

Modeling the transmission dynamics of COVID-19 in China and US

Sen Pei

Associate Research Scientist Department of Environmental Health Sciences Mailman School of Public Health, Columbia University

May 4, 2020

Mathematical modeling of infectious disease

Modeling is useful in a pandemic in two ways

Understanding of disease spread

- Study the mechanisms by which diseases transmit
- Estimate key epidemiological parameters
 - Basic reproductive number R0: transmissibility

Forecast/Projection

- Project the future course of an outbreak
- Evaluate strategies to control a pandemic
 - Decision making

Two studies on COVID-19

Undocumented cases of COVID-19 in China

Science

RESEARCH ARTICLES

Cite as: R. Li et al., Science 10.1126/science.abb3221 (2020).

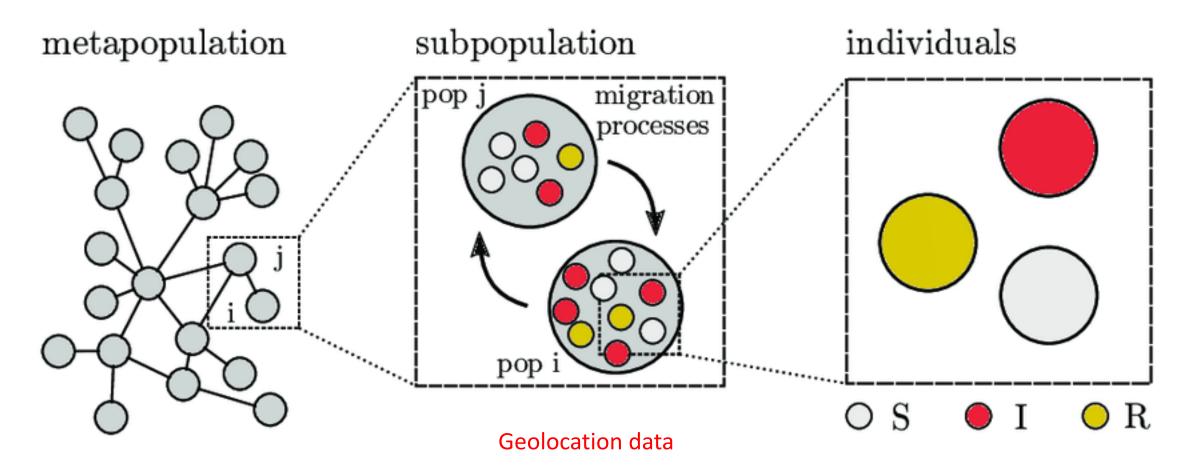
Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2)

Projection of COVID-19 spread in the US

Columbia University COVID-19 Projections

Spread of COVID-19 in China

Motivations: focusing on undocumented infections


- Infections with no/mild symptoms
 - Endemic coronavirus
- Lack of testing
- Fast spatial spread, only ~900 cases

Model spread between 375 cities

- Jan 10 Jan 23
- Before travel restrictions

Metapopulation model

https://www.researchgate.net/publication/332284749 Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models/figures?lo=1

Spread of COVID-19 in China

Metapopulation SEIR model

- Susceptible, exposed, documented infection, undocumented infection, removed
- Fraction of undocumented infection, relative contagiousness
- M: mobility matrix

$$\frac{dS_{i}}{dt} = \frac{-\frac{\beta S_{i}I_{i}^{r}}{N_{i}} - \frac{\mu\beta S_{i}I_{i}^{u}}{N_{i}}}{\frac{dE_{i}}{dt}} + \frac{\beta \sum_{j} \frac{M_{ij}S_{j}}{N_{j} - I_{j}^{r}} - \theta \sum_{j} \frac{M_{ji}S_{i}}{N_{i} - I_{i}^{r}}}{\frac{dI_{i}^{r}}{dt}} + \frac{\frac{\mu\beta S_{i}I_{i}^{u}}{N_{i}} - \frac{E_{i}}{Z}}{\frac{M_{ij}E_{j}}{N_{j} - I_{j}^{r}}} - \theta \sum_{j} \frac{M_{ji}E_{i}}{N_{i} - I_{i}^{r}}}{\frac{M_{ij}E_{i}}{N_{i} - I_{i}^{r}}} + \frac{\frac{\mu\beta S_{i}I_{i}^{u}}{N_{i}} - \frac{E_{i}}{Z}}{\frac{M_{ij}E_{j}}{N_{i}}} + \frac{\mu\beta \sum_{j} \frac{M_{ij}E_{j}}{N_{j} - I_{j}^{r}} - \theta \sum_{j} \frac{M_{ji}E_{i}}{N_{i} - I_{i}^{r}}}{\frac{M_{ij}E_{i}}{N_{i} - I_{i}^{r}}} + \frac{\frac{\mu\beta S_{i}I_{i}^{u}}{N_{i}} - \frac{E_{i}}{N_{i}}}{\frac{M_{ij}E_{j}}{N_{j}}} + \frac{\theta \sum_{j} \frac{M_{ij}I_{j}^{u}}{N_{j} - I_{j}^{r}} - \theta \sum_{j} \frac{M_{ji}I_{i}^{u}}{N_{i} - I_{i}^{r}}}{\frac{M_{ij}E_{i}}{N_{i}}} + \frac{\theta \sum_{j} \frac{M_{ij}E_{j}}{N_{j} - I_{j}^{r}}}{\frac{M_{ij}E_{j}}{N_{j}}} + \frac{\theta \sum_{j} \frac{M_{ij}E_{j}}{N_{j}}}{\frac{M_{ij}E_{j}}{N_{j}}} + \frac{\theta \sum_{j} \frac{M_{ij}E_{j}}{N_{j}}}{\frac{M_{ij}E_{j}}{N_{j}}}$$

Parameter

Transmission rate (β , days⁻¹) Relative transmission rate (μ) Latency period (Z, days) Infectious period (D, days) Reporting rate (α) Basic reproductive number (R_e) Mobility factor (θ)

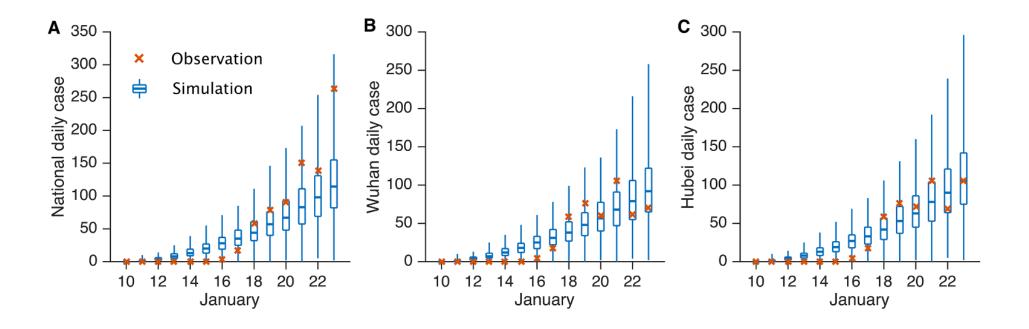
Within city transmission

Cross city transmission

Geolocation data

- Chunyun: travel during spring festival in China
- 2018: 2.97 billion trips in 40 days
- Tencent location-based service (LBS): Wechat, QQ, Maps, etc.
- Daily inter-city movement during Chunyun: Mij
- A multiplicative parameter to adjust inter-city mobility

Surveillance data

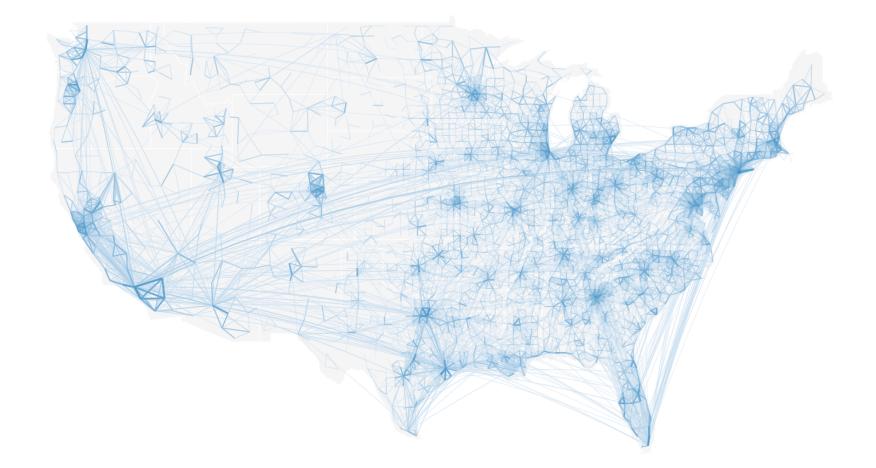

• Daily new confirmed cases in each city

Spread of COVID-19 in China

B6% [82%, 90%] infections were undocumented before travel restrictions

- Per person, the transmission rate of undocumented infections was 55% [46%, 62%] of documented infections
- **D** Effective reproductive number: 2.38 [2.04, 2.77]
- Undocumented infections: source of 79% of documented infections

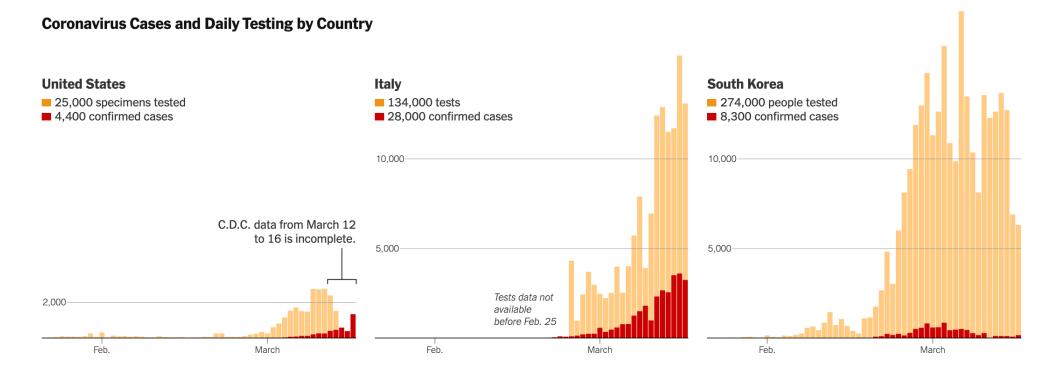
Conclusions


- Asymptomatic or mild symptomatic infections are widespread for COVID-19
- Considerable ability to transmit the virus
- Validated by recent lab studies

Implications

- A large potential to become a pandemic
- Challenging to control due to the existence of silent spreaders and stealth transmission chains
- Strict social distancing is required (even with no symptoms)

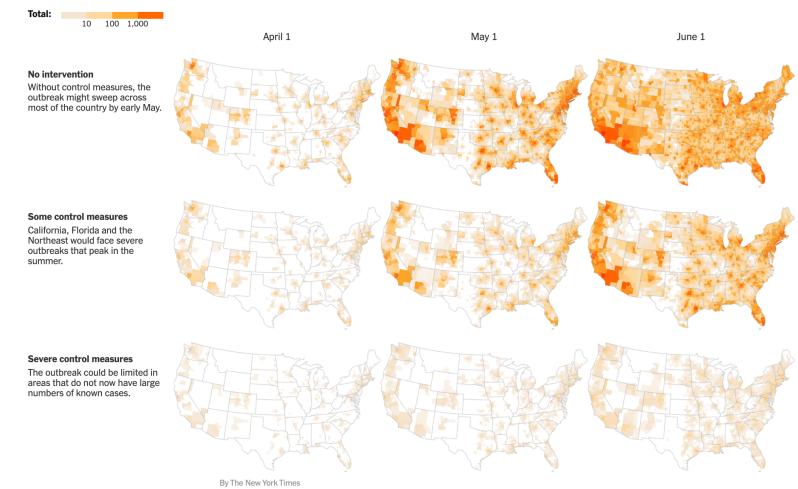
Metapopulation SEIR model for US counties


• Work commuting data from census - static

Spread in the United States

County-level data from Feb 21 to Mar 13

- Reporting rate: 8%
- Testing capacity is low



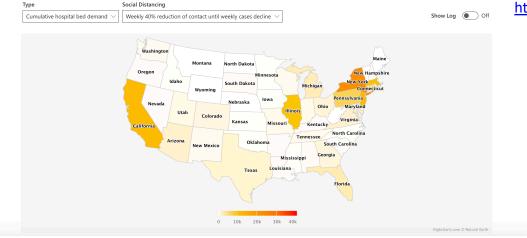
New York Times

Spread in the United States

Effect of control measures

• Social distancing: reduce 25% or 50% contact rate

https://www.nytimes.com/interactive/2020/03/20/us/coronavirus-model-us-outbreak.html


Spread in the United States

Projections in 3142 US counties

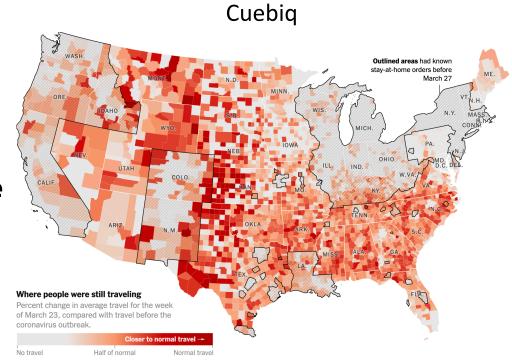
- Daily cases and death
- Hospital bed and ICU demand
- ICU capacity

Columbia University COVID-19 Projections

https://covidprojections.azurewebsites.net/

https://columbia.maps.arcgis.com/apps/webappviewer/index.html?id=ade6ba85450c4325a12a5b9c09ba796c

Human behavior will change during a pandemic


- Awareness
- Control policy

Geolocation data can help capture mobility change

- Cuebiq data: mobile phone, distance of movement
- SafeGraph data: point of interest (POI) visitor volume
- Indirect measures of close contact

How to translate to model parameters?

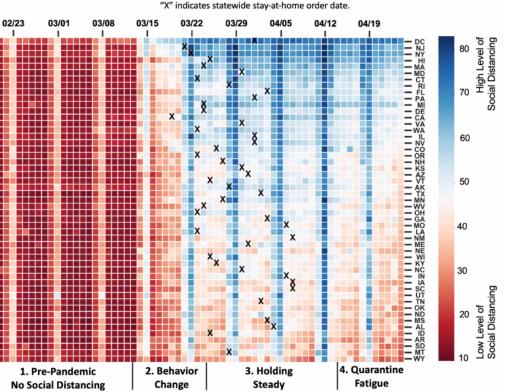
- Cross-county movement: reduced by half by the end of March (SafeGraph)
- Within-county movement: not straightforward

https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.html

• A second wave?

7-da

Where new cases are increasing


These states have had recent growth in newly reported cases. Scales are adjusted for each state to make the curve more readable.

Cuebiq

Social Distancing Index by State

February 20~April 24 data from: data.covid.umd.edu

https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

https://data.covid.umd.edu

Digital contact tracing

- China, South Korea, etc.
- Privacy issues

Reopen economy

- Mapping movement reduction to transmissibility
- Room for relaxing control

Acknowledgement

- Jeffrey Shaman, Wan Yang, Sasikiran Kandula, Marta Galanti, Teresa Yamana, Charles Branas, Andrew Rundle, James Quinn, Tonguc Yaman, Ruiyun Li, Bin Chen, Yimeng Song, Tao Zhang
- MicroSoft: Richard Liu, Sai Upadhyayula, Jenny Ye, Zhangwei Xu

Thank you!