 Representation Theorem

We are ready for the utility representation and representation theorem.

Definition 8. c admits a Present-Biased Discounted Utility representation (PBDU) if there exist a

strictly increasing and continuous utility function u : X → R and a set of time-indexed discount factors

{δt}t∈T such that

c (A) = arg max
(x,t)∈A

δtr(A)u (x) ,
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where

• r (A) = min {t : (x, t) ∈ A},

• t < t′ ⇒ δt ≤ δt′ ,

• δt is continuous on [1, t̄].

Proposition 5. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Reference Dependent Patience, Increasing Patience, Outcome Monotonicity, Impa-

tience, and Continuity.

2. c admits a PBDU representation.

Furthermore, in every PBDU representation, discount factors δt are unique given u.

In this model, it is as if the decision maker maximizes exponentially discounted utility, but

with discount factors that depend on the timing of the earliest available payment. When the earliest

available payment arrives sooner in one choice problem than another, then the decision maker uses a

lower discount factor in the former. Since discount factors are often interpreted as a measure of patience,

our model can be viewed as one in which the decision maker’s patience changes systematically across

choice problems, where she is less patient when an earlier payment is available.

This model conforms with present bias, the empirically prevalent failure of dynamic consistency

in which decision makers exhibit less delay aversion for long-term decisions. Take for example the

classic observation of present bias, where $x today is preferred to $y tomorrow (choice problem A)

but the opposite decision is made when both payments are postponed by a year (choice problem B).

The model we propose explains the behavior with the simple interpretation that, since the earliest

alternative for A arrives sooner than that for B (i.e., r (A) < r (B)), the decision maker is less patient

in the former (i.e., δr(A) < δr(B)).

Moreover, even though the choice between $x at time t and $y a day later is not consistent across

the time horizon t, the model predicts that as we gradually postpone both options with s, the choice can

only switch from (x, t+ s) to (y, t+ 1 + s). That is, if there is a point in time at which the decision

maker becomes sufficiently patient to choose $y over $x, she must continue to do so as we further

postpone both options. This “single switching” property is closely connected to the ordered-reference

nature of PBDU and provides testable predictions.
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Finally, the underpinning of PBDU is the simultaneous weakening of WARP and Stationarity

in a reference-dependent approach. Reminiscent of the observation made in Proposition 3, WARP

and Stationarity are interconnected in our model: neither of which can be independently weakened,

formally stated in the following result.

Proposition 6. Suppose c admits a PBDU representation. Then the following are equivalent:

1. c satisfies WARP (over A).

2. c satisfies Stationarity (over A).

3. c admits an exponential discounting utility representation.

4. c admits a utility representation.

4.5 Related models of time preferences

The biggest difference between Present-Biased Discounted Utility (PBDU) and hyperbolic discounting,

a class of models in which future options are discounted disproportionately less, is that PBDU (when

non-trivial) necessitates WARP violations and hyperbolic discounting models satisfy WARP. Further-

more, unlike models of hyperbolic discounting, PBDU evaluates all alternatives in a choice problem

using a single discount factor.25 However, the empirically informed intuition that discount factors

vary across time is shared between models of hyperbolic discounting and PBDU, albeit implemented

differently. For our model, PBDU, discount rate changes at the choice problem level, whereas for

hyperbolic discounting it changes at the alternative level. The difference is stark when we consider

choice problems that contain more than two alternatives. In hyperbolic discounting, the preference

between any two options stays the same regardless of what choice problems they appear in, hence

WARP is never violated. This is not the case for PBDU, where a sooner option may become superior

to a later one from the introduction of a third (but not necessarily chosen) alternative, and results in

WARP violations in PBDU.

Exponential discounting has advantageous properties in economic applications, propelling Laibson

(1997)’s well-known quasi-hyperbolic discounting. In their model, behavior complies with Stationarity

as long as the choice is between two future payments, and present bias only arises when an immediate

payment is involved. This is not the case in PBDU, as the switch from choosing the earlier payment
25See for instance Loewenstein & Prelec (1992) and Laibson (1997).

30



to choosing the later one can occur at any time as we gradually shift both payments into the future.

Another implication of quasi-hyperbolic discounting in our setting is the failure of continuity, where an

instantaneous change in choice occurs when the earlier payment arrives at time 1 (“today”). Our model

complies with continuity of choice, and instead forgoes WARP to explain dynamic inconsistency.

We now turn to two other models that both explain dynamic inconsistency and can explain WARP

violations.

Lipman et al. (2013) provides an explanation of dynamic inconsistency that builds on Gul &

Pesendorfer (2001)’s introduction of temptation. In Gul & Pesendorfer (2001), a decision maker has

commitment utilities and temptation utilities, and chooses a menu (a choice problem) taking into

account both. The result is that a larger menu may be inferior, a departure from the conventional

understanding that more options should never be worse. Lipman et al. (2013) extends this to the setting

of time preference and proposes that a decision maker assess current consumption using temptation

utility and future consumption using commitment utility. When making decisions in advance, it is

as if the decision maker is choosing between singleton menus for her future self, and the absence

of temptation utility allows her to make a more patient decision relative to choices over immediate

consumption. Like quasi-hyperbolic discounting, present-bias is restricted to immediate consumption,

whereas PBDU allows present-bias to kick in at time frame and as long as its effect is persistent when

both options are further postponed—the “single switching” property discussed earlier.

More recently, Freeman (2016) introduced a framework in which WARP is weakened, and reversals

are explained by time-inconsistent preferences. In their model, a decision maker chooses when to

complete a task, and may exhibit choice reversal when additional opportunities for completions are

introduced (a expansion of the choice set). In particular, in response to the addition of an opportunity

for completion, a sophisticated decision maker may choose to complete the task earlier (and never

later) in anticipation that allowing her future self to make that decision would result in an eventual

completion time that is worse than completing the task now. A naive decision maker, however, could

only end up completing later.

While our model, PBDU, allows for choice reversal in the direction of choosing an earlier option

when the choice set expands, it is in fact incompatible with Freeman (2016)’s decision makers’ behavior

(other than WARP-conforming behavior). In PBDU, a reversal can only occur when the discount rate

changes, which only happens when an alternative earlier than any other already available is added.

However, in Freeman (2016)’s model, either that this added alternative is chosen (which is not a
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reversal) or the decision problem becomes identical to before and so WARP is complied with. Indeed,

the necessary conditions of their model, Irrelevant Alternatives Delay (for a naive agent) and Irrelevant

Alternatives Expedite (for a sophisticated agent) only hold in PBDU if WARP holds.

5 Social Preference

We now turn to our last application.

Consider a decision maker who has a particular type of set-dependent social preference—she shares

more when greater equity is attainable. Experiments in economics and psychology have shown that,

instead of being fully selfish and maximize monetary payment to oneself, people are often willing

to share their wealth. This leads to models of other-regarding preferences and inequality aversion,

first introduced by Fehr & Schmidt (1999); Bolton & Ockenfels (2000); Charness & Rabin (2002).

Furthermore, one’s desire to share, or inequality aversion, may be affected by the options they have,

often in the direction where the availability of more equitable options results in greater sharing. One

explanation for this behavior is outcome-based, where a decision maker becomes more inequality

averse in the presence of more equitable distributions. Another explanation is intention-based, where

the decision maker seeks to be perceived as fair.26 Our model does not distinguish between these two

causes for increased altruism, we refer interested readers to surveys by Fehr & Schmidt (2006); Kagel

& Roth (2016) for the vast evidence and suggested explanations.

To illustrate, suppose a decision maker is endowed with $10 and is given a number options to

share it with another individual. When she is asked to choose between giving $2 and giving $3,

giving $2 may seem reasonable. However, when the choice is between giving $2, $3 or $5, the decision

maker may opt for $3 (and keeping $7) instead. The pair of choices (over income distributions)

c ({($8, $2) , ($7, $3)}) = {($8, $2)} and c ({($8, $2) , ($7, $3) , ($5, $5)}) = {($7, $3)} violates WARP.

Hence the assumption of utility maximization, even if the utility function captures other-regarding

preferences and inequality aversion, is incapable of explaining this behavior.

Using our unified framework, where both WARP and a standard postulate are weakened using

reference-dependence, we provide a model in which a decision maker’s degree of inequality aversion

increases when equitable options are added to a choice problem.
26See for example Ainslie (1992), Rabin (1993), Nelson (2002), and Sutter (2007).
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5.1 Preliminaries

Let X = R+×R+ be the set of all pairs of non-negative monetary payments. We call a pair (x, y) ∈ X

an income distribution, where x is the dollar amount for the decision maker and y for a second

individual. We endow X with the standard Euclidean metric. Let A be the set of all finite and

nonempty subsets of X and c : A → A, c (A) ⊂ A a choice correspondence.

The first axiom is standard, an income distribution that gives everyone weakly more, and at least

one person strictly more, is strictly preferred.

Axiom 9 (Monotonicity). c ({(x, y) , (x′, y′)}) = {(x, y)} whenever x ≥ x′, y ≥ y′, and (x, y) 6= (x′, y′).

5.2 Fairness Dependence

Our first axiom for this section is a specialization of Axiom 1 from Section 2. It characterizes behavior

in which choices from choice problems containing the same amount of attainable equity conform with

quasi-linear preferences. The use of quasi-linear preferences for choices involving money is common

in the economics. Since our model introduces reference-dependent utility functions, using quasi-linear

utilities when preferences are stable provides meaningful restrictions to choices.

Definition 9. Let c : A → A be a choice correspondence and S ⊆ A. We say c satisfies quasi-linearity

over S if for all A,B ∈ S and a ∈ R\ {0} ,

(x, y) ∈ c (A) , (x′, y′) ∈ A, (x′ + a, y′) ∈ c (B) , and (x+ a, y) ∈ B ⇒ (x+ a, y) ∈ c (B) .

In order to characterize attainable equity, we first need a measure of equity. A nature candidate

is the ratio between x, y for any income distribution (x, y). We define the equity index of (x, y) as

e(x,y) := min
{
x
y ,

y
x

}
. The use of min is to treat income distributions (a, b) and (b, a) indiscriminately

in terms of measuring equity. Note that e(x,y) is always weakly less than 1, and values closer to

1 correspond to greater equity. The index captures how “close” are the two payments within an

income distribution (a, b), adjusting for scale, and is ordinally equivalent to the form taken by the Gini

coefficient |a− b|/a. The cardinality of this index plays no role in our analysis.

Analogous to our approach in previous sections, we demand that choices comply with WARP and

quasi-linearity when the fairest income distribution of a choice problem is unchanged. Departing from

complete compliance with WARP and quasi-linearity, we allow the decision maker to choose different
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income distributions when the fairest income distribution is dropped, potentially violating WARP.

Formally, we impose a weakening of WARP and quasi-linearity in the following way:

Definition 10. For any set of income distributions A ∈ A, we call Ψ (A) :={
(x, y) ∈ A : e(x,y) ≥ e(x′,y′) ∀ (x′, y′) ∈ A

}
the set of fairest income distributions in A.

Axiom 10 (Fairness Dependence (FD)). For every choice problem A ∈ A and any fairest distribution

(x, y) ∈ Ψ (A), c satisfies WARP and quasi-linearity over {B ⊆ A : (x, y) ∈ B}.

5.3 Increasing Altruism

We study choices that exhibit increased sharing when greater equity is attainable. Consider the

following postulate. Suppose in a choice problem an income distribution (x, y) is chosen over (x′, 0),

a distribution where the decision maker does not give at all. We postulate that by adding any other

income distributions into the choice set, since this can only (weakly) increase attainable equity, she

does not switch to not sharing, (x′, 0). Additionally, we extend this postulate to cases where the

comparison is between (x, y) and (x′, y′) such that y′ < y. Effectively, this restriction imposes a

direction on which willingness to share changes—the decision maker is weakly more altruistic when

more options are available, which weakly increases attainable equity. Formally:

Axiom 11 (Increasing Altruism). For any A,B ∈ A such that A ⊂ B and (x, y) , (x′, y′) ∈ A such

that y > y′. If (x, y) ∈ c (A) and (x′, y′) /∈ c (A), then (x′, y′) /∈ c (B).

5.4 Representation Theorem

Consider the following utility representation in which utility from receiving the amount $x is always

evaluated consistently but utility from giving amount $y depends on how much equity is attainable

from the choice problem.

Definition 11. c admits a Fairness-based Social Preference Utility representation (FSPU) if there

exists a set of strictly increasing utility functions {vr : R+ → R}r≤1 such that

c (A) = arg max
(x,y)∈A

x+ vr(A) (y) ,

where

• r (A) = max
(x,y)∈A

e(x,y),
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• r > r′ ⇒ vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′) for all y > y′,

• arg max(x,y)∈A x+ vr(A) (y) has a closed-graph.

Proposition 7. Let c : A → A be a choice correspondence. The following are equivalent:

1. c satisfies Fairness Dependence, Increasing Altruism, Monotonicity, and Continuity.

2. c admits a FSPU representation.

Furthermore, in every FSPU representation, vr is unique for all r.

In this model, the decision maker’s utility from giving dollar amount y, vr(A) (y), depends on how

much equity is attainable in the underlying choice problem, as measured by r (A). Recall that e(x,y)

is weakly less than 1 and a number closer to 1 represents greater equity. Hence, attainable equity

from choice set A is simply the highest value e(x,y) among available income distributions (x, y) ∈ A, or

r (A) = max
{
e(x,y) : (x, y) ∈ A

}
. When r (A) is greater, the decision maker values any given shared

amount y more. Consequently, even if income distribution (x, y) is chosen over (x′, y′) in some choice

problem, where y′ > y, adding a very fair option could cause the decision maker to switch to (x′, y′).

This model accommodates increased willingness to give when distributing a fixed pie with different

splitting options. To illustrate, suppose a decision maker must allocate a fixed amount of money, say

$100, between her and another individual, but she is not allowed to split the amount however she likes.

Instead, there is a set of feasible distributions characterized by D ⊂ [0, 1]; she can choose to allocate

α · $100 to herself if and only if α ∈ D. By specifying two different sets of feasible distributions, D

and D′, we have effectively specified two choice problems in our setup. Say D = {0.5, 0.6, 0.7} and

D′ = {0.6, 0.7}. If α = 0.7 is chosen in D′ (the decision maker keeps $70 for herself and $30 is given

to the other individual), she might choose to keep less in D due to increased altruism from greater

attainable equity. However, if she chose α = 0.6 in D′, then she must not choose α = 0.7 in D; this is

a testable prediction.

In FSPU, altruism is maximal when a perfectly balanced income distribution is available. In

particular, note that increased altruism is not the result of opportunity to give more; instead, it is

attainable equity that drives altruism. To illustrate the difference, consider the same example but

with D = {0.5, 0.3, 0.2} and D′ = {0.3, 0.2}. Even though D contains alternatives that achieve greater

equity, the decision maker’s ability to give is the same across the two choice problems. Yet, since the

feasible allocations are always unfavorable to her (she can never keep more than half), higher attainable
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equity results from her ability to take more. In this setting, our decision maker can be interpreted

as being less altruistic when the world is unfair to her, and she becomes more altruistic when fairer

options are added.

Lastly, FSPU allows for willingness to forgo a greater surplus in favor of giving more. Suppose the

decision maker must choose between ($30, $20) and ($60, $0). The second option is appealing in that

the total amount of money extracted is greater, whereas the first option sacrifices both surplus and

payment to oneself in favor of providing a share to the other individual. Suppose ($60, $0) is chosen.

The model allows for the behavior in which the addition of ($25, $25) to the choice set causes the

decision maker to switch from ($60, $0) to ($30, $20) due to increased generosity. While this behavior

is reasonable, it cannot be accommodated by any model that complies with WARP.

The familiar linkage between WARP violation and violation of standard postulate, in this case

quasi-linearity, is summarized in the following statement.

Proposition 8. Suppose c admits a PBDU representation. Then the following are equivalent:

1. c satisfies WARP (over A).

2. c satisfies quasi-linearity (over A).

3. c admits a quasi-linear utility representation.

4. c admits a utility representation.

5.5 Related Literature

Other-regarding preferences have been extensively studied, and well-known models are introduced by

Fehr & Schmidt (1999); Bolton & Ockenfels (2000). However, the primary focus of these models is to

capture the characterization of inequality aversion using functional forms. In particular, a single and

persistent preference ranking of income distributions is assumed throughout these models. Charness

& Rabin (2002) introduced a departure that allows for reciprocity using a term that lowers utility from

giving when the other player is deemed to have “misbehaved”.

FSPU, departs from these models by introducing preferences over income distributions that may

change from one choice problem to another. In particular, utility from giving depends on how much

equity is attainable in the underlying choice set. The vast literature on distributional preferences

provides suggestive evidence of this behavior. List (2007); Bardsley (2008); Korenok et al. (2014)
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showed that in a dictator game, adding (or increasing) the option to take from the receiver significantly

reduces a dictator’s willingness to give, and in some cases result in choice reversals (WARP violations).

However, although the narratives are related, the design of their experiments does not provide a

complete test for the predictions of FSPU, as additions of less equitable distributions do not affect

preferences in FSPU.

The study of audience effect also provides empirical evidence that decision makers care about how

others perceive their choices. In Dana et al. (2006), dictators were given the option exit (avoid) a $10

dictator game and receive $9, a option that leaves the receiver with nothing. Since a payoff of $9 (and

$10) can be achieved by going through with the dictator game, exiting is interpreted as a costly effort

to avoid the dictator game. 28% of the subjects chose to exit. When the game is conducted such that

the decision to exit or not is completely veiled from the receivers, only 4% chose to exit.

In a separate study, Dana et al. (2007) provides dictators a costless opportunity to find out how

much the receivers will receive from each of their two options, (6, 1) and (5, 5), before making a choice

(payoffs to themselves, the first number in each pair, are always displayed). 44% of dictators chose not

to find out, and among them 86% chose “(6, ?)” over “(5, ?)”. Only 47% of dictators chose to reveal the

payoffs and subsequently chose (5, 5) over (6, 6). In the baseline, in which all payoffs are displayed by

default, 74% of subject chose (5, 5) over (6, 6). Based on subjects’ apparent exploitation of this “moral

wiggle room”, the authors conclude that fair behavior is primarily motivated by the desire to appear

fair, either to themselves or to others.

In game theoretic settings, Rabin (1993)’s pioneering work introduced intention based reciprocity

through a notion of kindness. In their model, kindness is measured using the set of payoffs an opponent

could induce. A player’s kindness depends on how kind the opponent is, due to the desire to be fair,

and vice versa, leading to the solution concept term fairness equilibrium. Since kindness is measured

using the set of available actions, the Rabin (1993)’s model and FSPU share some conceptual similarity.

However, since FSPU is built on a decision theoretic framework, it is unable to capture the type of

reciprocity concerns depicted in Rabin (1993). The same argument separates FSPU from related

models in game theory.

To my knowledge, Cox et al. (2016) is the only other paper, with a decision theoretic setup, that

introduces a model to explain WARP violations of this kind. Unlike FSPU, they take endowment into

account, which allows for the study of giving versus taking. This is different to the approach in FSPU,

where only income distributions are relevant and endowments are not part of the primitive. Based
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on an intuition related to FSPU, Cox et al. (2016) uses moral reference points to explain changes in

dictator’s willingness to allocate, where a moral reference point more favorable to the dictator (and/or

less favorable to the receiver) results in allocating more to the dictator herself. However, unlike FSPU,

their reference points are not alternatives, but instead a vector of reference payoffs that depend on

multiple allocations within the feasible set as well as the endowment. Consequently, there are many

choice problems in which the addition of a more equitable alternative cannot result in choice reversal

in their model, since it does not affect the moral reference point, yet preference reversals as a result

of adding more equitable alternatives is precisely the behavioral tenet in FSPU.27 Although the two

models are different in many ways, they both seek to capture the increasingly evident intuition that

social preference depends on the set of feasible allocations, which results in WARP-violating behavior.

6 Conclusion

This paper presents a unified framework for ordered-reference dependence choice. The framework,

a reference-oriented weakening of standard postulates, is adaptable to suitably accommodate a wide

range of reference orders and reference effects. We demonstrate this universality by providing (axioma-

tized) utility representations in the context of risk, time, and social preference, where we use reference

dependent preferences to account for well-known behavioral anomalies. The resulting models are akin

to their standard counterparts, inheriting many of the standard models’ properties while explaining

non-conforming behavior through intuitive changes in specifications. This is possible primarily due to

the use of choice correspondences as primitive (instead of preference relations) along with the weaken-

ing of WARP. Together, they allow us to prescribe a new way of weakening standard postulates using

behavior in non-binary choice problems.

A natural question is the generality of this exercise—does every choice theoretic model have an

ordered-reference dependence version by simply having their axioms weakened using an adapted version

of Axiom 1? We are able to provide some answers to this question.

In Appendix A, we provide a sufficient condition for an arbitrary standard postulate to be ac-

commodated by our method. We call these standard postulates finite properties, they are axioms that

are satisfied whenever a violation fails to be substantiated with just finitely many observations. For

example, WARP is a finite property, since it is inherently a property between a pair (hence “finite”)
27For example, if a choice problem contains income distributions (0, 1) and (1, 0), then adding (x, x) for any x ∈ (0, 1)

will not change Cox et al. (2016)’s moral reference point, and their model demands compliance with WARP.
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of choices. To put it differently, if a choice correspondence fails WARP, a violation can be substanti-

ated with just two observations. A non-example is continuity, since a choice correspondence can fail

continuity whilst a violation can never be substantiated with finitely many observations. However, at

this level of generality, we are only able to achieve a result for ordered-reference dependent choice, and

not for ordered-reference dependent utility representations. We formalize and discuss this limitation

in Appendix A.

Appendix A: Unified Framework and Finite Properties

In this technical section, we state a companion result to Proposition 1 that allows for (i) either fully

or partially prescribing the reference order R and (ii) expanding the accommodated property from

WARP to a much larger class. For the latter, we call them finite properties, which we will now define.

Let X be an arbitrary set of alternatives, A the set of all finite and nonempty elements of 2X .

For any B ⊆ A, we call c : B → A, where c (A) ⊆ A for all A ∈ B, a choice correspondence. Let C be

the set of all choice correspondences one can possibly observe from X and A. Formally,

C := {c : B → A s.t. B ⊆ A} .

A property imposed on a choice correspondence can be viewed as a subset of C that is itself closed

under subset operations (where each choice correspondence, a member of C, is viewed as a set of

pairs). For instance, the set of all choice correspondences satisfying WARP form a collection of choice

correspondences defined by the WARP property. We use this notation to characterize an arbitrary

property, formally:

Definition 12. We call T ⊆ C a property if for all c, ĉ ∈ C such that ĉ ⊂ c, c ∈ T implies ĉ ∈ T .

We use “c satisfies T ” and “c ∈ T ” interchangeably.

In decision theoretic terms, what we call properties here are features of a choice correspondence

that are more likely satisfied when we have less observations (i.e. instead of observing c, we only

observe ĉ). For example, WARP (A ⊂ B and c (A)∩B 6= ∅ ⇒ c (A)∩B = c (B)) is a property defined

on a pair of a choice sets and their correspondencing choices. If the statement of WARP is satisfied

for some c : B → A, that is, all pairs of choice sets and their corresponding choices satisfy WARP, and

ĉ : B′ → A is where B′ ⊂ B and ĉ(B) = c (B), then the statement of WARP is also satisfied for ĉ.
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Fact. The intersection of properties is a property.28

Now, we consider a subset of all properties:

Definition 13. Let T be a property. We call T a finite property if for all c ∈ C, c /∈ T if and only

if there exists a finite set of choice sets A1, ..., An ∈ dom (c) such that ĉ : {A1, ..., An} → A, where

ĉ (B) = c (B), is not in T .

In words, a finite property is (defined as) a property in which non-compliance can be concluded

with finitely many observations (i.e. choices from finitely many choice sets). The majority of decision

theoretic axioms are finite properties.

Fact. When X is finite, any property is a finite property.29

When X is infinite, examples of finite properties include Convexity (either aαb ∈ c ({aαb, a})

or aαb ∈ c ({aαb, b})), Monotonicity (c ({a, b}) = {a} if a > b), Transitivity (a ∈ c ({a, b}) and

b ∈ c ({b, d}) implies a ∈ c ({a, d})), von Neumann-Morgenstern (vNM) Independence (p ∈ c ({p, q})

if and only if αp + (1− α) r ∈ c ({αp+ (1− α) r, αq + (1− α) r})), Betweenness, Stationarity, and

Separability, to name a few.

Non-examples of finite properties (that are nonetheless properties) include various versions of

continuity (e.g., xn ∈ c (An), xn → x, An → A implies x ∈ c (A)) and infinite acyclicity (ai ∈

c ({ai, ai+1}) for i = 1, 2, ..., σ, where σ is an ordinal number, implies a1 ∈ c ({a1, aσ})). Usually,

the determination of whether a property is a finite property is immediate when a property is defined

algorithmically (as in the axioms in this paragraph) as opposed to defined as an arbitrary subset of

C.30

Fact. The intersection of finite properties is a finite property.31

28To see this: Consider any c ∈ C such that c ∈ T1 ∩ T2. So c ∈ T1, T2. And since T1, T2 are properties, we have
ĉ ∈ T1, T2, and hence ĉ ∈ T1 ∩ T2, for all ĉ ∈ C and ĉ ⊂ c.

29To see this: Fix any c. Sufficiency is a direct result of the definition of a property. Necessity is also straightforward:
Let A1, ..., An = dom (c), then ĉ = c, so c /∈ T completes the proof.

30The empirical falsifiability of a property (that with finitely many observations the property can be falsified) is not
sufficient to establish that it is a finite property. Consider the combination of WARP and continuity, there is no reason
why this cannot be defined as a single property. It is empirically falsifiable, since WARP needs only two observations
to falsify. Yet in the absence of a violation of WARP, a choice correspondence can very well violate the continuity
portion, rendering the property unsatisfied but not falsified with finitely many observations. Conversely, if a property is
empirically non-falsifiable, then it is a finite property if and only if it is always trivially satisfied.

31To see this: Suppose T1 and T2 are both finite properties, T1 ∩T2 is a property. We check Definition 13 that T1 ∩T2
is a finite property. Fix any c ∈ C. Suppose c /∈ T1 ∩ T2. Then without loss of generality say c /∈ T1, take the choice sets
A1, ..., An ∈ dom (c) such that ĉ : {A1, ..., An} → A, where ĉ (B) = c (B). Since ĉ /∈ T1, so ĉ /∈ T1 ∩ T2, and the rest is
straightfoward. Now suppose there exist A1, ..., An ∈ dom (c) such that ĉ : {A1, ..., An} → A, where ĉ (B) = c (B), is
not in T1 ∩ T2. Without loss of generality say ĉ /∈ T1, so c /∈ T1, so c /∈ T1 ∩ T2.
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For instance, let T1 be the subset of all choice correspondences that satisfy WARP and T2 the

subset of all choice correspondences that satisfy vNM Independence. These are both finite properties.

We can define “WARP and vNM Independence” as a single finite property T1∩T2. It characterizes the

set of all choice correspondences that satisfies both WARP and Independence.

Fact. The intersection of finite properties and properties that are not finite properties may or may not

be finite properties.32

Let Ψ : A → A be a correspondence with Ψ (A) ⊆ A such that a ∈ B ⊂ A and a ∈ Ψ (A) implies

a ∈ Ψ (B).

Definition. We say that a linear order (R,X) is Ψ-consistent if y ∈ A\Ψ (A) implies xRy for some

x ∈ Ψ (A).

Lemma 2. Consider a choice correspondence c : A → A, a finite property T , and a correspondence

Ψ. The following are equivalent:

1. For every finite A ∈ A, there exists x ∈ Ψ (A) such that the choice correspondence c̃ :

{B : B ⊂ A and x ∈ B} → A, where c̃ (B) = c (B), is in T .

2. There exists a complete, transitive, antisymmetric, and Ψ-consistent binary relation (R,X) such

that for all x ∈ X, the choice correspondence c̃ :

{
B : arg max

y∈B
R = x

}
→ A, where c̃ (B) = c (B),

is in T .

First, consider the case in which Ψ (A) := id (A) = A. The first condition in Lemma 2 is satisfied

when, for each choice problem, an alternative serves as an anchor that guarantees compliance with

finite property T among choices from subsets of the choice problem containing this anchor. Like before,

this anchor is a potential reference alternative with which desirable properties of c hold. When Ψ is

not the identity function, we are demanding that at least one alternative in a restricted set of each

choice problem (restricted according to Ψ) is a potential reference alternative.

This lemma is the backbone of the models in Section 3, Section 4, and Section 5. For now, we

present a simple demonstration. Consider again the wine example, but now the set of all alternatives

X contains multiple entries of the same wine at different prices. Each alternative is hence a wine-price
32We provide examples. Take X = [0, 1]. The intersection of WARP and Continuity is clearly not a finite property,

since WARP can hold whereas Continuity will (trivially) hold for any set of choices from finitely many choice sets, but
fails to hold in general. The intersection of Monotonicity (that x > y ⇔ y /∈ c (A) for all A 3 x, y) and Continuity, on
the other hand, is a finite property; essentially, Monotonicity is so strong that Continuity holds whenever Monotonicity
does, and since Monotonicity is a finite property (in fact, it is one where a violation can be detected with just the choice
from one choice set), their intersection is a finite property.
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pair (x, p). Like before, a decision maker was seen choosing a more expensive wine over a cheaper

one, but sometimes the reverse (at the exact same prices). The economist postulates that for each

choice problem, it is either the cheapest or the most expensive wine that the consumer’s underlying

preference depends on. Given this postulate, let Ψ (A) be the set of cheapest and most expensive

wine-price pairs in A. Furthermore, in addition to WARP, the economist would like to postulate that

for a fixed reference, if the decision maker chooses wine x at price p over wine y at price q, then he

would also choose wine x at price p over wine y at price q′ > q; we will call this property “Money is

Good”. This is an example of a finite property on c.

Lemma 2 establishes that, for a choice correspondence that satisfies these postulates, a reference

order (R,X) can be built such that WARP and Money is Good are satisfied among choice sets that

share the same R−maximal element. Furthermore, for any three wine-price pairs, the intermediate-in-

price option is either reference dominated by the more expensive option, the cheaper option, or both.

A prediction follows: If a wine-price pair (x, p) reference dominates another wine-price pair (y, q), then

all wine-price pairs (z, s) such that s ∈ [min {p, q} ,max {p, q}] are reference dominated by (x, p). That

is, even if the economist hasn’t fully pinned down this partially subjective R, she can conclude that

among choice sets that contain (x, p) and (z, s), where s is between p and q, choices satisfy WARP

and Money is Good.

If instead the economist makes the weaker postulate that some reference alternative exists (i.e.,

Ψ = id), then no structure on R can be guaranteed (other than it is a linear order). Conversely, if the

economist makes the stronger postulate that the cheapest wine is exactly the reference alternative, then

for any two wine-price pairs, the cheaper option reference dominates the other. This demonstrates the

flexibility Ψ provides in the trade-off between explanation and prediction. If Ψ (A) is a very restrictive

set, such as a singleton, then the model is easy to test and provides strong predictions. If Ψ (A) is very

nonrestrictive, such as Ψ (A) = A, then the model is harder to test but accommodates more behavior.

To summarize, we expanded the result of 1 to include (i) how properties of R can be axiomati-

cally introduced and (ii) what kind of properties, beyond WARP, of a choice correspondence, can be

accommodated in this unified framework of ordered-reference dependent choice. Both are crucial for

our specialized models.

Lemma 2 falls short of achieving a utility representation. Indeed, the underlying difficulty is re-

lated to the literature on limited datasets, in which one observes choices from a strict subset of all

choice problems. de Clippel & Rozen (2014) points out that, in this case, even if observed choices
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are consistent with behavioral postulates, it need not be sufficient for a corresponding utility repre-

sentation. In our case, even though we started with an exhaustive dataset (c : A → A), we have

effectively created a partition such that each part contains only a subset of all choice problems. Nev-

ertheless, as demonstrated in Section 3, ordered-reference dependent expected utility can be achieved

with normative restrictions on Ψ.

Appendix B: Additional Materials

ORDU vs other non-WARP models

To simplify notation, we use “{a, b, c}” for c ({a, b, c}) = {a}.

In Ok et al. (2015)’s ( endogeneous) reference dependent choice, the decision maker maximizes

a single utility function, but only chooses from alternatives that are better than the reference in all

(endogenously given) attributes. Consider the following choices accommodated by their model but not

ORDU.33

{a, b, c, d} {a, b, d} {a, c, d}

An interpretation by Ok et al. (2015) is that a gives the highest utility but a decoy d blocks the

choice of a from {a, b, d} and {a, c, d}, the attraction effect. Yet their model does not require the

decoy to function for {a, b, c, d}. On the contrary, ORDU requires that one of the reference points of

{a, b, d} and {a, c, d} is the reference of {a, b, c, d}, a consequence of the reference order that excludes

this behavior from ORDU. Finally, an intransitive choice correspondence {a, b} , {b, c} , {c, a} may be

explained by ORDU, but is never accommodated by Ok et al. (2015). Hence the two models are not

nested.

Kőszegi & Rabin (2006)’s reference-dependent preferences is another related model. In personal

equilibrium (PE), decision makers has a joint utility function v : X ×X → R and chooses PE (A) =

{x : v (x|x) ≥ v (y|x) ∀y ∈ A}; that is, the choice maximizes a reference-dependent utility function,

and the reference point is itself the eventually chosen alternative. This permits the type of behavior
33The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d}

Using an Ok et al. (2015) specification where u (a) > u (b) > u (c) > u (d). r ({a, b, d}) = r ({a, c, d}) = r ({b, d}) =
r ({c, d}) = d, r (A) = � otherwise, and U = {U} where U (b) > U (c) > U (d) > U (a).
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where x is not chosen in a set but is chosen in the subset—when the alternatives x fails to beat are

removed. While ORDU also allows for x ∈ c (B) \c (A) where B ⊂ A, it does so with two implications:

(i) an alternative y ∈ A\B must had been the reference point of A and so (ii) for some y ∈ A\B,

choices are consistent between c (A) and c (T ) for all T ⊂ A that contains y. Consider the following

example.

{a, b, c, d} {a, b, c} {a, d}

Since c ({a, b, c, d}) and c ({a, b, c}) does not come from standard utility maximization, the reference

of {a, b, c} is d, and so c ({a, b, c, d}) and c ({a, d}) must maximize the same utility function. But this

is not the case either, so this choice pattern is incompatible with ORDU. It is, however, compatible

with PE.34An immediate implication PE is: x ∈ c (A) and x ∈ B ⊂ A, then x ∈ c (B). A simple

intransitive choice pattern {a, b} , {b, c} , {c, a}, admissible by ORDU, concludes that the two models

are not nested.

Manzini & Mariotti (2007) proposes a non-WARP model without a reference point interpretation.

In rational shortlist method (RSM), decision makers are endowed with two asymmetric relations P1

and P2. Facing a choice problem A, she first creates a shortlist by eliminating inferior alternatives

according to P1 (eliminate x if yP1x for some y ∈ A), and then choose from this shortlist according

to P2. WARP violation appears when an alternative x is eliminated in a set S, but not in the subset

T ⊂ S, where it subsequently chosen over the best alternative of S. An example of this behavior is

displayed by the first of the following choices.

{a, b, c, d} {a, b, d} {b, c, d} {b, c}

For ORDU to reconcile, c must be deemed the reference of {a, b, c, d}, but then choices from {b, c, d}

and {b, c} must comply with standard utility maximization. Since this is not the case, ORDU does

not nest RSM.35 While ORDU is constrained by fixed reference points, the model is more flexible than
34The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d}

Gul et al. (2006) shows that PE is equivalent to choices maximizing a complete (but not necessarily transitive) preference
relation. This choice correspondence is explained by a ∼ b, a � c a ∼ d, b ∼ c, d � b, c � d.

35The complete choice correspondence is

{a, b, c, d} {a, b, c} {b, c, d} {a, c, d} {a, b, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} ,

induced by (aP1b, aP1c, cP1d, dP1b) and (aP2b, aP2c, dP2a, bP2c, dP2b, cP2d).
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RSM when reference points do change, since no restriction is put on the new utility function. RSM,

however, cannot accommodate a choice that makes the shortlists in a small and large set but not an

intermediate one. The result is the following behavior accommodated by ORDU but not RSM.36

{a, b, c, d} {a, b, d} {a, b}

We conclude that ORDU and RSM are not nested.

Last, we compare ORDU to Masatlioglu et al. (2012)’s choice with limited attention (CLA). A

decision maker has a complete and transitive ranking �CLA of alternatives and an attention filter

that limits choices to a subset of each choice problems, the “consideration set”. When another choice

problem is derived by removing choices not in the consideration set, the consideration set remains the

same. Although a single ranking is used (as opposed to ORDU’s many utility functions), flexibility in

constructing consideration sets easily allows for behavior not accommodated by ORDU.

{a, b, c} {a, b} {b, c} {a, c}

CLA is provided under the framework of choice functions (no indifference), and with that restriction

ORDU is nested by CLA.37However, the two models make different predictions under a comparable

setup. For the analysis, we modify CLA by allowing for indifferences in the ranking of alternatives (re-

placing �CLA with %CLA), but preserve in entirety the attention filter / consideration set component.

The following behavior is accommodated by ORDU but not CLA.38

{a, b, c, d} {a, b, c} {b, c}

When indifferences are allowed, the single ranking limitation of CLA becomes the bottleneck in ex-

plaining behavior. The two models are hence not nested under comparable setups.
36The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} .

This is explained by the ORDU specification: bRaRcRd, ui (a) > ui (b) > ui (c) > ui (d) when i ∈ {a, b, d}, and
uc (b) > uc (a) > uc (c) > uc (d).

37Consider any choice function c that admits an ORDU representation, define CLA’s parameters as follows: attention
filter Γ (A) :=

{
min (A,R) , arg maxx∈A umin(A,R) (x)

}
(singleton if min (A,R) = arg maxx∈A umin(A,R) (x)) and CLA’s

preference x � y if xRy.
38The complete choice correspondence is

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b}
{a, c} {a, d} {b, c} {b, d} {c, d} .

This is explained by the ORDU specification: cRbRaRd, ud (a) = ud (b) > ud (c) > ud (d), ua (b) = ua (c) >
ua (a), ub (b) > ub (c). Now we show non-compliance with CLA (with the indifference extension): Since a ∈
c ({a, b, c, d}) \c ({a, b, c}), CLA reconciles this by setting the consideration sets Γ ({a, b, c, d}) = {a, b, d} and
Γ ({a, b, c}) = {b, c}, so a is not considered in the smaller set. However, the property of consideration sets then re-
quires Γ ({b, c}) = {b, c}, and {a, c}
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Appendix C: Proofs

Proof of Lemma 2

Lemma 3. Let Z be a set, and Z be the set of all finite and nonempty subsets of Z. LetR be a self

map on Z, R (S) ⊆ S, such that

(i) For all S ∈ Z, R (S) 6= {∅}, and

(ii) α - for all T, S ∈ Z, x ∈ T ⊆ S, if x ∈ R (S), then x ∈ R (T ).

Then, there exist R∗ ⊆ R such that

(i) For all S ∈ Z, R∗ (S) 6= {∅},

(ii) α - for all T, S ∈ Z, x ∈ Z such that x ∈ T ⊆ S, if x ∈ R∗ (S), then x ∈ R∗ (T ), and

(iii) β - for all T, S ∈ Z, x, y ∈ Z such that x, y ∈ T ⊆ S, if x ∈ R∗ (T ) and y ∈ R∗ (S), then

x ∈ R∗ (S).

Proof. We prove by construction.

1. We say R′ ⊆ R if R′ (S) ⊆ R (S) ∀S ∈ Z. Assume and invoke Zermelo’s theorem to well-order

the set of all doubletons in the domain of R (there may be uncountable many of them, hence

Zermelo’s theorem). Now we start the transfinite recursion using this order.

2. In the zero case, we have R0 = R. This correspondence satisfies α and is nonempty-valued.

Suppose Rσ satisfies α and is nonempty-valued.

3. For the successor ordinal σ+1, we take the corresponding doubleton Bσ+1 and take x ∈ Bσ+1 such

that ∀S ⊃ Bσ+1, R (S) \ {x} 6= ∅. Suppose such an x does not exist, then for both x, y ∈ Bσ+1,

there are Sx ⊃ Bσ+1 and Sy ⊃ Bσ+1 such that Rσ (Sx) = {x} and Rσ (Sy) = {y} since Rσ is

nonempty-valued. Consider Sx ∪ Sy ∈ Z. Since Rσ is nonempty-valued, Rσ (Sx ∪ Sy) 6= ∅. But

since Rσ satisfies α, it must be that Rσ (Sx ∪ Sy) ⊆ Rσ (Sx) ∪ Rσ (Sy), hence Rσ (Sx ∪ Sy) ⊆

{x, y}. Suppose without loss x ∈ Rσ (Sx ∪ Sy), then due to α again and that x ∈ Bσ+1 ⊂

Sy, it must be that x ∈ Rσ (Sy), which contradicts Rσ (Sy) = {y}. (That is, we showed

that with nonempty-valuedness and α, no two elements can each have a unique appearance in

the R(·)-image of a set containing those two elements.) Hence, ∃x ∈ Bσ+1 such that ∀S ⊃

Bσ+1, R (S) \ {x} 6= ∅. Define Rσ+1 from Rσ in the following way: ∀S ⊃ Bσ+1, Rσ+1 (S) :=
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Rσ (S) \ {x}. Note: (i) Since x is deleted from Rσ (T ) only if it is also deleted (if it is in it at

all) from Rσ (S) ∀S ⊃ T , we are preserving α, and (ii) since x is never the unique element in

Rσ (S) ∀S ⊃ Bσ+1, we preserve nonempty-valuedness.

4. For a limit ordinal λ, define Rλ = ∩σ<λRσ. Note that since Rσ′ ⊂ Rσ′′ ∀σ′ > σ′′, ∩σ≤σ̄ =

Rσ̄. Furthermore, for any σ < λ, Rσ is constructed such that α and nonempty-valuedness are

preserved. Hence Rλ satisfies α and is nonempty-valued.

5. Note that this process terminates when all the doubletons have been visited, for we would

otherwise have constructed an injection from the class of all ordinals to the set of all doubletons

in Z, which is impossible.

6. Finally, we check that |Rλ (S) | = 1 for all S ∈ Z, hence β is satisfied trivially. Suppose it is not

a function, hence ∃S ∈ Z such that x, y ∈ Rλ (S). Then by α we have that x, y ∈ Rλ ({x, y}),

which is not possible as the recursion process has visited it and deleted something fromR ({x, y}).

7. Set Rλ = R∗.

We state the following observation. Let c : A → A be a choice correspondence. Recall

that A is the set of all finite and nonempty subsets of X. For S ⊆ Y and x ∈ S, define

AxS := {A ⊆ S : A ∈ A and x ∈ A}. We use the notation (c,AxA) to denote the choice correspon-

dence c̃ : AxA → A where c̃ (B) = c (B). In other words, (c,AxA) is a subset of c where the domain is

restricted to AxA– the set of all subsets of A containing x.

Remark 2. Let c : A → A be a choice correspondence and T a finite property as defined in Definition 13.

Define Γ (S) := {x ∈ S : (c,AxA) ∈ T }.

1. If y ∈ Γ (A), then y ∈ Γ (B) whenever B ⊂ A.

2. If y ∈ Γ (A) for all finite A ⊆ D, then y ∈ Γ (D).

We call x a reference alternative for S if x ∈ Γ (S). Remark 2 states that if x is a reference

alternative for some choice problem A, i.e., (c,AxA) ∈ T , then x is also a reference alternative for

B ⊆ A. This is an immediate consequence of the definition of a property (and the fact that AxB ⊆ AxA

whenever B ⊆ A). In words, if a violation is undetected with more observations, then it cannot be

detected with less. Furthermore, if x is a reference alternative for all finite subsets of an arbitrary set
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of alternatives D, then x is also a reference alternative for D; this, is due to T being a finite property.

Otherwise, take a finite set of choice problems S = A1, ..., An, each of which a subset of D containing

x, such that a finite property is violated, i.e., c̃ : S → A, where c̃ (B) = c (B), is not in T . Since this

is a finite tuple of finite choice problems, consider the finite set A := ∪iAi. Clearly, x /∈ Γ (A), but A

is a finite subset of D, hence a contradiction. Intuitively, if x is not a reference alternative for some

arbitrary set of alternatives D, then violation of a finite property would have been detected in a finite

subset of D, rendering x not a reference alternative for some choice problem A ⊆ D.

Now, let R′ : A → A∪{∅} be a set valued function that picks out, for each choice problem A ∈ A,

the set of all reference alternatives R′ (A) ⊆ A; formally, R′ (A) := {x ∈ S : (c,AxA) ∈ T } . Since T

is a finite property, by Remark 2, R′ satisfies property α (as defined in Lemma 3). Furthermore, the

hypothesis in Lemma 2 gives that R′ (A)∩Ψ (A) is nonempty for all A ∈ A. Finally, define R : A → A

by R (A) := R′ (A) ∩Ψ (A). Since both R′ (A) and Ψ (A) satisfy property α, R (A) satisfies property

α.

Putting our R through Lemma 3, we get a set-valued function R∗ : A → A that is now a singleton

everywhere (i.e., |R∗ (A) | = 1 for all A ∈ A). Furthermore, this function satisfies property α, and

satisfies property β trivially. With this, we build the order (R, Y ) by setting xRy if {x} = R∗ ({x, y}),

and xRx. The result is a complete, transitive, and antisymmetric binary relation.

Lemma 4. For an (R, Y ) constructed according to the the aforementioned procedure, y ∈ A\Ψ (A) ⇒

xRy for some x ∈ Ψ (A) (i.e. R is Ψ-consistent).

Proof. Suppose not, say y ∈ A\Ψ (A) but yRx for all x ∈ Ψ (A). Consider {{x, y} : x ∈ Ψ (A)}.

Since this is a finite set of doubletons, suppose without loss of generality {x∗, y} is the last one (in

{{x, y} : x ∈ Ψ (A)}) visited by the procedure in Lemma 3, and denote the step corresponding to {x∗, y}

by the ordinal σ{x∗,y}. Since yRx for all x ∈ Ψ (A) such that x 6= x∗, Rσ{x∗,y} (A)∩Ψ (A) = {x∗}. Since

Rσ ⊆ R0 := R′∩Ψ for all σ, Rσ{x∗,y} (A) = {x∗}. Hence x∗ uniquely appears in the image of Rσ{x∗,y}

evaluated at some superset of {x∗, y}, and the recursion procedure sets, ultimately,R∗ ({x∗, y}) = {x∗}.

But this implies x∗Ry, a contradiction.

Finally, consider the set R↓ (x) := {y ∈ X : xRy}. This is a set of alternatives that are, according

to our binary relation R, reference dominated by x. For any finite subset A ⊆ R↓ (x) such that x ∈ A,

we have x∈ R∗ (A) ⊆ R (A) ⊆ R′ (A), which by definition implies x is a reference alternative of A.

Using point 2 in Remark 2, we conclude that x is reference alternative for R↓ (x), which need not be
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finite.

To summarize, we have effectively created a partition of A where the parts are characterized by{
AxR↓(x)

}
x∈X

. To see this, take any A ∈ A, since R is a linear order, there is a unique z ∈ A such

that zRy for all y ∈ A, and so A ∈ AzR↓(z) and A /∈ Ay
R↓(y)

for any y 6= z. Furthermore for each part

AxR↓(x),
(
c,AxR↓(x)

)
is in T . Since

{
B ∈ A : arg max

y∈B
R = z

}
is simply AzR↓(z), the proof is complete.

Proof of Proposition 1, Part 1 (without the use of Lemma 2)

Suppose X is finite. We provide an independent proof that a choice correspondence c that satisfies

RD (Axiom 1) has an ORDU representation.

1. Let Γ (A) be the set of reference alternatives for A. We create a list of alternatives in the following

way; list Γ (X) with an arbitrary order. Since X\Γ (X) is again finite, list Γ (X\Γ (X)) with an

arbitrary order; and continue until all x ∈ X are listed. Finally, let ix denote the position of x

in the list. For any x, y ∈ X, construct xRy if ix > iy and xRx.

2. We now construct %x for each x ∈ X. Consider the set R↓ (x) := {y : xRy}. Consider c on

AxR↓(x) :=
{
A ⊆ R↓ (x) ∩ A : x ∈ A

}
, which by construction satisfies WARP.

3. First we set x %x x for all x ∈ X.

4. Using the doubletons in AxR↓(x), all of which would contain x, we set, for all y ∈ R↓ (x), either

y %x x, or x %x y, or both, according to c ({x, y}).

5. Now for all y1, y2 %x x, we set either y1 %x y2, or y2 %x y1, or both, according to c ({x, y1, y2}),

using tripletons in AxR↓(x). Due to WARP (of c on AxR↓(x)), %x is now complete on the set

Px := {y : y %x x}, which we call the prediction set of x, containing alternatives that are both

reference dominated by x (i.e. xRy) and are weakly better than x in binary comparison (i.e.

y ∈ c ({y, x})).

6. Now consider X\Px = {y : yRx or x �x y}. We set y1 ∼x y2 for all y1, y2 ∈ X\Px, and y1 �x y2

for all y1 ∈ Px, y2 ∈ X\Px. Our constructed %x is now complete (on X).39

Using quadrupletons in AxR↓(x), we show that %x constructed above is transitive: Suppose y1 %x y2

and y2 %x y3, and that y1, y2, y3 ∈ Px (if any of them is in X\Px then the argument is straightforward

by ∼x), hence y1 ∈ c ({x, y1, y2}) and y2 ∈ c ({x, y2, y3}). Furthermore, since y1, y2, y3 ∈ Px, we have
39That is, for any y1, y2 ∈ X, either y1 %x y2, or y2 %x y1, or both.
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{x, y1, y2, y3} ∈ AxR↓(x), and c on AxR↓(x) satisfies WARP implies y1 ∈ c ({x, y1, y2, y3}), and hence

y1 ∈ c ({x, y1, y3}), which implies y1 %x y3.

Finally, we show that (R,X) and {(%x, X)}x∈X explain c. Take any A ∈ A, since A is finite, and

R is antisymmetric, there is a unique R−maximizer x ∈ A (i.e., xRy for all y ∈ A), hence A ⊆ R↓ (x).

Suppose for contradiction c (A) * {y ∈ A : y %x z ∀z ∈ A}; so for some a ∈ c (A), a′ �x a for some

a′ ∈ A. Then a /∈ c ({x, a′, a}). Since {x, a′, a} is a subset of A, and both choice problems are elements

of AxR↓(x), this is a violation of the statement c satisfies WARP on AxR↓(x) :=
{
A ⊆ R↓ (x) ∩ A : x ∈ A

}
,

hence a contradiction. Suppose for contradiction c (A) + {y ∈ A : y %x z ∀z ∈ A}, so for some a ∈ A,

a %x z for all z ∈ A, but a /∈ c (A). Take a′ ∈ c (A); since a %x a′, a ∈ c ({x, a′, a}). Since {x, a′, a}

is a subset of A, and both choice problems are elements of AxR↓(x), a contradiction of the statement c

satisfies WARP on AxR↓(x) is reached. Hence c (A) = {y ∈ A : y %x z ∀z ∈ A}.

It remains to show that for each alternative-indexed preference relation defined, we can construct

a utility function representing it. Since X is finite, and each %x is a complete and transitive preference

relation, this is standard.

Proof of Proposition 1, Part 2

We invoke Lemma 2 to prove the intermediary result that, if c satisfies Reference Dependence (Axiom 1)

and Continuity (Axiom 2), then there exists a linear order (R,X) and a set of complete preference

relations {(%x, X)}x∈X such that for all A ∈ A, we have c (A) =
{
y ∈ A : y %r(A) x∀x ∈ A

}
, where

r (A) = arg max
z∈A

R:

Using the notation in Subsection ??, define T as the property WARP. By Lemma 2, there exists

a Ψ-consistent linear order (R,X) such that c on
{
S ∈ A : arg max

z∈A
S = x

}
satisfies T for all x ∈

X. Notice that
{
S ∈ A : arg max

z∈A
S = x

}
= AxR↓(x), and so we conclude that for all T, S ∈ AxR↑(x),

c (S) ∩ T = c (T ) whenever T ⊂ S ⊆ A and c (S) ∩ T 6= ∅. We proceed to build {(%x, X)}x∈X using

the method outlines in the special case proof above, which gives us a complete and transitive %x for

all x, as well as c (A) =
{
y ∈ A : y %r(A) z ∀z ∈ A

}
where r (A) = arg max

x∈A
S := {x ∈ A : xRy ∀y ∈ A}.

It remains to show that for each alternative-indexed preference relation defined, we can construct

a utility function representing it. [To be completed, but essentially just Efe Ok Order 9 Pg 18]
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Proof of Proposition 2

Remark. (Notational) Currently, this older version of the proof reverses, without loss, the order R.

That is, r (A) = arg min
p∈A

R as opposed to arg max . The proof remains valid, and readers are advised to

simply, at the very end, “reverse” the order R constructed here.

We define ∆ (X) as a |X| − 1 dimensional simplex, as is conventional, and hence full-dimensional

means |X|−1 dimensional. First, we split r ∈ ∆ (X) into two groups, E = {r ∈ ∆ (X) : r = (δb)
α

(δw)},

and I = ∆ (X) \E, the “exterior” and “interior” sets. Set Ψ (A) = A\Φ (A), it is easy to check that

a ∈ Ψ (B) if a ∈ B ⊆ A and a ∈ Ψ (A). Applying Lemma 2, we get a linear order (R,∆ (X)) that

gives a partition of A,
{
ArR↑(r)

}
r∈∆X

, such that c on ArR↑(r) satisfies WARP and Independence for

all r ∈ ∆ (X). Furthermore, since R is Ψ-consistent, or min (A,R) ∈ A\Φ (A), we have pRq for all

p ∈ Φ ({p, q}).

Lemma 5. For r ∈ I and any open ball Br around r, Br ∩R↑ (r) contains a full-dimensional convex

subset of ∆ (X).

Proof. Take r ∈ I. By definition, r (x) 6= 0 for some x 6= b, w (r (x) is the probability that lottery r

gives prize x). Consider all mean-preserving spread of r, MPS (r) ⊆ ∆A, this is a |X−2| dimensional

convex set. Since q ∈MPS (r) implies q ∈ Φ ({r, p}), we have that qRr and hence MPS (r) ⊆ R↑ (r).

Consider the set S (r) := ∪q∈MPS(r)∪{r} {e ∈ ∆X : e is an extreme spread of q}, this is an interval on

the line connecting δb and δw. Consider the convex hull C (r) := conv (MPS (r) ∪ S (r) ∪ {r}). Clearly,

C (r) is a convex set. Furthermore, since S (r) is not contained in MPS (r) ∪ {r} (otherwise lotteries

in S has the same mean, but this is not possible), C (r) is full dimensional. Since e ∈ S (r) only if e

is an extreme spread of q for some q ∈ MPS (r) ∪ {r} ⊆ R↑ (r), and e ∈ Φ ({e, q}), we have eRqRr,

hence S (r) ⊆ R↑ (r). Finally, for p ∈ C (r) \ (MPS (r) ∪ S (r) ∪ {r}), it must be that p = eαq for

some q ∈ MPS (r) ∪ {r} and e an extreme spread of q, hence again p ∈ Φ ({p, q}), so pRqRr, so

C (r) ⊆ R↑ (r). Since Br is also a full-dimensional and convex set, Br ∩ C (r) is a full-dimensional

convex set in Br ∩R↑ (r).

Define for each r ∈ ∆X the strict prediction set P+
r :=

{
p ∈ R↑ (r) : r /∈ c ({p, r})

}
. There are

lotteries that are both reference dominated by r and is chosen over r in a binary decision.

Lemma 6. For r ∈ I, P+
r contains a full-dimensional convex subset of ∆ (X).

Proof. Take r ∈ I. Suppose for contradiction r ∈ c ({e, r}) for all e an extreme spread of r; then

since the lottery (δw)
r(w)

(δb) is in the closure of the extreme spread of r, continuity of c implies
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r ∈ c
({
r, (δw)

r(w)
(δb)

})
, which is a violation of FOSD. Hence there is an extreme spread of r, e,

such that r /∈ c ({r, e}). Since rαe ∈ R↑ (r) and c on ArR↑(r) satisfies Independence, we can find

p := rαe ∈ P+
r where α ∈ (0, 1), hence p ∈ I. By continuity of c, there exists an open ball Bp around

p such that r /∈ c ({r, q}) for all q ∈ Bp. By Lemma 5, Bp ∩ R↑ (p) contains a full-dimensional convex

subset of ∆ (X). Since pRr, Bp ∩ R↑ (p) ⊆ Bp ∩ R↑ (r), hence P+
r contains a full-dimensional convex

subset of ∆ (X).

Immediately, this implies that for r ∈ I, we can build an increasing ur : X → R, unique up

to an affine transformation, such that c (A) = arg maxp∈A Epur (x) if A ∈ ArR↑(r). The technique is

standard. Let P be a full-dimensional convex subset of P+
r . First, notice that for all p, q ∈ P, we have

{r, p, q} ∈ ArR↑(r) and r /∈ c ({r, p, q}). Recall that c on ArR↑(r) satisfies WARP and Independence.

By define p %r q if p ∈ c ({r, p, q}), we get a binary relation (%r,P) that is complete, transitive,

continuous, and satisfies independence. Since P is full-dimensional and convex, it contains a subset

that is essentially a linear transformation of a |X| − 1 dimensional simplex. Since (%r,P) satisfies

FOSD, an increasing utility function ur : X → R, unique up to an affine transformation, such that

c (A) = arg maxp∈A Epur (x) for all A ∈ ArP. We normalize this function to ur : X → [0, 1], where

ur (w) = 0 and ub (b) = 1.

We now show that this utility function works for ArR↑(r). First, for any two lotteries p, q ∈ ∆X,

there exist p′, q′ ∈ P such that p′ = (p)
α
s and q′ = (q)

α
s for some s ∈ ∆X and α ∈ [0, 1]; we call

p′, q′ P-common mixtures of p, q. This can be done by using an arbitrary point s ∈ int (P) and take α

small enough until both p′ and q′ enter P. Take any p ∈ R↑ (r) and let r′, p′ be P-common mixtures of

r, p. Since c on ArR↑(r) satisfies Independence, i′ ∈ c ({r, r′, p′}) if and only if i ∈ c ({r, p}), for i = r, p.

Now take any p, q ∈ R↑ (r) such that p ∈ c ({r, p}) and q ∈ c ({r, q}), then again by Independence on

ArR↑(r), p
′ ∈ c ({r, p′, q′}) if and only if p ∈ c ({r, p, q}), where p′, q′ are P-common mixtures of p, q.

We have thus shown that c ({r, p}) = arg maxs∈{r,p} Esur (x) for all {r, p} ∈ ArR↑(r) and

c ({r, p, q}) = arg maxs∈{r,p,q} Esur (x) for all {r, p, q} ∈ ArR↑(r) where p ∈ c ({r, p}) and q ∈ c ({r, q}).

Since c on ArR↑(r) satisfies WARP, showing c (A) = arg maxp∈A Epur (x) for all A ∈ ArR↑(r) is straight-

forward from here.

Corollary 1. For r ∈ ∆ (X) and p ∈ R↑ (r) ∩ I such that r /∈ c ({r, p}), there exists q ∈ R↑ (r) ∩ I

such that {q} = c ({r, p, q}). Furthermore, P+p
r :=

{
q ∈ R↑ (r) : {q} = c ({r, p, q})

}
contains a full-

dimensional convex subset of ∆ (X).
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Proof. The proof utilizes techniques in the proofs of 5 and 6. First, we show the existence of q ∈

R↑ (r)∩I such that {q} = c ({r, p, q}). Consider the set of extreme spread of of p, we know that this set

is a subset of R↑ (p), and is hence a subset of R↑ (r). Notice that r /∈ c ({r, p, e}) for any extreme spread

e of p since c on ArR↑(r) satisfies WARP and r /∈ c ({r, p}). Using the technique in the proof of Lemma 6,

it must be that for some extreme spread e∗ of p, we have p /∈ c ({r, p, e∗}), otherwise by continuity of c we

have p ∈ c
({
r, p, (δw)

p(w)
(δb)

})
, a violation of FOSD. Take any non-trivial convex combination pαe∗,

this is in R↑ (p) ⊆ R↑ (r), in I, and {pαe∗} = c ({r, p, pαe∗}), so let q = pαe∗. Finally, by continuity

of c, take an open ball Bq such that q′ ∈ Bq implies {q′} = c ({r, p, q′}). By Lemma 5, Bq ∩ R↑ (q)

contains a full-dimensional convex subset of ∆ (X). Moreover, Bq ∩ R↑ (q) ⊆ Bq ∩ R↑ (r) ⊆P+p
r . So

P+p
r contains a full-dimensional convex subset of ∆ (X).

Lemma 7. Consider r1, r2 ∈ I and r2Rr1. Then ur1 = f ◦ ur2 for some concave and increasing

f : [0, 1]→ [0, 1].

Proof. This proof uses Axiom 4. Take any r1, r2 ∈ I such that r2Rr1. ur1 and ur2 are defined above,

let f̄ be defined on the utility numbers ur2 (x), x ∈ X, such that ur1 (x) = f̄ur2 (x). Since ur1 and

ur2 are strictly increasing, f̄ is strictly increasing in its domain. We show that for any x1, x2, x3 ∈ X

such that x1 < x2 < x3, we have f̄ (αu2 (x1) + (1− α)u2 (x3)) ≥ αf̄ (u2 (x1)) + (1− α) f̄ (u2 (x3)),

where αu2 (x1) + (1− α)u2 (x3) = u2 (x2). Suppose not, then for some β < α, we have

f̄ (αu2 (x1) + (1− α)u2 (x3)) < βf̄ (u2 (x1)) + (1− β) f̄ (u2 (x3)) < αf̄ (u2 (x1)) + (1− α) f̄ (u2 (x3)).

Consider lotteries δ = δx2 and p = (δx1)
β

(δx3). The previous equation shows that Eδur1 (x) <

Epur1 (x) and Eδur2 (x) > Epur2 (x). Let δ1, p1 be P-common mixtures of δ, p, where P here is a full-

dimensional convex subset of P+r2
r1 if r1 /∈ c ({r1, r2}), and of P+

r1 otherwise. Let δ2, p2 be P-common

mixtures of δ, p, where P here is a full-dimensional convex subset of P+
r2 . Since ur1 and ur2 are Bernoulli

utility functions for r1 and r2 respectively, we have {p1} = c ({r1, δ1, p1}) and {δ2} = c ({r2, δ2, p2}).

Notice that A := {r1, r2, δ1, δ2, p1, p2} ∈ Ar1
R↑(r1)

, so c (A) = arg maxq∈A Equr1 (x). We established

that Er1ur1 (x) < Ep1ur1 (x), Er2ur1 (x) < Ep1ur1 (x), and Eδiur1 (x) < Epiur1 (x) for i = 1, 2, so

c ({r1, r2, δ1, δ2, p1, p2}) ⊆ {p1, p2}. But this and {δ2} = c ({r2, δ2, p2}) violates Axiom 4. Finally, it

is straightforward that one can extend f̄ to a concave function f : [0, 1] → [0, 1] (for example, by

connecting the points with straight lines).

At this point we are almost done with proving the representation, less r ∈ E.
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Lemma 8. For r ∈ E and p ∈ R↑ (r), p 6= r, either p first order stochastically dominates r or the

converse.

Proof. Take r ∈ E and p ∈ R↑ (r), p 6= r. Let α = r (b), then r (w) = 1 − α. If p (b) < α and

p (w) < (1− α), then r is an extreme spread of p and rRp, so p /∈ R↑ (r). Furthermore, it is not

possible that p (b) ≥ α and p (w) ≥ (1− α) if p 6= r. Hence either p (b) ≥ α and p (w) ≤ (1− α) with

at least one strict inequality, or p (b) ≤ α and p (w) ≥ (1− α) with at least one strict inequality. If the

earlier, p FOSD r; if the later r FOSD p.

With this observation in mind, we construct ur for r ∈ E. Define E1 :={
r ∈ E : r /∈ c ({r, p}) for some p ∈ R↑ (r) ∩ I

}
. and E2 := E\E1. For r ∈ E1, P+

r contains a full-

dimensional convex subset of ∆ (X), and so we will build ur using the same method we used to build

ur for r ∈ I. We will construct ur for r ∈ E2 after the following result.

Corollary 2. Consider r1, r2 ∈ I∪E1 and r2Rr1. Then ur1 = f ◦ur2 for some concave and increasing

f : [0, 1]→ [0, 1].

Proof. Consider the proof in Lemma 7, but that when r2 ∈ E1, we simply let δ1, p1 be P-common

mixtures of δ, p, where P here is a full-dimensional convex subset of P+
r1 . Before, we let P here be a

full-dimensional convex subset of P+r2
r1 when r1 /∈ c ({r1, r2}), but now such subset need not exist as

r2 /∈ I. To compensate for this, since δ2, p2 ∈ P+
r2 implies that δ2, p2 FOSD r2 due to Lemma 8, we

replace the argument “Er2ur1 (x) < Ep1ur1 (x)” with “Er2ur1 (x) < Ep2ur1 (x)”. Everything else goes

through as in the proof in Lemma 7, giving us the desired result.

For r ∈ E2, given Lemma 8, any increasing utility function ur : X → [0, 1] will accomplish

c (A) = arg maxp∈A Epur (x) for all A ∈ ArR↑(r). With this freedom, we construct ur in the following

way. Consider for an increasing utility function up, the object ρp =
(
ρp2, ..., ρ

p
|X|−1

)
∈ (0, 1)

|X|−2 where

ρpi :=
up(xi)−up(xi−1)
up(xi+1)−up(xi−1) (that is, ρpi satisfies up (xi) = ρpi up (xi+1) + (1− ρpi )up (xi−1)). There is a one-

to-one relationship between up and ρρ. It is an algebraic exercise to show that up = f ◦ uq for some

concave and increasing f : [0, 1]→ [0, 1] if and only if ρpi ≥ ρqi for all i ∈ {2, ..., |X| − 1}. Take r ∈ E2

and define ρr :=
(

infp∈K (ρp2) , ..., infp∈K

(
ρp|X|−1

))
, where Kr := (I ∪ E2) ∩ {p : rRp} ⊆ ∆ (X), and

subsequently construct ur using ρr. It is easy to show that R being risk-consistent implies Kr is

nonempty for all r ∈ E2\ {δb, δw}, and so ur is defined other than when r ∈ {δb, δw}.

For the non-generic case where for some j ∈ {b, w} we have δj ∈ E2 and Kδj is not defined,

this implies pRδj for all p ∈ ∆ (X) \ {δb, δw}. Then, we define ρδji = 1
2 (1) + 1

2 supp∈∆X\{δb,δw} ρ
p
i
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for all i and construct uδj correspondingly. Utility functions indexed by such a δj and that by any

p ∈ ∆X\ {δj} now satisfy ρδji ≥ ρ
p
i , with equality when p also is a δj falling into this special case (there

are at most two of them, δb and δw).

We now show that for r1, r2 ∈ ∆ (X) where r2Rr1, we have ρr1 ≥ ρr2 . This is already shown for

any r1, r2 ∈ I ∪ E1 by Corollary 2. It also is shown for the special cases in the previous paragraph.

Henceforth we restrict attention to the remaining cases. Say r1 ∈ E2, r2 ∈ I ∪ E1, but ρr1i < ρr2i for

some i. Then infp∈Kr1 (ρpi ) < ρr2i , so ρpi < ρr2i for some p ∈ Kr1 . However, p ∈ Kr1 implies r2Rp since

R is transitive; since p ∈ I ∪ E2, this contradicts Corollary 2. Say r1 ∈ I ∪ E1, r2 ∈ E2, but ρr1i < ρr2i

for some i. Then ρr1i < infp∈Kr2 (ρpi ), so ρ
r1
i < ρpi for all p ∈ Kr2 . But r1 ∈ Kr2 , a contradiction.

Finally, for r1, r2 ∈ E2 and r2Rr1, either Kr1 = Kr2 or Kr1 ( Kr2 . If the earlier, it is immediately

that ρr1 = ρr2 . If the later, then ρr1i = infp∈Kr1 (ρpi ) ≤ infp∈Kr2 (ρpi ) = ρr2i for all i, as desired.

Thus, we have now shown that for any r1, r2 ∈ ∆ (X), ρr1 ≥ ρr2 whenever r2Rr1, or equivalently

ur1 = f ◦ ur2 for some concave and increasing f : [0, 1]→ [0, 1].

Proof of Proposition 4

Suppose c ({p, q}) = {p, q}. Without loss of generality, either arg max
R

{p, q, pαq} = p or

arg max
R

{p, q, pαq} = pαq. If the former, then arg max
R

{p, q} = arg max
R

{p, pαq} = p, hence the utility

functions used in the two choice problems c ({p, q}) and c ({p, pαq}) are both up. It is immediately

that, since pαq is a mixture of p and q, we have c ({p, pαq}) = {p, pαq}, and by Transitivity we have

c ({q, pαq}) = {q, pαq}.40 If the latter, then arg max
R

{pαq, q} = arg max
R

{p, pαq} = pαq. Suppose for

contradiction p /∈ c ({p, pαq}), then pαq /∈ c (pαq, q) since pαq is a mixture of p and q.41 But by Tran-

sitivity we would have c ({p, q}) = {q}, a contradiction. We have hence proved the second property of

Betweenness in Definition 6. The first property is immediate using this second property, Continuity,

and FOSD (the latter two are axioms/implications of AREU).

Proof of Proposition 4

We first prove point 2. Using Proposition 4, we know that indifference curves are linear and do not

intersect. Take an arbitrary indifference curve and consider two points p, q on it that lie in the in-

terior of the triangle. Let p′ and q′ be mean-preserving contractions of p and q such that the line
40Since

∑
x∈X p (x)up (x) =

∑
x∈X q (x)up (x) =

∑
x∈X [αp (x) + (1− α) q (x)]up (x).

41Since
∑
x∈X p (x)upαq (x) <

∑
x∈X [αp (x) + (1− α) q (x)]upαq (x) implies

∑
x∈X [αp (x) + (1− α) q (x)]upαq (x) <∑

x∈X q (x)upαq (x).
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\arg\max

Figure 6.1: Indifference curves fan out when AREU is combined with Transitivity and risk aversion
Proposition 4). Arrows correspond to direction of mean-preserving spread.

connecting p′, q′ is parallel to the line connecting p, q. Since p′, q′ are mean-preserving contractions,

min ({p, q} , R) R min ({p′, q′} , R), and so AREU posits that c ({p′, q′}) is explained by a more concave

utility function than the one used for c ({p, q}), corresponding to a weakly steeper indifference curve.

Figure 6.1 provides an illustration. Point 3 is proven analogously. The consequence of these unidirec-

tional fanning, along with continuity, rules out the possibility of c being both strictly risk averse and

strictly risk loving in this triangle, i.e., point 1 of the proposition.

Proof of Proposition 5

The proof for utility representation is three-fold. First, we show that with Axiom 6 and 7, for each

time r ∈ T , the set of all choice problems such that the earliest payment arrives at this time can be

explained by a nonempty set of Discounted Utility specifications, where an element of this set is (ũ, δ),

a utility function and a discount factor. Second, we show that at least one utility function u can be

supported for all r ∈ T , and set as δr as the corresponding discount factor supporting u for r; this

is the more involved part of the proof and uses Axiom 8. Lastly with Axiom 8 again, we show the

desired relationship between δr and δr′ for any two r, r′.

By Lemma 1 and Lemma 2, for any r ∈ T where r < t̄, c satisfies WARP and Stationarity over

S := {A ∈ A : Ψ (A) = (·, r)} (S is the collection of choice sets such that the soonest available payment

arrives at time r). Take ε > 0 such that r + ε < t̄. For each (x, r)
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Proof of Proposition 7

Fix c. First we show that with Axiom 10 and Axiom 9, for each equity ratio r ≤ 1, the set of all

choice problems where the greatest equity is r can be explained by the maximization of x+ vr (y) for

some unique vr : R+ → R. For each alternative (x, y) ∈ X, the revealed preference relation generated

from c : S → A, where S =
{
A ∈ A : r (A) = e(x,y) and (x, y) ∈ A

}
, satisfies acyclicity and does not

violate quasi-linearity. Combined with Continuity, acyclicity gives us a set of utility functions u(x,y) (·)

where for all A ∈ S, c (A) is the set of maximizers of u(x,y) (·) in A. With non-violation of quasi-

linearity, any admissible u(x,y) (·) must be a strictly increasing transformation of x+v(x,y) (y) for some

v(x,y) : R+ → R. Otherwise, since for any pair of income distributions {(x′, y′) , (x′′, y′′)} there are

infinitely many shifted copies {(x′ + a, y′) , (x′′ + a, y′′)} such that e(x′+a,y′), e(x′′+a,y′′) ≥ e(x,y) and

(x, y) /∈ c {(x, y) , (x+ a, y) , (x′ + a, y′)}, a violation of quasi-linearity must occur.

Fix an r, we now show that v(x,y) must coincide for all (x, y) where e(x,y) = r. Consider the

set of choice problems S= {A ∈ A : r (A) = r}. Note that c satisfies WARP and Quasi-linearity on

S. To see this, take any two choice problems A1, A2 in S. For each i = 1, 2, there must be an

alternative (xi, yi) ∈ Ai such that e(xi,yi) = r and e(x′,y′) ≥ r for all other (x′, y′) in Ai. Consider an

income distribution (x∗, y∗) such that x∗ ≤ min{x1, x2} and y∗ ≤ min {y1, y2} and e(x∗,y∗) = r. Due

to (xi, yi) ∈ Ψ (Ai ∪ {(x∗, y∗)}), Axiom 10 (Fairness Dependence) and Monotonicity (so that (x∗, y∗)

is not chosen), c (Ai) = c (Ai ∪ {(x∗, y∗)}). But (x∗, y∗) ∈ Ψ (A1 ∪A2 ∪ {(x∗, y∗)}), so by Axiom 10

again c (A1 ∪ {(x∗, y∗)}) and c (A2 ∪ {(x∗, y∗)}), which as established are just c (A1) and c (A2), cannot

generate a violation of WARP or quasi-linearity. Consequently, v(x,y) must coincide for all (x, y) such

that e(x,y) = r.

Finally we show that for all r > r′, vr (y) − vr (y′) ≥ vr′ (y) − vr′ (y′) for all y > y′ (reminder:

higher r implies greater attainable equity). Suppose not, our goal is to substantiate a contradiction of

Axiom 11 in the choice correspondence. Fix any y, y′ ∈ R+ such that y > y′. Define ṽr = vr (y)−vr (y′)

and ṽr′ = vr′ (y) − vr′ (y′). We want to show ṽr ≥ ṽr′ . Suppose for contraction this is not true, let z

be any value such that ṽr < z < ṽr′ . Find a number b such that max {(z − b) /y, (z − b) /y′} < r′ and

(z − b) ≥ 0, which is clearly possible for fixed r′, y, and y′ since r′ > 0 and b can be arbitrarily close to z

from below. Define x := z−b, x′ := 2z−b, let (x0, y0) be some income distribution such that e(x0,y0) = r′

and x0 < x, y0 < y, and similarly let (x1, y1) be some income distribution such that e(x1,y1) = r and

x1 < x, y1 < y (these are always possible). Consider the set A := {(x, y) , (x′, y′) , (x0, y0)}. c (A)

comes from maximizing the utility function x̂ + vr′ (ŷ), and (x0, y0) will never be chosen since it is
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strictly less than (x, y) in each component. Likewise, c (A ∪ {(x1, y1)}) comes from maximizing the

utility function x̂ + vr (ŷ) and both (x0, y0), (x1, y1) will not be chosen. We essentially introduced

reference points that won’t be chosen, forcing the choice to be between (x, y) and (x′, y′). Now note

that the way z was obtained gives us ṽr + z < 2z < ṽr′ + z, and so ṽr + z − b < 2z − b < ṽr′ + z − b.

The first and second inequality are equivalent to vr (y) + x < vr (y′) + x′ and vr′ (y) + x > vr′ (y
′) + x′

respectively. Finally, the latter gives us c (A) = {(x, y)} (where (x0, y0) ∈ A) and the former gives

us c (A ∪ {(x1, y1)}) = {(x′, y′)}; since A ⊂ A ∪ {(x1, y1)}, this is a contradiction of Axiom 11. This

establishes vr (y)− vr (y′) ≥ vr′ (y)− vr′ (y′) for all y > y′, for all r > r′.

Remark. Some proofs are not included, and can be requested from me (rc@xzlim.com).
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