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Abstract

Why is modern society so polarized, even on purely factual questions, despite greater ac-

cess to information than ever? In a model of sequential social learning with a binary state, I

study the impact of motivated reasoning, which is a belief formation process in which agents

trade-off accuracy against ideological/emotional convenience, on information aggregation. I

find that even Bayesian agents only learn under extremely connected network structures

(those that satisfy ‘Expanding Sample Sizes’), where agents have arbitrarily large neighbor-

hoods asymptotically. This is driven by the fact that motivated agents sometimes reject their

social information, and with any finite neighborhood, there is always some probability that

all neighbors of a given agent observes will have rejected their social information. Moreover,

I establish that in such a model consensus, where asymptotically agents of all types choose

the same action, is only possible with relatively uninformative private signals and low levels

of motivated reasoning, whatever the network structure.

1 Introduction

Why are we so polarized? On questions of ethics and ideology persistent disagreement is un-

surprising, yet polarization extends even to matters of fact: Was the 2020 election swung by mass

voter fraud? Is climate change man-made? Do vaccines cause autism? The ‘polarization of real-

ity ’ observed by Alesina, Miano, and Stantcheva (2020) now seems a fixed feature of American

politics; even before the 2020 election, 62% of Trump supporters endorsed the claim that millions
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of illegal votes were cast in 2016, against 25% amongst Clinton supporters, whilst conversely 9%

and 50% believed Russian tampering with vote tallies improved Trump’s performance respectively

(Nyhan, 2020). That partisan factual polarization has grown more severe1 seems paradoxical in a

world with ever greater access to, and ability to share, information. However, the obvious feature

common to all these fields (politics, religion, ethics...) is their emotional salience, and relevance to

the very identity of the reasoner. To study social learning on such questions, we must consider that

people may be engaging in motivated reasoning. If so, belief formation is no longer directed only

at forming accurate beliefs, but at striking a balance between this and the desire to believe that

reality is convenient or pleasant: maybe my IQ is higher than the evidence reasonably suggests,

the need to save less urgent than my financial advisor insists, or the science more equivocal than

the climatologist is telling me? Experimentally, Oprea and Yuksel (2022) find evidence of moti-

vated reasoning when subjects form beliefs concerning their own IQ, and Guilbeault, Becker, and

Centola (2018) show that increasing the ‘salience of partisanship’ can significantly damage social

learning by provoking motivated reasoning. More generally, Westen, Blagov, Harenski, Kilts, and

Hamann (2006); Moore, Hong, and Cram (2021) use fMRI scanners to show that emotional, not

analytical, reactions are triggered by ‘threatening’ political information.2 As people become more

polarised on ideology and values, as polling evidence suggests they have (Geiger, 2021), the im-

portance of understanding social learning with motivated reasoning grows. Such value polarization

implies stronger ‘directional motives’ (Little, 2021), i.e. a greater desire to believe the true state

of the world is congenial to one’s ideological leanings, and thus even more biased belief-formation

on purely factual questions. For example, upon reading a study on the effectiveness of mask man-

dates, an agent growing more and more libertarian will be more likely to conclude that they did

not successfully suppress Covid-19. Their ideological opposites, reading the same study, shall form

even stronger opinions that they did. This paper offers a resolution of the seemingly paradoxical

coincidence of increased factual polarization and the unprecedented ease of access to information

we have today. I show that increasing access to information, the connectivity of social networks,

the level of value polarization, or any combination of these three can break social consensus, and

cause individuals to divide along party lines. Hence the above stylized facts form a perfect storm

for fact polarization with motivated reasoners.

1The literature on partisan perceptions of economic performance provides concrete evidence of persistent polar-
ization (Campbell, Converse, Miller, and Stokes, 1980; Gerber and Huber, 2009; Bartels, 2002), and Brady, Ferejohn,
and Parker (2022) use Gallup time series data to show that this has grown more severe over time, with the gap in
perceptions between Republicans and Democrats doubling between 1999 and 2020.

2Bénabou and Tirole (2016) observe that the emotional nature of some subjects is evident even without fMRI
scanners: ‘Heat versus light: Finally, in “motivated” [reasoning] there is also emotion. Challenging cherished beliefs
directly- like a person’s religious identity, morality, or politics- evokes strong emotional and even physical responses
of anger, outrage, and disgust. Such pushback is a clear “signature” of protected beliefs: not only would a Bayesian
always welcome more data, but so would any näıve boundedly rational thinker.’ They also note the fact that low
individual stakes are conducive to motivated reasoning (holding incorrect beliefs about the extent to which climate
change is man-made does not cause your own house to catch fire!), a point reinforced by Zimmermann (2020).
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A canonical set-up economists have investigated to study the spread of information throughout

society is the sequential social learning model, with agents acting in turn and observing both an

independent and identically distributed private signal, and a social signal: some subset of their

predecessors. Adopting this approach allows me to study learning with arbitrary social networks,

without resorting to a mechanical belief-updating procedure (e.g. DeGroot (1974)). Faced with a

binary state, agents each observe these signals, before attempting to match their own binary action

to the state. The exact subset of predecessors observed is determined by the network topology:

I study the conditions on this and the private signals necessary for and/or sufficient to achieve

learning. Conventionally, one partitions all private signals into those that are unbounded and

bounded : unbounded signals are those that can leave a Bayesian arbitrarily close to certain of

the state. I instead partition signal structures between the uniformly informative and the severely

bounded (cf. Definition 3). Severely bounded signals are those for which some social signals are

definitive irregardless of type: the agent will follow their social belief whatever private signal

they receive. All unbounded and some bounded information structures are uniformly informative:

motivated reasoning brings about the equivalence of unbounded and bounded yet very informative

signal structures. To model motivated reasoning, I assume agents process private signals correctly,

but treat social signals with a biased prior, and sometimes reject them entirely if they support

their disfavored state too strongly.3

Motivated reasoning seriously impedes both information aggregation (reflected here by learn-

ing) and consensus, as the results of this model demonstrate. Firstly, Theorem 1 establishes that

in order to achieve asymptotic Bayesian learning, where at least Bayesian (non-behavioral) agents

manage to learn to true state, we need a much stronger condition than in standard Bayesian model.

Whereas in that setting agents, with access to unbounded signals, being indirectly connected to an

ever-larger sets of agents (Expanding Observations) is necessary and sufficient for learning (Ace-

moglu, Dahleh, Lobel, and Ozdaglar, 2011), with motivated reasoners we can instead only achieve

learning if they are directly connected to such sets (Expanding Sample Sizes), albeit with uni-

formly informative (and thus possibly bounded) signals. In this model, expanding sample sizes is

necessary for learning as upon observing any neighborhood with only M members there is some

probability that all observed neighbors rejected their social signals, and an agent cannot achieve

a level of accuracy arbitrarily close to one with such information. This problem fades as neigh-

borhood size expands. Furthermore, consensus, where all agents asymptotically choose the same

action, is impossible once private signals become too informative (Theorem 2), since there are no

social beliefs at which the system can settle such that all agents choose the same action. Moreover,

when the network topology does produce learning, increasing the extent of motivated reasoning

directly reduces the amount of consensus, since as ‘prior shifting’ becomes more extreme, stronger

3This is to reflect experimental evidence, particularly Oprea and Yuksel (2022). I discuss this evidence further
in Section 3.1
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and stronger private signals are necessary to overwhelm an agent’s bias. In the limit, this produces

complete tribalism, in which motivated agents always side with their ideology irrespective of the

information available to them. The absence of even complete-network4 consensus with unbounded

beliefs, despite common knowledge of the true model, reflects the comparatively extreme nature

of this bias, and specifically the non-monotonic response to information it involves. In contrast,

Bohren and Hauser (2021) study a wide range of biases, and find in all cases that consensus5 is

necessarily achieved with sufficiently little misspecification (Bohren and Hauser, 2021, Theorem

6). Finally, Propositions 3 and 4 elucidate in what precise sense more connected and clustered

social networks produce more polarization. Defining a nested neighbor of agent n as any neighbor

whose neighborhood n also observes, Proposition 3 establishes that with uniformly informative

beliefs, any network topology in which agents observe an ever-growing number of nested neigbors

will achieve complete Bayesian learning, and the pattern of tribal polarization this implies. Propo-

sition 4 then establishes that even if agents do not asymptotically observe infinitely many nested

neighbors, the probability an agent rejects their social signal can be made arbitrarily close to 1 by

supposing that they observe sufficiently many. As I argue in section 5, nested neighborhoods may

be a reasonable representation of online social networks, particularly given the level of connectivity

and clustering they exhibit, and the sequential structure of the game.

Polarization is a complex phenomenon that will result from many factors, such as misspecifi-

cation (Bohren and Hauser, 2021), selective news sharing (Bowen, Dmitriev, and Galperti, 2023),

and echo chambers (Levy and Razin, 2019) to name a few. The results of this paper illustrate

how motivated reasoning can exacerbate it, and especially so in the world the internet has built.

Beyond this, they also suggest a certain fragility to results on learning with Bayesians: introducing

any non-zero fraction of motivated reasoners will prevent complete Bayesian learning on any net-

work that fails to satisfy expanding sample sizes, where expanding observations suffices without

them. What’s more, we can evaluate the robustness of the Bayesian model by asking what happens

when all Bayesian agents are replaced with agents engaging in a very small amount of motivated

reasoning. Section 5.1 shows that even in such cases, not only can learning fail, but the probability

with which agents match the correct state may not converge at all.

The paper is organised as follows. After reviewing the literature in section 2, in section 3 I

describe the set-up of the model, how motivated agents form beliefs and what information they

have. Section 4 defines the solution concept, my notions of learning and consensus, and my partition

over information structures, as well as presenting the decision rules of agents and establishing

equilibrium existence. My main result on learning is Theorem 1, in Section 5, on the role of

expanding sample sizes. This section also contains a simple example illustrating the problems

motivated reasoners present for learning, and presents a sufficient condition for learning with

4The complete network involves each agent observing the actions of all predecessors.
5What I call consensus corresponds to what they call learning.
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uniformly informative beliefs in Proposition 3. Consensus is discussed in Section 6, with Theorem

2 setting out the implications of motivated reasoning for this. Discussion of extensions is contained

in section 7, and section 8 concludes.

2 Literature Review

There is a large literature on sequential social learning, go back to classic articles by Bikhchan-

dani, Hirshleifer, and Welch (1992) and Banerjee (1992). These and much of the early literature are

nested by Smith and Sorensen (2000), who provide a general analysis of sequential social learning

on a complete network, in which all agents observe all those who came before, and was the first

to discover the distinction between bounded and unbounded beliefs. Following on from this initial

benchmark, there are two clear sub-literatures extending in two distinct directions. The first con-

cerns the exploration of social learning in general network topologies, and the second investigates

behavioral biases and/or misspecification.

Acemoglu et al. (2011) extend Smith and Sorensen (2000) in allowing for arbitrary social

network structures, with the caveat that agents’ neighbourhoods are independent of each other. In

this setting, they find that Expanding Observations- a minimal connectivity condition- is necessary

and sufficient for asymptotic learning with unbounded beliefs.6 A small sub-literature following

Acemoglu et al. (2011) has developped, for example containing Lobel and Sadler (2015, 2016) and

Lomys (2020). The first of these removes the neighborhood independence assumption of Acemoglu

et al. (2011), unlike the model I present here,7 and the second studying learning in a setting where

agents have different preferences over the two actions. This turns out to be sufficient to break

learning in general networks, and some of the learning problems in my model are reminiscent of it.

All four papers establish learning in different settings using either an Improvement Principle or a

Large Sample Principle, I further discuss these and compare their uses to my setting in Section 5.

I am by no means the first to introduce behavioral biases into social learning, though articles

pursuing this extension do so largely on the complete network (Bohren, 2016; Bohren and Hauser,

2021; Eyster and Rabin, 2009; Arieli, Babichenko, Müller, Pourbabaee, and Tamuz, 2023). This fact

ensures that the analyst can study ‘the’ social belief at period n, and study asymptotic learning

outcomes by characterising the properties of this stochastic process. Intuitively, it means that

agents always have access to all the social information their predecessors did, and this information

cannot be ‘lost’. As I explain in section 5.1, this possible loss of information is a major problem

6In addition to these articles studying general network topologies with the Acemoglu et al. (2011) framework,
there are of course articles such as that by Çelen and Kariv (2004b) that study specific non-complete network
topologies such as the line network. I follow the Acemoglu et al. (2011) approach, as real world networks are
inevitably going to contain all sorts of arbitrary patterns, making results on general network topologies of much
more use in studying social learning.

7Note that an implication of this it that motivated reasoning can damage social learning even without type
homophily and echo chambers.
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for learning in more general network topologies. Beyond this, the particular bias I study is quite

different to those studied by other articles. As mentioned in the Introduction, Bohren and Hauser

(2021) alone cover an array of behavioral biases where agents also hold misspecified beliefs over

the fractions of agents with each bias, but find that without misspecification agents always achieve

consensus with unbounded beliefs (Bohren and Hauser, 2021, Theorem 6). In contrast, agents

in my model fail to achieve consensus with unbounded beliefs on the complete network, even

in the absence of misspecification. This is because for each bias they consider, in the absence

of misspecification, agents all agree which actions are optimal in each state, regardless of their

type, and respond to strong evidence that the true state is θ by choosing that action. Conversely,

my model involves a more extreme bias, with agents engaging in non-Bayesian updating and

sometimes exhibiting a non-monotonic response to social information. In this sense it resembles

other models with non-Bayesian updating in the non-sequential literature, such as the classic

DeGroot (1974), but the non-Bayesian updating rule here is far less mechanical. Molavi, Tahbaz-

Salehi, and Jadbabaie (2018) use an axiomatic approach to study a generalization of DeGroot

(1974), which does involve agents using Bayesian reasoning to incorporate private information as

here. However, their monotonicity axiom explicitly rules out the motivated reasoning procedure I

model here.

A third line of extension from Smith and Sorensen (2000) is the sub-literature exploring learning

with more than two states (Goeree, Palfrey, and Rogers, 2006; Mueller-Frank and Neri, 2021; Kar-

tik, Lee, Liu, and Rappoport, 2022). Both Goeree et al. (2006) and Mueller-Frank and Neri (2021)

consider only the complete network, but Kartik et al. (2022) studying a model with countably

many states and arbitrary network topologies. Unlike in my setting, they find minimally sufficient

conditions on preferences and private signals (with multiple states, their interplay is important)

for learning even with expanding observations. In my model, the results are substantially nega-

tive, in that learning occurs only in very highly connected networks: expanding observations does

not suffice. Since increasing the number of states intuitively adds to the difficulty of the inference

problem agents are required to solve, my conjecture is that extending this model to countably

many states would yield qualitatively similar results. Nonetheless, I discuss the possibility of this

extension in Section 7.

3 Model

Following the standard sequential social learning model, an infinite sequence of agents n ∈ N
must choose one of two available actions xn ∈ {0, 1}, and seek to match the binary state: θ ∈ {0, 1}.
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Their utility function is the following:

un(xn, θ) =

1 if xn = θ,

0 if xn 6= θ,

All agents begin with a common prior, and nature draws the state at the beginning of the

game according to this prior. To simplify notation, I assume that P(θ = 1) = 1
2
, though the results

generalise. Each agent receives a private signal sn ∼ Fθ, where (F0,F1) makes up the information

structure of the game. These private signal distributions are assumed to be absolutely continuous

with respect to each other, which is equivalent to insisting that there are no perfectly informative

signals, and be informative (their Radon-Nikodym derivative is not almost surely 1). The analysis

in this paper shall mostly use the private belief distributions (G0,G1).

In addition to their private signals, each agent observes some ordered subset of the actions of

those agents before them, and the indexes of those agents: {xk : k ∈ B(n)}. These neighborhoods

are drawn at the beginning of the game, and are independent across n. The distribution of agent

n’s neighborhood, Qn is common knowledge. Upon observing this social information, agents of

course form their social belief.

Agents can be of type 1,0 or B, where τn denotes the type of agent n; type 1 agents are biased

towards believing that θ = 1, type 0 agents that it is θ = 0, and type B agents shall be Bayesian

(showing no bias either way). I assume types are independent and identically distributed, and

independent of the network topology and state of the world. Let the probability a given agent is

Bayesian be β, for notational simplicity I assume there is equal chance of an agent being type 1

or 2: 1
2
(1 − β).8 The specific reasoning procedure I assume for the social belief is based on Little

(2021), which provides a tractable and elegant representation of an agent trading-off a desire for

accuracy against a desire to belief the state of the world takes particular values.9

I represent motivated reasoning with two parameters (R, s). ‘R’ denotes a threshold for ‘signal

rejection’, and ‘s’ is a parameter governing ‘prior shifting ’. If an agent n has type τn = 0 and reasons

according to parameters (R, s) ∈ (1
2
, 1)×(0, 1), they shall reject any social signal generating a belief

(that the state is θ = 1) strictly greater than R, and then they shall behave as a Bayesian updating

their belief with the prior s× 1
2

+ (1− s)× (0) = s
2

(which compared to the true prior, 1
2
, is biased

towards their type). Conversely, an agent of type τn = 1 shall reject social signals generating belief

8All results generalise to any distribution with non-zero measure on type 1 and type 0 agents, though the
fraction of agents choosing one action or the other asymptotically will depend on this.

9There are various models of Motivated Reasoning in the literature, notable alternatives are studied by Bénabou
(2015), but Little’s has the advantages of using a straightforward alteration of Bayesian reasoning, and thus great
tractability.
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below 1−R, and interprets signals according to the prior s× 1
2

+ (1− s)× (1) = 1− s
2
. 10,11

3.1 Evidence on Motivated Reasoning

There is some experimental evidence suggesting that people are distinctly irrational when asked

to process social information, whilst managing to update beliefs correctly in response to private

information. For example, Conlon, Mani, Rao, Ridley, and Schilbach (2022) run an experiment

in which participants must guess the proportion of balls in a jar of a given colour, and find that

whilst agents update their beliefs correctly upon drawing a ball at random and observing a colour,

they do not update correctly upon receiving information from another participant. Astonishingly,

this holds even when ‘receiving information from another participant’ means directly observing

the other participant drawing a ball, and seeing its colour! Oprea and Yuksel (2022) similarly find

that in an experiment concerning the formation of beliefs about one’s own IQ (a subject chosen

because it will trigger motivated reasoning), agents there too respond correctly to private signals

they receive12, but do not respond correctly to social information.13 Hence I suppose that agents

form their private beliefs in a Bayesian fashion and their social beliefs behaviorally.14

Not only do Oprea and Yuksel (2022) find that agents do not update optimally in response

to social information, but that some agents adjust in the incorrect direction upon observing a

social signal that is ‘bad news’ (Oprea and Yuksel, 2022, Result 4). This fits with agents replacing

rejected social signals with the biased prior. To more fully reflect their results, we could adopt a

distribution of s values for different agents. This is discussed in Section 7.

4 Equilibrium Strategies and Outcomes

As established in Proposition 2 of Acemolgu et al. 2011, Bayesian agents with a prior of 1/2

choose between the two actions by comparing their sum to 1: if the sum of private and social beliefs

is greater than 1 they choose xn = 1, otherwise they choose xn = 0. Since our behavioral agents

10It may seem odd that upon signal rejection the agents then shift the common prior according to prior shifting,
and treat that as the signal, rather than just taking the common prior. I do this to follow the specification used
by Little, but qualitatively not much changes if instead rejection leads to the common prior. See Appendix E.1 for
more discussion on this point.

11Motivated Reasoning can be considered as consisting of two distinct parts: (1) evidence recruitment and (2)
evaluation. Epley and Gilovich (2016) note this distinction in particular. Given the structure of this model (where
evidence is not specifically recruited, but simply observed), I focus on the latter.

12In the terminology of their paper, these are called public signals, but they correspond to private signals in this
context.

13These results make motivated reasoning of particular interest in social learning, where the distinction between
private and social information is of such importance. Yet more such evidence can be seen in Weizsäcker (2010) and
Conlon, Mani, Rao, Ridley, and Schilbach (2021).

14Appendix E.1 considers an alternative model in which agents process all information in a motivated fashion,
finding substantially similar results.
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behave as if both their social and private beliefs were formed in a Bayesian fashion, they do the

same, as outlined in Proposition 1. This reasoning procedure of course involves a non-monotonic

response to social information: an agent will increase their belief in response to stronger evidence

up to a point, before snapping and discounting this information entirely.15 Given the above, each

agent’s motivated decision rule can be represented as in the following proposition:

Proposition 1. Consider an agent of type τn = 1, who forms social belief ‘MSB’. They will

choose xn = 1 if the following condition is satisfied:

MSB + Pσ(θ = 1|sn) ≥ 1

where the motivated social belief is formed according to:

MSB =


(1+s)Pσ(θ=1|B(n))(

2sPσ(θ=1|B(n))+(1−s)
) if Pσ(θ = 1|B(n)) ≥ (1−R)

1
2
(1 + s) o.w.

Otherwise they will choose xn = 0.

Proof. See Appendix C.

Having now defined the belief formation process, I note that the equilibrium concept I shall use

is simply Perfect Bayesian Equilibrium, except of course that the agents do not use Bayes’ Rule

to form their beliefs, but rather the relevant motivated distortion of it.

Definition 1. (Motivated Equilibrium) A strategy profile σ is a Motivated Equilibrium if:

1. Sequential Rationality: Every agent’s strategy is an optimal response to their belief given the

strategies of other agents σ−n.

2. (In)consistency: Agents’ beliefs are updated according to the Motivated Reasoning Procedure

outlined above, applying Bayes’ Rule with the distortion implied by their type, and (R, s).

Denote the set of all equilibria as Σ.

With this definition, equilibrium existence is immediate, as is standard in models of sequential

social learning:

Proposition 2. A Motivated Equilibrium exists.

Proof. The Motivated Reasoning procedure always uniquely defines a belief for every history and

private signal (sn, hn). The set of optimal actions is non-empty for every belief (and is not a function

15This can be extended to a less abrupt procedure, as discussed in Section 7.
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of the strategies of other agents except through this belief), thus recursively applying these facts

clearly gives equilibrium existence.

Naturally, we are interested in whether or not agents ever reach consensus, and whether this

consensus is correct. Failing this, it is of particular interest whether Bayesian agents make the

correct decision asymptotically, as this (beyond its intrinsic interest as a question) reflects the

extent to which the presence of motivated agents damages information aggregation within a given

network. I define these two outcomes formally as follows, with complete Bayesian learning and

consensus :

Definition 2. (Complete Bayesian Learning) Complete Bayesian learning obtains if Ξn (i.e. xn if

τn = B) converges to θ in probability (according to measure Pσ), i.e.

lim
n→∞

αn := lim
n→∞

Pσ(Ξn = θ) = 1

Consenus obtains if xn converges to ω for any ω ∈ {0, 1} in probability (according to measure Pσ), i.e.

lim
n→∞

Pσ(xn = ω) = 1

Either of these outcomes occurs within infinite subset S ⊆ N if the limit probability of agents within S

converges to 1.

I shall refer to αn as the Bayesian accuracy of agent n. It will also be convenient, when agent n is

a motivated reasoner, to refer to a hypothetical Bayesian agent in their place (observing the same infor-

mation) as their Bayesian equivalent. Whereas the actual agent’s action is xn, the action their Bayesian

Equivalent would choose is Ξn; of course, if τn = B, these two are the same: xn = Ξn.

Finally, the standard partition of information structures into bounded and unbounded is not the most

useful one in this setting. In this partition, an information structure is said to be bounded if the support of

the private beliefs it can induce is [B,B] where B > 0 and B < 1. This is usually an important distinction,

and only with unbounded beliefs are there no social beliefs for which, should they hold that belief, an

agent’s action carries no information at all. Here however, motivated reasoning reduces the pertinence of

this partition. To replace it, I use a different partition of information structures between those that are

uniformly informative and those that are severely bounded. Fundamentally, severely bounded information

structures shall be those for which there exist some social beliefs that are decisive, i.e. an agent with

this social belief will take the corresponding action, whatever their type and private signal. Uniformly

informative signals, in contrast, are those for which there are no such decisive social beliefs.16

The presence of prior shifting first expands the region of social beliefs that can be overturned (the

orange region in Figure 1), since type 0 agents will form social beliefs more in favor of θ = 0, and type

1 agents in favor of θ = 1. In Figure 1 the region of over-turnable social beliefs grows from [1 − bB, bB]

16In the standard Bayesian model, this definition of uniformly informative information structures is equivalent
to the definition of unbounded signals.
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to [1 − b1, b0]. Secondly, signal rejection entails that Bayesian social beliefs in the regions [0, 1 − R) and

(R, 1] also imply the agent will choose each action with strictly positive probability, as if they are of

non-congenial type they will simply reject this belief entirely.

0 1-R 1-b1 1-bB 1-b0

λ

b1 bB = B b0 R 1

Figure 1: Uniformly Informative vs Severely Bounded Signal Structures: Any social belief in the red
region may be rejected, and any in the orange region can be overturned. Social beliefs in neither are
definitive, and it is the absence of these that defines uniformly informative information structures.

As we increase the maximum signal strength of our private signal B, the amount of prior shifting

s, and/or reduce the threshold for signal rejection R, we will eventually ensure that these two regions

meet. Given this, for any parameters (R, s), sufficiently informative bounded signals instead behave like

unbounded signals. Hence a more useful partition divides them into severely bounded structures such that,

given the parameters (R, s), there are some social beliefs at which an observed agent is certainly ignoring

their private signal, and uniformly informative structures where this is never the case. Using the notation

ψ(λ, θ) to denote the probability an agent n of unknown type chooses xn = 1 if they have social belief λ

and the state of the world is θ, we can formally define the two elements of this partition as follows:

Definition 3 (Uniformly Informative & Severely Bounded Signal Structures). A signal structure (F0,F1)

is uniformly informative for a given parameter tuple (R, s, β), if the set {λ : ψ(λ, 1) = ψ(λ, 0)} ∩ (0, 1) is

non-empty. Otherwise, it is severely bounded for (R, s, β).

5 Learning with Expanding Sample Sizes

Under what precise conditions does learning occur with motivated reasoners, if any? The standard

martingale techniques of Smith and Sorensen 2000 are sufficient to establish that, with a uniformly

informative information structure, we will get learning in the complete network (in fact it gives us a

stronger statement, since complete Bayesian learning is defined in terms of convergence in probability

and martingale techniques give almost sure convergence). Lemma 3, in appendix A, states this result,

which effectively amounts to proving part (b) of their Theorem 1 in this context. Note that, since some

bounded signals are nonetheless uniformly informative, this demonstrates that the presence of motivated

reasoners can actually help learning. This is a consequence of motivated reasoners performing the function

of sacrifical lambs.17

In searching for sufficient conditions for complete Bayesian learning, we might first guess that expand-

ing observations (originally from Acemoglu et al. (2011), set out below in 1) might be enough.

17This terminology is from Golub & Sadler 2017, who review the literature on learning in social networks.

11



Assumption 1 (Expanding Observations). A network topology Q satisfies expanding observations if for

all K ∈ N,

lim
n→∞

Qn

(
max
b∈B(n)

b < K

)
= 0

Expanding observations is certainly a necessary condition for learning, since if it fails there is some

finite K such that infinitely many agents’ decisions are based on at most K privates signals, but is no

longer sufficient in this setting. This insufficiency follows from Theorem 1, which establishes that a much

stronger conditions ‘Expanding Sample Sizes’ is necessary for complete Bayesian learning to obtain.

Assumption 2 (Expanding Sample Sizes). A network topology has expanding sample sizes if for all

K ∈ N, we have

lim
n→∞

Qn

(
|B(n)| < K

)
= 0

If the network topology does not satisfy this property, it has non-expanding sample sizes.18 If for some

subset S ⊆ N we have:

lim
n→∞

Qn

(
|B(n) ∩ S| < K

)
= 0

then we have expanding sample sizes for S.

This condition is of course weaker than requiring a network topology to be complete, but it is still

very strong, since it requires that agents eventually observe arbitrarily large neighborhoods with very high

probability. Whereas expanding observations ensures that agents indirectly observe an ever-increasing

number of neighbors, expanding sample sizes requires that they do so directly.

Theorem 1. With any signal structure (F0,F1), complete Bayesian learning obtains only if the network

topology satisfies expanding sample sizes.

Proof. See Appendix C.

I offer a proof by contradiction of this result, but the rough intuition behind it is based on the fact

that any neighbor is either acting on the basis of a weak social belief, and is thus not very informative to

observe, or a very strong social belief, and will be rejecting this belief if of non-congenial type. For any

finite neighbourhood, the probability that all neighbors happen to be of non-congenial type is bounded

away from zero. The ex-ante probability with which an agent’s Bayesian Equivalent matches the true

state thus partly reflects the possibility that they will be acting on the basis of an entire neighbourhood

of agents rejecting their social signals. They may not be acting on the basis of information accumulated

over the course of the history of the game, but only the private signals of neighbours.

This intuition, that the fact of signal rejection causes information to be ‘lost’ (or possibly lost), is

easier to see in deterministic, simple networks. Specifically, the line network, in which agents each observe

only their immediate predecessor, provides an example of a network topology that guarantees learning

with unbounded beliefs with Bayesian agents, but of course fails with motivated agents since it does not

satisfy expanding sample sizes.

18Note that this condition implies expanding observations, which is still of course a necessary condition.
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5.1 A Line Network Example & Information Loss

In addition to illustrating the insufficiency of expanding observations, this example also serves to illus-

trate the unique problems of learning with a society of motivated reasoners. Signal rejection, specifically

when applied to the social belief, engenders the repeated loss of all accumulated information. Learning

results derived using improvement principles are thus inapplicable, as the neighbor upon which a given

agent is improving may be acting on the basis of only his own private information.

The line network is a particularly convenient one to study, especially with some specific parameter

assumptions. In it, we can straightforwardly express the Bayesian accuracy, αn, of an agent n, who

observes a Bayesian predecessor, as a function of the Bayesian accuracy of said predecessor: αn−1. Even

if we suppose that there are in fact no Bayesians at all, how they would behave reflects the extent to

which information is successfully aggregated through the observation network as the game proceeds. If,

for example, we impose that (a) each agent is almost surely a motivated reasoner β = 0; (b) no agents

engage in prior shifting s = 0; (c) the private signal distributions are anti-symmetric (Definition 4); then

the accuracy of an agent whose predecessor has Bayesian accuracy α must himself have accuracy H(α)

as in Equation 5.1.

H(α) :=
α

2

[
G0(α) + 1−G1(1− α)

]
+

(1− α)

2

[
G0(1− α) + 1−G1(α)

]
(5.1)

Specifically taking the parameters R = 0.7 and (f0(s), f1(s)) = (2(1 − s), 2s) this H function boils

down to a simple quadratic. Thorough readers can find the full working for this example in appendix B,

and these are the parameters used in figure 2. Though these assumptions serve to create a convenient

example, the basic intuition is general, and applies to any line network with a strictly positive measure

of motivated reasoners and 1/2 < R < 1.

The first panel of figure 2, subfigure 2a, illustrates the fact that a line network of Bayesian agents

gives learning, since observing an agent with any level of accuracy α gives some H(α) > α, the following

agent then achieves an accuracy of H(H(α)) > H(α) and so on. The accuracy eventually converges to

1 where H(1) = 1, reflecting the fact that complete Bayesian learning does obtain in a line network of

exclusively Bayesian agents. Our agents, however, are not Bayesians. Beyond a certain level of accuracy,

α∗, an agent must be observing a social signal generating a social belief in the region [0, 1 − R) ∪ (R, 1]

in order to do better. Therefore, observing an agent whose Bayesian equivalent matches the state with

probability α∗ or higher implies observing an agent who will reject their social signal if they are of the

non-congenial type. Thus, the action agent n observes when αn−1 > α matches the state with probability

αn−1 if n − 1 is of congenial type and with probability αRej = α1 otherwise. Their Bayesian accuracy

becomes H(1
2αn−1 + 1

2αRej), where αRej is the accuracy of a Bayesian agent whose neighbor will have

rejected their social signal if of non-congenial type.19

Figure 2b shows U(α) := H(1
2α + 1

2αRej) function this bound graphed alongside our H(α) function.

Since H(α) is relevant below α∗, and U(α) above it, we can see that the function in figure 2c gives the

19The antisymmetric distributions of this example guarantee that there is a single α∗ above which non-congenial
types reject, and below which they do not. Similar arguments still allow us to bound the maximal accuracy away
from 1 without this property.
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Bayesian accuracy of any agent observing a neighbor of any level of accuracy. Since the range of this

function, unlike its Bayesian cousin H(α), is bounded away from 1, no agent can ever approach perfect

accuracy.

α
Observee

Observer
H(α)

(0.5, 0.5) 1

1

H(0.5) = 0.75

R α∗

(a)

α
Observee

Observer
H(α)

U(α)

(0.5, 0.5) 1

1

H(0.5) = 0.75

R α∗

(b)

α
Observee

Observer

(0.5, 0.5) 1

1

H(0.5) = 0.75

α∗

(c)

Figure 2

Whatever the values of the above parameters (and implied form of the function H(·)), an agent

must either be observing an neighbor with αn−1 ≤ α∗ < 1- in which case they must have an accuracy

below H(α∗)- or a neighbor with accuracy αn−1 > α∗, in which case their accuracy is bounded above by

sup{U(α) : α ∈ (α∗, 1]} = H(1
2(1− β)αRej + 1

2(1 + β)) < 1.

∀n αn ≤ max{H(α∗), H(
1

2
(1− β)αRej +

1

2
(1 + β))} < 1

Plotting this as in Figure 3a, we can see that the Bayesian accuracy of agents does not necessarily

converge at all, let alone to 1. If the α∗ implied by R is above the intersection of U(α) with the 45° line,

the accuracy of agents repeatedly climbs the H(α) curve only to drop back down below α∗ when an agent

achieves an accuracy of above α∗. Otherwise, the process keeps climbing upon reaching the U(α) curve,

converging to this U(α) = α fixed point. Figure 3b shows that a network in which each agent draws a
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neighbor uniformly from all predecessors is similar in that any R implying an α∗ value below the fixed

point of U(α) produces an asymptotic accuracy of exactly this fixed point. In contrast, however, for higher

values of R it achieves smooth convergence to α∗, if it achieves this very slowly.

(a) The line network (b) Uniform Sampling

Figure 3: The path of αn against n, with R ∈ {0.7, 0.9}, s = 0, β = 0, (f0, f1) = (2(1− s), 2s).

Another intuition explaining the failure of complete Bayesian learning here, and contrasting it to the

fully Bayesian case, concerns the periodic ‘deletion’ of social information in this model. In the standard

Bayesian model, the assumptions of non-empty neighborhoods and expanding observations are sufficient

to ensure that as n→∞ more and more information is continually introduced, whilst agents have indirect

access to the signals of all agents in the chain before them; the depth of each agent’s ‘information path’

converges to infinity. With motivated agents, however, periodic signal rejection ensures that the actions

of agents before a given signal rejection occurs are completely independent of those after. Thus even with

expanding observations, an agent only ever (in a line network) observes a social signal reflecting a finite

number of signals. Once again, even this intuition applies to both the current model with unobservable

types and one in which we allowed neighbors to observe neighbor types. In this model, the added uncer-

tainty over whether or not rejections have in fact occurred, and how recently, will exacerbate learning yet

further.

This failure of complete Bayesian learning clearly demonstrates that the Improvement Principle ar-

guments no longer hold in this setting. The Bayesian equivalent of an agent n observing the action of an

agent n−1 with accuracy αn−1 > α∗ can no longer improve upon αn−1, as this is the accuracy of a latent

variable. They can only improve upon the probability with which the observed action matches the state.

Learning could perhaps be salvaged from this breakdown in information monotonicity if the correlation

between xn and Ξn were converging to 1 as αn → 1, and the probability P(xn 6= Ξn) converged to zero

fast enough, but something closer to the opposite occurs here. The higher αn, the higher the probability

with which non-congenial agents are receiving a rejection-region social belief. Since the probability with

which a given agent is of the non-congenial type is 1
2(1− β), this implies that P(xn 6= Ξn)→ 1

2(1− β) as

αn → 1.

This breakdown in information monotonicity is reminiscent of that seen in Lobel & Sadler 2016, where
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agents have heterogeneous preferences over the two actions. However, it is even worse in this model, as

in their paper one would at least be able to extract the information of an observed agent upon learning

their type (and due to this they can achieve learning with a sufficiently large amount of homophily in

their Proposition 3). In this model, however, knowing the type of the agent observed agent does not fully

fix the issue. If you observe the type of your most accurate neighbor, and also observe (through observing

their neighborhood) that they are of congenial type, this tells you that xn is highly likely to be equal to

Ξn (I say only ‘highly’ likely since prior shifting can still produce a difference even in the absence of signal

rejection). However, if they are of non-congenial type, their decision may in no way reflect their social

information, and evening knowing that they are of non-congenial type does not allow you to recover that

information. To salvage an improvement principle, we would need to impose that agents were always of

congenial type, which is of course inconsistent with the independence of type and neighborhood.

5.2 Sufficient Conditions for Learning

Theorem 1 establishes that learning obtains only under highly connected and large networks. Though

the complete network is the most obvious example of a network topology that satisfies expanding sample

sizes, it is not the only one under which we can achieve learning in this setting. One sufficient condition

for learning within S is that it satisfies expanding nested neighbor samples:

Assumption 3 (Expanding Nested Neighborhood Samples). For agent n, let Bn(n) ⊆ B(n) be the set

of agents within m ∈ B(n) such that B(m) ⊂ B(n). A network topology has expanding nested neighbor

samples for S if for all K ∈ N, we have

lim
n→∞

Qn

(
|Bn(n) ∩ S| < K

)
= 0

A nested neighbors of n is an agent n observes, whose entire neighborhood, B(n), n also observes. Ex-

panding nested neighbor samples then requires than agents observe ever greater numbers of such agents.

Though a very demanding condition on the network topology, the requirement that agents observe a large

number of nested neighbors is not so unreasonable when studying social networks. Modern social networks

are increasingly connected, and also display large amounts of clustering- where agents are disproportion-

ately likely to be connected to any agents their friends are connected to. Since the neighborhood of agent n

represents the set of agents n is connected to who act before them in the game, and social media provides

a public record of all friends’ comments, it is not necessarily unreasonable to suppose that agents at least

observe some nested neigbors.

Proposition 3. If a network topology has expanding nested neighbor samples for S, and the information

structure is uniformly informative, complete Bayesian learning obtains within S.

Proof. See Appendix C

One implication of this is that any network topology that satisfies expanding nested neighbor samples

for N exhibits complete Bayesian learning. This re-proves complete Bayesian learning for the complete
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network, but also extends it to other nested topologies. For example, if all agents observe B(n) = {m ∈
N : m < n}∩{1, 100}∩{i×100+50, ..., i×100+99, ∀i ∈ N} then the network topology satisfies expanding

nested neighborhood samples. When establishing complete Bayesian learning within proper subsets of N,

we can demonstrate that even network topologies that don’t satisfy expanding sample sizes can nonetheless

achieve similar outcomes. Specifically, we can see networks in which the asymptotic fraction of agents who

correctly match the state with probability greater than 1− ε for any ε > 0 is one. Take, for example, the

network topology in which all agents in the set S′ = {10m : m ∈ N ∪ {0}} observe only their immediate

predecessor in S′, and any agent n ∈ N \S′ has B(n) ⊇ S′ ∩{1, ..., n− 1}. This network topology satisfies

expanding nested neighborhood samples for N \ S′, since the set S′ has infinitely many members, and

the neighborhood of every agent within S′ is contained within S′ (apart from the very first agent). When

discussing polarization in politics, it is normally the overall fraction of agents that take the incorrect

action that is of concern. Thus, even network topologies that do not achieve complete Bayesian learning

or consensus may nonetheless result in similar levels of polarization as those that do if a sufficiently large

subset of agents achieve these outcomes. Had I instead defined S′ = {3m : m ∈ N}∪ {1}, then learning in

the group N\S′ would no longer pin down the exact asymptotic fraction of consensus as that achieved by

complete Bayesian learning, but it would still explain a large proportion of the polarization that resulted,

as two thirds of all agents are within a set that satisfies expanding nested sample sizes.

Though expanding nested neighborhood samples for S is a sufficient condition for complete Bayesian

learning within S, it is not a necessary condition. To see this, consider the following counter-example,

which also illustrates that motivated reasoning can in a sense help with learning by reintroducing a certain

amount of independence between agent’s actions, roughly speaking.

Example 1 (ENNS is not Necessary for Complete Bayesian learning within S). Consider again a set

S′ = {10m : m ∈ N ∪ {0}} in which all agents bar agent 0 observe there immediate predecessor, and take

the parameter values of the example represented by the upper curve (orange) in Figure 3a (β = 0,s = 0,

R = 0.9, (f0, f1) = (2(1−s), 2s)). The 8th agent in S′ is the first to have a lower αn than their immediate

predecessor, and every fifth agent in S′ after them is in a similar position {8, 13, 18, 23, ...}, let us call this

subset of S′, S′′. Suppose also that agents in the set N\S′ have neighborhoods B(n) = S′′∩ ∩{1, ..., n−1}.
Expanding nested sample sizes does not hold for N \ S′, but there is complete Bayesian learning within

this set.

Proof. See Appendix C

The intuition behind this example is that the fact of signal rejection within set S′ ensures that to

observe S′′ is to observe an almost covariance stationary process (it does not quite fit the definition of

covariance stationarity, but is close enough to allow us to analyse it in a very similar fashion, as can be

seen in the proof). Given this, the time average of the actions of agents in S′′ will converge in mean-

square to one quantity, strictly greater than 0.5, if θ = 1, and another, strictly less than 0.5, if θ = 0.

The agents observing these agents thus learn the true state simply by observing this time average, despite

never observing the neighborhood of any agent they observe, and we have learning on the basis of a Large
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Sample Principle (cf. Golub & Sadler 2017, who split learning results into improvement and large sample

principle results).

Interestingly, the large sample result we have here is arguably more true to the moniker ‘large sample’

than other results that take this title. Acemoglu et al. (2011, Theorem 4) and Lomys (2020, Theorem

2) both provide large sample results that establish learning when the network contains infinitely many

sacrificial lambs who observe small enough neighborhoods that their action always reflects their private

signal. Both, however, depend on a ‘core’ of agents who are either sacrificial lambs with some small and

vanishing probability, or observe all preceding agents within this core. This allows the use of martingale

convergence arguments, and intuitively acts as ‘storage’ for all this information. Expanding observations

with respect to this set of agents then gives learning for all agents. In Example 1 such a group is not needed:

the large samples gives learning alone, without any need for a core facilitating martingale arguments. In

this sense, and very specific set of circumstances, the presence of motivated reasoners arguably helps

learning. If the private beliefs are bounded but not severely so, then the above network topology would

not achieve learning with Bayesian agents, the line network agents in S′ would simply copy each other

after a certain number of initial actions, and almost all the neighbors observed by agents within N \ S′

would be completely uninformative.

These sufficient conditions are more powerful when considered in the context of the extensions con-

sidered in section 7, since the assumption of uniformly informative information structures becomes less

demanding. In one of these, agents do not all have the same (R, s) parameters, but have these indepen-

dently drawn for them from some distribution. In such a setting, all that is required for a signal structure

to be uniformly informative is for each agent to have a sufficiently low R with some non-zero probability.

Thus whilst unbounded beliefs might itself seem a relatively strong assumption, here what matters is

only that we have a sufficiently informative (possibly bounded) signal given the rejection thresholds of

those agents in the population most prone to rejecting social information. Whereas the assumption of

unbounded beliefs is essential for many results in the Bayesian model (most notably Acemoglu et al’s

sufficiency of expanding observations for complete learning), here the unbounded-bounded distinction is

much less important.

None of this, it should also be noted, establishes that severely bounded beliefs preclude learning. Much

as with Acemoglu et al. Theorem 4, network topologies with infinitely many sacrificial lambs within a

larger core can produce learning. The rise of ideological polarization and growing access to information

suggest that uniformly informative information structures are most relevant to investigating modern

polarization, but I include some discussion of severely bounded beliefs in Appendix D for completeness.

6 Consensus with Motivated Reasoning

Having considered in which networks learning will obtain, we can immediately observe a number of

implications for the possibility of consensus; I present these as Theorem 2. First and foremost, it can be

easily seen that complete Bayesian learning and consensus are incompatible with this model of motivated

reasoning (for any network topology), as the former implies extreme social beliefs, which are necessarily
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rejected by agents of non-congenial type. This in turn gives that uniformly informative beliefs preclude

learning, as either complete Bayesian learning obtains, or social beliefs can be overturned with positive

probability asymptotically. In either case, clearly no action commands unanimity. This is not to imply

that consensus is impossible, however, and the third part of this theorem observes that with severely

bounded beliefs there are some network topologies and parameter values that do produce it (the complete

network can provide such a case).

Theorem 2.

1. Complete Bayesian learning implies consensus does not obtain. (∀Q)

2. Thus consensus cannot obtain with uniformly informative beliefs. (∀Q)

3. A consensus can occur with severely bounded beliefs. (∃Q)

Proof. Let θ = 0,

1. Complete Bayesian Learning implies the Bayesian social belief converges to (probability) 1, which

implies agents of type τn = 1 are rejecting their social signals, and instead using P(θ = 1|sn) >
1
2(1− s).

2. In a model of uniformly informative beliefs therefore, either the Bayesian belief does not converge

to certainty, and any social belief can asymptotically be overturned (and we do not have consensus),

or it does converge to certainty (and we do not have consensus).

3. This can be seen by taking the example of the complete network (which is particularly convenient,

since it allows the almost direct application of SS2000), with bounded beliefs: figure 4 illustrates the

set of all possible social beliefs. A complete proof with details is relegated to appendix C, but the

intuition is the following. The assumption of bounded beliefs implies that there is a minimum social

belief that can possibly be overturned by a private signal for each type (1− b1 < 1− bB < 1− b0),

and similarly maximum social beliefs that can be overturned by a weak signal (b1 < bB, b0). The

exact levels of these are given by the type-parameters, and implied by proposition 1. Thus if the

social belief is below 1 − b1 or above b0, all future actions become completely uninformative (as

they do not reflect private signals) unless the social belief is low (high) enough to be below 1 − R
(above R). If R is picked to be high enough, however, this will be impossible. The social belief will

then get stuck in the set [1−R, 1− b1]∪ [b0, R], and learning will stop with all agents choosing the

same action.

0 1-R 1-b1 1-bB 1-b0 b1 bB = B b0 R 1
Figure 4
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Whereas severely bounded beliefs maintain the possibility of consensus, the level of polarization in

networks exhibiting expanding sample sizes can be pinned-down exactly, and is increasing in the level

of motivated reasoning. The exact degree of polarization this produces will depend on the level of prior-

shifting, what fraction of agents are Bayesian, and the belief distributions. If the true state is θ = 1 agents

will choose xn = 1 with asymptotic probability β + 1
2(1 − β)(2 − G1(1

2(1 − s))). If s converges to 1, the

proportion of type zero agents choosing x = 0, despite the strong Bayesian social belief in favor of θ = 1,

also converges to 1, and we have complete polarization. Though the fact of belief rejection is essential

in achieving this, the level of polarization is not affected by the value of R in such network topologies,

except in so far as this R needs to be small enough to make the signal structure uniformly informative.

If we are willing to suppose that real observation networks are sufficiently large and connected for

expanding sample sizes to reasonably model them, a number of interesting points follow. Firstly, in the

presence of a fixed pair of parameters (R, s), increasing the availability of information (assuming this

translates to an increase in the most informative available signal B) could create a discontinuous jump

in polarization if it engenders a shift from a severely bounded to a uniformly informative information

structure. Hence a sudden and marked increase in polarization is unsurprising with the expansion of the

internet over the past 20 years: once a tipping point has been reached the character of the information

environment changes completely. Secondly, if one accepts that in democratic societies it is not plausible

(or at all desirable more generally!) to restrict the accessibility of information to the citizenry, it follows

that one could only recover the ‘severely bounded’ information structure in managing to increase the

R parameter (or its distribution as in the aforementioned extension) above its original value enough to

compensate for the increased availability of information. Thirdly, if instead we accept that reversing this

change is simply a lost cause- all that can be done to partially recover consensus is to either reduce the

s parameter or increase the fraction of Bayesians β. Since converting a partisan agent into one who cares

about nothing but the truth would be intuitively difficult, reducing the extent and relevance of value

polarization (since s reflects and is increasing in the magnitude of the ‘directional motives’ of our agents)

is the only realistic target for remedial policy. This fits well with the findings of Guilbeault et al. (2018),

who show experimentally that increasing the salience of partisanship produces motivated reasoning: in

the context of this model increasing the salience of partisanship would simply correspond to decreasing

and increasing the values of R and s respectively.20

This particular finding also presents the most easily testable prediction of this paper. With a complete

network of experimental subjects, running treatments with first very weak private signals, and then

increasing the strength of signals provided to subjects, should lead to such a jump in the level of observed

disagreement. What’s more, increasing the polarization parameters by priming subjects to be partisan

should make this disagreement more extreme, and lead to a high proportion of subjects siding with the

position associated with their party affiliation.

Even if we are not quite willing to suppose that a network topology satisfies expanding nested neigh-

borhood samples, we can nonetheless show that non-congenial type agents will reject their social signals

20They note that increasing the salience of partisanship reduces social learning, though social learning as defined
in their setting corresponds to consensus here; clearly the observed action/ stated belief in an experimental setting
corresponds to xn, not Ξn.
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with probability 1− ε for arbitrary ε > 0 if they have neighborhoods with at least M nested neighbors21

for some sufficiently large M . This is the main mechanism behind polarization, and produces the sharp

difference in stated beliefs between different political factions. As discussed in Section 5, high clustering

and connectivity of online social networks gives cause to hope that this may hold.

Proposition 4. For any ε > 0, there is an M ∈ N such that, if agents within set S asymptotically have at

least M nested neighbors and the information structure is uniformly informative, the asymptotic ex-ante

probability that any given non-congenial type agent rejects their social signal is at least 1− ε.

Proof. See Appendix C.

Hence whilst complete learning in this environment results from agents observing ever more informa-

tion, if instead they simply observe a lot of information, that can suffice for the widespread social signal

rejection that drives polarization. It is in this sense that increasing the extent to which a social network is

‘connected’ and highly clustered can increase polarisation. If for a given network topology the asymptotic

distribution of social beliefs is not extreme enough to produce widespread social signal rejection, this can

be ‘rectified’ by increasing the number of nested neighbors agents observe asymptotically. The asymptotic

probability that agents’ beliefs are in the region regions can be pushed arbitrarily close to 1 by ensuring

they observe a large enough number of nested neighbors.

7 Discussion

There are a number of simple extensions to which we can easily extend the results in this paper. The

details of the more involved extensions are relegated to appendix E. Firstly, the assumption that all agents

have the same rejection threshold and prior-shifting parameter seems unrealistic. However, the proofs of

several of results in this paper largely depend upon the existence of regions in which non-congenial types

will or will not necessarily reject the social belief. Thus the results extend to the case in which we draw

an R and s parameter individually for each agent from some distribution, so long as the support of the R

parameter includes values strictly less than 1. In other words, if the convex hull of this support is [R,R],

we must have R < 1. Specifically, this condition is sufficient to reproduce the proof of Theorem 1, the

reasoning within the line network example, and the first two parts of Theorem 2. The third part requires

an additional assumption, namely that the convex hull of the support of the R distribution does not extend

all the way down to 1
2 : R > 1

2 . The definitions of uniformly informative and severely bounded information

structures (Definition 3) still hold in this case, except that the tuple of parameters that determine if an

information structure is one or the other are now (R, s, β) instead of (R, s, β).

In a similar vein, the fact that rejection operates with a sharp threshold here creates a discontinuity

that itself seems a poor representation of real behavior, but this too can be resolved without loss. Instead,

we can define each agent as having a rejection function, giving the probability with which they reject

beliefs of a given strength. Such a function, assigning higher probabilities of rejection to more extreme

social beliefs, could be defined to continuously increase the rejection probability for non-congenial social

21neighbors whose neighborhoods they also observe
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beliefs so long as it assigns strictly positive probability to the rejection of some social beliefs. To be precise,

we can simply endoww each agent with two parameters Rmin >
1
2 , Rmax < 1 and a rejection function

R : [1
2 , 1]→ {0, 1} such that:

R(z) =


0 if z < Rmin

f(z) if Rmin ≤ z ≤ Rmax
1 if z > Rmax

where f(z) is any function from [0, 1] to [0, 1], though of course a strictly increasing function makes the

most sense intuitively. Much as before, Theorem 1, the line network example and the first two parts of

Theorem 2 carry through so long as agents reject some sufficiently extreme non-degenerate social beliefs

with some strictly positive probability. There are no severely bounded information structures without the

condition Rmin >
1
2 , much as R > 1

2 was necessary for this in the previous extension.

An additional alteration that makes only a minimal difference, and in fact even less of one that the

two preceding extensions, would be to have agents adopt either the common prior or a less extreme social

belief in the event of a social belief rejection. For example, were a type-0 agent to reject a social belief

of 0.9, whereas I have assumed the adopt the social belief 1
2(1 + s), one could instead assume that they

adopt the belief 1
2 , or perhaps some convex combination of this and the rejected belief. In each case, this

does not in anyway impact any of the main results. Its only impact is the vary the exact proportions

of agents who choose each action in the event of complete Bayesian learning; the extreme polarization

achieved when s = 1 is no longer achievable if we replace this assumption. The present assumption reflects

observed behavior in Oprea & Yuksel 2022, but if it seems an extreme response to a strong non-congenial

signal, it is not crucial.

A more substantial change would be to apply motivated reasoning to the entire ‘combined’ signal,

instead of only the social signal. As I discuss early in the paper, I choose to model agents as engaging in

social motivated reasoning as there is some experimental evidence to suggest that this reflects how people

process information in real life. Having said that, such experiments involve a clearly defined private signal

that unambiguously carries independent information, following a clearly defined distribution. Perhaps the

signals to which agents have access in real life are less clear, in which case it is not inconceivable that

they would be both treated equivalently. The result that expanding sample sizes is a necessary condition

for social learning will still hold in this case, but its sufficiency is more difficult to establish. This follows

from the fact that Combined Motivated Reasoning re-introduces a form of confounded learning, where,

in a complete network for example, the game could reach a point in which agent n is exactly as likely

to choose xn = 1 in either state of the world. Once this point has been reached in a complete network,

learning stops. In more general network topologies satisfying expanding sample sizes, it will rarely be the

case that the game can get irreversibly stuck like this (this will require specific nested network topologies),

but the same problem nonetheless prevents us bounding the minimal informativeness of any given action.

This particular extension is discussed further in Appendix E.1, but in short the fundamental obstacles

that motivated reasoning poses to learning remain.

In addition to allowing us to study learning in societies with motivated reasoners, this model also allows

22



us to study the robustness of the traditional Bayesian model to motivated reasoning. When thinking about

robustness, we need to consider two different sense in which the Bayesian model might be robust, and two

different outcomes (either learning or consensus- identical in the standard model) with which we might be

concerned. The two different sense in which the Bayesian model might be robust to motivated reasoning

for a given outcome are: (1) the outcome varies little when we consider a model with β = 1 and β = 1− ε
for small ε; and (2) the outcome various little between the model with β = 1 and the model with β = 0

and (s,R) = (ε1, 1−ε2) with small (ε1, ε2) >> 0. With consensus, theorem 2 makes clear that the Bayesian

model is not robust in the first sense, since for any uniformly informative information structure consensus

becomes impossible. This is quite a contrast to the Bayesian model, in which expanding observations and

unbounded beliefs are enough to ensure it. In the second sense, the line network example demonstrates

that we do not have robustness with respect to learning or consensus, since despite satisfying expanding

observations, even the (s = 0, R = 0.9) case produces an eternal cycle in αn. Learning is possible in

this model, but requires very connected network topologies, and consensus can only be achieved in those

networks that do not provide learning, and have very limited access to information.

Finally, it is worth commenting on the possibility of extending this model to a non-binary framework.

As I observed in Section 2, the major results of this paper are negative: we need very connected networks

to achieve learning, and consensus is fragile if not impossible. Intuitively, increasing the number of states

increases the difficulty of the inference problem agents face, so it seems likely that results in a non-binary

model will be qualitatively similar. This view, and the tractability of binary state models, justifies the

choice to study only the binary setting. However, were one to want to extend this model to more than 2

states, what would this entail? Firstly, the model of motivated reasoning in this paper is an application of

Little (2021) to this setting, and involves agents who assign weights to each state, reflecting to what degree

the state in questions is congenial to them. Hence, vj parametrises to what degree the agent ‘likes’ state

j. Outside the binary framework, one would need to think carefully about this distribution of weights.

In this sense, the interplay between preferences and signal structures that Kartik et al. (2022) discuss is

complicated further, as now there are two sets of preferences: the explicit preferences of the agent, and

the psychological ‘preferences’ (weights) that underpin motivated reasoning. There will no longer be a

simple (s,R) parameter pair to represent motivated reasoning.

8 Conclusion

Social learning, and under what conditions it should be expected, has been extensively studied. Despite

this, the implications of motivated reasoning on the necessary and sufficient conditions for this learning

have not previously been investigated in this literature. Given the pertinence of motivated reasoning to

learning à propos of political and ethical questions, and the increasing interest in explaining polarization

in society, this omission is in need of correction. This paper not only fills that gap, but establishes that the

perfect storm of increasing value-polarization, ever greater access to information, and the advent of more

connected and clustered social networks with social media can explain the increase in fact-polarization

we observe widely in modern life, particularly in politics.

23



The difficulty of learning from neighbors who reject social information they dislike strongly ensures

that much more demanding conditions on the network topology are needed: we move from the requirement

that asymptotically an agent indirectly observes infinitely many agents (expanding observations) to that

they do so directly (expanding sample sizes). Whilst learning is thus severely obstructed by the presence

of social learning, the ability of societies to settle on consensus is not spared either. If a society can achieve

consensus in one setting, that consensus can always be broken by increasing value-polarisation or access

to information.

Arguably, however, this shift in network topology is descriptive of the change that the internet has

brought about. When paired with the shift from severely bounded to uniformly informative information

structures that increased value polarization and information access can entail, this provides an additional

mechanism explaining the increased fact-polarization of modern political discourse. The change is not all

bad, as there are some network topologies that can produce learning with bounded beliefs when a similar

network of Bayesians would not. Even in this instance, however, motivated reasoning produces more and

more polarization as agents become more motivated to hold beliefs conducive to their ideology.

That increasing the level of information available to agents can make consensus harder to achieve, as

demonstrated most concretely in the complete network, is counterintuitive but seems a compelling expla-

nation of the increasing polarization we are currently observing. The clear practical lesson for reestablish-

ing consensus, since reducing either access to information or the greater density of networks are clearly

not feasible (in addition to being alarming policy objectives in general!), is that reducing the political

charge of important issues is essential. Though this is in and of itself a very tough nut to crack, it is

the only clear route to reducing polarization with motivated agents in our ever more connected and

informationally-overwhelmed societies.
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A Useful Lemmas

The first two lemmas here serve only to reproduce important results in ADLO2011 that I use in the

analysis in this paper. The first is Proposition 2 in their paper, and characterises the decision rule of

Bayesian agents. Lemma 3 similarly reproduces Theorem B.1 from SS2000, which is the central theorem

describing the fixed points of Markov-Martingale processes.

Lemma 1 (ADLO2011 Proposition 2). Agent n will choose xn = 1 upon observing neighborhood

B(n) and private signal sn if:

P
(
θ = 1|B(n)

)
+ P(θ = 1|sn) > 1

Proof. See ADLO2011 Proposition 2.

This next lemma is Lemma 1 from ADLO2011, and gives several useful properties of the belief distri-

butions.

Lemma 2 (ADLO2011 Lemma 1). The private belief distributions, G0 and G1, satisfy the following

properties:

(a) For all r ∈ (0, 1), dG0(r)/dG1 = (1− r)/r

(b) For all 0 < z < r < 1, G0(r) ≥ ((1− r)/r)G1(r) + ((r − z)/2)G1(z)

(c) For all 0 < r < w < 1, 1−G1(r) ≥ (r/(1− r))(1−G0(r)) + ((w − r)/2)(1−G0(z))

(d) The term G0(r)/G1(r) is nonincreasing in r and is strictly larger than 1 for all r ∈ (β, β)

Proof. See ADLO2011 Lemma 1.

Definition 4 (Anti-Symmetry). A

A pair of distributions (G0,G1) is said to be anti-symmetric if G0(r) = 1−G1(1− r) for all r ∈ [0, 1].

Lemma 3 (SS2000 Theorem 1b). Suppose without loss of generality that the true state is 0. With

a ‘single rational type’ (in the context of this paper, this only reflects that all agents have the same

utility function) and ‘unbounded’ (here uniformly informative suffices) beliefs, the likelihood ratio,

ln = (1−qn)
qn

, of the social belief, qn, that θ = 1 of Bayesian agents in a complete network converges

to zero almost surely ln → 0.

Proof. See SS2000 Theorem 1b.
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Lemma 4 (Social Belief Distribution Relationship). If the social belief of agent n in state θ has

PMF hnθ (·), they obey the following relation:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn

Proof. This follows almost exactly the proof of Lemma A1 (a) from ADLO2011- adjusted in necessary

ways. By then definition of a social belief, we have for any sbn ∈ (0, 1):

P(θ = 1|SSn) = P(θ = 1|SBn)

Using Bayes’ Rule, it follows that:

SBn = Pσ(θ = 1|SBn) =
Pσ(SBn|θ = 1)Pσ(θ = 1)∑1
j=0 Pσ(SBn|θ = j)Pσ(θ = j)

(*Note this differs from the analogous expression in ADLO2011 since there are only a finite number of

possible social beliefs at any point.)

SBn =
Pσ(SBn|θ = 1)

Pσ(SBn|θ = 0) + Pσ(SBn|θ = 1)

Pσ(SBn|θ = 1) = [Pσ(SBn|θ = 0) + Pσ(SBn|θ = 1)]SBn

Using the notation that hnθ is the pmf for the social beliefs of agent n in state θ:

hn1 (SBn)(1− SBn) = hn0 (SBn)SBn

Lemma 5. If we take a set A containing N agents, each of whom has an ex-ante success probability

of αn > 1− δ
N (1−G0(R)), the ex-ante probability that their social beliefs are all within a rejection

region is at least:

P(sbn ∈ [0, 1−R) ∪ (R, 1] ∀n ∈ A) > 1− δ

Proof. Lemma 5

For any agent n, there are a finite number of possible social signals, and the social belief induced by

each of them is deterministic. These beliefs can be listed in order: {sb1n, sb2n, ..., sbEn }.
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αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2
P(pn + SBn > 1|θ = 1)

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2

(
1− P(pn + SBn ≤ 1|θ = 1)

)
2αn − 1 ≤ P(pn + SBn < 1|θ = 0)− 0

=
E∑
k=1

P(SBn = sbkn|θ = 0)[G0(1− sbkn)]

=
E∑
k=1

hn0 (sbkn)G0(1− sbkn)

The more mass we place on lower social beliefs, the higher this gets. Thus any mass placed on values

above 1 − R would be better placed on 1 − R:. Similarly, any mass placed on values between 1 − R and

the minimum social belief sbminn is best placed on sbminn .

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) + Hn

0 (1−R)G0(1− sbminn )

The social belief that maximises this is sbminn = 0, thus we have the upper bound:

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) + Hn

0 (1−R)G0(1− 0)

2αn − 1 ≤ (1−Hn
0 (1−R))G0(R) + Hn

0 (1−R)

This highest αn can possibly get with mass ρ on social beliefs that are not rejected cannot be higher

than:
2αn − 1 ≤ ρG0(R) + (1− ρ)

≤ 1− ρ(1−G0(R))

Thus if we have probability ρ that agent n will observe a signal that is not in a rejection region, αn

is (extremely loosely) bounded above by:

αn ≤ 1− ρ

2
(1−G0(R))

Thus if αn is strictly greater than this threshold, the ex ante probability that the social signal is not

in a rejection region is less than ρ.

Thus the probability that at least one agent does not have a rejection-region signal (of N agents

observed all of whom have αn above this threshold) is less than P , where:
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P =

N∑
i=1

(1− P(i in rejection region)) ≤
N∑
i=1

(1− (1− ρ))

=

N∑
i=1

ρ

= Nρ

Using the union bound. Therefore if we choose αn > 1 − ε
N (1 − G0(R)), the probability that all agents

receive signals in the rejection region is at least 1−N( εN ) = 1− ε.

Lemma 6. If a set of n ∈ {1, ..., N} Bernoulli-Blackwell/ simple binary experiments all have

parameters (p0
n, p

1
n) such that p1

n − p0
n > ∆, p0

n ≤ p0, and p1
n ≥ p1 for all n; all dominate an

informative lower bound experiment in the confidence order of Weber (2010). This implies that

they give a higher value in the decision problem of this paper.

Proof. Consider an experiment (X = {0, 1}, 2{0,1}, pθ : θ ∈ Θ = {0, 1}), where p1 − p0 > ∆, p0
n ≤ p0, and

p1
n ≥ p1. The ‘confidence parameters’22 of this experiment are:

κ =
p1
n

p0
n

L =
1− p0

n

1− p1
n

One experiment dominates another in the confidence order if both its κ and L are higher, and an

experiment is informative if (κ,L) > (1, 1). For any experiment satisfying the conditions of this lemma,

observe that:

κ =
p1
n

p0
n

≥ p0
n + ∆

p0
n

≥ 1 +
∆

p0 > 1

And similarly:

L =
1− p0

n

1− p1
n

≥ 1− p1
n + ∆

1− p1
n

≥ 1 +
∆

1− p1
n

≥ 1 +
∆

1− p1
> 1

22Weber uses κ and λ, but since I am already using λ elsewhere I replace it with L.

31



Thus if we choose any simple binary experiment with confidence parameters
(

1 + ∆
p0
, 1 + ∆

1−p1

)
, we

have an informative lower bound experiment dominated in the confidence order by any experiment in

our set of n experiments. An experiment that satisfies this is that with success parameters:
(

1
2

(
1 +

1
2p0/∆+1

)
, 1

2

(
1 − 1

2p0/∆+1

))
. The value of the increment 1

2p0/∆
is clearly strictly positive but less than 1

2 ,

so this is a well-defined Blackwell experiment.

Weber establishes that if one experiment A dominates experiment B in the confidence order, A gives

a higher decision value in any standard decision problem, which he describes in section 3.1. The decision

problem of this paper is clearly a standard decision problem, therefore our lower bound experiment gives

a lower decision value than any of the n experiments in our set.

Lemma 7. If a set of n ∈ {1, ..., N} simple binary experiments all have parameters (p0
n, p

1
n) such

that p1
n < p1 and p0

n > p0, then there exists upper bound experiment that dominates them all in the

confidence order or Weber (2010). This implies that they give a lower value in the decision problem

of this paper.

Proof. Consider an upper bound experiment with parameters (p1, p0), for this experiment we have confi-

dence parameters:

κ =
p1

p0

L =
1− p0

1− p1

Clearly any experiment with p1 ≤ p1 and p0 ≥ p0 will have lower (κ,L) than this upper bound

experiment, and be dominated in the confidence order. As per the equivalent reasoning in the previous

lemma, they must therefore give a lower value in the decision problem each agent faces. What’s more,

this upper bound experiment also Blackwell dominates our set of experiments, since it has lower Type 1

and Type 2 error in both states of the world.

For Theorem 3 I need an equivalent of Blackwell’s product experiment dominance result (Blackwell,

1951, Theorem 12), which says that if experiments E1 and E2 dominate F1 and F2 respectively, then

the product experiment E1
⊗
E2 dominates F1

⊗
F2. Since I am using the confidence order of Weber, I

cannot apply Blackwell’s Theorem 12 directly. Let us define �c as the confidence order, which applies to

simple binary experiments (experiments with two states and two signals). Let us further define � as the

binary relation that orders experiments according to the decision value they achieve. Weber gives us that

�c=� over the space of simple binary experiments for our decision problem

Lemma 8. Suppose we have M experiments E1, ..., EM , and M experiments F1, ..., FM such that Ei
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dominates Fi in the confidence order for each i ∈ 1, ...,M . Then the decision value upon observing

{E1, ..., EM} is at least as high as upon observing {F1, ..., FM}. .

Proof. First, observe that the product experiment E1
⊗
E2 (in which E1 and E2 are independent of each

other, conditional on the state of the world) must dominate the the product experiment E1
⊗
F2. To

see this, consider the agent observing first E1 and then the second experiment (for Bayesian updating, it

does not matter in what order the agent observes them, it is ‘divisible’ to adopt Cripps’ Cripps (2018)

terminology). Whatever posterior they form upon observing E1, call this the interim belief, it serves as

their prior for observing E2 or F2. E2 �c F2 implies that the decision value upon observing E2 is weakly

higher than that for F2 for any prior. Thus E1
⊗
E2 � E1

⊗
F2. By the same reasoning, we can also

deduce that E1
⊗
E2 � F1

⊗
E2, and that both F1

⊗
E2 � F1

⊗
F2 and E1

⊗
F2 � F1

⊗
F2. Since this

preference relation has a utility representation (that of the expected value of the decision problem), it is

transitive. Therefore E1
⊗
E2 � F1

⊗
F2.

E1
⊗
E2

E1
⊗
F2 F1

⊗
E2

F1
⊗
F2

Now let us adopt the labels Ek := E1
⊗
...
⊗
Ek and F k := F1

⊗
...
⊗
Fk. E

k+1 = Ek
⊗
Ek+1 and

F k+1 = F k
⊗
Fk+1. Applying once more exactly the same reasoning above, we can see that if for some

k ∈ N Ek � F k, it follows that Ek+1 � F k+1. We have established that E2 � F 2 (and of course we

assumed that E1 = E1 � F1 = F 1), thus by induction it follows that for any M , EM � FM

B Line Network Example Working for Section 5.1

Recall that in this simplified example we assume there is no prior-shifting (s = 0), R = 0.7, β = 0,

and the private signals have density functions: (f0(s), f1(s)) = (2(1 − s), 2s). These signal distributions

produce identical belief distributions: fθ(·) = gθ(·).

s

f1(s)

f0(s)

2

1

Figure 5: The Density functions for signal (and belief) distributions f0(s) = 2(1−s) and f1(s) = 2s
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It follows that the CDFs of the belief distributions take the following forms:

• G0(x) = F0(x) = x(2− x)

• G0(1− x) = (1− x)(1 + x)

• G1(x) = x2

• G1(1− x) = (1− x)2

Claim 1. The relationship between the Bayesian accuracy and possible social beliefs of n is given by:

2αn − 1 =
E∑
k=1

hn1 (sbkn)
(1− sbkn)

sbkn
G0(1− sbkn)−

E∑
k=1

hn1 (sbkn)G1(1− sbkn)

Proof. There are a finite number of possible social signals, and the social belief induced by each of them

is deterministic. These beliefs can be listed in order: {sb1n, sb2n, ..., sbEn }.

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2
P(pn + SBn > 1|θ = 1)

αn =
1

2
P(pn + SBn < 1|θ = 0) +

1

2

(
1− P(pn + SBn ≤ 1|θ = 1)

)
2αn − 1 = P(pn + SBn < 1|θ = 0)− P(pn + SBn ≤ 1|θ = 1)

=
E∑
k=1

P(SBn = sbkn|θ = 0)[G0(1− sbkn)]−
E∑
k=1

P(SB = sbkn|θ = 1)G1(1− sbkn)

=

E∑
k=1

hn0 (sbkn)G0(1− sbkn)−
E∑
k=1

hn1 (sbkn)G1(1− sbkn)

Using Lemma 4 that hn0 (SBn) = hn1 (SBn) (1−SBn)
SBn

, we get the above expression.

Let us call hn1 (sb0n) := qn0 , since there are only two possible signals for each agent in the line network

it follows that hn1 (sb1n) := 1− qn0 .

2αn − 1 = qn0

[
(1− sb0n)

sb0n
G0(1− sb0n)−G1(1− sb0n)

]

+ (1− qn0 )

[
(1− sb1n)

sb1n
G0(1− sb1n)−G1(1− sb1n)

]
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The symmetry of my assumptions also gives us that sb0n = 1− sb1n, so we can simplify this further to:

= qn0 (sb1n)2

[
1

1− sb1n

]

+ (1− sb1n)2

[
1

sb1n

]
− qn0 (1− sb1n)2

[
1

sb1n

]

This symmetry also means that hn1 (sb1n) = hn0 (sb0n) and hn1 (sb0n) = hn0 (sb1n), which with lemma 4 implies

that hn1 (sb1n) = sb1n. Using this, the above becomes:

αn = (qn0 )2 − qn0 + 1 = αn−1 − αn−1 + 1

since of course qn0 is simply αn−1 in the line network. Thus upon observing a binary signal that matches

the correct state with probability α, a Bayesian agent with belief distributions (G0(·),G1(·)) will match

the true state with probability H(α) given by equation 5.1, reproduced here as B.1. Given the particular

belief distributions specified above, this simplifies to B.2.

H(α) :=
α

2

[
G0(α) + 1−G1(1− α)

]
+

(1− α)

2

[
G0(1− α) + 1−G1(α)

]
H(α) = α2 − α+ 1

(B.1)

(B.2)

α∗ is then simply defined as the value H(R). Beyond this, with 50% probability n is observing a

congenial type agent who matches the state with probability αn−1, and otherwise he is observing an

agent with success probability H(0.5) = 0.75, since they revert to the prior of 1
2 . U(α) is thus defined as

H(0.5αn−1 + 0.5H(0.5)).

C Omitted Proofs

Proof of Proposition 1. The fact that summing the private and social beliefs can may added, and com-

pared to 1 in order to choose an action results from the fact that my agents are assumed to combine their

private and social beliefs as a Bayesian, as if they had both been formed in a Bayesian fashion. The sum

representation is then simply an application of ADLO2011 Proposition 2.

The exact form of the motivated social belief (MSB) if Pσ(θ = 1|B(n)) < (1−R), is also a straight-

forward consequence of the motivated reasoning procedure.

The form of MSB when Pσ(θ = 1|B(n)) ≥ (1 − R) results from comparing the belief formed by a

Bayesian with prior 1
2 , and that formed by a Bayesian with prior 1

2(1 + s). Let us call the former P and

the latter P̃:

(1 + s)P =
(1 + s)P(B(n)|θ = 1)

P(B(n)|θ = 1) + P(B(n)|θ = 0)

P̃ =
P(B(n)|θ = 1)(1 + s)

P(B(n)|θ = 1)(1 + s) + P(B(n)|θ = 0)(1− s)

(C.1)

(C.2)
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Dividing C.1 by C.2, we get:

(1 + s)P
P̃

=
P(B(n)|θ = 1)(1 + s) + P(B(n)|θ = 0)(1− s)

P(B(n)|θ = 1) + P(B(n)|θ = 0)

(1 + s)
P
P̃

= 1 + s
P(B(n)|θ = 1)− P(B(n)|θ = 0)

P(B(n)|θ = 1) + P(B(n)|θ = 0)

Now we can apply Bayes’ rule (using the true prior) twice on the RHS to get:

(1 + s)
P
P̃

= 1 + s
(
P(θ = 1|B(n))− P(θ = 0|B(n))

)
(1 + s)

P
P̃

= 1 + s
(
P(θ = 1|B(n))− (1− P(θ = 1|B(n)))

)
(1 + s)

P
P̃

= 1− s+ 2sP

P̃ =
(1 + s)P

2sP + (1− s)

P.S. Following an equivalent line of working, for type 0 agents the equivalent expression is:

P̃ =
(1− s)P

(1 + s)− 2sP

Proof of Theorem 1. Let’s first prove that if there is a finite upper bound on each agent’s neighborhood

size (|B(n)| < M1 for all n), and a restriction such that arg mink{B(n)} ≥ n −M2 (where of course

M2 ≥M1), the statement holds.

• Suppose for contradiction that αn → 1 as n→∞.

• For any ε > 0, there is some Nε ∈ N such that for all n > Nε, αn > 1− ε.

• Define αM1−1
IOR < 1 as the accuracy of a Bayesian with M1−1 rejecting neighbors, who is additionally

informed that all his neighbors have rejected their social signals.

• Choose any δ ∈ (0, 1), and ε such that:

ε < min{

Reverse Engineered︷ ︸︸ ︷(1

2
(1− β)

)M1−1
(1− δ)

(
1− αM1−1

IOR

)
,

For Lemma 5︷ ︸︸ ︷
δ

M1 − 1
(1−G0(R))}

• This first term is reverse engineered to provide a contradiction, this second allows us to use Lemma

5.

• Consider an agent m such that m > Nε +M2. WLOG let |B(m)| = M1 − 1.
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• By our Lemma, the probability m has an all-rejection-region neighborhood (all of his neighbors

receive a social signal in [0, 1 − R) ∪ (R, 1]) is some Pm > 1 − δ. The probability that they all

reject is then the probability that each neighbor is of noncongenial type multiplied by Pm, which is(
1
2(1− β)

)M1−1
Pm.

• Thus we have

αm <

Not Rej︷ ︸︸ ︷(
1−

(1

2
(1− β)

)M1−1
P1

)
·(1) +

(1

2
(1− β)

)M1−1
P1 · αM1−1

IOR

• Our selection of ε then implies

1− ε < αm < 1−
(1

2
(1− β)

)M1−1
(1− δ)

(
1− αM1−1

IOR

)

• Given our definition of ε, this is a contradiction! We have proved our theorem subject to the

additional condition.

Now we must prove the theorem without the added restriction. The logic of the proof is the same,

except that without this restriction a neighborhood could always contain agents from arbitrarily far back,

preventing the use of Lemma 5 on the entire neighborhood.

Dropping the requirement that arg mink{B(n)} ≥ n −M2, we can take the same δ as before, and

choose ε such that:

ε < min{ε∗,
(1

2
(1− β)

)M1−1
(1− δ)

(
1− αM1−1

IOR

)
,

δ

M1 − 1
(1−G0(R)) (C.3)

where ε∗ is defined later in the proof.

Let us partition the neighborhood into agents before Nε and agents after Nε (taking Nε now to be

that Nε corresponding to this newly selected (smaller) ε). Call B1(m) = B(m) ∩ {k : k ≤ Nε} and

B2(m) = B(m) \ B1(m). There must be an upper bound on the accuracy of agents in B1(m) that is

strictly less than 1, since only a finite amount of information has been generated by any finite time in the

game, including by Nε. Call this upper bound α1.

The information contained in the actions of B1(m) must be at most the information that would

be contained in the Blackwell supremum experiment of the set of all possible Blackwell experiments

with |B1(m)| binary signals and arbitrary correlation structure (such a thing exists when |Θ| = 2 by

Bertschinger and Rauh (2014)) with each of the |B1(m)| agents each correct with probability α1. Consider

m acting with the benefit of |B1(m)| such signals and |B2(m)| signals of agents who rejected the social

signal, call the accuracy that would result from this α∗(|B2(m)|). This must be strictly less than 1 and

no outcome of this is possible in one state of the world, and impossible in the other.
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The probability that at least one agent in B2(m) rejects their signal is now |B2(m)| × δ ≤ Nδ. Thus

since we have chosen αn ≥ 1 − δ
|B1(m)|+|B2(m)|(1 − G0(R)), the probability that all agents receive signals

in the rejection region is at least
(

1 − |B2(m)| δ
|B1(m)|+|B2(m)|

)
. Let the probability that all neighbors in

|B2(m)| are in their rejection regions be P2.

We must have that:

αm <

(
1−

(1

2

)M1−1−|B1(m)|
P2

)
· 1 +

(1

2

)M1−1−|B1(m)|
P2α

∗(|B2(m)|)

αm < 1−
(1

2

)M1−|B1(m)|
P2(1− α∗(|B2(m)|))

αm < 1−
(1

2

)|B2(m)|
(

1− |B2(m)| δ

|B1(m)|+ |B2(m)|

)
(1− α∗(|B2(m)|))

Now let us define ε∗ = minB2(m)

((
1
2

)|B2(m)|
(

1− |B2(m)| δ
|B1(m)|+|B2(m)|

)
(1− α∗(|B2(m)|))

)
.

This must exist since B2(m) ∈ {0, ...,M1}. Thus we have from our definition of ε that:

1− ε < αm < 1−
(1

2

)|B2(m)|
(

1− |B2(m)| δ

|B1(m)|+ |B2(m)|

)
(1− α∗(|B2(m)|))

1− ε < 1−
(1

2

)|B2(m)|
(

1− |B2(m)| δ

|B1(m)|+ |B2(m)|

)
(1− α∗(|B2(m)|))

This is a contradiction. If |B1(m)| = M1 − 1 for all agents after Nε, then the expanding observations

assumption is not even satisfied, and the agents are acting on the basis of a finite amount of information

in perpetuity, and of course complete Bayesian learning does not obtain.

Proof of Theorem 3. Take an agent n with M nested neighbors.

• Make point that Bayesians must do at least as well as just updating belief in response to Blackwell

experiment represented by each nested neighbor’s action.

Using Lemma 6, we can observe that each nested neighbor action must be more informative than the

lower bound Blackwell experiment.

By Lemma 8, it therefore follows that a Bayesian agent observing M nested neighbors must manage to

match the state with greater probability than one observing M lower bound experiments. As M converges

to infinity, this lower bound probability converges to 1. Therefore an agent observing M nested neighbor

experiments must have Bayesian accuracy converging to 1 as M converges to infinity. It follows that the

agents within S must have Bayesian accuracy converging towards 1, since for any M ∈ N the probability

that they observe fewer than M nested neighbors converges to zero.
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Proof of Example 1. A covariance stationary process {Yt}∞t=1 with mean µ is defined by the following

three properties (Hamilton, 2020):

E(Yt) = µ ∀t

E(Yt − µ)(Yt−j − µ) = γj ∀t
∞∑
j=0

|γj | <∞

Let us use the notation that the mth agent within S′′ has index n(m). Thanks to the symmetry of

this example, the fact that there is no prior shifting, and the fact that agents within S′′ never reject

their signals, we have that agent n(m) will choose xn(m) = 1 with probability αn(m) > 0.5 if θ = 1, and

1 − αn(m) < 0.5 if θ = 0. Although we do not have that αn(m) = αn(m+j) for all j, we will have that for

some small ε > 0 |αn(m) − αn(m+j)| < ε.

Let us define the process {Yt}∞t=1 where Yt = xn(t), and suppose without loss of generality that θ = 1;

it follows that E(Yt) = αn(t). The covariances will also vary with t, but crucially form an absolutely

convergent sequence, as I establish next.

Let the indicator variable Zt reflect whether or not the possibly-rejecting agent following n(t) actually

did reject their social signal. This happens with 50% probability in both states of the world, and is

completely independent of Yt. We can then use the following conditional covariance formalu to establish

that the covariances are absolutely convergent:

cov(X,Y ) = E[E[XY |Z]]− E[E[X|Z]]E[E[Y |Z]]

E[E[YtYt+j ]] = P(Zt = 0)E[YtYt+1|Zt = 0] + P(Zt = 1)E[YtYt+1|Zt = 1]

=
1

2
E(YtYt+j |Zt = 0) +

1

2
E[Yt]E[Yt+1|Zt = 1]

In this second line, the final conditional expectation can be split into a product conditional expectation

since the Y variables are independent conditional on Zt = 1. Yt is then independent of Zt as already

mentioned, so the conditional expectation can be replaced with an unconditional one.

cov(Yt, Yt+1) =
1

2
E(YtYt+j |Zt = 0) +

1

2
E[Yt]E[Yt+1|Zt = 1]

− E[Yt]

(
1

2
E[Yt+1|Zt = 1] +

1

2
E[Yt+1|Zt = 0]

)
=

1

2
E(YtYt+j |Zt = 0)− 1

2
E[Yt]E[Yt+1|Zt = 0]

The covariance between these two terms is necessarily positive, and all of the expectations in this

expression are positive and strictly less than 1, so it follows that |cov(Yt, Yt+1)| < 1
2 . Similarly, we can

consider the covariance between Yt and Yt+2, and find that:

39



cov(Yt, Yt+2) =
1

4
E[YtYt+2|Zt = 0, Zt+1 = 0] +

3

4
E[Yt]E[Yt+2|Zt = 1 or Zt+1 = 1]

− E[Yt]

(
3

4
E[Yt+2|Zt = 1 or Zt+1 = 1] +

1

4
E[Yt+2|Zt = 0, Zt+1 = 0]

)
=

1

4
E[YtYt+2|Zt = 0, Zt+1 = 0]− 1

4
E[Yt]E[Yt+2|Zt = 0, Zt+1 = 0]

This in turn gives that |cov(Yt, Yt+1)| < 1
4 , and similar reasoning will establish that |cov(Yt, Yt+j)| < 1

2j

for any j. Thus the covariances are absolutely convergent.

Using this, we can establish, according to the standard line of argument (as in Hamilton Chapter 7.2,

pg. 186) that,:

E(Y T − αT )2 < (
1

T
)

{
1 + 2(T − 1)

1

2
+ 2(

1

22
)(T − 2)/T + ...+ [1/T ]2(

1

2T−1
)

}
which converges to 0 as the sample size grows. If αT were a fixed value for all T , this would es-

tablish mean square convergence to it, but here it simply establishes that Y T will enter the region

[lim infm∈N αn(m), lim supm∈N αn(m)]. In probability, this average will eventually enter this region if the

state of the world is θ = 1, and it will enter (and remain in) an analogous region below 0.5 if θ = 0. Thus

for the agents in N \ S′′ limn∈N\S′′ αn = 1, and we have learning.

Proof of Theorem 2 Part 3. To recall the assumptions already mentioned in the main text, assume:

• A complete network

• Bounded beliefs: [1−B,B]

• b1, b0, bB defined to represent the highest social beliefs that can be overturned by a private signal.

Proposition 1 gives us that (1− b1) = B(1+s)

1−s+2sB
, and a similar expression b0.

For any social belief, λ, define ∆a(λ) as the (positive) distance between λn and λn+1 upon observing

xn = a with a ∈ {0, 1}. ∆a is well-defined (since the posterior depends only upon the prior (the social belief

here) and likelihood) and a continuous function of λ for all a, by the properties of Bayesian updating. The

set [1− b1, b0] is compact, so the maxima ∆a := maxλ∈[1−b1,b0]{∆a(λ)} exist by the Weierstrass extreme

value theorem.

Suppose that R > b0 + ∆1 , and 1−R < (1− b1)−∆0; this ensures that for no social belief will any

observation be able to push the updated social belief into a rejection in which some types will reject it.

These definitions establish that the social belief cannot enter a rejection region, so to complete the

proof we must simply establish that:

1. The social belief will necessarily enter the region (1− b1, b0)c at some point.

2. If it does so, agents will all take the same action.
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This second point is easy to see; if, for example, the social belief drops below 1− b1, it is sufficiently

low that no signal can satisfy the decision rule in Proposition 1 and lead the agent to choose xn = 1.

Since the belief is not in the rejection region, this is sufficient to establish that type 1 agents will choose

xn = 1. The other type agents have equivalent thresholds 1 − b0 and 1 − bB that are both higher than

1 − b1, so all agents are choosing xn = 0 in this region. To prove the first point, we can simply deploy

SS2000 Theorem B.1; the Martingale-Markov social belief must eventually settle at some fixed-point.

Proof of Proposition 4. Suppose, without loss of generality, that θ = 0, a symmetric argument holds for

θ = 1. Firstly, we can establish that when experiment A dominates experiment B in the confidence order,

it engenders beliefs stronger than R with at least weakly greater probability.

To see this, in place of every agent, consider an agent who observes exactly the same information,

but chooses actions to solve a different ‘standard’ decision problem (where again I mean ‘standard’ in the

sense of Weber (2010)). Specifically, suppose they solve a binary problem where action xn = 0 is optimal

if they have a belief less than 1 − R that θ = 1 and xn = 1 is optimal otherwise.23 Whether an agent’s

decision value is higher or lower in such a problem corresponds exactly to the probability they have a

belief less than 1 − R in each state of the world. Since this is a standard decision problem, Lemma’s 6

and 8 apply, and we can see that observing M nested neighbors dominates observing M lower bound

experiments for any M ∈ N, i.e. produces a higher probability of having a posterior lower than R. Since

xn = 0 is chosen whenever an agent has belief greater than 1 − R, they choose xn = 0 whenever their

log-likelihood ratio is less than log 1−R
R .

Following Moscarini and Smith (2002) and Tamuz (2022), and calling the posterior upon observing m

copies of the lower bound experiment qm, we can observe that the probability of forming a belief above

1−R after m can be expressed:

P(qm ≤ 1−R|θ = 0) = exp
(
−mρ0

∆ + o(n)
)

where ρ0
∆ = min tK0

∆(t) and K0
∆ is the cumulant generating function of the log-likelihood ratio of the

lower bound experiment ∆ conditional on θ = 0. Thus, for any ε > 0 there is some M big enough such

that P(qm ≤ 1−R|θ = 0) > 1− ε for all m > M .

D Learning with Severely Bounded Beliefs

As is established by part 3 of theorem 2, expanding nested neighborhood samples is clearly not

a sufficient condition for learning when the signal structure is severely bounded: the complete network

23An example of such a problem can be produced by adjusting the decision problem of Cremin (2023) ‘Learning
through Anonymous Speech’. In this paper, agents choose both a binary action xn ∈ {0, 1} and whether their action
is visible vn ∈ {0, 1}, where they want xn to match the state, but are rewarded (punished) more for visible actions
if they are correct (incorrect). If we strip them of the ability to choose xn = 1, relabel (xn = 1) := (xn = 1, vn = 0)
and (xn = 0) := (xn = 0, vn = 1), and choose the value of their ‘confidence’ parameter appropriately, we have such
a problem.
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exhibits expanding sample sizes, and learning does not occur here with severely bounded beliefs. However,

it does not follow that one cannot achieve complete Bayesian learning with severely bounded beliefs; in

ADLO2011, one of their most surprising results (since their article was written as an extension to SS2000,

in which bounded beliefs preclude learning) is that there are some network topologies that achieve complete

learning even with bounded beliefs. The rough intuition for this is that whereas all agents eventually ignore

their signals in the complete network, more generally it is possible to concoct network topologies in which

there are infinitely many ‘sacrificial lambs’ whose neighborhoods will certainly produce a social belief

weak enough that the agent will choose xn = 0 for some non-null private signals, and xn = 1 for others. A

similar trick will allow us to establish the possibility of complete Bayesian learning for severely bounded

beliefs here.

The specific class of network topologies used in ADLO2011 Theorem 4 crucially involves a subset of

agents S, whose elements each observe the entire history of the network with some probability bounded

away from zero, but of whom infinitely many also act partially on the basis of their private signal (they

have a ‘non-persuasive neighborhood’- defined below). This set crucially allows both the use of martingale

convergence (since the notion of ‘the’ social belief is well-defined as the belief of each agent in the event

they see the entire history) and guarantees that each agent relies on their private signal with non-zero

probability. A martingale convergence argument gives learning for this subset of agents, and all other

agents that are not contained within S are then assumed to have expanding observations with respect to

S, and an improvement principle argument gives learning overall.

Definition 5 (Non-Persuasive neighborhoods). A finite set B ⊂ N is a non-persuasive neighborhood in

equilibrium σ ∈ Σ if

Pσ(θ = 1|xk = yk for all k ∈ B) ∈ (B,B)

for any set of values yk ∈ {0, 1} for each k. The set of all non-persuasive neighborhoods is Uσ.

The same reasoning clearly cannot apply exactly here, as we have already noted that improvement

principles break down in this motivated reasoning setting, as the action-choice to be improved upon is a

latent variable, whose correlation with the observed action of an agent does not converge to 1 as αn → 1.

Thus for one set of agents to have expanding observations with respect to a distinct set of agents that

learn asymptotically will no longer cause this first set to learn. Instead they will need expanding sample

sizes with respect to this set of learning agents, allowing learning along the same lines as in theorem ??.
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Theorem 3. Let (F0,F1) be an arbitrary signal structure and let S ⊆ N. Assume the network topology

has a lower bound on the probability of observing the entire history of actions along S i.e. there exists

some ε > 0 such that

Qn(B(n) = {1, ..., n− 1}) ≥ ε for all n ∈ S

Assume further that for some positive integer M and non-persuasive neighborhoods C1, ..., CM i.e. Ci ∈ Uσ
for all i = 1, ...,M , we have ∑

n∈S

M∑
i=1

Qn(B(n) = Ci) =∞

Then complete Bayesian learning occurs in equilibrium σ if the network topology {Qn}n∈N has expanding

nested neighborhood samples with respect to S.

Proof. Learning within the set S holds on exactly the same basis as in ADLO2011, and learning outside

follows from the same argument used to establish the sufficiency of expanding nested neighborhood samples

for learning with uniformly informative beliefs in theorem 3.

Thus learning is certainly still possible with severely bounded signals, but requires much stronger

assumptions on the exact structure of the network. Expanding nested neighborhood samples is already

quite an extreme condition (even the weaker expanding sample sizes is quite dramatic), but no longer

suffices. As per Propositions 3 and 4 in ADLO2011, one can contrive specific network topologies in

which the first K agents are necessarily non-persuasive (these constructions of course still produce non-

persuasive neighborhoods here), though it seems implausible that a real-life social network would exhibit

such a specific structure.

E Extensions

E.1 Combined Motivated Reasoning

This paper assumes, as discussed in the Model section, that motivated reasoning occurs only with the

social belief. This modelling decision reflects the experimental evidence that whilst people do manage to

process private signals rationally, they can be widely irrational in their treatment of social signals. Oprea

& Yuksel 2022 in particular show this in the context of motivated reasoning, finding patterns of behavior

that can be explained by the model of motivated reasoning I used.

However, both of these experiments give agents access to precise private signals that are clearly

mathematically defined objects. Perhaps agents process these signals rationally, but extend motivated

reasoning to all their information when private signals are less well-defined. Perhaps private signals simple

represent an agent’s judgement on a question, or the fruit of their own investigations on the internet. If

so, a model of motivated reasoning that applies the motivated process to the overall signal might be

interesting to study. I refer to this as ‘Combined Motivated Reasoning’, and outline here the ways in

which this model diverges from or resembles the main model of this paper.
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The necessity of expanding sample sizes is easier to show with combined motivated reasoning; since it

is the overall belief that now may be rejected, we can observe that for every Bayesian social belief λ ∈ (0, 1)

there is some non-zero probability that the agent will form a combined belief within [0, 1 − R) ∪ (R, 1].

For any neighborhood of size m, the probability that all neighbors are of non-congenial type is (1
2)m,

and multiplying this by the m strictly positive probabilities of rejection-region beliefs gives a non-zero

probability that all neighbors have rejected their beliefs. Agents who reject their beliefs (with combined

motivated reasoning) simply choose their type as their action, and no information at all about θ is

communicated by this fact.

Combined motivated reasoning resurrects the possibility of confounded learning in the complete net-

work, since as the social belief moves to one extreme, the probability that non-congenial types reject their

beliefs increases (in which case they choose xn = τn). Thus, ENNS is no longer a sufficient condition for

learning.

In this setting the results of Theorem 2 all hold. Complete Bayesian learning implies the combined

belief is within a rejection region (that corresponding to the true state), and thus that non-congenial types

all choose the incorrect state of the world. Part two holds on the basis of exactly the same reasoning as

proves it in the main paper. For part 3, with severely bounded beliefs, there will be some region of social

beliefs around 1
2 such that, even combined with the most extreme possible private signals, they cannot

lead to a rejection region combined relief, thus consensus will be achieved in a complete network. Hence,

though this paper is primarily concerned with social motivated reasoning, which seems to best reflect

the experimental evidence we have on how people behave, the key message that polarization becomes

inevitable in a world of increasing informational access and ideological disagreement still holds.

E.2 Reject mild signals, not extreme ones

An alternative approach to motivated reasoning is suggested by Epley and Gilovich (2016), and their

view that: “When considering propositions they would prefer to be true, people tend to ask themselves

something like “Can I believe this?” This evidentiary standard is rather easy to meet; after all, some

evidence can usually be found even for highly dubious propositions... In contrast, when considering propo-

sitions they would prefer not to be true, people tend to ask themselves something like “Must I believe

this?”” Given this, one might be interested in studying motivated reasoners who instead reject informa-

tion in the set (0.5, R] if they are type 0, or [1−R, 0.5) if they are type 1, rather than (R, 1] and [0, 1−R)

as in my specification.

A first point is to note that if we adopt a probabilistic interpretation of this, the results of this article

still all hold. By ‘probabilistic interpretation’, I mean a model in which agents only ever reject social

information with some probability decreasing in the strength of the evidence. For example, if type 0

agents rejected evidence as in figure 6, rejected social beliefs above 0.5 with probability 1
2(1 − SB)2 + ε

for some ε > 0.
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P(Rej)
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SB

0.3

1/2

Figure 6: (1− x)2 + 0.01 rejection probability beyond 1
2

Such a rejection procedure preserves the uniform informativeness property that underlies many of

my results, thus preserving the results themselves. In fact, it preserves this property for any information

structure (the distinction I draw in the main article between severely bounded and uniformly informative

becomes moot- all signal structures are uniformly informative). The major difference with this model,

compared to the model I study, is that the magnitude of asymptotic dissensus with expanding sample

sizes will be much smaller (since as social beliefs converge to 1, the fraction of agents rejecting their social

beliefs converges to 1
2ε.

However, if we do not take this specification, and study a model in which agents reject sufficiently

weak social beliefs with probability 1 and otherwise with probability zero, this is no longer the case. If we

first consider the line network, and suppose that agents do not engage in prior shifting, we can see that

belief rejection is no longer sufficient to make expanding sample sizes a necessary condition.

• Agent 1 starts with 0.5, and clearly does not reject.

• Agent 2 rejects with probability 0.5.

• Therefore the probability with which his action matches the state is H(0.5α1 + 0.5αRej).

• Similarly, all agents n ∈ {3, ...} have accuracy H(0.5αn−1 + 0.5αRej).

From this it follows that if H(0.5 + 0.5αRej) < α∗ (recall that α∗ is that success probability that

implies the agent has observed a social signal outside the region [1 − R,R]), agents will never achieve a

social belief high enough to exit the rejection region and we will not have learning. On the other hand,

if H(αRej) > α∗, then the agents leave the rejection region immediately and complete Bayesian learning

(and in this model, consensus occur). Thus with such a specification it is still the case that expanding

observations is not a sufficient condition for learning, but also that expanding sample sizes in no longer

necessary.
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