Remote Sensing, Machine Learning & Extreme Weather

Christopher Small

Lamont Doherty Earth Observatory Columbia University csmall@columbia.edu

Mining imagery archives to improve weather forecasts

Four decades of machine learning for land cover classification

Mining imagery archives to connect events to impacts

Factor Multiplicity - Cyclone impacts in coastal Bangladesh

New opportunities in the near-term future

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY EARTH INSTITUTE

Bibliometrics

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets

Yunjie Liu¹, Evan Racah¹, Prabhat¹, Joaquin Correa¹, Amir Khosrowshahi², David Lavers³, Kenneth Kunkel⁴, Michael Wehner¹, William Collins¹ ¹Lawrence Berkeley Lab, Berkeley, CA, US ²Nervana Systems, San Diego, CA, US ³Scripps Institution of Oceanography, San Diego, CA, US ⁴National Oceanic and Atmospheric Administration, Asheville, NC, US

Cyclones- Correctly Classified

Fronts - Correctly Classified

HPC

Since 1987 - Covering the Fastest Computers in the World and the People Who Run Them

Home

Technologies

- Sectors
- AI/ML/DL

Exascale

- Specials
- Resource Library
- Podcast
- Events
- Job Bank
- About

Solution Channels

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

By Rob Farber

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify extreme weather events in huge climate simulation datasets. Predictive accuracies ranging from 89.4% to as high as 99.1% show that trained deep learning neural networks (DNNs) can identify weather fronts, tropical cyclones, and long narrow air flows that transport water vapor from the tropics called <u>atmospheric rivers</u>. As with image recognition, Michael Wehner (senior staff scientist, LBNL) noted they found the machine learning output outperforms humans. [i]

Incorporates nonlinear relationships between arbitrary predictor variables and forecast distribution parameters Outperforms traditional parametric methods - and provides information on nonlinear relationships among variables.

Land information extraction from satellite images

Map of thematic classes

Image classification

Map of continuous variables

100 - 90 %
90 - 80 %
80 - 70 %
70 - 60 %
60 - 50 %
50 - 40 %
40 - 30 %
30 - 20 %
20 - 10 %
10 - 0 %

Leaf area index Biomass **Tree volume**

> Quantitative remote sensing Modelling

ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 28 June-3 July 2009 | Prague (Czech Republic) M. Caetano. ESA 2009

Classification Methods & Accuracy

Meta-analysis of 6771 publications (1976-2012) of land cover classification Almost all classification methods could be considered some form of machine learning Variability of accuracy for most methods is greater than differences among methods Self-reported accuracy often based on subjective visual interpretation of imagery

What Influences Classification Accuracy?

Self-reported accuracy shows no significant increase since 1976 Self-reported accuracy shows no significant scale-dependence Lower tail of accuracy distribution sensitive to classification complexity - and N. Upper tail of accuracy distribution sensitive to analyst confirmation bias Accuracy distribution may say more about analysts than methods

Yu et al., IJRS 2014

Journal of Coastal Research	32	5	1149-1161	Coconut Creek, Florida	September 2016
Observations of Cycl	one-Ind	luced	Storm Sur	ge in Coastal	IN EDUCID
Bangladesh				0	E - Co
Soyee Chiu* and Christopher S	mall				
Lamont-Doherty Earth Observatory					CH FOUNDATIO
Columbia University Palisades, NY 10964, U.S.A.					www.cerf-jcr.org

Multiplicity: No single factor consistently explains cyclone casualties

Cyclone Aila 2009

Westward landfall drove onshore winds, higher storm surge & flooding

Received: 17 July 2019; Accepted: 26 August 2019; Published: 2 September 2019

check for updates

Cyclone Sidr 2007 Unusually high wind speed causes identifiable mangrove defoliation and crop damage

Hyperspectral Imaging

Visible to Shortwave Infrared reflectance spectra resolve distinct molecular absorption features Allows for mapping of soil composition & moisture, vegetation health, leaf water content & moisture stress, N content...

High Frequency Revist Satellite Constellations

Temporal evolution of visible+infrared spectral characteristics allow process mapping

SpectroTemporal feature spaces are higher dimensional, more complex and more strongly clustered than spectral feature spaces. High dimensional characterization of change patterns

