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Abstract

I estimate the macroeconomic effects of two critical aspects of Federal Reserve (Fed) com-
munications: forward guidance regarding the path of interest rates and the provision of macroe-
conomic information. To estimate these effects, I identify two new series of shocks: monetary
policy shocks and “information shocks.” I recover the shocks by estimating a model of how
Fed announcements determine interest-rate and GDP expectations in high frequency, using a
measure of GDP forecast revisions I construct from the text of newspaper articles. To iden-
tify the model, I use a discrete change in the Fed’s communication policy: the introduction of
interest-rate forward guidance. I find that the identified monetary shock has macroeconomic
effects that are consistent with New Keynesian models, and fall at the upper end of previous
estimates. Additionally, information shocks resemble aggregate demand shocks and have effects
of similar (absolute) magnitude as monetary shocks, which highlights the importance of the
Fed’s role in providing macroeconomic information.
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1 Introduction

The role of the Federal Reserve (Fed) has moved far beyond setting the level of the overnight interest

rate. In the eyes of financial market participants, the Fed Chair is often seen as a fortune teller who

communicates predictions regarding not only the path of future interest rates, but also forecasts of

macroeconomic outcomes. An understanding of the Fed’s role in the economy, then, crucially hinges

on an understanding of the macroeconomic effects of both aspects of Fed communications. Two

challenges arise when estimating these effects. First, communications regarding the path of interest

rates and communications regarding the economic outlook are both highly endogenous with respect

to economic fundamentals. Second, the Fed typically engages in both types of communications

simultaneously, which complicates attempts to separately identify their effects.

In this paper I estimate the macroeconomic consequences of Fed communications—both the

effects of monetary policy (explicitly communicating about future interest rates) and informa-

tion provision policy (the effects of providing information about macroeconomic fundamentals). I

contribute to a longstanding literature that studies the effects of monetary policy using market

reactions to Fed policy announcements, and provide new estimates that overcome an important

conceptual issue in the identification of these effects: Market-based measures of interest-rate expec-

tations can respond to both types of policy, thereby identifying neither. I also take the view that

information provision is an important component of the Fed’s communication policy—rather than

a statistical nuisance that challenges the identification of exogenous variation in monetary policy,

as the literature has come to perceive it.

To estimate the effects of both aspects of Fed communications on macroeconomic outcomes,

I identify two new series of shocks: perceived monetary policy shocks (shocks to the policy rule)

and “information shocks” (shocks to beliefs about economic fundamentals).1 I posit that an econo-

metrician needs access to (at least) two measures of market reactions that respond differently to

the two types of shocks in order to identify them separately. I show that interest-rate and GDP

forecast revisions emerge as natural candidates to accomplish the task, based on the implications of

standard New Keynesian theory. Intuitively, because interest-rate and GDP forecast revisions react

differently in response to monetary policy and information shocks, observing their joint reactions

to monetary policy announcements can provide useful information for identifying the prevalence of

each shock.2

The foundation of my shocks consists of two high-frequency measures of macroeconomic

forecast revisions: interest-rate surprises and a new, text-based measure of GDP forecast revisions.

The former is standard in the empirical monetary literature. The latter I construct using newspaper

articles written about each Fed policy meeting. Specifically, I compute a GDP “directionality index”

1I introduce the word “perceived” here because my shocks are based on data on expectations (as are estimates
of monetary shocks in the literature that use interest rate futures data). The illustrative model in section 3.1 makes
this observation precise.

2To give a familiar example, a contractionary monetary policy shock raises interest rates and lowers real GDP in
standard New Keyensian models. Instead, a positive aggregate demand shock (which is what my information shocks
resemble) causes both variables to increase.

1



for articles written in a one-day window around each announcement. The index is based on the

difference between increasing and decreasing mentions of GDP. I anticipate that this high-frequency

series of GDP expectations will be useful in other contexts. My proxy for GDP forecast revisions

is the unpredictable component of post-meeting directionality vis-à-vis pre-meeting directionality.

I assume that macroeconomic expectations measured shortly before each policy announcement

reflect the Fed’s communication expected by markets, given all macroeconomic events that have

occurred up to the announcement. The difference between pre- and post-meeting expectations,

then, should only arise from exogenous policy or information asymmetries. As such, the high-

frequency construction of my variables addresses the general endogeneity of interest-rate and GDP

forecasts with respect to observable economic fundamentals.

Because the Fed communicates simultaneously about interest rates and the macroeconomic

outlook, I estimate a simultaneous-equations model of how markets update their interest-rate and

GDP forecasts in response to Fed announcements, in order to recover the structural shocks from

these forecast revisions. In the model, market participants are Bayesian forecasters whose model

of the economy is a linear relationship between macroeconomic shocks (here, monetary policy and

information shocks) and macroeconomic variables (here, interest rates and GDP). Despite this

simple formulation—a system of two equations determined by two exogenous shocks—this is the

forecasting model implied by the dynamic stochastic general equilibrium models that permeate

macroeconomic analysis.

To identify the model, I use a discrete change in the Fed’s communication policy: the intro-

duction of interest-rate forward guidance in 2003. As highlighted by Lunsford (2020), prior to 2003

the Fed’s post-meeting policy statements primarily described the economic outlook. In August

2003 the Fed began the practice of interest-rate forward guidance when it promised to keep interest

rates low “for a considerable period.” To see how this can help identify the model, consider the

implications of this policy change. Before 2003, learning about the Fed’s economic outlook was

straightforward; in contrast, inference about the path of interest rates was possible only indirectly

through the Fed’s discussion of the economy. This observation allows me to make my formal identi-

fication assumption: Fed announcements induced market participants to update their expectations

about the future path of interest rates, relative to their expectations about economic fundamentals,

more completely after 2003. My data support this assumption: Before 2003, interest-rate and GDP

forecast revisions were positively correlated. Intuitively, this regime primarily provides identifica-

tion of the information shock. After 2003, the series are essentially uncorrelated. Therefore, this

latter regime provides identification of the monetary shock by providing data whose variation is

driven by a factor orthogonal to the information shock. This is “identification by heteroskedastic-

ity,” proposed by Rigobon (2003).3 Formally, while the model is not identified within either regime

3Other papers (Wright, 2012; Arai, 2017; Nakamura and Steinsson, 2018) have used the heteroskedasticity-based
identification assumptions in seeking to estimate the effects of monetary policy. The approach is typically seen as a
method of purging “background noise” (or latent factors, in the case of Gurkaynak et al. (2020)) from OLS regressions.
I use the approach completely differently in that I am interested in estimating two shocks, not simply purging one
shock of interest of a nuisance component. Lewis (2019) identifies similarly-named shocks using a heteroskedasticity-
based approach that provides only statistical identification.
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separately, the added assumption that the shocks have the same effects on observables across the

two regimes imposes enough parametric restrictions to jointly solve the model’s implied moment

conditions.4 Importantly, while I estimate the model using a 3 year window around the 2003 policy

change, I use the identified model to construct estimates of the two shocks over my entire 1999–2019

sample period.

I find that the monetary policy shock I identify has effects on macroeconomic outcomes and

expectations that are consistent with New Keynesian macroeconomic models, a conclusion I reach

without imposing such consistency a priori. A monetary shock that raises longer-term interest-rate

expectations on impact leads to declines in industrial production and inflation. The responses of

both variables are fairly delayed, with peak responses estimated between 2 and 3 years after the

shock. Nominal and real interest rates increase on impact, while GDP and inflation expectations

decrease. Notably, I use simple empirical specifications to identify these effects. When I substitute

my measures for other estimates of contractionay monetary shocks in these specifications, the

estimated responses of output are generally not in line with predictions from New Keynesian models.

In terms of magnitudes, my results suggest that the effects of monetary policy are big, in the

language of Coibion (2012), and similar to those estimated by Romer and Romer (2004): a 25 basis

point increase in the policy rate leads to a roughly one percent decrease in industrial production.

Moving to the effects of information provision, I find that information shocks have effects

on macroeconomic outcomes and expectations that are similar in (absolute) magnitude to those

of monetary policy shocks. This remains true when controlling for recent macroeconomic news,

which suggests first that the Fed plays an important role in its characterization of macroeconomic

shocks.5 In addition, my information shock creates a positive comovement of output and inflation

(and expectations thereof, in low and high frequency), which suggests that the information primarily

concerns demand-type factors.

The notion that monetary policy announcements can convey macroeconomic information, and

thus contaminate estimates of exogenous monetary shocks, was put forth by Romer and Romer

(2000). Campbell et al. (2012) and Nakamura and Steinsson (2018) highlight the fact that the

presence of “information effects” can contaminate traditional high-frequency estimates of monetary

policy shocks—my results confirm that the contamination is substantial: about 80% of a widely used

high-frequency shock series is made up of information effects. Therefore, the empirical challenge

became: How to disentangle information provision from exogenous monetary policy? My model

shows that this challenge is the familiar problem of simultaneous determination encountered in

supply and demand systems or structural vector autoregressions. Seen in this context, early work

in this area imposed zero restrictions to identify monetary shocks, which are not warranted under

the presence of information effects.6 My work relaxes these restrictions. Nakamura and Steinsson

4This language comes from Stock and Watson (2017).
5This also addresses the critique of Bauer and Swanson (2020), whereby the positive correlation between interest

rate surprises and macroeconomic expectations can result from both series’ reaction to the same economic news.
6This is the case in Kuttner (2001) (who introduced surprises in the current-meeting interest rate) and Gürkaynak

et al. (2005) (who introduced the notion of a shock to the path of interest rates). By not entertaining the possibility
that changes in interest-rate futures could be driven by shocks other than exogenous monetary policy, the authors
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(2018) estimate a structural model to overcome the identification challenge. In contrast to my

work, their approach depends on all of the assumptions underlying the particular macroeconomic

model.

Other papers cognizant of information effects have sought model-free approaches to identify

high-frequency monetary policy shocks. Given that information effects are posited to stem from

the Fed’s private information, Miranda-Agrippino and Ricco (2021) and Handlan (2020) propose

orthogonalizing high-frequency interest-rate surprises to the Fed’s private information as captured

by the Fed staff’s presentation materials (“Greenbook forecasts”).7 This approach suffers from two

conceptual shortcomings that I sidestep. First, it assumes that the staff’s economic assessment

spans that of the Fed’s policymaking committee, which is ultimately tasked with policy communi-

cation. Romer and Romer (2008) show that these assessments generally do not align. Second, this

approach requires choosing a set of variables that completely span the Fed’s private information

when the announcement is made. I avoid having to posit the variables over which the Fed has

private information, which is difficult to know, given the vast number of indicators that inform

Fed policy decisions.8 In addition, by relying on staff-created reports, neither paper can control

for events that occur shortly before policy announcements, and thus both papers potentially fail to

control for endogenous macroeconomic events to which the Fed might respond. My high-frequency

measures avoid this concern.

Cieslak and Schrimpf (2019) and Jarociński and Karadi (2020) assume theoretically moti-

vated sign restrictions regarding the relationship between monetary shocks, information shocks,

stock returns, and interest-rate surprises. These sign restrictions allow the authors to discuss the

relative importance of—and identify, in the case of Jarociński and Karadi (2020)—monetary and

information shocks. In high frequency, stock returns and interest-rate surprises are consistently

negatively correlated, in contrast to my estimates of output expectations. This suggests a limited

role for stock prices in differentiating between monetary and information shocks. In fact, it suggests

a limited role for information effects.9 Examining a variable whose response to each shock differs

substantially from the responses of interest rates—e.g., output expectations—instead provides more

imposed the restriction that other shocks had zero effect on high-frequency interest-rate changes.
7Campbell et al. (2012) also attempt to control for information effects by controlling for professional macroeconomic

forecasts. As Woodford’s comment to that article notes, this approach requires that the control variables span the
Fed’s reaction function, and suffers from the possibility that not all relevant information may be captured by the
lower-frequency forecasts. Hansen and McMahon (2016) also study the effects of both types of communication in a
low-frequency setting.

8Doh et al. (2020) and Handlan (2020) are able to control more flexibly for the Fed staff’s information than
Miranda-Agrippino and Ricco (2021) by using machine-learning and text-based techniques applied to the Fed’s
alternative policy statements. Cai et al. (2021) and Lakdawala (2019) introduce alternative methods for controlling
for the Fed’s private information (the difference between the Fed’s and the public’s information) which, as discussed
in Section 4.2.2, is necessary for properly “removing” information effects.

9This negative correlation does not serve as evidence “against” the presence of information effects—it only rejects
the notion that information effects are the only shock operating when the Fed makes announcements. Put differently,
without information effects, the negative correlation might be even stronger. Ultimately, the puzzle that suggested
the presence of information effects was the effect of interest rate surprises on expectations of real macroeconomic
variables (GDP, unemployment, etc.), not stock returns. D’Amico and King (2017) overcome this issue using a
set-identification approach, However, they use lower-frequency data on expectations, which may not incorporate all
relevant macroeconomic information to which the Fed responds.
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power for identification.10 By studying GDP expectations, I directly address one of the main puz-

zles in the high-frequency literature: that both output and output expectations increase in response

to positive interest-rate surprises. Additionally, since my measure is not constructed using financial

market data, I eliminate the potential confounding role of risk premia. Finally, my identification

approach does not require the a priori imposition that the identified shocks have theoretically

consistent effects. In contrast to my estimates, this approach only provides set identification.

The paper proceeds as follows. In Section 2, I present my text-based proxies of high-frequency

macroeconomic forecast revisions. In Section 3, I present a simple theoretical framework that

explains the identification challenge. In the context of that model, I lay out my identification

assumptions and estimate the structural shocks. Section 4 contains evidence on the effects of these

shocks on macroeconomic outcomes and expectations, along with a comparison with the effects

estimated using existing measures. In Section 5, I dig deeper into both shocks and show that

exogenous shocks to overnight interest rates are a thing of the past. Additionally, most of the

“information effects” gleaned by markets reflect demand-type factors. Section 6 is the conclusion.

2 Data: Construction and Validation

A novel aspect of this research is the construction of a high-frequency (HF) proxy for output

expectations. Why output? Output is a variable that features in nearly every macroeconomic

model, and is the variable whose relationship to traditional HF estimates of monetary shocks is

of first-order concern. Why high frequency? Measuring changes in high frequency allows me to

isolate the source of the change: Here, the Fed. This ensures that the shocks I estimate are indeed

Fed-based shocks and not confounded by information from other sources. Lacking access to existing

high-frequency measures of output expectations, however, I use an alternative data source to create

my proxy: newspaper articles.

At its core, the text analysis I employ in this paper is essentially a counting exercise: I count

co-occurrences of output-related words with words that indicate whether an object is increasing or

decreasing. Text-analysis methods for analyzing Fed announcements have used increasingly realistic

models of natural language,11 but with this has come a loss of interpretability and replicability. In

contrast, my approach, by design, is conceptually simple, transparent, and easily replicable.

In Section 2.1, I describe the construction of my expectations proxy. The simplicity of my

construction comes at a cost: It is subject to the criticism of being subjectively designed. I therefore

also use a complementary construction that is a bit more complex but removes some subjectivity

from the process. My results are nearly unchanged. I then turn, in Section 2.2, to an exercise that

serves to validate my measure. I show that, in levels and differences, my proxies are positively

10This, combined with the fact that Jarociński and Karadi’s approach only provides set identification of the shocks,
allows the authors to (statistically) learn very little about the effects of Fed information—their identified set of impulse
responses (that are robust to the chosen prior) includes zero for most horizons.

11Examples include the use latent Dirichlet allocation (Acosta, 2019; Hansen et al., 2019), whose topics are weighted
averages of every word in a corpus; structurally rotated latent semantic analysis (Ter Ellen et al., forthcoming); and
more general neural networks (Handlan, 2020).
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correlated with existing lower-frequency measures of expectations. Finally, in Section 2.4 I briefly

describe the traditional numerical data I use throughout the rest of the paper.

2.1 High-Frequency Text-Based Proxies of Macroeconomic Expectations

The construction of my index proceeds in three steps. I first construct a set of words related

to economic output, a set of words that indicate something is increasing, and a set of words

that indicate something is decreasing. I then collect a set of newspaper articles written in a

one-day window around FOMC announcements, split them into articles written before and after

the announcement, and compute a directionality index on pre- and post-meeting articles. I then

construct my measure of output forecast revisions as the unpredictable component of post-meeting

directionality vis-à-vis pre-meeting directionality. I discuss these steps in turn.

Words Lists My first set of words refer to economic output. This list is given by

Y ≡ {economic growth, growth, economi, consumer spending, output}.

The origins of this list are the triplet output, growth, and economy. In order to show that

the results of this paper are robust to expanding or modifying this word list, I trained the popular

natural language model of Mikolov et al. (2013) on a large corpus of newspaper articles and extended

the initial triplet by extracting—from the model—synonyms of the triplet. The list of synonyms,

sorted by their proximity to the triplet, was sensible out to seven words. Thus, in my main analysis

I retained the top five most similar words, and later show the robustness of my results to using the

top three and top seven most similar words. The details of constructing the list of synonyms are

provided in Appendix E.2.

The next two word lists come from the Harvard IV-4 dictionary. The first list contains words

that indicate an object is increasing. This set, I, consists of all words in the increase and rise

lists from the Harvard dictionary. The second set, D, consists of words indicative of an object

decreasing: These are the words from the decrease and fall word lists. In both cases I retain the

unique set of “stemmed” words (the lexical root of words). This ensures that I count all variants

of these words in my newspaper articles. For example, increase, increases, and increased

are all counted as mentions of increase.12 These word lists are provided in Appendix E.1.

Newspaper Data I analyze all newspaper articles written the day before, day of, and day

after each FOMC meeting in the New York Times, Wall Street Journal, and Washington Post. I

collect these articles from Factiva, searching for articles with the keywords Federal Reserve

and FOMC.13 The 3-day window ensures that I capture the many articles written on the first day of

two-day FOMC meetings (these typically start “The Fed begins a two-day policy meeting today”),

and the print articles written on the day after the meeting. I found the timestamps in Factiva to

12I use the stemmer of Porter (1980).
13Fed is too general, and returns articles related to food and eating.
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be fairly unreliable, so I manually sorted all articles on the day of the FOMC meeting based on

whether they were written before or after the meeting took place. Similarly, I removed duplicate

articles.14

By considering a 3-day window, I potentially include articles that are not primarily written

about the policy meeting. To guard against this, I only retain articles that have fed or rate in the

title or have one of {fed, fomc, federal} within five words of one of {meet, meeting, policy,

decision, rate}. Thus, while the window is not as high frequency as tick-level data, the ability

to narrow articles to those that specifically discuss the policy meeting reduces the possibility that

other events influence my analysis.15

Finally, I concatenate all pre- and post-meeting articles into a single document for each

meeting t, given by PREt and POSTt, respectively. I stem all words to their lexical root using the

algorithm of Porter (1980). Because my main measure counts co-occurrences of output words and

modifiers, I follow Lucca and Trebbi (2009) and break each document into standalone “chunks” of

text. This is performed by first tagging each word in a sentence with its part of speech, then using

grammatical rules to separate the sentence into smaller constituent sentences (for long or run-on

sentences) and various compound phrases. A chunk of text is either a complete sentence with no

nested complete sentences or a noun phrase (e.g., low inflation) not contained in a complete

sentence. The definition of a complete sentence follows rules of the English language and relies

on the grammatical parsing of each sentence. I parse sentences using the algorithm of Manning et

al. (2014). Though still an imperfect way to determine whether one word modifies another, this

method (anecdotally) produces more sensible classifications than determining modification based

on proximity (though my results are robust to a proximity-based approach).

Directionality Index Having gathered a list of words and documents to analyze, I then put

these together to form a directionality index for economic output. For each aggregated document

d ∈ {PREt,POSTt} with sentence chunks indexed by c, the index is defined as

ωd ≡
∑

c∈d
∑

w∈Ti 1 {w ∈ c}
[∑

i∈I 1 {i ∈ c} −
∑

d∈D 1 {d ∈ c}
]∑

c∈d
∑

w∈Ti 1 {w ∈ c}
[∑

i∈I 1 {i ∈ c}+
∑

d∈D 1 {d ∈ c}
]︸ ︷︷ ︸

Sentiment Score

× 1

|d|︸︷︷︸
Normalization

. (1)

The “sentiment score” component of this measure is so named because it resembles sentiment scores

found across the natural language processing literature, whose typical construction is the percent

difference in counts of “positive” and “negative” words. Here, the score is the number of times a

14To do this, I created a vector representation of each article i, denoted by vi, whose length was equal to the total
number of unique words across all articles. The j-th element is the number of times term j appears in document i. I
then calculate the pairwise distances between all articles using the cosine distance metric: For two documents vi and
vk, this is 1− v′ivk/[

√
v′ivi +

√
v′kvk]. Plotting the distribution of cosine similarities, I found a second mode at 0.97,

so I randomly chose one from each set of articles with mutual cosine distance above 0.97.
15Upon inspecting the articles, I found that many articles that fit the aforementioned criteria for being “relevant”

instead discussed how another country’s central bank might react to the Fed’s announcement. Those articles almost
always started with the name of a non-US city (i.e., reflecting where the article was written), so I exclude articles
that have one of these non-US city names within the first 5% of the text. The list of these cities is in Appendix E.1.

7



Figure 1: Newspaper-based Output Directionality and Macroeconomic Expectations
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The left panel plots the average GDP forecast from the Blue Chip (black dashed line) described by equation (3) against the
1-year (eight-meeting) moving average of post-meeting output directionality ωPOSTt (solid red line). The right panel shows a
scatter plot of the two series (in which each meeting month is merged with the corresponding Blue Chip month), using only
observations that are used in the baseline empirical sample (excluding the July 2008–July 2009 period and meetings that occur
in the first 7 days of each month). For ease of comparison, I normalize ωPOSTt to have the same mean and standard deviation
as the corresponding Yt|t variable.

word from the topic is modified by an increasing word less the number of times a word from the

topic is modified by a decreasing word, divided by mentions in either direction. For chunks that

contain a negation (not and n’t), I flip the sign of the bracketed term in the numerator. Dividing

by the total number of sentences (the “normalization”) gives the index the average per-sentence

(chunk) sentiment score.

In levels, I posit the economic growth directionality index as a proxy for macroeconomic ex-

pectations. The time series of ωPOSTt in the left panel of figure 1 (which is discussed in more detail

in Section 2.2) supports this interpretation. In Appendix E.3, I create an alternative directionality

index that makes this link explicit. Briefly, I count all pairwise co-occurrences of words in slightly

expanded versions of Y,D, and I in a large corpus of newspaper articles. I estimate a LASSO

regression to predict the level of real GDP expectations from the Blue Chip survey using these

co-occurrence counts. This gives me a mapping from words to GDP expectations. I apply this

mapping to pre- and post-FOMC articles to generate my alternative directionality indexes. The

co-occurrences “selected” by LASSO are sensible. However, because my results are essentially un-

changed between my baseline measure and this alternative, I opt to use the simpler index presented

in equation (1).
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Figure 2: High-frequency Forecast Revisions of Output and Interest Rates
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The top panel plots the high-frequency output forecast revision measure (from newspapers) described in Section 2.1 (the residual
from equation 2). The bottom panel shows the 30-minute change in the price of the fourth-quarter Eurodollar futures, described
in Section 2.4. The first two shaded areas present the regimes used for identification, described in Section 3.2. The third, gray
shaded area highlights observations that are dropped for most analyses, discussed in Section 2.4.

Proxy for Changes in Macroeconomic Expectations The last step is to take the direc-

tionality indexes from levels to differences. One complication arises in this step: Namely, the

indexes constructed above do not distinguish between descriptions of the Fed’s announcement (i.e.,

the “level” of the announcement) and the surprise component of that announcement. I therefore

construct my proxy for changes in output expectations as the unpredictable componenet of post-

meeting directionality vis-à-vis pre-meeting directionality. Formally, I construct the proxy ŷt as the

residual from the following regression:

ωPOSTt = a+ b ωPREt + c ωPOSTt−1 + ŷt. (2)
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Figure 3: Blue Chip GDP Forecast Revisions and the High-frequency Proxy
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The left panel plots the average Blue Chip forecast revision over the next three forecast horizons (Yt|t+1−Yt|t+1 from equation
(3)) against my HF measure of output forecast revisions, ŷt, standardized to have unit variance over the plotted sample. The
slope of the line thus corresponds to the estimate of β from equation (4) in Table 1. The right panel shows this estimated
slope using different Blue Chip forecast horizons—from zero to four quarters ahead. In that panel the right- and left-hand-side
variables are standardized, so the coefficient is a correlation coefficient. The sample is as described in Section 2.4. Confidence
intervals are generated using robust standard errors.

The constant and slope coefficients in the regression are 0.0002, 0.18, and 0.11.16 This suggests that

a fair amount of post-meeting articles discuss the surprise component of the policy announcement;

to quantify this differently, the R2 from the regression is only 0.13, which suggests that a fair

amount of post-meeting coverage is unpredictable based on pre-meeting coverage. Without the

inclusion of ωPOSTt−1 , the index exhibits a small degree of autocorrelation. Otherwise its inclusion

is inconsequential for my estimates. The top panel of Figure 2 shows the time series of ŷt.

2.2 Validation

This section contains several exercises meant to validate the indexes constructed in Section 2.1

as proxies for macroeconomic expectations. I show, first, that the directionality indexes (the ωt

variables) are positively correlated with the level of real GDP expectations from the Blue Chip

survey of the same month. I then show that the high-frequency forecast revisions I construct, ŷt,

are positively correlated with lower-frequency forecast revisions. Finally, I perform a case study to

show that the indexes are picking up features of the text that are noticeable to a human reader.

Figure 1 shows that the macroeconomic directionality indexes are positively correlated with

16The heteroskedasticity-robust t-statistics are 4.9, 3.6, and 1.5, respectively. I estimate this regression over my
full sample of newspapers, which starts in 1995, but the regression coefficients are almost identical using the 1999+
sample (respectively, 0.0002, 0.18, and 0.19).
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macroeconomic expectations taken from the Blue Chip survey. The dashed black line in the left

panel is a summary statistic of GDP expectations I use often throughout the paper:

Yt|τ ≡
1

3

3∑
h=1

EBlue Chip
τ [∆Real GDPt+h]. (3)

This summary statistic—used by, e.g., Nakamura and Steinsson (2018)—is the average forecast of

real GDP growth made in month τ over the year starting in month t (in Figure 1, I set τ = t).17

The solid blue line in the left panel is the 1-year (eight-meeting) moving average of post-meeting

directionality ωPOSTt .
18 The lines are clearly positively correlated, and the right panel confirms

that this correlation is not the result of one or two influential observations. The points in the right

panel plot Yt|t against ωPOSTt (not the moving average) for the months in my baseline sample.19

The correlation of these series is 0.36, with a robust standard error of 0.08.20 In summary, my

output expectations are correlated with traditional measures of output expectations, in levels.

My index of output forecast revisions is also correlated with traditional measures of output

expectation revisions. Figure 3 shows that the high-frequency proxy for macroeconomic forecast

revisions, ŷt, is also positively correlated with lower-frequency forecast revisions taken from the Blue

Chip survey. The left panel plots the 1-month Blue Chip forecast revision surrounding each FOMC

meeting (Yt|t+1 − Yt|t) against the high-frequency proxy. This positive correlation is encouraging.

I put this correlation to the test by estimating the regression

Yt|t+1 − Yt|t = α+ βt + et, (4)

where Xt contains various explanatory variables of interest. The results are in Table 1. The

first column shows that the correlation is indeed statistically significant—a finding that remains

consistent across the columns. The correlation is not due to the construction of the Blue Chip

variable in equation 4; the right panel breaks down the correlation by Blue Chip forecast horizon.

This shows that ŷt is fairly evenly correlated with forecast revisions out to about 1 year.

Table 1 also highlights why ŷt is a useful addition to the study of monetary policy announce-

ments. In the second column, I only include a traditional estimate of monetary shocks on the

right-hand-side of equation (4)—HF changes in 1-year interest-rate expectations, denoted by ît

(displayed in Figure 2 and described in Section 2.4). This column is a reproduction of a known,

but puzzling, finding: Surprise interest-rate increases (i.e., a contractionary traditional HF shock)

cause GDP expectations to increase. Interestingly, when the HF output revision is added to that

17Formally, the average forecast of GDP growth for quarters q(t), q(t) + 1, and q(t) + 2, where q(t) is the quarter
of month t.

18The graph with pre-meeting directionality looks very similar.
19I exclude the observations from July 2008 through July 2009, which will be removed from my sample later in the

paper because of the asset-pricing anomalies over this period discussed by Nakamura and Steinsson (2018). Also, to
make the sample consistent with my later analysis, I exclude months with FOMC meetings that occur in the first 7
days of the month since, as Nakamura and Steinsson (2018) note, the exact timing of when Blue Chip respondents
complete their surveys is not clear.

20The correlation with pre-meeting directionality (ωPREt) is 0.37 (s.e. 0.08).
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Table 1: Low- and High-frequency Forecast Revisions: Robustness

ŷ (HF newspaper) 0.0267 0.0258 0.0191
(2.72) (2.68) (1.95)

Interest-rate surprise 0.00452 0.00439 0.00482 0.00207
(3.17) (3.20) (2.85) (1.71)

HF S&P 500 return 0.0574
(2.42)

Jobs number -0.00896
(-7.30)

Jobs number, surprise -0.0546
(-0.50)

One-month S&P Return 0.00696
(3.65)

Lagged BBK index 0.0410
(3.82)

Observations 131 131 131 138 131
R2 0.0566 0.0629 0.116 0.0684 0.373

|LHS| 0.0775 0.0775 0.0775 0.0775 0.0775

t-statistics computed using robust standard errors are in parentheses, since the point estimates are so small.

This table shows estimates of equation (4). The left-hand-side is the 1-month forecast revision of GDP growth over the next
three forecasting horizons, presented in equation (3), from the Blue Chip survey, in percentage points. The HF output forecast

revision ŷt is from newspapers and standardized over the regression sample. The interest-rate measure (̂it) is the change in the
four-quarter Eurodollar future contract, in basis points. The 1-month stock return is the 4-week percentage return in the S&P
500 (ending 1-day before the FOMC announcement). The lagged BBK index is the standardized value of the index of Brave
et al. (2019) from one-month before the date t FOMC meeting. “Jobs number” and “Jobs number, surprise” are the level and
surprise component of month t’s release of the change in non-farm payrolls (in units of 100,000 jobs). Expectations of that
release are from Bloomberg. The sample consists of all regularly scheduled FOMC meetings between May 1999 and October
2019, excluding July 2008–July 2009, that occur after the first week of the month. The row |LHS| is the average absolute GDP
forecast revision over the regression sample (0.3 percentage point).

regression, the coefficient on the interest-rate surprise remains nearly unchanged. This is a hint that

ŷt is not a useful variable for controlling for information effects—if it were, the coefficient on the

interest-rate surprise should change. This also highlights (thinking about the omitted-variables-

bias equation) that ŷt and ît are only weakly positively correlated (the correlation coefficient is

0.09, with a t-statistic of 1.3). The positive correlation suggests that information effects are still

present in high frequency. The fact that the correlation is fairly weak also suggests a useful feature

of bringing ŷt to this identification problem: It contains independent variation. This is less true

with stock prices (Jarociński and Karadi, 2020); the high-frequency S&P 500 return around Fed

announcements with ît is −0.36, with a t-statistic of −3.9.21

21One reaction to this negative correlation would be to ask “doesn’t this refute the presence information effects?”
It does not. This negative correlation is only useful for rejecting that there are only information effects (or that they
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In the last column, I show that ŷt continues to be positively correlated with lower-frequency

expectations when controlling for recent macroeconomic news. Bauer and Swanson (2020) estimate

similar specifications using low-frequency measures of GDP forecast revisions. They find that recent

news predicts both interest rate-surprises and GDP forecast revisions, and substantially mitigates

the positive correlation between the two. They interpret these results as a suggestion that recent

macroeconomic news induces a spurious positive correlation between interest-rate surprises and

GDP forecast revisions, which argues against the presence of information effects. Following Bauer

and Swanson, I include the most recent level of the non-farm payrolls release, the surprise component

of that release, the 1-month stock return, and the lagged index of Brave et al. (2019). The coefficient

drops somewhat, but remains marginally statistically significant. For transparency, this coefficient

drops nearly to zero if the 13-week return of the S&P 500 return is included instead (the exact

variable used by Bauer and Swanson). However, in Appendix H, I show that the 13-week return is

the most potent return horizon over which stock returns “predict” news around monetary policy

announcements, which calls into question the robustness of the conclusions of Bauer and Swanson

A benefit to performing this “automated narrative analysis” is that I can read newspaper

articles to corroborate the largest shocks. For example, the largest negative Fed-induced change in

expectations about GDP came in March 2004, when Grep Ip’s post-meeting WSJ article state:

The slightly less upbeat tone of the statement drove long-term bond yields down sharply.

The Fed said risks to economic growth remain “roughly equal” while the risk of an

“unwelcome fall in inflation” was “almost equal” to that of a rise in inflation.

In contrast, pre-meeting WSJ coverage states that yields were not “likely to fall much further,

given countercurrents of strong economic growth” and that the Fed was not expected to “tweak

significantly the language in the accompanying policy statement.”

2.3 Predictability

When proposing an estimate of a macroeconomic shock, it is important to examine the extent

to which that shock is predictable in some way. I test the predictability of my newly constructed

estimate of output forecast revisions, ŷt, and a traditional measure of monetary shocks, ît (described

in Section (2.4)) in Table 2. Specifically, I regress each measure on a slew of controls. In the first

two columns, I include two lags of the left-hand-side variables, the most recent surprise component

of three macroeconomic news releases, and the two most recent changes in non-farm payrolls (using

real-time data). All of these variables are observable to markets and Fed watchers before the meeting

announcement. None of these right-hand-side variables have a statistically significant coefficient.

Jointly the variables are statistically insignificant. The R2 of both regressions are very small. The

finding of minimal autocorrelation is consistent with the findings of Miranda-Agrippino and Ricco

(2021).

are the strongest determinant of stock prices). Put differently, without information effects, this correlation would be
much more negative.
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Table 2: Predictability of High-frequency Output (ŷt) and Interest-rate (̂it) Forecast Revisions

ŷt ît ŷt ît ŷt ît
Lagged LHS 0.035 -0.049 -0.008 -0.105 0.031 -0.055

(0.082) (0.093) (0.080) (0.087) (0.083) (0.092)

Twice-Lagged LHS 0.086 -0.093 0.071 -0.125 0.098 -0.099
(0.095) (0.096) (0.097) (0.099) (0.098) (0.098)

BB Surprise: CPI 0.052 -0.094 0.052 -0.077 0.052 -0.093
(0.055) (0.384) (0.053) (0.310) (0.055) (0.372)

BB Surprise: GDP 0.072 -0.160 0.058 -0.257 0.070 -0.179
(0.041) (0.285) (0.039) (0.266) (0.042) (0.282)

BB Surprise: Jobs -0.473 -5.870 0.077 -4.321 -0.401 -5.577
(1.574) (11.600) (1.703) (10.676) (1.576) (11.603)

First ∆NFPR 1.905 9.573 0.358 2.702 1.794 8.943
(1.372) (7.180) (1.570) (6.528) (1.399) (6.975)

Second ∆NFPR -1.181 -0.554 -1.323 -0.013 -1.102 0.056
(1.136) (5.452) (1.197) (5.321) (1.142) (5.365)

1-quarter stock ret. 0.016 0.188
(0.014) (0.099)

BBK Indexm(t)−1 0.377 1.259

(0.158) (0.972)

6-week stock ret. 0.018 0.111
(0.018) (0.136)

Constant -0.039 -2.007 0.086 -1.806 -0.049 -2.106
(0.114) (0.737) (0.136) (0.729) (0.113) (0.744)

Observations 159 159 159 159 159 159
Adjusted R2 0.032 0.012 0.108 0.078 0.032 0.012
F 1.277 1.056 2.453 2.008 1.273 1.146
p(F) 0.265 0.395 0.012 0.042 0.262 0.336

This table presents results from regressing the HF measure of output and interest-rate forecast revisions around FOMC an-
nouncements on several variables. The output measure (ŷt) is from newspapers and standardized over the regression sample.

The interest-rate measure (̂it) is the change in the 4-quarter Eurodollar future contract, in basis points. In each column two
lags (at FOMC meeting frequency) of the left-hand-side variables are included. The three “BB surprise” variables are the
difference between expected and announced annualized CPI inflation (basis points), annualized GDP growth (basis points), and
monthly change in non-farm payrolls (100,000 jobs). I compute these forecast errors (from Bloomberg) from the most recent
(pre-FOMC) announcement of each variable. The two NFPR variables are the most recent (pre-FOMC) and second most recent
real-time releases of non-farm payrolls (100,000 jobs). The 1-quarter stock return is the 13-week percent return in the S&P
500 (ending one day before the FOMC announcement). The lagged BBK index is the standardized value of the index of Brave
et al. (2019) from 1-month before the date t FOMC meeting. The sample consists of all regularly scheduled FOMC meetings
between May 1999 and October 2019. Robust standard errors are in parentheses. The row labeled “F” is the F-statistic from
a joint test that all coefficients (except the constant) are nonzero, and p(F) gives the associated p-value.
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In the remaining columns I add additional variables considered by Bauer and Swanson.22

Following the authors, in the third and fourth columns I add the 13-week return of the S&P 500

and the 1-month lagged index of Brave et al. (2019) (“the BBK index”). Here the evidence of

predictability is stronger, with joint tests of significance smaller than 5% for both variables. In

the fifth and sixth columns I examine these findings further. First, noting that the BBK index

is not observable, I exclude it from the regression.23 Second, recalling, from the discussion of

table 1, the sensitivity of “predictability” regressions to the stock-market horizon, I change the

return horizon to a six-week horizon. This approximates the inter-meeting stock return, since eight

scheduled meetings are held per calendar year. The results in these columns again suggest a lack of

predictability, again calling into question the robustness of the conclusion Bauer and Swanson, that

both GDP and interest-rate forecast revisions are predictable from publicly available information.

2.4 Numerical Data

To measure the surprise component of monetary policy decisions, I use tick-level data on Federal

Funds and Eurodollar futures. I use the 30-minute change in the current-month Federal Funds

future rate (in the spirit of Kuttner (2001)) and the change in the price of the 4-quarter-ahead

Eurodollar futures contract.24 These series are well-known in empirical monetary economics and

were extended by Acosta and Saia (In progress) through 2019 using tick-level data purchased from

the CME group. The authors followed Nakamura and Steinsson (2018) exactly in the construction

of these variables. The 4-quarter Eurodollar is highly (0.95) correlated with the shock used by

Nakamura and Steinsson and the path factor of Gürkaynak et al. (2005), with a correlation coeffi-

cient of 0.91. Here, I measure high-frequency S&P 500 prices using the exchange traded fund SPY,

and low-frequency prices from Yahoo finance.

I take data on macroeconomic expectations from Blue Chip Economic Indicators. In some

regression specifications I control for the surprise components of macroeconomic news releases. I

collect expectations and the announced values of these variables from Bloomberg—the data ap-

pendix of Acosta and Saia (In progress) describes these data in detail. When studying macroeco-

nomic effects I use the shadow Federal Funds rate of Wu and Xia (2016) and other macroeconomic

aggregates from FRED.

Unless noted otherwise, my sample consists of all regularly scheduled FOMC meetings be-

tween May 1999 and October 2019. May 1999 is the first meeting after which the Fed started to

regularly release post-meeting statements. October 2019 is when my high-frequency data end. I

exclude observations from July 2008 through 2009 because of the asset-pricing anomalies over this

period discussed by Nakamura and Steinsson (2018).

22The authors also include recent changes in non-farm payrolls. Using real-time data, I find that those variables
are not predictive of monetary shocks.

23The index did not exist for most of my sample. Even when it does exist, the index for month m(t) (used in the
regression) is not until month m(t) + 2. Thus, when considering an FOMC meeting at time t, the value of the index
for month m(t)− 1 is not available to markets.

24For those familiar with the variable names in HF papers, this is ED4.
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3 Shock Identification

In Section 3.1, I describe an illustrative version of the model I use to estimate my shocks, which

models how expectations are revised in light of Fed announcements. This allows me to formalize the

identification challenge: Forecast revisions about observable variables (e.g., interest rates) are linear

combinations of forecast revisions about structural shocks (e.g., monetary and information shocks).

This implies that no high-frequency change in expectations or prices will identify macroeconomic

shocks unless additional assumptions are made. As a consequence, my new measure of high-

frequency output expectations is neither an estimate of “information effects” nor can it be used as

an instrument for information effects.

This is not to say that all hope is lost; only that more work has to be done. The second

purpose of my illustrative model is to show that, together, my new measure, traditional estimates of

monetary shocks, and historical information about the nature of the Fed’s communication practices

can be used to separately identify monetary and information shocks using the heteroskedasticity-

based identification assumptions of Rigobon (2003). I pair the illustrative model with my data to

show the intuition behind this procedure in Section 3.2. Finally, in Section 3.3 I describe the formal

model and identification assumptions, then present the results of the estimation in Section 3.4.

3.1 The Identification Challenge in an Illustrative Model

My illustrative model describes how markets (and Fed watchers more generally) form macroeco-

nomic expectations, which allows me to study how these expectations are revised in response to

the Fed’s policy announcements. Fed watchers use a simple macroeconomic model for this task.

While this model, in its simplicity, serves its expositional purpose, when appropriate I discuss why

the intuition gleaned from the simple model is consistent with expanded elaborations of the model.

Economy The macroeconomic model used by forecasters is described by output yτ and the

interest rate iτ , which are related by the following two equations:

iτ = φyτ + ετ (5a)

yτ = −γiτ + ητ . (5b)

The exogenous shocks are a monetary shock, ετ , and a macroeconomic fundamental, ητ . These

serially uncorrelated shocks are normally distributed with zero mean and variances σ2
ε and σ2

η. For

the purposes of building intuition, I assume that the coefficients φ and γ are positive. I do not use

these sign restrictions in my identification procedure. In appendix A, I show that this model nests

the textbook three-equation New Keynesian model (Gaĺı, 2015), in which I substitute out inflation

and remove technology shocks (thus, the information shock here is a demand shock in the context

of the New Keynesian model). As such, I refer to the equations as the forecaster’s Taylor Rule

(Taylor, 1993) and IS equation, respectively. The elimination of supply shocks is consistent with my

findings below; whereby monetary announcements reveal very little about supply shocks. Appendix
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C highlights the fact that the intuition from this static bivariate model extends to linear forward-

and backward-looking general equilibrium models with noisy information as in, e.g., Blanchard et

al. (2013).

Fed Announcements At discrete points in time, indexed by t, the Fed makes policy announce-

ments. Empirically, I measure expectations about the observable variables, yτ and iτ , shortly before

and shortly after each policy announcement. Denote the time of those pre- and post-announcement

measurements by t and t, respectively, and expectations taken at each time t about x at time τ as

xτ,t = Et[xτ ], for x ∈ {y, i, η, ε}. Equations (5a) and (5b) show how these expectations of observable

variables relate to perceptions of structural shocks before (left column) and after (right column)

each announcement

iτ,t = φyτ,t + ετ,t iτ,t = φyτ,t + ετ,t (6a)

yτ,t = −γiτ,t + ητ,t yτ,t = −γiτ,t + ητ,t. (6b)

Denote high-frequency changes in expectations about xτ ∈ {yτ , iτ , ητ , ετ} by x̂τ,t = Et[xτ ]−Et[xτ ].

Then taking the difference between the left and right columns of equation (6a) reveals

îτ,t = φŷτ,t + ε̂τ,t. (7a)

Similarly, the IS equation in expectation-revision space is

ŷτ,t = −γîτ,t + η̂τ,t. (7b)

Combining equations (7a) and (7b) allows the observable variables to be expressed as linear com-

binations of the forecast revisions about perceived structural shocks:

îτ,t =

(
φ

1 + γφ

)
η̂τ,t +

(
1

1 + γφ

)
ε̂τ,t (8a)

ŷτ,t =

(
1

1 + γφ

)
η̂τ,t −

(
γφ

1 + γφ

)
ε̂τ,t. (8b)

I refer to ε̂τ,t as a perceived monetary shock, and η̂τ,t as an information shock or information effects.

The Identification Problem Equations (8a) and (8b) are the crux of the identification chal-

lenge. First, equation (8a) shows that in general, traditional HF measures of monetary shocks (̂iτ,t)

are contaminated by information effects (η̂τ,t). There is only a special case—when the Fed has no

independent knowledge about the state of the economy (so that η̂τ,t = 0, ∀t)—in which traditional

measures identify the (perceived) monetary policy shock ε̂τ,t. A testable implication of the model

is that if traditional estimates are not contaminated by information effects, then the correlation

between interest-rate and output expectations must be negative. Empirical evidence refutes this

implication. Campbell et al. (2012) and Nakamura and Steinsson (2018) find a positive correlation
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between output and interest-rate forecast revisions using low-frequency data, which I confirm using

high-frequency data.

Second, equation (8b) shows that an estimate of output forecast revisions can neither be

used to control for information effects nor to instrument for information effects. On the first point,

in Appendix D I show that the residual from a regression of interest rate expectations on output

expectations (i.e. a “cleaned” interest rate surprise) only identifies monetary shocks in the case

that output expectations do not respond to monetary shocks which. This, in turn, is only the case

with full monetary neutrality (i.e. φ = 0) or there are no information effects in the first place.25

(Interestingly, in the absence of information effects, any asset-price change in the window around a

policy announcement identifies a monetary policy shock!) Next, output forecast revisions are not a

valid instrument for information effects, because they are not exogenous with respect to monetary

policy shocks.

These observations intuitively show the necessity for additional identification assumptions to

be made in order to separately identify monetary and information shocks. Let (σ̂ν , σ̂η, ρ̂η,ν) be the

variance of η̂τ,t, the variance of ε̂τ,t, and their covariance, respectively. Formally, the identification

problem is that the model contains five parameters (φ, γ, σ̂ν , σ̂η, ρ̂η,ν), but the data only provide

three empirical moments: the variances of ŷt and ît and their covariance. I next discuss my

identifying assumptions in the context of my data and illustrative model. These assumptions will

allow me to estimate the linear mapping (a function of γ and φ) between the (unobserved) perceived

structural shocks (η̂τ,t and ε̂τ,t) and the (observed) forecast revisions (ŷτ,t and îτ,t). I will then invert

that linear mapping to recover the shocks from the revisions.

To this point I have remained agnostic as to the exact mathematical specification of the

information communicated by Fed policy announcements. Such a formal structure is not neces-

sary for my identification approach. However, I do make two assumptions about the information

conveyed and how markets make use of that information. First, I assume that the information

revealed allows forecast revisions about the structural shocks to be uncorrelated, i.e., ρ̂η,ν = 0.

This need not be the case in general signal-extraction problems: If the Fed’s communications are

not sufficiently detailed in their discussion of each type of shock (economic fundamentals, ηt vs.

monetary policy, εt), then markets will generally have to use their prior knowledge to parse the

independent information revealed about each shock. Empirically, this assumption can be tested

with overidentification tests. Theoretically, in Appendix B.1, I discuss a particular information

structure under which this assumption would be valid. The second assumption is that markets

make larger forecast revisions about a variable when signals about that variable are clearer—this

is an implication, for example, of Bayes’ rule. These assumptions, plus some historical knowledge

described in the next section, allow me to identify the model’s parameters.

25In the language of Angrist and Pischke (2008), ŷt is a “bad control” for information effects, since it is affected
by monetary shocks.
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3.2 Regimes and Intuition for the Identification Assumptions

I bring historical knowledge about the nature of the Fed’s communication practices to the iden-

tification problem. Intuitively, this knowledge provides the fourth moment needed to identify the

model’s four parameters. To be concrete, I rely on the episode discussed by Lunsford (2020): the

August 2003 introduction of interest-rate forward guidance. To give context, in June 2003 the

FOMC had lowered the Federal Funds rate to 1%. In August 2003, the post-meeting statement

declared that this “policy accommodation can be maintained for a considerable period.” This was

the first instance of explicit forward guidance regarding the path of interest rates, and was used for

reasons similar to what prompted its major re-emergence in 2008. In 2003, 1% was essentially seen

as the effective lower bound on nominal interest rates. This episode thus gives me a natural place

to split my sample. My first regime, R1, consists of all meetings from the start of my sample (May

1999) through June 2003. The second regime, R2, extends from August 2003 through the end of

2006.26 These regimes are shown by the two left-most shaded regions of Figure 2.

To see how this episode can provide useful variation for identification, consider the change in

the behavior of forecast revisions following the announcement, shown in Figure 4. Focusing on panel

A, the behavior of forecast revisions clearly changed between the two regimes. In the first regime

(left-most plot), GDP and interest-rate expectations tended to be revised in the same direction

following Fed announcements. This statistically significant positive correlation disappears—and

becomes even slightly negative—following the regime change.

The change in the correlation of GDP and interest-rate forecast revisions is predicted by

the illustrative model, given the nature of this episode. In the context of that model, perceived

information shocks induce a positive correlation between GDP and interest-rate forecast revisions,

while monetary shocks induce a negative correlation. This is evident from equations (8a) and (8b).

Since both shocks are potentially present in both regimes, however, the correlation between the two

series depends on which shock is larger, as determined by their variances. Lunsford (2020) highlights

the fact that before 2003 the Fed’s post-meeting statement primarily discussed the economic outlook

and risks to that outlook. In the context of the illustrative model of Section 3.1, this can be

formalized as clearer signals about ηt. Recalling the assumption that forecast revisions are larger

for variables with clearer signals, this suggests a relatively high value of σ̂η—i.e., information effects

are relatively larger (than monetary shocks) in the first regime. Therefore, the model predicts that

forecast revisions to both variables will primarily reflect information shocks, which is borne out by

the positive correlation in the top-left panel of Figure 4. Similarly, a relatively clearer signal about

future interest rates implies a larger role for perceived future monetary shocks. This role becomes

larger after 2003, as shown by the slightly negative correlation.

The change in correlation thus suggests that the variance of the underlying perceived shocks

changed in 2003. One assumption allows this observation to be used to identify the model’s struc-

26These are slight elongations of the sample period studied by Lunsford (2020). I elongate the sample for statistical
precision—my point estimates are nearly identical using Lunsford’s exact regimes, but mildly less-precisely estimated.
I will also note that I have estimated an over-identified system using the rest of my sample as a third regime, but
again the point estimates are very similar.
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Figure 4: The Identifcation Assumptions in Pictures

Panel A: Correlations in the two Regimes
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Panel B: Estimated Data-Generating Process
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Panels A and B contain scatter plots of high-frequency GDP and interest-rate forecast revisions around Fed announcements (ŷt
and ît in the text). The left panel shows observations between May 1999 and June 2003; the right panel features observations
between August 2003 and December 2006. The green line in panel A is the unconditional line of best fit, estimated separately in
both regimes. The lines in panel B are those estimated to generate the data in both regimes (in a maximum-likelihood sense),
estimated using data from both regimes using the identification procedure described in Section 3.4.
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tural parameters. Namely, by assuming that the slopes in the forecasting model (φ and γ) remain

unchanged across the policy regions, Rigobon (2003) shows that only a unique pair of slopes can

generate the data in both regimes (in a maximum-likelihood sense). I display that unique set of

slopes in panel B of Figure 4 (delaying a discussion of their estimation to the next section). To see

that these slopes are those most likely to generate the data, consider tilting the solid blue line down

in the bottom-left panel so that it better fits the points in the first regime. This would necessarily

cause it to fit the points in the top of the bottom-right graph.

Intuitively, then, the first sample primarily contributes to the estimation of the information

shock, which, from the perspective of macroeconomic theory, should induce a positive correlation

between these variables (which can be seen by shifting the red dashed line, the IS equation, and ob-

serving that all points are assumed to lie at the intersection of the two lines). Having learned about

the information shock, the low to negative correlation in the second regime allows the monetary

shock to be identified, since that regime exhibits variation in the two variables that is orthogonal

to the information shock. In the extreme case in which the first regime contains only information

shocks and the latter only monetary shocks, this intuition would be exact and the green lines in

panel A would provide structural slope coefficients. However, even with nonzero variances of each

shock, the system can still be identified as long as the two shocks behave differently enough across

the two regimes.

3.3 Formal Identification Assumptions

Model I estimate the following model:

ŷτ,t = m11ξ1,t +m12ξ2,t ξ1,t ∼ N(0, σ2
1,t) (9a)

îτ,t = m21ξ1,t +m22ξ2,t ξ2,t ∼ N(0, σ2
2,t), (9b)

where iτ,t is the 30-minute change in four-quarter ahead Eurodollar futures (section 2.4) and yτ,t

is the high-frequency text-based proxy for output expectations (section 2.1). These observable

variables are posited to be linear combinations of two independent Gaussian shocks, ξ1,t and ξ2,t. I

assume that the shocks exhibit heteroskedasticity of the form

σ1,t =

1 t ∈ R1

σ1 t ∈ R2

σ2,t =

1 t ∈ R1

σ2 t ∈ R2,

where, as described in section 3.2, the regimes, R1 and R2, consist of all regularly-scheduled FOMC

meetings running from May 1999 through June 2003, and August 2003 through December 2006,

respectively. The normalization of the variances of the shocks is without loss of generality—their

levels are not identified, only their relative levels between the two regimes. The model can be
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generalized to n variables and shocks, so for later reference I express the model in matrix form:

x̂τ,t︸︷︷︸
n×1

= M︸︷︷︸
n×n

ξt︸︷︷︸
n×1

ξτ,t ∼ N(0, Σt︸︷︷︸
n×n

). (10)

where

Σt =

Σ(1) t ∈ R1

Σ(2) t ∈ R2.

with the normalization Σ(1) = In.

The formal model just described is similar to the illustrative model used to generate intuition—

this can be seen by comparing equations (9a) and (9b) to equations (8b) and (8a). Here, I posit

that changes in expectations about observable variables are driven by two independent structural

shocks. In the illustrative model, the shocks were given names and the coefficients were signed

based on macroeconomic theory. Here, the coefficients are unrestricted and the shocks will based

on the historical episode that I use to estimate them.

Assumption 1: Heteroskedasticity The assumption of heteroskedasticity is crucial. Without

it, the model would not be identified. Only three empirical moments would be available from the

two Gaussian observable variables—var (ŷτ,t), var
(̂
iτ,t

)
, and cov

(
ŷτ,t, îτ,t

)
—but there would be

four parameters to estimate, m11,m12,m21, and m22.27 Rigobon (2003) developed a solution to

this identification problem. The assumption of heteroskedasticity allows me to estimate those three

empirical moments in both regimes, for a total of six moments. The model has six parameters

to estimate: m11,m12,m21,m22, σ1, and σ2. Therefore, the system is just-identified, with moment

conditions given by

var1 (ŷτ,t) = m2
11 +m2

12 (11a)

var1

(̂
iτ,t

)
= m2

21 +m2
22 (11b)

cov1

(
ŷτ,t, îτ,t

)
= m11m21 +m21m22 (11c)

var2 (ŷτ,t) = m2
11σ

2
1 +m2

12σ
2
2 (11d)

var2

(̂
iτ,t

)
= m2

21σ
2
1 +m2

22σ
2
2 (11e)

cov2

(
ŷτ,t, îτ,t

)
= m11m21σ

2
1 +m21m22σ

2
2, (11f)

where the notation var1 (ŷτ,t) is the variance of yτ,t in regime 1, cov2

(
ŷτ,t, îτ,t

)
is the covariance

of the observable variables in regime 2, and so on. Those moments—on the left-hand-side of each

equation—can be estimated directly in the data. These six equations therefore have six unknowns—

the parameters on the right-hand-side of each equation. The solution can be expressed analytically

(see Rigobon (2003)). As solutions to quadratic equations, however, the associated expressions are

27Without loss, the variances of the shocks could be normalized to unity.
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not particularly enlightening.28 An important condition for the system to be identified is that

σ1 6= σ2. (12)

In words, this rank condition states that the relative variances of each shock (between regimes) must

be different. Suppose instead that the relative variances were equal, defining c ≡ σ1 = σ2. In this

case, empirically, the six equations 11 would reduce to only three linearly independent equations,

with (11a), (11b), and (11c) just c-scaled versions of (11d), (11e), and (11f). That parameter, c,

could be (over-) identified, but not the mij .

Assumption 2: Stable Effects The second crucial assumption I make is that themij coefficients

remain unchanged across the two regimes. Without this assumption, four additional parameters (10

parameters total) would need to be estimated with only six equations. Empirically, this assumption

can be tested by adding an additional regime and running over-identification (J) tests—I present

results of such a test alongside my estimates. To assess its theoretical validity, I consider the

assumption within the context of linear rational (RE) expectations models. In full-information RE

models there is no role for information effects, so I focus my discussion on linear RE models with

imperfectly-informed agents.

I consider first the class of models discussed by Blanchard et al. (2013). In these models, all

agents are imperfectly informed about the economy’s state variables. Models of this class take the

form

A xt +BEt[xt+1] + Cξt|t = 0 (13)

where xt is a vector of observable macroeconomic variables, zt|τ denotes the mathematical expec-

tation of zt given information at time τ , and ξt is a vector of mutually independent structural

shocks that evolves according to ξt = Dξt−1 + Fζt, where ζt ∼ N (0,Σζ).
29 At the beginning of

each period t, but before making decisions about xt, all agents receive the same noisy signal of the

structural shock of the form st = Gξt + Hνt, where νt ∼ N (0,Σν). Agents use this signal to form

expectations about ξt using the Kalman filter (i.e., agents have RE). Agents are thus imperfectly

informed in a symmetric way—they all share the same information set when making decisions.

In appendix C, I show that the model in equation (13) admits a solution of the form

xt = Jξt|t (14)

along with a law of motion for perceived shocks, ξt|t, where J depends on neither Σζ not Σν .

28In the (over-identified) case that one of the shocks is assumed to maintain the same variance between both regimes
(Wright, 2012; Arai, 2017; Nakamura and Steinsson, 2018; Hébert and Schreger, 2017), an intuitive expression the
“slope” coefficients mij emerges as essentially a change in OLS coefficients between the two regimes.

29The assumption that the shocks follow a VAR(1) is not restrictive—any finite VARMA can be re-written as a
VAR(1). Adding the vector of lagged endogenous variables to equation (13) (i.e., xt−1) slightly changes the language,
but not results, of this discussion. Specifically, rather than forecast revisions of endogenous variables being related
linearly to revisions of structural shocks, it’s forecast revisions of surprises (i.e., reduced form residuals) of endogenous
variables that are related linearly to revisions of structural shocks.
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Equations 14 and the law of motion for ξt reveal the result: the mapping between forecast revisions

of observable variables and forecast revisions of structural shocks is fixed and linear:

Et[xt+k]− Et−1[xt+k] = JDk[ξt|t − ξt|t−1].

This relationship resembles the relationship between reduced-form and structural shocks in the

parlance of structural VARs, another macroeocnomic model in which the assumption of constant

mij is valid.

The key ingredient for a linear RE model to feature a constant mapping between observable

variables and structural shocks is that the model’s structural equations can be solved independently

of agents’ Kalman filtering problem. The result would continue to hold, therefore, in models in

which agents also observe the endogenous variables, xt. An important case in which this inde-

pendence breaks is in linear RE models with dispersed information (as in the “islands” model of

Lucas (1972)). Within the context of these models, it then becomes an empirical question: To

what extent does the dependence of mij on the variance of the structural shocks affect the ability

of the shocks to be recovered using the heteroskedasticity-based assumptions? In appendix I.1, I

ask this question within the context of the model of Fed “signalling effects” posited and estimated

by Melosi (2017), which features agents with dispersed information and realistic modeling of Fed

signaling. Specifically, I simulate the “introduction of forward guidance” experiment within the

model. I find that the shocks identified by heteroskedasticity uncover their structural counterparts

remarkably well. In appendix I.2, I also discuss why the assumption of dispersed, rather than

common, knowledge eliminates the aforementioned independence in the context of a simple asset

pricing model that follows Townsend (1983).

Assumption 3: Naming In the illustrative model, the two structural shocks, η̂τ,t and ετ,t, were

given names consistent with macroeconomic theory. The model of equations (9a) and (9b) instead is

driven by two structural shocks, ξ1,t and ξ2,t, with no natural names. Members of the high-frequency

identification literature typically impose identification restrictions on the mij coefficients.30 In this

paper, I take the view that the mij are exactly the objects that require unrestricted estimation,

since they ultimately determine the nature of the estimated shocks. Instead, I place assumptions on

the size of the underlying shocks, motivated by the historical evidence. Here, the illustrative model

and the historical evidence provide a natural solution: The ξ shock that I call the “information

shock” is the shock whose variance becomes relatively smaller in the second regime. Formally,

recalling that σi = var2(ξi,t)/var1(ξi,t), I name the information shock as

ξ̂It ≡ information shockt ≡ arg min
ξi,t

[σi]. (15a)

30For example, Kuttner (2001) and Gürkaynak et al. (2005) impose zero restrictions on the mij , while (Jarociński
and Karadi, 2020) impose sign restrictions.
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Table 3: Heteroskedasticity-Based Estimates

Panel A: Structural Impact Matrix, M

Response of High-Frequency Forecast Revisions

Eurodollars (1Y) GDP

Monetary Path Shock -0.39 0.78
[-1.17, 0.13] [0.55, 1.28]

Information Shock 0.99 0.56
[0.71, 1.43] [0.02, 1.29]

Panel B: Relative Variance in Regime 2, Σ2Σ
−1
1

Monetary Path Shock Information Shock

1.37 0.63
[0.69, 2.00] [0.38, 1.58]

This table shows the estimates of the system in equation (11). Panel A shows the structural impact matrix, which shows the
effect that each structural shock (in the rows) has on forecast revisions made around FOMC announcements (in the columns).
The shocks are normalized to have unit variance in the first regime (2000–2003). Panel B shows the variance of each shock
in regime 2 relative to its variance in regime 1. 90% equal-tailed (studentized) confidence intervals are produced using 999
boostrap replications, where bootstrap samples are stratified by regime.

Conversely,

ξ̂Mt ≡ monetary path shockt ≡ arg max
ξi,t

[σi]. (15b)

I therefore name my shocks based on the size of their relative variance across the regimes. It

then becomes an empirical question—not an assumption—whether these shocks have theoretically-

consistent effects on high-frequency forecast revisions. This can be determined through the esti-

mates of the mij . I carry out the estimation in the next section.

3.4 Estimation

I estimate the parameters using GMM and calculate bootstrapped standard errors and confidence

intervals. In appendix F I describe the bootstrap procedure in detail. The procedure is mostly

standard—nearly identical to that of Hébert and Schreger (2017)—though I design a method to

handle the fact the columns of M are only identified up to order and sign.

I present the estimates in table 3. Panel A contains the estimated structural impact matrix,

M, and panel B shows the estimates of Ω2Ω−1
1 —the variance of each of the structural shocks in R2

relative to R1.31 Following the discussion of equation (15), I name the “information shock” based

31Recall that I am allowed the normalization of two parameters without loss—here I have normalized Ω1 to be a
2× 2 identity matrix.
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Figure 5: Time Series of Estimated Monetary and Information Shocks
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The top panel shows the identified monetary policy path shock described in section 3.4, and the bottom panel shows the
identified information shock. Both shocks are standardized to have unit standard deviation over the plotted sample. The first
two shaded areas present the regimes used for identification, described in section 3.2. The third, gray, shaded area highlights
observations that are dropped for most analysis, discussed in section 2.4.

on the fact that it is relatively smaller in the second regime than in the second. This is consistent

with the notion that the Fed’s statement in the first regime focused exclusively on describing the

state of the economy. Because I use interest rate expectations at a one-year horizon, I call the

second shock a “monetary path shock”—an exogenous shock to the expected path of interest rates.

Again, once the Fed starts to communicate explicitly about future interest rates, markets are able

to make more-informed (larger) updates about expected future monetary shocks. Formally, I can

reject the null hypotheses that the variance of the monetary shock is relatively smaller than the

variance of the demand shock in the second regime with 90 percent confidence.32

Having named the shocks based on their relative variances, the estimates of M serve as the

first check on the shocks. A monetary policy shock that lowers interest rates by 0.37 standard

deviations increases GDP expectations by 0.76 standard deviations. Conversely, a monetary policy

32Let δ be the difference between the variance of the monetary and information shock. The 90% confidence interval
for this test is (x,∞), where x is δ̂ − s.e.(δ̂)G∗−1

n (0.9), where δ̂ is the point estimate of δ, s.e.(δ̂) is the standard

deviation across bootstrap replications, and G∗n is the bootstrap distribution of t-statistics (δ̂∗ − δ̂)/s.e.(θ̂∗). Note

that estimation θ̂∗, requires an inner bootstrap (boostrapping the bootstrap) for which I also use 999 replications.
Empirically, x = 0.002.
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Figure 6: Variance Decomposition of HF Forecast Revisions

0.00

0.25

0.50

0.75

1.00

2000−2003 2003−2006 Full Sample
Regime

C
on

tr
ib

ut
io

n 
to

 V
ar

ia
nc

e
HF Interest Rate (1Y) Forecast Revision

0.00

0.25

0.50

0.75

1.00

2000−2003 2003−2006 Full Sample
Regime

C
on

tr
ib

ut
io

n 
to

 V
ar

ia
nc

e

Shock

Path Information Covariance

HF Output Forecast Revision

This figure shows which portion of the variance of HF interest rate forecast revisions, ît (left panel), and HF output forecast
revisions, ŷt (right panel), can be explained by the monetary ε̂t and information η̂t shocks. Recalling from equations (9a) and

(9b) that ît = φiεε̂t + φiη η̂t and ŷt = φyεε̂t + φyη η̂t, the red outlined boxes for j ∈ {i, y} show φ2jηvar(η̂t)/var(ĵt); the blue

non-outlined boxes show φ2jεvar(ε̂t)/var(ĵt); and the white-outlined boxes show the remaining covariance term (which is not

restricted to be null in the full sample).

shock that lowers rates by 1 standard deviation decreases GDP expectations by 0.57 standard

deviations. These impact responses are consistent standard New-Keynesian macroeconomic theory

and the illustrative model. The time series of the estimated shocks, given by M−1x̂t, are shown in

figure 5.33

To have a better sense of how the identified monetary and information shocks relate to interest

rate and GDP forecast revisions, figure 6 shows the variance decomposition of the forecast revisions.

The calculation during the period 1999–2006 follows immediately from the estimated system—the

variance of forecast revisions is the weighted (by M) sum of the variances of the underlying shocks.

Both during the estimation period and in the full sample, it is apparent that the bulk of interest

rate forecast revisions are driven by the information shock. This is not a surprising finding given

the puzzling estimated effects of interest rate surprises, but these estimates allow me to quantify

the extent of the contamination problem. Roughly about 70% of interest rate surprises (recall,

these are traditional HF estimates of monetary policy shocks) are made up of information. This

contamination was less severe during 2003–2006 than it was in 2000–2003, consistent with the

illustrative model.34

33Here I make a less demanding form of an “invertibility” assumption, as discussed in the structural-VAR literature
(see, e.g., Chahrour and Jurado (2021) or Fernández-Villaverde et al. (2007)). The illustrative model and discussion
surrounding equation (14) provided the justification for its validity here. Note that my context—recovering perceived
shocks from expectations data—is different from the VAR context, in which one seeks to identify structural shocks
from reduced-form VAR residuals.

34To see this, notice that the variance of interest rate surprises is:

var
(̂
it
)

=

(
φ

1 + γφ

)2

νη︸ ︷︷ ︸
Var. due to info.

+

(
1

1 + γφ

)2

νε︸ ︷︷ ︸
Var. due to MP

.

The relative contribution of information effects to interest rate forecast revisions is therefore φ2
(
νη
νε

)
. In the model, a
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Figure 7: Baseline Macroeconomic Effects

Panel A: Responses to a Contractionary Monetary Path Shock
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Panel B: Responses to an Expansionary Information Shock
(
βIk
)
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This figure plots the estimates of equation (16). Moving from left to right, the left-hand-side variables are k-period differences
in 100 times the log of industrial production (FRED mnemonic INDPRO), 100 times the log of the core PCE prices index
(PCEPILFE), and the shadow Federal Funds rate of Wu and Xia (2016) (in percent). The right-hand-side contains 12 lags
of these variables, as well as the estimated monetary path shock and information shock, standardized to have unit standard
deviation over the full sample period, which runs from May 1999 to October 2019, excluding July 2008–July 2009. Both shocks
are also scaled to increase the 1-day change in the one-year treasury yield on impact—thus the monetary shock is contractionary,
and the information shock is expansionary. I exclude months with no FOMC meeting. Confidence intervals are calculated using
heteroskedasticity and autocorrelation-consistent asymptotic standard errors with the automatic lag selection method of Newey
and West (1994), as implemented by Zeileis et al. (2020) and Zeileis (2004).

The “full sample” column in each panel serves as a check on the assumption that the shocks

are uncorrelated. During the 1999–2006 period the shocks are forced to be orthogonal. During the

remainder of the sample, this orthogonality condition is not imposed, so a covariance term enters

the expression for the variance of forecast revisions. The covariance between the shocks contributes

negligibly to the variance of observed forecast revisions, suggesting that the orthogonality restriction

was warranted.

regime in which post-meeting statements focus on the Fed’s outlook for the state of the economy is akin to increasing
the precision of the information signal, i.e., lower σn,η, thus higher νη, which increases the relative contribution of
information effects to interest rate surprises. Thus, a prediction of the model is that relative to 2003–2006, interest
rate surprises during 2000–2003 should be more contaminated by information effects.
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4 Effects of Monetary Policy and Information

I now turn to estimating the effects of monetary policy and Fed information. In Section 4.1, I present

my baseline estimated effects on macroeconomic outcomes and expectations. My specifications are

purposefully simple. I use local projections (Jordà, 2005) to estimate macroeconomic effects and

OLS to estimate the response of macroeconomic expectations. Since part of my objective in this

paper is to provide a credible and portable set of shocks, it is important that my shocks have

sensible effects without depending on particular controls. In Section 4.2, I compare my estimated

effects with those found using other measures in the literature. Along these lines, in section 4.3 I

put my estimated effects in policy-relevant terms by estimating instrumental-variables versions of

my baseline specification.

4.1 Baseline Results

Effects on Macroeconomic Outcomes In order to estimate the effects of my shocks on macroe-

conomic outcomes, I estimate local projections of the form

yt+k − yt−1 = αk + βMk ξ
M
t + βIkξ

I
t +

L∑
`=1

Γ′`,k∆yt−` + ξk,t, (16)

where ξMt and ξIt are the estimated monetary and information shocks.35 The left-hand-side variable,

yt, is either the log of the industrial production index, the log of the core PCE price index, or the

shadow Federal Funds rate of Wu and Xia (2016). The vector yt contains the three yt variables,

of which I include m = 12 lags. I estimate the equation at monthly frequency, using the sample

described in Section 2.4. The shocks are normalized to have unit standard deviation over the

regression sample, with a positive effect on interest rates (the high-frequency change in the 4-

quarter Eurodollar future). Thus, the coefficients of interest are βMk —the effects of a contractionary

monetary policy shock—and βIk , the effects of an expansionary information shock.

Figure 7 contains the estimated coefficients. The top panel shows the effect of a contractionary

monetary policy shock. Encouragingly, both industrial production and inflation decrease. The

delayed peak responses of these variables—at about 36 months—is consistent with the notion that

monetary policy works with “long and variable lags.”

The response of the shadow rate to a monetary policy shock is less clear-cut. In high frequency,

a monetary shock leads to an upward revision of interest-rate expectations. As shown in Panel A

Figure 8, nominal yields several years into the term structure also increase in a 1-day window around

the policy announcement in response to a monetary shock. The effects at a monthly frequency are

imprecisely estimated and fluctuate around zero. Figure 9 investigates whether this finding is robust

across alternative measures of nominal rates. Specifically, I re-estimate equation (16) using longer-

term interest rates in place of the shadow rate. While the estimates continue to be imprecise, the

35Note, as described in Section 3.4, that the shocks are essentially uncorrelated over the sample, so their joint
inclusion does not affect the point estimates, only the precision.
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Figure 8: One-Day Changes in Yields
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Panel B: Real Yields
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This graphs show the estimated slope coefficient from univariate regressions of 1-day changes in nominal (Panel A) and real
(Panel B) interest rates of maturity m (∆imt ) on the monetary path shock (left panel) and the information shock (right panel),
using my baseline sample. Regarding nominal rates, for maturities of at least 1 year, I use data from Gürkaynak et al. (2007)
The Federal Funds, three- and six-month yields are from FRED, with mnemonics EFFR, DGS3MO, and DGS6MO, respectively.
The zero lower bound leads to enormous standard errors in the Fed Funds rate regression, so I omit them. I take real rates
from Gürkaynak et al. (2010). Confidence intervals are computed using robust standard errors.

negative effect on the interest rate diminishes as increasingly longer-term interest rates are used.

Panel B of Figure 7 shows the effects of an expansionary information shock. While the

responses are more immediate than responses to a monetary shock, the peak effects on industrial

production and prices are similar in magnitude (in absolute value) to the peak effects of a monetary

shock. This suggests that the Fed plays an important role not only in setting interest rates, but

also in the provision of macroeconomic information.36

36These estimates should prove useful for informing models of Fed information effects, e.g., that of Lepetyuk et al.
(2021).
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Figure 9: Effects of Monetary Shocks: Using Longer-term Interest Rates
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These graphs show the response of industrial production, core PCE inflation, and interest rates to the identified monetary
shock. These are estimates of equation (16), except that I replace the shadow rate of Wu and Xia (2016) with either the two-
year treasury yield (solid line, FRED mnemonic DGS2), the five-year treasury yield (dashed line, DGS5), and the twenty-year
treasury yield (dotted line, DGS20. See the note to table 7 for details regarding units, sample period, and confidence intervals.

The relative responses of industrial production and inflation also give a hint as to the nature

of the shocks about which information is revealed. The positive comovement in response to an

information shock suggests that the information primarily concerns demand-type factors. In Section

5.2 I provide further high-frequency evidence in support of this conjecture.

In Appendix G, I examine the robustness of the estimates of equation (16). I first add months

with no FOMC meetings, setting the shocks in those months to zero. I next stop the estimation in

2015 in order to (i) obtain a consistent sample across all horizons and (ii) drop COVID observations.

Similarly, I include a specification that retains Great Recession observations. I test the functional

form of the controls by first controlling for no lags, then for 24 lags, and then add a linear trend.

Finally, I use a 10-word word list Y for GDP to construct the shocks. Across these specifications,

the responses are largely similar to the estimates shown in Figure 7.

Effects on Macroeconomic Expectations I close this section by studying the effects of mone-

tary and information shocks on macroeconomic expectations. Specifically, I regress 1-month changes

in macroeconomic expectations from the Blue Chip survey on the two shocks. The regression takes

the form

Xt|t+1 − Xt|t = α+ βMξMt + βIξIt + et, (17)

where Xt|t is constructed analogous to equation (3), except now I study the responses of real

GDP growth (as above), CPI inflation, and the unemployment rate. I present the results in Table

4. Again, the shocks are scaled to increase interest rates in high frequency—thus, the first row

represents the effects of a contractionary monetary policy shock and the second represents the

effects of an expansionary information shock.

The signs of the responses of all variables are consistent with both the macroeconomic effects

estimated above, and standard macroeconomic theory. The information shock has larger (and more

precisely estimated) effects on real variables, which highlights another way in which the Fed plays

an important role in the provision of macroeconomic information. The information shock also
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Table 4: Shocks and Macroeconomic Expectations

GDP Growth CPI Inflation Unemp. Rate

Path Shock -0.0126 -0.0152 0.0206
(-1.36) (-2.53) (2.14)

Info. Shock 0.0389 0.0138 -0.0256
(3.99) (1.43) (-3.69)

Observations 131 131 131
R2 0.116 0.0614 0.105

|LHS| 0.0775 0.0532 0.0625

This table shows estimates of equation (17). The left-hand-side is 1-month forecast revision of the variables listed atop the
columns over the next three forecasting horizons, presented in equation (3), from the Blue Chip survey in percentage points.
The estimated monetary path shock and information shock are standardized to have unit standard deviation over the full
sample period. The sample consists of all regularly scheduled FOMC meetings between May 1999 and October 2019, excluding
July 2008–July 2009, that occur after the first week of the month. The row |LHS| is the average absolute Blue Chip revision in
the relevant column over the regression sample.

induces a positive correlation between these variables and inflation, which again suggests that this

information concerns demand-type factors.

4.2 Comparison with Previous Estimates

While my paper is not the first that seeks to provide a credible measure of monetary policy shocks,

my shocks differ in that they robustly exhibit theoretically consistent macroeconomic effects. In

this section, I compare the estimated effects of alternative measures of monetary shocks found in

the literature. I estimate the effects using the specification in equation (16), in which I replace(
βMk ξ

M
t + βIkξ

I
t

)
with a single measure of monetary policy shocks.

4.2.1 Traditional Measures

I first study the estimated effects of monetary policy using shocks that are pervasive in empirical

macroeconomics. Specifically, I study the high-frequency shocks of Gürkaynak et al. (2005).37 Those

authors decompose high-frequency changes in interest rate expectations for maturities out to 1 year

into a “target” and “path” factor. The shocks are identified and named with the assumption that

the path factor has no effect on the current-meeting Federal Funds rate surprise. I updated these

measures using the tick data described in Section 2.4. I also study the shocks of Romer and Romer

(2004). Those shocks are constructed as the component of the change in the Federal Funds rate that

cannot be predicted from the Fed staff’s (“Greenbook”) forecasts. I updated this series through

2012 (though I stop my estimation at the start of the 2008–2015 zero lower bound period).

I focus on the effects on industrial production and present the results in Figure 10. All shocks

37Other well-known high-frequency shocks are those of Kuttner (2001), Nakamura and Steinsson (2018), and Gertler
and Karadi (2015). Those all differ by the maturity of the underlying interest rates. The shocks of Gürkaynak et al.
span the maturity spectrum used by those other papers.
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Figure 10: Response of Industrial Production to Traditional Contractionary MP Shocks
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These graphs show the response of industrial production to various measures of monetary shocks. The blue line in the left
panel is identical to that in Figure 7. All other lines are computed by estimating equation (16), replacing

(
βMk ξMt + βIkξ

I
t

)
with

βshockt, where shockt is either the target or path factor of Gürkaynak et al. (2005) (left panel), or the shock of Romer and
Romer (2004) (right panel), described in the text. In the right panel I re-estimate the effects of my shocks with an abbreviated
sample (1999–2008) for comparison with the effects of the shock of Romer and Romer. All shocks are standardized to have unit
standard deviation over the sample period, and increase the 1-day change in the 1-year treasury on impact—they are all thus
1-standard deviation contractionary shocks. See the note to Table 7 for details regarding units, sample period, and standard
errors.

are scaled to increase the 1-day change in the 1-year treasury yield, so the results can be interpreted

as the responses to estimates of contractionary monetary policy shocks. The left panel shows the

type of puzzling evidence suggested in the introduction: A contractionary high-frequency shock

leads to increases in industrial production. This is the case whether regardless of the horizon of

the interest-rate surprise (i.e., the target or path factor).

In the right panel of figure 10, I show the responses using the measure constructed by Romer

and Romer (2004). I also re-estimate the effects of my monetary shock using the same (1999–

2008) sample. Romer and Romer’s responses are fairly noisy and fluctuate around zero, though all

statistically significant estimates have the theoretically consistent sign. This last finding suggests

that somehow adjusting for the Fed’s private information is useful for estimating theoretically-

consistent effects of monetary policy.

4.2.2 New Measures of Monetary Shocks

The findings in the previous study also inspired other authors to estimate “information free” mea-

sures of monetary policy shocks. The predominant method of point-identifying information free

measures was developed by Miranda-Agrippino and Ricco (2021), who orthogonalize interest rate

surprises to the Fed staff’s forecasts—essentially a combination of the approach of Kuttner (2001)

and Romer and Romer (2004).38 I downloaded the shocks of Miranda-Agrippino and Ricco (2021)

directly from the first author’s website.

The left panel of figure 11 contains the result. The estimated effects of Miranda-Agrippino

38Hoesch et al. (2020) and Zhang (2020) take a similar approach.
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Figure 11: Response of Industrial Production to “Information Free” Contractionary MP Shocks
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These graphs show the response of industrial production to the shock of Miranda-Agrippino and Ricco (2021). The left panel
includes 12 lags of observable variables as controls, while in the right panel no lags are included. See Figure 11 for other details.

and Ricco (2021) exhibit theoretically consistent effects, with much-more precise estimates than

those of Romer and Romer (2004). In fact, the responses to the Miranda-Agrippino and Ricco

shock are similar to my baseline estimates. At a first glance both seemingly-plausible identification

approaches produce similar results.

Important differences arise when the specification is substantially simplified. In the right

panel of Figure 11, I remove any controls from the regression in equation (16). The estimated effects

using Miranda-Agrippino and Ricco’s shock diminish substantially in magnitude and precision. The

fact that my monetary shock, in contrast, provides similar estimates using this simpler specification

speaks to its portability to other contexts. Put differently, my shocks can be used directly to

estimate the effects of monetary policy, without requiring additional controls.39

4.3 Comparison with Previous Estimates: Magnitudes

The estimated shocks have no interpretable magnitudes because they are linear combinations of

two variables with different units.40 The estimates presented thus far, therefore, speak to average

observed influence of the Fed on macroeconomic aggregates, but do not put those effects in policy-

relevant terms. In this section I follow the work of Gertler and Karadi (2015) and Ramey and

Zubairy (2018) and estimate instrumental variables versions of equation (16). This specification,

39This result is unsurprising given the construction of Miranda-Agrippino and Ricco (2021)’s measure. It is im-
portant to note that information effects arise because the Fed and public have different information sets. Therefore,
to “remove” information effects, it is imperative to control for the difference between the Fed’s and public’s infor-
mation. By only controlling for the Fed’s information, Miranda-Agrippino and Ricco’s shock “leaves behind” the
public’s information. Thus, (at best) their measure is contaminated by (classical) measurement error that attenuates
their estimated effects. The lags of observable variables in the expanded local projection likely span the public’s
information set, which thus allows for the unbiased estimates shown in the left panel.

40One of those variables—the GDP forecast revision proxy—no interpretable units in the first place.
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Figure 12: LP-IV Estimates

Panel A: Effects of Monetary Policy (1-year Treasury Yield)
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Panel B: Effects of Information Provision (GDP Forecast Revision)
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This figure plots the estimates of βk from equation (18), where pt and its instrument are described in the text. Moving from
left to right, the left-hand-side variables are k-period differences in 100 times the log of industrial production (FRED mnemonic
INDPRO), the 100 times the log of the core PCE prices index (PCEPILFE), and the 1-year Treasury yield in period t + k in
percent (DGS1, though the top-right panel shows the result of the level of 1-year Treasury yield, to make the effect on the
instrument clear). Panel A has six lags of the first-differences in these three variables, panel B has twelve. The sample runs from
May 1999 to October 2019, excluding July 2008–July 2009. I exclude months with no FOMC meeting. Confidence intervals are
calculated using heteroskedasticity and autocorrelation-consistent asymptotic standard errors with the automatic lag selection
method of Newey and West (1994), as implemented by Baum et al. (2010).

which I refer to as “LP-IV,” takes the form

yt+k − yt−1 = αk + βkpt +

L∑
`=1

Γ′`,k∆yt−` + ξk,t, (18)

where pt is the policy-relevant variable of interest, for which I will instrument with the relevant

policy shock. For estimating the effects of monetary policy, interest rates are a natural candidate,

so I follow Gertler and Karadi (2015) and set pt to the level of the 1-year Treasury yield. The first-

stage F -statistic here is 14.41 The policy-relevant variable or estimating the effects of information

provision are less obvious, but following the framework of the rest of the paper, I posit GDP forecast

revisions (from the Blue Chip) as a reasonable measure. Here the first-stage F -statistic is 24—an

unsurprising result, given the results in Table 4, whose “GDP Growth” variable is the pt used here.

41For the effects of monetary policy, I set L = 6. For the effects of information, I set L = 12. For reasons still under
investigation, there are a handful of outlier observations that emerge when setting L ≈ 12 in the monetary regression.
These outliers cause a few of the point estimates, and their standard errors, to become orders of magnitude larger
than those shown here. With outliers removed, the results are nearly identical to those shown here.
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Figure 12 contains the results. To use the terminology of Coibion (2012)—who compares and

reconciles the estimated effects of monetary policy from several prominent papers—the effects of

monetary policy are big. The peak responses are similar in magnitude (about a 5% drop to a 1 p.p.

increase in nominal rates) and timing (delayed by less than a year) as those estimated by Romer

and Romer (2004). As Coibion points out, these estimates are on the upper end of estimates found

in the literature. They are substantially larger than the effects found in the existing literature that

uses high-frequency shocks in an LP-IV setting (Gertler and Karadi, 2015; Miranda-Agrippino and

Ricco, 2021). Figure 8 helps to makes sense of these big effects. There, these increases in nominal

interest rates are seen to translate nearly completely to increases in real interest rates.

While little existing empirical work serves as a reference point for understanding the effects

of information provision, figure 12 suggests that the effects are big as well. A 1 p.p. increase in

GDP expectations leads to a nearly 20% increase in industrial production. Care should be taken

in interpreting these results, however. The average absolute GDP forecast revision is less than 0.1

percentage point, so these estimates are largely extrapolating outside of historical experience. The

response of interest rates can help put the results in perspective—those increase by about 4p.p.,

about five-times less than industrial production.42 In this sense, the results are also similar in

magnitude to the effects of monetary policy.43

5 Expanding the Picture: Short-term Rates and Supply Factors

As discussed in the introduction, expanding the set of observable variables can give the econo-

metrician greater insight into the nature of the shocks perceived by markets. In this section, I

expand the set of variables along two dimensions. In Section 5.1, I study the role of short-term

interest-rate surprises. The regimes I consider allow me to identify an additional shock—a monetary

target shock—and study its behavior over time. In summary, following the intuition suggested by

Ramey (2016), monetary policy shocks of this kind largely disappeared following the introduction

of forward guidance. I also extend my model to include dynamic shocks in order to show how,

simultaneously, path shocks can become larger while target shocks become smaller.

In Section 5.2, I present an estimate of high-frequency inflation forecast revisions. Around Fed

announcements, inflation forecast revisions are unconditionally positively correlated with output

forecast revisions. This is also true conditional on the estimated information and monetary path

shocks. Both pieces of evidence suggest that markets do not learn about supply-type factors from

the Fed. I also discuss why the regimes I use do not allow me to separately identify a “demand

information” shock and a “supply information” shock. Intuitively, I can only identify shocks whose

variance is induced to change across regimes; there is little evidence to support the notion that the

introduction of forward guidance altered the relative precision of supply vs. demand signals.

42I do not use nominal interest rates as my policy-relevant instrument for information effects for primarily for
practical reasons—I have no first stage.

43These large estimated effects of the information shocks intuitively suggest that there is some “real” information
content of these shocks—the canonical interpretation of information effects—and not a measure of macroeconomic
disagreement, as in Sastry (2021).
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Table 5: Identifying a Target Shock

Panel A: Structural Impact Matrix, M

Response of High-frequency Forecast Revisions

Fed Funds Eurodollars (1Y) GDP

Monetary Path Shock -0.03 0.39 -0.68
[-0.11, 0.01] [-0.02, 1.13] [-1.14, -0.45]

Information Shock 0.04 0.94 0.64
[-0.04, 0.15] [0.67, 1.46] [0.22, 1.25]

Monetary Target Shock 1.33 0.32 -0.17
[1.01, 2.08] [-0.06, 0.65] [-0.44, 0.03]

Panel B: Relative Variance in Regime 2, Σ2Σ
−1
1

Monetary Path Shock Information Shock Monetary Target Shock

1.65 0.65 0.05
[0.79, 2.42] [0.36, 1.57] [0.02, 0.27]

This table shows the estimates of the system in equation (11), where the vector of observable variables has been expanded
to include the HF surprise component of the Federal Funds rate announcement, as in equation (19). Otherwise, everything is
identical to Table 3, whose note can be referenced for more detail.

5.1 Short- vs. Long-term Interest Rates

In their original incarnation, high-frequency monetary shocks were the surprise component of the

Fed’s current-meeting interest-rate decision, in which the surprise was relative to expectations

formed shortly before the decision was announced. This is the measure proposed by Kuttner (2001).

Later work by Gürkaynak et al. (2005), cognizant of the 2003 introduction of forward guidance,

sought to separately identify shocks to the interest-rate target from shocks to the interest-rate path.

In this section I revisit this distinction, adding to my system the surprise in the current-meeting

Fed Funds rate described in Section 2.4.

In Table 5, I show the estimates from estimating the moment conditions from equation (11),

where now my observable variables are given by

x̂t ≡
[
F̂Ft ît ŷt

]′
, (19)

where F̂Ft is the 30-minute change in current-month Federal Funds rate expectations (the Kuttner

measure), ît is the 30-minute change in the 4-quarter-ahead Eurodollar futures price, and ŷt is the

high-frequency text-based proxy for output expectations (Section 2.1). The regimes are unchanged.

Before discussing the identified “monetary target shock,” it is useful to examine the top
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Figure 13: Federal Funds Rate Surprise and the Target Shock
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The top panel shows the 30-minute change in the price of the current-month Federal Funds rate future, scaled by the percentage
of days left in the month (see, e.g., Kuttner (2001)), in basis points. The bottom panel shows the identified monetary policy
target shock described in Section 5.1 standardized to have unit standard deviation over the plotted sample. The first two shaded
areas present the regimes used for identification, described in Section 3.2. The third, gray shaded area, highlights observations
that are dropped for most analyses, discussed in Section 2.4.

two-by-two quadrant of panel A. There, notice that the relationship between the path shock and

information shock with GDP and interest rate forecast revisions is nearly unchanged from Table

3.44 This highlights the robustness of the identified information and path shocks. Neither shock

has much of an effect on the surprise component of current-month interest rates.

The bottom row of panel A of Table 5 describes what I call a “monetary target shock.”

This shock creates a positive comovement in short- and longer-term interest-rate forecast revisions,

though the response is much stronger for short-term rates. GDP expectations are revised in the

opposite direction, consistent with a theoretical monetary policy shock. Panel B shows that after

the introduction of forward guidance, monetary target shocks essentially disappeared. With a few

exceptions in 2007–2008, this remained true for the rest of the sample.

Figure 13 plots the Federal Funds rate surprise (top panel) and the estimated Federal Funds

44Recall that the sign of the rows of Table 5 are not identified (only the relative signs between elements of a row).
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target shock (bottom panel). The two series are fairly similar, consistent with the first column

of panel A. This suggests that early estimates of monetary shocks were more closely aligned with

exogenous monetary policy. The volatility of the two series also drops substantially in 2003, and

never returns to its pre-2003 level. This disappearance causes a power problem: The estimated

effects are far too noisy to draw any clear conclusions.

What drives this disappearance? Intuitively, once the Fed begins to communicate about

future interest rates, it allows markets to forecast shorter-term interest rates better. Having received

a signal about the Fed’s time-t interest-rate decision at an earlier date, there is little room for

markets to be surprised by the time-t interest-rate decision when it is announced. In Appendix

B.2, I extend the illustrative model of Section 3.1 to a dynamic setting to show this point formally.

Unlike the static illustrative model, in the dynamic model a perceived monetary policy target shock

is the difference between the true shock revealed at time t and the pre-announced shock for time

t made at meeting t − 1. The variance of target shocks is therefore unambiguously decreasing in

the clarity of forward guidance. In the extreme case that the time-t shock is revealed fully at time

t− 1, there are no perceived monetary shocks.

Ramey (2016) suggests that monetary shocks are now rare because the Fed conducts pol-

icy more systematically and concludes that this is “bad news for econometric identification.” My

findings corroborate the conclusion that (certain) monetary shocks are rare, but suggest an alterna-

tive mechanism and a different conclusion. The results in this section suggest that true monetary

shocks—purely exogenous current-meeting interest rate surprises—are rare, as Ramey suggests.

This conclusion may only be an artifact of the data that underlie my shocks: data on expec-

tations.45 With my data, these target-type monetary shocks largely disappear in response to a

different mechanism: The Fed started announcing these shocks in advance in 2003, so their disap-

pearance did not necessarily arise because the Fed has become more systematic. Few would argue,

however, that over the last 50 years the Fed has become more systematic, so Ramey’s mechanism

is also likely at play.

On the other hand, my results suggest that monetary path shocks—commitments to deviate

from the policy rule’s future prescriptions—are alive and well. These shocks and their effects only

looked small because existing measures were swamped by information effects. Thus, rather than

conclude that the Fed has put monetary econometricians out of business, I argue that finding new

ways to measure the complexity of the Fed’s communications policies should keep them in business

for the foreseeable future.

5.2 Supply vs. Demand Factors

The last question I ask in this paper is: What type of shocks does the public learn about when the

Fed makes a policy announcement. This is an important question from a theoretic perspective: Jia

(2020) shows that optimal communications policy depends on the nature of the underlying shock

45As mentioned earlier in the paper, my shocks—alongside the shocks of any paper in the high-frequency literature—
can only identify perceived shocks, since they are based on agents’ perceptions (their expectations).
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Figure 14: High-frequency Text-based Inflation Expectations
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The left panel plots the average Blue Chip forecast revision of CPI inflation over the next three forecast horizons (analogous
to Yt|t+1 − Yt|t+1 from equation (3)) against my HF measure of inflation forecast revisions, π̂t. The middle panel shows the
relationship between my HF measure of inflation (π̂t) and output forecast revisions (ŷt). The final panel shows the relationship
between π̂t and the information shock, ξIt , identified in Section 3.4. Aside from Blue Chip forecast revisions, all other variables
are standardized to have unit variance over the plotted sample.

(in particular, cost-push (supply) vs. natural-rate (demand) shocks). To answer this question, I

construct a measure of high-frequency text-based inflation expectations following the construction

in Section 2.1. The only difference between the inflation and output index is in the topic word list,

Y, which for inflation becomes

Y = {inflat, price, oil prices, inflationari, deflat},

where I flip the sign of increasing and decreasing measures of deflat.46 As with output, my mea-

sure of high-frequency inflation forecast revisions is the unpredictable component of post-meeting

inflation directionality vis-à-vis pre-meeting directionality. I plot that index, π̂t, in the left panel

of Figure 14, against the summary statistic of CPI forecast revisions from the Blue Chip survey,

analogous to the measure constructed in equation (3). The correlation coefficient of the two series

is 0.26, with a robust standard error of 0.08.

In Section 4.1 I showed that the identified information shock induced a positive correlation

between real GDP and inflation and in expectations thereof. The right panel of Figure 14 shows

that this relationship holds in high frequency. Specifically, the figure shows a scatter plot of the

expansionary information shock (which, recall, increases output expectations) and π̂t. The two

have a positive correlation of 0.13, with a robust standard error of 0.06.

The evidence thus leans against the notion that markets learn about supply-type factors from

policy announcements. That does not imply that markets learn nothing, only that information

about supply factors is less prevalent. My results suggest, additionally, that it may be difficult to

46The bigram interest rates was also included as similar to my “seed” words of inflation and prices, but
I removed it.
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identify such a shock. The middle panel of Figure 14 shows that a fairly strong positive relationship

exists between output and inflation forecast revisions (ŷt and π̂t). The two series have a positive

correlation of 0.27 (s.e. 0.10). That relationship is fairly consistent along my entire sample. Thus—

at least given the heteroskedasticity-based approach to identification—there does not appear to be

a natural regime that would help to separately identify a shock revealing supply-type factors from a

shock revealing demand-type factors. When carrying out the estimation on a quad-variate system

that includes high-frequency revisions in short-term rates, long-term rates, output, and inflation, the

two non-monetary shocks have statistically equal variances across the two regimes. Identification

by heteroskedasticity requires that the variance of different shocks differ across the two regimes,

which means that the two information shocks are not identified. This is not surprising; nothing

about the regime shift in 2003 suggests that markets could learn more about supply or demand

shocks after 2003. That regime shift instead only allowed markets to learn relatively more about

longer-term interest rates than about macroeconomic information in general.

Interestingly, the conclusion that markets learn little about supply-side factors from Fed

announcements is consistent with the optimal policy prescriptions of Jia (2020). Jia highlights—in

a much more realistic model than mine—the fact that optimal communications policy by the Fed

reveals information about demand shocks, but obfuscates information about supply shocks (cost-

push shocks, to be precise). Purposeful or not, my results suggest that the Fed’s communication

policies are in line with the optimal communications policy.

6 Conclusion

Estimating the macroeconomic effects of monetary policy is notoriously difficult, because interest

rates are so highly endogenous with respect to macroeconomic variables. Despite several approaches

in the literature aimed at identifying exogenous changes in interest rates (i.e., monetary policy

shocks) using high-frequency data, the identification of a series that has theoretically consistent

effects, without relying on a particular set of controls, has proven elusive.

In this paper I provide an estimate of monetary shocks that is free of the “information effects”

that have been posited to plague previous high-frequency estimates.47 To separately identify two

shocks—an information shock and a monetary shock—I study two data series: high-frequency

interest-rate and GDP forecast revisions. Not able to find the latter variable in the literature, I

constructed one using newspaper articles written about Fed policy meetings.

The notion that two series do not identify two shocks, without additional identifying as-

sumptions, is an old one in economics. I present a model of expectation revisions around Fed

announcements, and show what assumptions have been made (largely implicitly), by those who

have previously sought to identify monetary shocks in high frequency. Like zero restrictions in

structural VARs, these are generally not supported by macroeconomic theory. My assumptions,

identification by heteroskedasticity, are a bit more involved, but much less restrictive and better

47My results confirm that about 80% of a commonly used high frequency shock are made up of information effects.
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suited to this context. The introduction of forward guidance by the Fed, a major regime change in

Fed communications, drastically changed the shocks that markets could learn about from Fed pol-

icy announcements. Identification by heteroskedasticity provides a tool to turn this regime change

into structural identification.

In terms of empirical findings, my monetary shock has macroeconomic effects that are consis-

tent with standard New Keynesian models. I contrast my estimates with other leading alternatives,

and show that my results do not depend on having particular controls in my regressions. This lends

credibility to my estimated shocks and speaks to their portability. Given the widespread use of

monetary shocks in the empirical macroeconomics literature, a credible and portable series that

can be carried forward (i.e., not limited by zero lower bound constraints) is greatly needed.

My results reveal additional information on the nature of monetary policy shocks. It appears

that unanticipated shocks to the current-month Federal Funds rate have become a thing of the

past, largely ending in 2003, with the introduction of forward guidance. Instead, as a result of the

Fed’s clearer signals, markets were able to more completely update their longer-term interest-rate

expectations, leading to an increase in the size of “path” shocks. My model highlights how the

introduction of forward guidance can lead to both smaller target shocks and larger path shocks.

Finally, I find that the effects of Fed information shocks are essentially equal in absolute value

to the effects of monetary policy shocks. My results suggest that Fed announcements primarily

reveal information about aggregate demand. This is in keeping with the prior observation (Jia, 2020)

that optimal central bank information provision policy primarily reveals information about demand

shocks. Further research will serve to clarify why the Fed appears to play such an important role in

providing macroeconomic information, and how such communications can be further optimized.48

48The large macroeconomic effects that I estimate require reconciliation with empirical work that shows that
households know very little about what the Fed does and says (Binder, 2017; Coibion et al., Forthcoming).
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Fernández-Villaverde, Jesús, Juan F. Rubio-Ramı́rez, Thomas J. Sargent, and

Mark W. Watson, “ABCs (and Ds) of Understanding VARs,” American Economic Review,

June 2007, 97 (3), 1021–1026.
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A Numerical Example: Textbook New Keynesian Model

In this appendix I show that the illustrative model in the text is a representation of the textbook

New Keynesian model found in chapter 3 of (Gaĺı, 2015, Ch. 3). I also show that the relevant

structural impact matrix in the model (M in the text) has the same signs as what I estimate, and

the type of solution that forms the notion of how “theoretically consistent” monetary shocks should

behave. That model takes the form

πt = cπ + β Et[πt+1] + κyt − csst|t (20a)

yt = Et[yt+1]− 1

σ
(it − Et[πt+1]− ρ) +

1

σ
(1− ρd)dt|t (20b)

it = ρ+ φππt + φy(yt − y) +mt|t (20c)

where yt is output, πt is inflation, and it is the nominal interest rate. The model’s three structural

shocks are a supply shock, demand shock, and monetary policy shock which, respectively, follow

the following AR(1) processes:

st = ρsst + εst (Technology Shock)

dt = ρddt + εdt (Demand/Pref. Shock)

mt = ρmmt + εmt (Monetary Shock)

where the innovation terms εit are independent and normally distributed with means of zero and

standard deviation σs, σd, and σm, respectively

Calibration I calibrate the model exactly as in chapter 3 of Gaĺı (2015). The value of the

structural parameters are

Parameter Symbol Value Parameter Symbol Value

Discount factor β 0.99 Risk aversion σ 1

Inverse Frisch Elast. ϕ 1 Cobb-Douglas α 0.25

Consumption elast. of subs. ε 9 Interest semielast. of mon. demand η 4

Price stickiness θ 0.75 Taylor rule inflation φπ 1.5

Taylor rule output φy 0.125 Persistence of monetary shock ρm 0.5

Persistence of demand shock ρd 0.5 S.D. of demand shock σd 1.0

S.D. of monetary shock σm 0.5 S.D. of supply shock σs 0
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This implies the following values for the parameters used in the model of equation (20):

µ = log

(
ε

ε− 1

)
≈ 0.117

Ψy = −(1− α)(µ− log(1− α))

σ(1− α) + ϕ+ α
≈ −0.152

Θ =
1− α

1− α+ αε
= 0.25

λ =
(1− θ)(1− βθ)

θ
Θ ≈ 0.021

κ = λ

(
σ +

ϕ+ α

1− α

)
≈ 0.057

cπ = −κΨy ≈ 0.008

cs = −κ
(

1 + ϕ

σ(1− α) + ϕ+ α

)
≈ −0.057

ρ = − log(β) ≈ 0.010

Solution Approach The model can be put into the form of equation (13) −κ 1 0

1 0 1
σ

−φy −φπ 1


︸ ︷︷ ︸

A

ytπt
it

+

 0 −β 0

−1 1
σ 0

0 0 0


︸ ︷︷ ︸

B

Et

yt+1

πt+1

it+1

+

 −cπ
ρ
σ

−ρ+ φyy


︸ ︷︷ ︸

C

+

 0 cs 0

− 1
σ (1− ρd) 0 0

0 0 −1


︸ ︷︷ ︸

D

 dt|tst|t

mt|t

 = 0

Given the simple format of the Taylor rule, this system can be reduced to a system in it and yt by

solving the Taylor rule for πt. The new system takes the form[
−
(
φy
φπ

+ κ
)

1
φπ

1 1
σ

]
︸ ︷︷ ︸

A

[
yt

it

]
+

[
β
φy
φπ

− β
φπ

φy
φπσ
− 1 − 1

φπσ

]
︸ ︷︷ ︸

B

Et

[
yt+1

it+1

]

+

[
− ρ
φπ
− cπ − β φyφπ y + ρβ

φπ

− φy
φπσ

y + ρ
φπσ
− ρ

σ

]
︸ ︷︷ ︸

C

+

[
0 cs

βρm
φπ
− 1

φπ

− 1
σ (1− ρd) 0 ρ

φπσ

]
︸ ︷︷ ︸

D

 dt|tst|t

mt|t

 = 0

Full Information Numerical Solution Following the solution method described in section C,

the solution of the model without noise consists of the exogenous processes for the demand and

monetary shocks and the analogue to equation (27a):[
yt

it

]
=

[
−0.15

0.01

]
+

[
0.67 −1.35

0.20 0.60

]
︸ ︷︷ ︸

MNK

[
dt|t

mt|t

]
, (21)
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where, given the full-information assumption, dt|t = dt and mt|t = mt; in words, actual and

perceived shocks coincide. Pre-multiplying both sides by M−1
NK and then normalizing the coefficients

on yt and it to unity yields the reduced-form DIS curve and Taylor rules from this model.

yt = −0.17− 2.26it + 1.13dt

it = 0.01 + 0.29yt + εt .

B Formal Signaling Structures

In the text I remain agnostic as the nature of the information received by Fed watchers. In this

appendix I provide simple formal examples that generate the intuitions described in the text.

B.1 Static Signaling Model

Assume that, for a Fed announcement occurring at time t, the Fed emits noisy signals about each

shock given by

sεt = ετ + nεt

sηt = ητ + nηt .

The noise components nεt and nηt are independently distributed normal variables with zero mean

and respective variances σ2
n,ε and σ2

n,ε. The formulation of these signals suggests that the Fed

chooses “how noisy” to make its signals. This noise could arise, instead, from the noise with which

the Fed perceives the underlying signals itself.

The signals sεt and sηt are used to form expectations of the economy’s structural shocks using

Bayes’ rule and knowledge of the model’s parameters. Prior beliefs for each of the structural

shocks are zero (the mean of the underlying distributions), so posterior expectations—equivalently,

expectation revisions—are

Et[ετ ] =

(
σ2
ε

σ2
ε + σ2

n,ε

)
︸ ︷︷ ︸

κε

sεt Et[ητ ] =

(
σ2
η

σ2
η + σ2

n,η

)
︸ ︷︷ ︸

κη

sηt . (22)

The simple form of these expectations follows from the information structure above. That being

said, I made two simplifications in formulating the information structure. The first concerns the

lack of dynamics in the structural shocks (ετ and ητ ). With dynamic shocks, nearly identical

formulas could replace equation (22) by positing that the signals were of the white-noise innovation

to the structural shocks (or a lag-polynomial thereof, if τ > t) instead of the structural shocks

themselves. However, because the expectations revisions that I study are empirically uncorrelated,

this simplification is warranted. The second simplification concerns the nature of the signals—

specifically that the noise is independent across the structural shocks. If, instead, the signals were
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of the observable variables (yτ and iτ ), then the posterior expectations of the structural shocks

would be correlated, as Acosta and Afrouzi (In Progress) demonstrate. Again, my empirical results

do not suggest that forecast revisions regarding structural shocks are correlated, which alleviates

this concern.49

B.2 Dynamic Extension

The discussion in the previous section was ambiguous with respect to the timing of the outcome

variables. Empirically, the measures of output and interest rate expectations both captured the

average value of those variables over the coming year. With measures of expectations now differ-

entiated by time, this ambiguity must be resolved.

To do this, I assume that the monetary and information shocks follow exogenous first-order

autoregressive processes, given by

εt = ρεεt−1 + µεt µεt ∼ N
(
0, σ2

ε

)
ηt = ρηηt−1 + µηt µηt ∼ N

(
0, σ2

η

)
.

I have simplified the timing conventions substantially here, assuming that t corresponds to calendar

time and Fed meetings, and agents only receive information from the Fed. These simplifications

are not necessary but help me to make my argument concisely. The next step is to allow the Fed

to send a signal about future interest rates. For expositional purposes I restrict the model to allow

the Fed to emit a signal only about next-period’s interest rate. The information set of agents thus

consists of all prior signals, along with

f εt = µεt+1 + nft nft ∼ N
(
0, σ2

f

)
sεt = µεt + nεt nεt ∼ N

(
0, σ2

n,ε

)
sηt = µηt + nηt nηt ∼ N

(
0, σ2

n,η

)
.

With this information structure, the variance of forecast revisions of monetary policy innovations

are given by

var (µ̂t) =
σ4
εσ

4
f

(σ2
ε + σ2

f )(σ2
εσ

2
n,ε + σ2

εσ
2
f + σ2

n,εσ
2
f

) var (µ̂t+1) =
σ4
ε

σ2
ε + σ2

f

,

where now the hat notation denotes changes between periods t and t−1, which is equivalent to high-

frequency changes in this simple timing setup: x̂t = Et[xt]−Et−1[xt]. These equations underlie the

intuition for how the introduction of forward guidance—here a decrease in σf—can simultaneously

49This assumption seems less plausible if markets only observed the interest-rate decision itself. In reality, Fed
announcements are composed of a post-meeting statement over my entire sample that explains the rationale behind
the policy decision. Thus, the announcement is multidimensional. What’s more, since the start of my sample several
additional dimensions have been added to this signal: press conferences (with the opportunity to answer questions
from the press) and economic forecasts.
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make current-meeting interest-rate surprises smaller, but future-period interest-rate surprises larger.

Signaling about tomorrow’s monetary shock has two effects. Today, it allows markets to put more

weight on that signal when forming forecasts about tomorrow’s innovation, thus increasing the

average size of forecast revisions (formally, var (µ̂t+1) is decreasing in σf ). When tomorrow, t+ 1,

rolls around, agents will have already received a signal in period t, so they have less prior uncertainty

about the current-period innovation. The signal is relatively less informative, dampening the size

of tomorrow’s revisions (var (µ̂t) is increasing in σf ). Note that, in the terminology of Gürkaynak

et al. (2005), µ̂t and µ̂t+1 are akin to target and path shocks, respecively—the former affects both

ît and ît+1, while the latter does not affect ît.

This intuition continues to operate when considering the size of forecast revisions to the

forward rates it and it+1. Combining equation (8a) with the fact that ε̂t+1 = µ̂t+1 + ρµ̂t (and that

E[µ̂t+1µ̂t] = 0), it can be shown that when ρ ≤ 1,

∂ var
(̂
it

)
∂ σf

> 0
∂ var

(̂
it+1

)
∂ σf

< 0. (23)

In words, a clearer signal about future interest rates—i.e., a decrease in σf—leads to smaller

current-period interest-rate revisions, but larger future interest-rate revisions. Note, however, that

ît+1 is a forward rate. Under the expectations theory of the term structure, the theoretical analog

to my empirical variable is expected yield on a 2-period bond—under the expectations theory of

the term structure, this is

it,1 ≡
1

2
Et[it + it+1].

Thus while the model offers clear predictions for how the size of forecast revisions for forward

rates responds to the introduction of forward guidance, equation (23) shows that the response of

the size of yield revisions is ambiguous. In particular, the response depends on the persistence

of the monetary shock, εt. As the shock becomes increasingly transitory, yield forecast revisions

ît,1 become unambiguously larger in response to forward guidance, since current innovations carry

through less to future shocks.50 My finding that yield revisions increase following the introduction

of forward guidance suggests, then, that monetary shocks are indeed fairly transitory.

The dynamic form of the baseline model also provides an explanation for why longer-term

interest rates are more susceptible to information effects. To see this, note that longer-term interest-

rate (forward) surprises are

ît+k = ρkηηt|t + ρk−1
ε εt+1|t.

This can be used to express the contribution of information effects—relative to the contribution of

50This result is straightforward: If shocks aren’t persistent, then today’s interest-rate shock does not affect tomor-
row’s interest-rate forward.
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monetary shocks—to the variance of interest rate surprises as

λk ≡
ρ2k
η var(η̂t)/var

(̂
it+k

)
ρ

2(k−1)
ε var(ε̂t)/var

(̂
it+k

) .
Thus, as the interest-rate horizon increases, the relative contribution of information also increases

if the information shock is more persistent, since

d log(λk)

dk
= 2(log(ρη)− log(ρε)) > 0 ⇐⇒ ρη > ρε.

Empirically, Smets and Wouters (2007)—who estimate a DSGE of the US economy driven by a

rich set of macroeconomic shocks—suggest that monetary shocks are fairly transitory.

C Solving the Noisy Information Model

This appendix contains the instructions to solve a noisy-information linear dynamic model following

Blanchard et al. (2013), whose exposition I follow closely. The discussion is useful for considering

models in which current decisions depend not only expected future decisions, but also on lagged

decisions (an extension of the model in the text). The model takes the form

A xt +BEt[xt+1] + C xt−1 +C + Dξt|t = 0 (24)

where xt is a vector of observable macroeconomic variables, zt|τ denotes the mathematical expecta-

tion of zt given information at time τ , and ξt is a vector of mutually independent structural shocks

that evolves according to:

ξt = Hξt−1 + Jεt εt ∼ N (0,Σε), (25)

where Σε is a diagonal matrix. At the beginning of each period t but before making decisions about

xt, agents receive a noisy signal of the structural shock of the form

st = Fξt + Gνt νt ∼ N (0,Σν), (26)

which they use to form expectations about ξt using the Kalman filter. In the full-information case

(i.e. Σν → 0), instead, structural shocks are observed perfectly and so ξt|t = ξt. I conjecture

that the model satisfies all necessary stability conditions such that it admits a solution takes the

following form

xt = x + L xt−1 +Mξt|t (27a)

ξt|t = (I−KF)Hξt−1|t−1 + Kst (27b)
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Plugging the conjectured guess of equation (27a) into (24) gives

A(x + L xt−1 +Mξt|t) + BEt[x + L xt +Mξt+1|t+1] + C xt−1 +CDξt|t = 0. (28)

Plugging in the guess again for xt and noticing that, using the law of iterated expectations and

(25), Et[ξt+1|t+1] = ξt+1|t = Hξt|t, equation (28) becomes

[
(A + B(I + L))x + C

]
+
[
AL + BL2 + C

]
xt−1 + [AM + BLM + BMH + D] ξt|t = 0.

To ensure that this equation holds with equality regardless of xt−1|t−1 and ξt|t, it must be then

that

AL + BL2 + C = 0 AM + BLM + BMH + D = 0 (A + B(I + L))x + C = 0

The first equation can be used to solve for L using the method of Rendahl (2017), the second is an

“encapsulating sum” problem whose solution is given in Petersen and Pedersen (2012), and the last

is linear in x. Solving for Kalman gain matrix K can also be done by iteration. Define the initial

guess for the matrix P as P0. Then iterate on the following equations over i until convergence:

Ki = (HPi−1H
′ + JΣεJ

′)F(F(HPi−1H
′ + JΣεJ

′)F′ + GΣνG
′)−1 (29a)

Pi = (I−KiF)(HPi−1H
′ + JΣεJ

′) (29b)

Having shown that equation (27a) can actually solve the model, I consider how we can interpret my

formal empirical model in the context of this more elaborate model. The connection is as follow: let

zt ≡ xt−Lxt−1 be the reduced-form residual of xt: the unexpected change vis-à-vis the previous

period’s information. Then (27a) reveals that these reduced-form residuals, or data surprises, are

related by a constant linear function to forecast revisions about structural shocks:

zt|t − zt|t−1 = M
(
ξt|t − ξt|t−1

)
.

Thus, under this more-elaborate model I interpret my high-frequency forecast revisions as revisions

about recent news about each variable, rather than revisions about the levels of the variables

themselves.

D Proof of proposition 1

A first pass for identifying monetary policy shocks with these two measures would be to “purge”

the monetary surprise ît of its information content (ηt) by orthogonalizing ît to ŷt. Proposition 1

states the conditions under which this procedure identifies a monetary policy shock.

Proposition 1. Denote by rt the residual from a linear projection of ît on ŷt. Unless rt = 0 ∀ t,

then rt is independent of information effects if and only if output expectations do not respond to
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monetary policy shocks, i.e., ωε = 0.

Let

ît = φεε̂t + φηη̂t (30)

ŷt = ωεε̂t + ωηη̂t. (31)

The residual rt (i.e., the “clean” monetary shock) is

rt = it − β̂yt

where

β̂ =
Cov(ŷt, ît)

var(yt)
=
φηωησ

2
η + φεωεσ

2
ε

ω2
ησ

2
y + ω2

εσ
2
ε

This residual is then a linear combination of the monetary and information shocks:

rt = ît − β̂ŷt
= φε εt +φηηt − β̂(ωε εt +ωηηt)

= (φη − β̂ωη)︸ ︷︷ ︸
cη

ηt + (φε − β̂ωε)︸ ︷︷ ︸
cε

εt .

This strategy then only provides a “clean” shock if cη ≡ φη − β̂ωη = 0.

0 = φη − β̂ωη

⇐⇒ 0 = φη − ωη
φηωησ

2
η + φεωεσ

2
ε

ω2
ησ

2
η + ω2

εσ
2
ε

⇐⇒ 0 = φη(ω
2
ησ

2
η + ω2

εσ
2
ε)− ωη(φηωησ2

η + φεωεσ
2
ε)

⇐⇒ 0 = φηω
2
ησ

2
η + φηω

2
εσ

2
ε − φηω2

ησ
2
η − ωηφεωεσ2

ε

⇐⇒ 0 = φηω
2
εσ

2
ε − ωηφεωεσ2

ε

⇐⇒ 0 = ωεσ
2
ε(φηωε − ωηφε)

The strategy thus provides clean shock in three cases.

1. First, the case where σ2
ε = 0 means that that there are no monetary shocks, so rt = 0 ∀ t,

violating our asusmptions.

2. The knife-edge case with φηωε = ωηφε also results in rt = 0 ∀ t. To see this, note that this
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assumption also implies that cε = 0:

cε = φε − β̂ωε

= φε − ωε
φηωησ

2
η + φεωεσ

2
ε

ω2
ησ

2
η + ω2

εσ
2
ε

=
φε(ω

2
ησ

2
η + ω2

εσ
2
ε)− ωεφηωησ2

η − φεω2
εσ

2
ε

ω2
ησ

2
η + ω2

εσ
2
ε

=
φεω

2
ησ

2
η − ωεφηωησ2

η

ω2
ησ

2
η + ω2

εσ
2
ε

=
ωησ

2
η(ωηφε − ωεφη)
ω2
ησ

2
η + ω2

εσ
2
ε

= 0

Thus, with cη = cε = 0, we have rt = 0 ∀ t.

3. The final possibility is that output expectations do not respond to monetary policy shocks,

i.e., ωε = 0.

E Text Analysis Appendix

E.1 Word Lists

Increase words abound absorb absorpt acceler access accru accumul adjunct advanc ampli am-

plifi append arisen augment becam becom bloom blossom bolster boom boost boundless bounti

branch broaden build capit collect comeback cultiv decor deepen develop doubl elabor embellish

empow empower enhanc enrich exce excel expand expans extend flourish fortifi further garnish gener

grow grown growth heap heighten hoard improv increas inflat intensifi inund lucr magnifi matur

maxim momentum nourish overflow overwhelm peopl piec pile prolif promot prosper quicken radiat

rais renaiss rise run shoot spread strengthen supplement surg sweeten thrive weight widen

Decrease Words abat allevi amput atrophi cheapen collaps contract corrod corros counteract

cut decay declin decompos decreas deplet depreci detract dim diminish discount discourag dispel

dispens drain dwindl eas empti engulf erad eras erod eros exasper exhaust extermin fade fall falter

insuffici languish leakag lighten lower melt minim pass purifi ration reced recess reduc reduct refin

retard revers rid rot scarciti shrank shred shrink shrivel shrunk slow subsid subtract sunder tatter

vanish wane weaken wilt wither worsen

Rise Words aris aros ascend ascent blast climb come elev flew fli float flood jump leap outreach

peak rais rise rose scale soar stretch surfac well
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Fall Words bag buri burst cave collaps crash descend dip dive doubl drop fall fell knock lower

parachut plung rain sank set sink slid slide slip slump spray sprinkl stagger stumbl submerg sunk

sunken swoon toppl torrent trip tumbl

List of cities BASEL BEIJING, BRASILIA, FRANKFURT, HONG KONG, JAKARTA, LON-

DON, MEXICO CITY, MOSCOW, MUMBAI, MUMBAI, NEW DELHI, OTTAWA, PRETORIA,

RIO DE JANIERO, SAO PAULO, SINGAPORE, SYDNEY, TOKYO, TORONTO, WELLING-

TON, ZURICH, KUALA LUMPUR,

E.2 Word List Construction

I start with a set of three “seed” words: output, growth, and economy. I train the word2vec

algorithm of Mikolov et al. (2013) on a subset of a large corpus of newspaper articles: the The New

York Times Annotated Corpus from the University of Pennsylvania’s Linguistic Data Consortium.

The full corpus contains 1.8 million articles from the New York Times between 1987 and 2007,

each manually tagged by library scientists. The word2vec algorithm consists of constructing vector

representations of words that, via a neural network, can predict a word in a set of text given the

surrounding words. The algorithm is thus well suited to finding synonyms, hence its employment

here. I trained the algorithm on 94,601 articles that were tagged as related to either economic

output, prices, or labor markets.51 With a vector representation of every word in the corpus, I sort

words based on their distance to the average vector of my seed words.52 The resulting list, along

with the distances from the seed vector, is listed in table table 6.

E.3 Machine Learning Approach

While transparent, the approach for constructing high-frequency GDP expectations in the paper

required that several, potentially subjective, choices be made. In this appendix, I pursue a machine-

learning based approach to overcome this potential criticism. Specifically, I take the following steps

to measure high-frequency GDP expectations.

• First, I collected the subset of the New York Times Annotated Corpus described in the

previous appendix. This corpus formed my training set.

• To construct features from the text, I collect my list of GDP words (which I expand to include

the first 7 words from table 6, since after 7 the words are less-obviously related to GDP). Call

this Y+. I also collect the rising, falling, increasing, decreasing, strong, and weak word lists

51Specifically, I retained articles labeled economic conditions and trends, united states economy, prices, wages
and salaries, layoffs and job reductions, production, or labor. Later in the paper I also construct inflation and
unemployment expectations in high frequency: thus the prices and labor tags.

52Mikolov et al. (2013) highlight that summing and distracting the vector representations of each word results in
meaningful vectors. For example, the authors find that subtracting the vector for man from the vector for king
results in a vector that is very similar to the vector for queen. To compute the distance of two words with vectors
x and y, I compute the cosine similarity between them: x′y/[

√
(x′x) +

√
(y′y)].
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Table 6: Extended GDP Word List

Term Similarity to output + growth + economi
economic growth 0.884380348

growth 0.844084993
economi 0.838640034

consumer spending 0.768225532
output 0.73070604
recoveri 0.72648164

consumer confidence 0.658283754
living standards 0.642701291

anem 0.630283417
inflat 0.627934909

from the Harvard IV-4 dictionary. I collect the positive and negative word lists of Loughran

and McDonald (2011). Call each of these lists `i, and their collection L. Finally, I tag all

words by their tense (past, present, future) using the grammatical sentence parser described

earlier.

• I concatenate all articles written between the 8th day of month t − 1 and the 7th day of

month t. Features of these articles (described in the next bullet) are merged with Blue Chip

expectations made in month t, which are typically made during the first week of month t.

• Within each month’s concatenated list, I count the sum of all occurrences of words in each

of the `i word list (|L| counts), all occurrences of words from the `i word lists that occur

within 5 words of a word from Y+ (|L| − 1 counts here for each word from Y+), and all raw

occurrences of words from Y+. When counting co-occurrences of L words and Y+ words, if

n’t or not occurs within the window, I flip the “sign” of the count (i.e., fall words become

rise words). I count raw and co-occurrences (with words from Y+) of tense words. I also

count three-way co-occurrences of tense × L words × Y+ words. All counts are normalized

by the number of total sentences in a month. All in all, this leaves 263 features.

• I then use a LASSO regression to estimate the mapping from these features to the level of

Blue Chip GDP expectations (the same summary statistic from the text: average forecasts

over the next year). The penalty is chosen by 10-fold cross-validation. This figure shows the

model fit:
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The top 3 features that positively contribute to GDP expectations are

1. “Weak” mentions of “recovery,” present tense

2. “Increasing” mentions of “output,” present tense

3. “Strong” mentions of “consumer spending,” any tense

and the top 3 features that contribute negatively are

1. “Decreasing” mention of “economi,” present tense

2. “Decreasing” word counts

3. “Weak” mention of “growth,” future tense.

• I calculate the features that I calculated from the training set on all pre-meeting and post-

meeting FOMC articles from my baseline Factiva dataset. I then apply the LASSO mapping

to estimate implied GDP expectation for pre- and post-meeting articles—ωPREt and ωPOSTt ,

respectively.

• Proceed the same way as the rest of the paper.

The structural impact matrix I estimate is

Eurodollar GDP

Monetary Path Shock -0.38 0.86

Information Shock 1.18 0.68

where the variance in the second regime (relative to the first) of the monetary and path shocks

are 1.03 and 0.69, respectively. Here are the impulse responses to the identified contractionary

monetary path shock:
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and the expansionary information shock

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Response of Industrial Production

Months

C
ha

ng
e 

si
nc

e 
t−

1
P

er
ce

nt

Point estimate 90% C.I.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40

−
0.

05
0.

05
0.

10
0.

15
0.

20
0.

25

Response of Core PCE Inflation

Months

C
ha

ng
e 

si
nc

e 
t−

1
P

er
ce

nt

Point estimate 90% C.I.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Response of Wu−Xia Shadow Rate

Months

C
ha

ng
e 

si
nc

e 
t−

1
P

er
ce

nt
ag

e 
P

oi
nt

s

Point estimate 90% C.I.

F Estimation and Bootstrap Procedure

Setup and Definitions My identification procedure begins by positing a model relating n ob-

servable variables in the vector xt to n exogenous disturbances ηt given by

xt = Aηt ηt ∼ N(0,Σt),

where Σt is the (diagonal) covariance matrix of ηt. The time subscript on Σt indicates that the

errors are heteroskedastic. Specifically, I posit that Σt can take two possible values depending on

whether t falls in one of two disjoint regimes (formally, subsets R1 and R2) of my sample period.

These values are given by

Σ1 ≡ E[ηtη
′
t | t ∈ R1]

Σ2 ≡ E[ηtη
′
t | t ∈ R2].

Identification This form of heteroskedasticity, together with the assumption that the n×n struc-

tural impact matrix A remains unchanged across regimes, implies the following moment conditions:
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Ω1 = AΣ1A
′ (32a)

Ω2 = AΣ2A
′ (32b)

where Ωi = E[xtx
′
t | t ∈ Ri] is the covariance matrix of the observable variables xt in regime i.

Thus, given estimates of Ω1 and Ω2 we can use the above moment conditions to identify A,Σ1, and

Σ2.

The each of the symmetric matrices Ω1 and Ω2 each provide n(n+ 1)/2 empirical moments.

With the normalization that Σ1 = In (which is without loss of generality), there are n2 parameters

to identify in A and n in Σ2. Putting these together, there are n(n + 1) empirical moments and

n(n+ 1) parameters to estimate, so the system is exactly identified.

Estimation In practice, estimation of the moment conditions in equation (11) is complicated by

the fact that ordering and sign of the columns (and elements of Σ2) are not identified. This does

not present a challenge for point estimates, but it does present a challenge for inference. Thus,

while a typical GMM estimation would rely on a numerical optimizer for estimation, the optimizer

has no way of keeping “the same” shocks in the same order.

A numerical optimizer can, however, be circumvented (which is also nice for stability reasons).

Notice that (again, maintaining the assumption that Σ1 = In)

Ω2Ω−1
1 = AΣ2A

′(AA′)−1 = AΣ2A
−1.

The final expression resembles an eigendecomposition of Ω2Ω−1
1 . In fact, any eigendecomposition

of Ω2Ω−1
1 can be used as a starting point for estimation—this is convenient since fast and stable

algorithms exist for performing these decompositions.

Specifically, let Q and Λ form an eigendecomposition of Ω2Ω−1
1 :

Ω2Ω−1
1 = QΛQ−1. (33)

Eigendecompositions are not in general unique; while the eigenvalues (the diagonal elements of

Λ) are unique (up to ordering—an issue that is of no consequence for point estimates but will

return when conducting inference), each eigenvector can be multiplied by a different scalar and

the decomposition will be preserved.53 However, information from the first regime can be used to

pin down the unique scaling of the eigenvectors such that the moment conditions are satisfied. Set

A = QS where

S ≡
√

diag [Q−1Ω1Q
′−1],

53Let D be diagonal and Q̃ ≡ QD. Diagonal matrices commute, so Q̃ and Λ form another eigendecomposition:

Q̃ΛQ̃−1 = QDΛD−1Q−1 = QΛDD−1Q−1 = QΛQ−1 = Ω2Ω−1
1 .
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where the square root operates on each element of the embedded diagonal matrix. Then

AA′ = QSS′Q′ (34a)

= Qdiag
[
Q−1Ω1Q

′−1
]
Q′ (34b)

= Ω1 see proposition 2. (34c)

Letting Σ2 = Λ, we have

AΣ2A
′ = QSΛS′Q′

= QΛSS′Q′ diagonal matrices commute

= QΛdiag
[
Q−1Ω1Q

′−1
]
Q′

= QΛdiag
[
Λ−1Q−1Ω2Q

′−1
]
Q′ using (33)

= QΛΛ−1diag
[
Q−1Ω2Q

′−1
]
Q′ diagonal matrices commute

= Ω2 see proposition 2.

Thus, the moment conditions in equations (11) are satisfied by A = QS, Σ1 = I, and Σ2 = Λ.

As a brief aside, the fact that the heteroskedasticity-based identification (HBI) estimate of

M consists of the eigenvectors of the ratio of the empirical covariance matrices Ω2Ω−1
1 reveals a

connection to principal components analysis (PCA). To the best of my knowledge this relationship

has not been described previously. The PCA estimate of M (factor loadings) consists of the

eigenvectors of the covariance matrix of the observable variables—this covariance matrix is given

by the full-sample Ω. Intuitively, this implies that PCA factors are designed to explain the largest

amount of variation in the data with the fewest number of factors. By analogy, this means that the

shocks estimated by HBI are those that can best explain the relative variance of the shocks in the

two regimes, since they are based on the eigendecomposition of the relative covariance matrices.

Inference To conduct inference on the parameters estimates above (and functions of those esti-

mates) I rely on a bootstrapping procedure. I begin by drawing observations from the two regimes

with replacement, stratifying by the size of the regimes. Thus, I rely on a completely standard

bootstrap, save for one computational difficulty. The estimation procedure above did not identify

the ordering or sign of the columns of A.54

In order to increase the likelihood that the shocks from each bootstrap sample are in the

same order and sign as the shocks that form my point estimates, I rely on an “aligning” procedure

similar to that laid out in Clarkson (1979). Let (A,Σ2) be the point estimates of the system and

(Ab,Σb
2) be the estimates from a particular bootstrap sample b. I search over the set of all column

permutation matrices P and the set S of n-dimensional diagonal matrices with elements in {−1, 1}
54The eigendecomposition did not identify the order, and any version of A with flipped column signs would have

satisfied the moment conditions since these cancel out when taking AA′.
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and define (
Ab∗,Σb∗

2

)
= argmin
P∈P,S∈S

(1− λ)
∥∥∥Ãb −A∥∥∥

F
+ λ
∥∥∥Σ̃b

2 −Σ2

∥∥∥
F

s.t. Ãb = AbPS

Σ̃b
2 = Σb

2P

for some λ ∈ [0, 1]. The elements
{
Ab∗,Σb∗

2

}
b

form my bootstrap distribution. In words, I rearrange

the order and sign of the columns of Ab (and the corresponding order of the elements of Σb
2) such

that the distance between the rearranged matrices are closest (under the Frobenius norm) to the

point estimates. In practice the λ matters little, as long as it is interior. I calculate confidence

intervals using the percentiles of the bootstrap distribution.

I conclude the section by proving a matrix equality used earlier in this appendix.

Proposition 2. In the context of equation (34), the following equality holds: Qdiag
[
Q−1Ω1Q

′−1
]
Q′ =

Ω1 as long as the elements of Λ are unique (i.e. Λii 6= Λjj∀i 6= j).55

Proof. We first need access to the following relation for a diagonal matrix D with distinct diagonal

di and matrix with unknown properties X:

DXD−1 = X =⇒ X is a diagonal matrix. (35)

To see this, suppose that for i 6= j, xij 6= 0. Note that the ijth element of DXD−1 is given by

did
−1
j xij . By assumption, did

−1
j xij = xij . Since xij 6= 0, we can divide both sides by xij to get

di = dj which contradicts the assumption that the diagonal elements of D are unique.

This result allows us to see that Q−1Ω1Q
′−1 is diagonal. Performing two rearrangements of

equation (33), we have

Q
′−1 = (Q−1)′ = (Λ−1Q−1Ω2Ω−1

1 )′ = Ω−1
1 Ω2Q

′−1Λ−1

Q−1 = (Ω2Ω−1
1 QΛ−1)−1 = ΛQ−1Ω1Ω−1

2 .

With these we can see that

Q−1Ω1Q
′−1 = ΛQ−1Ω1Ω−1

2 Ω1Ω−1
1 Ω2Q

′−1Λ−1

= ΛQ−1Ω1Q
′−1Λ−1

which, by equation (35), implies that Q−1Ω1Q
′−1 is diagonal.

55Note that this condition on Λ is implied by the heteroskeasticity-based assumptions that no two shocks change
in the same proportion.
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Next we establish notation. Let Ek be an n× n matrix whose elements eij are given by

eij =

1 i = j = k

0 otherwise.

For intuition, EkX zeros out all but the ith row of X, and XEk zeros out all by the ith column of

X. Note that for a diagonal matrix D, when i 6= j,

EiDEj = EjDEi = 0n (36)

an n× n matrix of zeros. Note further that

diag(X) =

n∑
i=1

EiXEi.

With this notation and the above-established result, we can proceed to the following derivation.

Qdiag
[
Q−1Ω1Q

′−1
]
Q′ = Q

[∑
i

EiQ
−1Ω1Q

′−1Ei

]
Q′

=
∑
i

QEiQ
−1Ω1Q

′−1EiQ
′

=

[∑
i

QEi

]
Q−1Ω1Q

′−1

[∑
i

EiQ
′

]
by (36), since Q−1Ω1Q

′−1 is diagonal

= QQ−1Ω1Q
′−1Q′ definition of Ei

= Ω1,

which is what we wanted to show.

G Local Projections: Robustness

This section contains several variations on the choices made to estimate equation (16).

1. Adding months with no FOMC meetings (setting shocks to 0)

Responses to Contractionary Monetary Path Shock
(
βMk
)
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2. Sample period Stopping the estimation in 2015 ensures the same number of observations for

each regression horizon, and drops COVID observations). The “Keep GR” response does not drop

the 07/08–07/09 dates.
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3. More (24) and fewer (0) lags as controls; adding a trend

Responses to Contractionary Monetary Path Shock
(
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)
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4. Using the ten-word word list

Responses to Contractionary Monetary Path Shock
(
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5. Tri-variate high-frequency system in Eurodollar futures, output forecast revisions, and

the surprise in the Federal Funds rate, from section 5.1
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(
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H Predictability of Interest-Rate Surprises: A Comment on Bauer

and Swanson (2020)

1-quarter return
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This figure presents estimates of the following regression

îNS
t = αh + βh(pt−1 − pt−7h) + et

where îNS
t is the high-frequency interest-rate surprise of Nakamura and Steinsson (2018) (from their

replication materials), and pt is the log of the S&P 500 index on day t’s market close. The sample

consists of all days (t) with regularly-scheduled FOMC meetings between 1995 and 2015 (excluding

the July 2008–July 2009 period) and after the first week of the month (i.e., the observations used

when testing for the presence of information effects with Blue Chip data). The right-hand-side

variable, pt−1− pt−7h, is thus the h-week return in the S&P 500 ending the day before each FOMC

meeting. I estimate the regression for each h, which is shown on the x-axis. Bauer and Swanson

(2020) present results using the 13-week return, which I highlight with a dashed line. This return

horizon has the largest and most statistically significant coefficient.
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I Constant Mapping between Shocks and Observables

I.1 Empirical Validity: Melosi (2017)

In this appendix, I explore whether the assumptions I made to identify structural shocks in my

empirical application allow me to identify the relevant structural shocks in a theoretical context in

which those assumptions are known not to hold. To that end, I study an extension of the model of

Melosi (2017).

Economy The log-linear model equations are

yt = Et[yt+1]− (it − Et[πt+1]) + (gt − Et[gt+1]) (IS)

it = φπ (πt + ξπ,t) + φx (xt − at + ξx,t) + ξm,t (TR)

πt = (1− θ)(1− βθ)
∞∑
k=1

(1− θ)k−1mc
(k)
t|t + βθ

∞∑
k=1

(1− θ)k−1π
(k)
t+1|t. (ICKPC)

where mc
(k)
t|t ≡ y

(k)
t|t − a

(k−1)
t|t . The model is evidently similar to the standard three-equation New-

Keynesian model, describing the evolution of GDP (yt), interest rates (it), and inflation (πt) ac-

cording to, in order, an IS equation (IS), Taylor Rule (TR), and Phillips curve (ICKPC). The

model’s fundamental shocks are the household’s discount factor shock (the “demand” shock, gt),

an aggregate productivity shock (at), an exogenous monetary shock (ξm), and two shocks reflect-

ing the monetary authority’s imperfect measurement of inflation and the output gap (ξπ,t and

ξx,t, respectively). All shocks evolve according to mutually uncorrelated first-order autoregresive

processes. The IS equation is standard, determined by perfectly-informed households’ optimal

consumption-saving decision and the equilibrium condition that firms must meet household de-

mand in each period, having set prices in the beginning of each period. The Taylor rule is mostly

standard, save for the Fed’s imperfect reading of the state of the economy. The imperfect common

knowledge Phillips curve is determined by firms’ (indexed by j) optimal pricing behavior, based on

their (imperfect) information sets (Ijt, to be described shortly). Because firms are monopolistically

competitive, each firm’s optimal price is a function of aggregate demand and the average price of

their competitors. As introduced and described by Woodford (2003), not having access to the their

competitors’ information sets, firms are left not only to form expectations of the current state of

the economy, but also about their competitors’ expectations which in turn depend on their com-

petitors’ expectations of their competitors’ expectations, and so on. Thus the notation for these

“higher-order expectations,” used above, for a generic variable zt:

z
(0)
t|t = zt z

(1)
t|t =

∫
Ej,t

[
z

(0)
t

]
dj =

∫
Ej,t[zt]dj . . . z

(k)
t|t =

∫
Ej,t

[
z

(k−1)
t

]
dj .

Of particular relevance for my empirical application is z
(1)
t|t —average expectations about zt.
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Information The information structure for a firm j is thus central for determining the behavior

of aggregate variables. If, as traditionally assumed, firms were perfectly informed, the economy’s

Phillips curve would collapse to the familiar πt = κmct + β Et[πt+1]. Firms are not perfectly

informed, however, and use the Kalman filter to update expectations based on the information

available to them.56 I assume that each discrete period, indexed by integers t, is split into the

following segments:

• at time t, all shocks are realized, and the Fed sets interest rates;

• at time tF , the Fed makes its policy announcement, endowing firms with independent signals

of the monetary (ξm) and demand (gt) shocks, each buffeted by Gaussian noise, and firms

update their expectations;

• at time tP , firms observe their private productivity (a Gaussian deviate of aggregate produc-

tivity) and a private signal about demand, update their expectations, and set prices; and

• at time tE , the representative household becomes perfectly informed and makes its consump-

tion/savings decision, and firms produce to meet household demand

where t < tF < tP < tE < t+ 1. This setup follows that of Melosi, with two notable modifications.

First, Melosi assumes that firms observe the Fed’s announcement and their private signals simul-

taneously. Splitting these phases up allows me to measure how expectations are revised following

the Fed’s policy announcements. Second, more fundamentally, I make the Fed’s announcements

more-detailed than Melosi, who construes of those announcements as simply the revelation of it.

At least within the context of my 1999–2019 empirical sample, that is an outdated representation.

The specific shocks that I assume are signaled at tF are consistent with my empirical findings—

markets appear to learn primarily about demand and monetary shocks, and are able to distinguish

the information provided about both shocks.57

Calibration My baseline calibration closely follows Melosi’s estimates. While those estimated

values speak to the totality of the information firms have, they cannot speak to the source of the

information. By splitting up firm’s information streams into the Fed announcement and private

revelation, I thus have to take a stance on what information is learned when. I thus assume, as

estimated by Melosi, that firms learn very little about demand from their private signal (signal-to-

noise ratio of ≈ 10) whereas Fed announcements reveal demand with twice the precision of those

56This information structure is not necessarily the optimal one that firms would chose if they had a constraint
on the extent to which they can process information. If we assume, however, that firms “in the real world” collect
information in this way, then it may be reasonable to assume that Melosi’s estimates capture the optimal values of
parameters chosen by such rationally inattentive firms.

57If firms only observed it, they would have to infer which fundamental shock (demand, technology, or monetary
policy) drove the interest rate decision, based on other private information they observe and their priors. Forecast
revisions of these (mutually uncorrelated) structural shocks would therefore be correlated. My empirical results
suggest that these forecast revisions are essentially uncorrelated (see figure 6).
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Figure 15: Heteroskedasticity in the Model
Panel A: Baseline Model
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Panel B: Common Knowledge Model
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private signals. My baseline calibration for the signal-to-noise ratio of the monetary shock signal is

about ten. I chose these values to broadly match my data on high-frequency forecast revisions.58

Experiment Ultimately I am interested in measuring the extent to which the shocks identi-

fied using the heteroskedasticity-based identification (HBI) assumptions resemble their theoretical

counterparts. To assess this, I simulate the model under two regimes. For 5000 periods, I simulate

the model using the baseline calibration described above. I then reduce the variance of the noise

with which the Fed communicates about the monetary shock by a third, and simulate the model

for 5000 more periods. This is meant to capture the “introduction of forward guidance” that I

study empirically.59 In each simulated series, I calculate forecast revisions made about the model’s

endogenous variables and exogenous shocks around the Fed’s announcement.60 Denote the changes

in expectations about output and interest rates by ŷt and ît. Note that firms only update expec-

58A more-satisfactory approach would be to measure, in Melosi’s model, the mutual information that firms’ infor-
mation sets provide about each structural shock. I could then keep this level of mutual information fixed and chose
how to partition it between tF and tP .

59Since the monetary shock is highly persistent in this model, this is a reasonable proxy for explicit forward
guidance, since it signals future deviations from the systematic component of the Taylor rule.

60Formally, for a variable ηt, I calculate η
(1)

t|tF
− η(1)t|(t−1)P

—the change in the average forecast—consistent with my
data.
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Figure 16: Composition of the Heteroskedasticity Estimator
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tations about the demand and monetary shocks following Fed announcements, since these are the

only shocks that the Fed discusses.

Next, I append the two sets of simulated data and estimate two shocks using the HBI as-

sumptions, applied to the vector of observable variables
[
ŷt, ît

]
. These are plotted in panel A of

figure 15. Recall that the model’s endogenous variables—including output and interest rates—will

be a function of not only exogenous shocks, but increasingly higher-order expectations of those ex-

ogenous shocks. Thus, forecast revisions of yt and it—and the resulting HBI shocks—will be linear

combinations of forecast revisions of not only demand and monetary shocks, but also higher-order

expectations thereof. The question is: how much of the variation in each HBI shock comes from

forecast revisions about each structural shock? Because I can directly measure forecast revisions

about {ξm,t, gt, ξ(1)
m,t, g

(1)
t , ξ

(2)
m,t, g

(2)
t , . . .}, I project each HBI shock onto all of these forecast revisions,

and can thus decompose the variance of each shock into (1) the amount explained by forecast revi-

sions about the monetary shock (and higher-order expectations thereof), (2) the amount explained

by forecast revisions about the demand shock (and higher-order expectations thereof), and (3) any

covariance between (1) and (2).61

Figure 16 shows the variance decomposition of the “reduced-form perceived monetary shock”

identified by heteroskedasticity (the shock with the larger variance in the second regime) and the

“reduced-form information shock.” In the baseline model, it is apparent that these HBI shocks

uncover their structural counterparts remarkably well. The information shock is primarily made

up of forecast revisions about the structural demand shock, while the perceived monetary shock pri-

marily measures the structural monetary shock. That the covariance term is negligible is expected

given the fact that firms observe independent signals about each structural shock.

61Formally, let ŝt be an HBI shock. I estimate the OLS regression ŝt =
∑10

k=0
φm,k ξ̂

(k)
m,t︸ ︷︷ ︸

monetary factors

+
∑10

k=0
φg,kĝ

(k)
t︸ ︷︷ ︸

demand factors

. (Note

that this projection has no error term.) I can then use the estimated φ coefficients to decompose the variance of ŝt
into the variance arising from monetary factors, the variance arising from demand factors, and the covariance between
monetary factors and demand factors.
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Discussion: The Common Knowledge Benchmark To understand why the shocks identified

with the HBI assumptions do not perfectly measure the model’s structural shocks, it is useful to

consider a variant of the baseline in which firms have common-knowledge, only forming expectations

based on public signals.62 There, the HBI and structural shocks perfectly coincide. This coincidence

is verified in figure 16, where the HBI shocks were estimated using the data in panel B of figure

15.63 To see why the shocks are correctly identified in this model, it is useful to consider how the

model is solved. The solution of the model is assumed to take the form

xt = Mηt|t (37)

where xt are the model’s endogenous variables (yt, it, and πt), and ηt|t are agents’ perceptions of

the model’s structural shocks, and high-order expectations of those shocks.64 Those expectations

are assumed to follow an VAR(1) process

ηt|t = Lηt−1|t−1 +Nξt (38)

where ξt are innovations to the economy’s structural shocks. The matrices M,L, and N form the

model’s solution, and are found by iterating back and forth between equations (37) and (38) until

convergence. If firms do not observe endogenous variables, the solution method is even simpler:

solve for L and N by solving firms’ Kalman filtering problem, then solve for M a solver for linear

rational expectations models (see Appendix C).

Writing equation (37) in expectations-revisions space allows us to see that forecast revisions

about observable variables are linear combinations about structural shocks:

x̂t = Mη̂t|t.

The question is therefore: does changing the noise with which signals are communicated affect

M? In the common-knowledge model, the answer is no. The change in signal clarity affects firms’

abilities to infer signals, but this does not change anything fundamental about their response to

a perceived shock of the same magnitude. Instead, in the baseline (imperfect common knowledge)

model, expectation formation plays a fundamental role, altering the relationship between firm j’s

price and (perceived) aggregate demand. In that model, the presence of idiosynratic signals causes

62The common-knowledge model therefore resembles that of Jia (2020). Currently I have implemented the common-
knowledge model by replacing (ICKPC) with πt = κmct|t + βπt+1|t as in Melosi’s perfect information model. Alter-
natively, I could follow Jia exactly and replace (ICKPC) with πt = βθπt+1|t+ (1− θ)πt|t+κθŷt. For reasons I discuss
below, this will not change my conclusions—HBI will still identify forecast revisions of the corresponding structural
shocks.

63I make a few modifications to the baseline parameterization so that the simulated data continue to resemble the
data from the baseline model. I shut off {at, ξπ,t, ξx,t}, though this is likely not crucial and something to revisit.
More pertinently, I reduce the autocorrelation of the monetary shock from 0.94 to 0.3—similar to Melosi’s estimate
of this parameter in his perfect information model. Without this, positive monetary shocks lead to decreases in it
(an expected result—see Gaĺı (2015)), so monetary and demand shocks “look” the same in terms of the sign of their
impact responses on it and yt. Finally, I reduce the signal-to-noise ratio of the monetary shock from 1.25 to 0.25.

64Thus, in principle ηt|t is infinite-dimensional. Following Melosi, I cap higher-order expectations are at 10.
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firms to remain confused as to the source of those signals, unclear as to whether they reflect

aggregate or idiosynratic shocks. This results in firms placing different weights on expectations

of different higher-orders when the precision of their signals changes, altering the “slope” of the

Phillips curve. It is this sense in which the change is “fundamental” in the baseline model. The

next section explores these issues in more detail.

I.2 Dispersed vs. Common Knowledge

The discussion in the text, and in the previous appendix, noted that models with dispersed infor-

mation do not feature a constant mapping between forecast revisions of observable variables, and

forecast revisions of structural shocks. In this appendix I analyze a simple model to explain this

point. Note that the model in the previous appendix featured dispersed information. However,

I showed that the shocks identified by heteroskedasticity uncovered their structural counterparts

remarkably well.

I consider a model of the evolution of an asset price pt, whose determination depends on the

average expected future price of the asset and an exogenous fundamental:

pt = β

∫
E[pt+1 | Ωj,t]dj + θt θt = ρ θt−1 + ζt ζt ∼ N(0, σ2

ζ ) (39)

where Ωj,t is the information set of agent j for j ∈ (0, 1), and β, |ρ| ∈ [0, 1).65 All agents receive

mutually independent signals st,j regarding the fundamental, which they never forget:

st,j = θt + νt,j νt,j ∼ N (0, σ2
ν) Ωt = Ωt−1 ∪ {νt,j}.

Introducing the notation x
(k)
t+j|t =

∫
x

(k−1)
t+j|t dj with x

(0)
t+j|t = xt, the model can be expressed by

recursive substitution as

pt =

∞∑
k=0

βkθ
(k)
t+k|t. (40)

The question of relevance for my empirical results is whether a change in νt,j (or σ2
ζ ) changes

the mapping between forecast revisions regarding pt, p
(1)
t|t − p

(1)
t|t−1, forecast revisions regarding ζt,

θ
(1)
t|t − θ

(1)
t|t−1. The fairly complex form of (40) (specifically, the θ terms therein) suggests that this

need not be the case. However, in the common knowledge case, with νt,j = νt,i, ∀(i, j), the mapping

is constant. To see this, notice that in this case the model reduces to

pt =

∞∑
k=0

βkθ
(1)
t+k|t =

∞∑
k=0

βkρkθ
(1)
t|t =

1

1− βρ
θ

(1)
t|t

65This dynamic asset pricing problem shares features with to models studied by Townsend (1983), Morris and Shin
(2006), and Woodford (2003). Nimark (2017) is a fantastic reference for understanding models of this form. The
author proposes a solution method for generalized models of the form I present in equation (39), a special case of
which is the model of Melosi (2017).
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so that forecast revisions are

p
(1)
t|t − p

(1)
t|t−1 =

1

1− βρ

[
θ

(1)
t|t − θ

(1)
t|t−1

]
,

where the mapping 1
1−βρ evidently does not depend on the variance of the fundamental or noise.66

66This is not to say that the relationship between the fundamental itself and the price level remains unchanged.

Setting ρ = 0, the model’s solution is pt =
(

1
1−βρ

)(
σ2
ζ

σ2
ζ
+σ2

ν

)
(θt + νt). The conclusion without ρ = 0 reveals a

solution whereby pt is a function of all realized fundamental and noise shocks, with a mapping onto prices that also
depends on the variances of those shocks.
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