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Abstract

The Becker solved the marriage model for the extreme cases of supermodular
or submodular match payoffs. The optimal matching for the general marriage
model — the Monge-Kantorivich “transportation problem” — has seen much
partial progress, but amazingly remains an open question since 1781.

Rather than solve it, we instead characterize when matching grows more as-
sortative. We first show that a stochastic order on bivariate cdf’s known as pos-
itive quadrant dependence (PQD) exactly captures the economics of increasing
sorting: upward shifts lead to higher correlation of match partners for instance.

We rewrite total output in terms of synergy, namely, the local cross partial
difference (or derivative). We then prove that two types of monotone productive
changes result in increased sorting by the PQD measure: sorting increases if syn-
ergy is upcrossing or downcrossing in types and either (1) everywhere increases
or (2) upcrosses through zero, and proportionately upcrosses too.

Our proofs exploit induction in the finite case, and apply to the continuum
model by continuity. Our theory subsumes a wealth of famous examples of
matching models that do not obey Becker’s assumptions.
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1 Introduction

Assortative matching is the pre-eminent theme in the pairwise matching literature.

Becker’s 1973 finding is the most cited takeout messages of this literature that broadly

subsumes as special cases marriage, employment, partnerships, the assignment model,

pairwise trade, and even the double auction. Yet the conclusion is quite strong — higher

“men” always match with higher “women”, without exception — and arises under a

very strong assumption that output be supermodular in types: i.e., positively sorting

any two men and two women yields a higher total output than reverse sorting them.

Since perfectly assortative matching is an idealization, how should we understand

deviations from it? Shimer and Smith (2000) essentially asked if these can be seen as

evidence of search frictions. They found that a weaker sorting conclusion — matching

sets increase in the strong set order as one’s type rises — holds under stronger com-

plementarity assumptions. But observed deviations from perfect sorting often cannot

be explained through this frictional lens. And requiring supermodular interaction is

also intuitively unappealing: For there are many natural and sometimes well-cited eco-

nomic matching settings where the economics mandates that supermodularity fail, as

we show by example in §3 (and in Chade, Eeckhout, and Smith (2017)).

This paper develops a general theory for nonsupermodular matching models. We

must surmount one major difficulty: The general solution of who matches with whom

— first attacked as the transportation problem by Monge (1781) — is still open. This

void has greatly limited the analytic reach of the matching literature in economics,

and confined its reach to the extreme sorting case. In fact, we tackle this problem

by bipassing it altogether. Rather than characterize the optimal matching for any

production function, we exploit advances in monotone comparative statics that succeed

indirectly without ever solving for the optimum. Our methods are easy to apply, and

our assumptions subsume the models in the top published papers.

We first introduce an economically motivated partial order on matching measures to

capture the notion of increasingly assortative. The positive quadrant dependence (PQD)

partial order ranks bivariate measures by masses in southwest and northeast quadrants.

Lemma 2 proves that PQD yields improved sorting by three measures: diminished

distance between matched partners, increasing correlation of matched partners, and

higher regression coefficients of women on their match partners. All told, we seek

sorting comparative statics conclusions of direct relevance to empirical economists.

For some insight, consider the six possible nonrandomized matches among three

men a, b, c and three women A,B,C (Figure 1). One can verify that each man matches

with a weakly closer partner in PAM, than in NAM1 or NAM3, in turn each closer
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Figure 1: All Pure Matchings with Three Types. In addition to negative and
positive assortative matching (NAM and PAM), there is negative assortative match-
ing in quadrants 1 and 3 (NAM1 and NAM3), and positive assortative matching in
quadrants 2 and 4 (PAM2 and PAM4). Sorting is partially ranked according to (1).

than in PAM2 or PAM4, and finally than in NAM. We have thus a partial order:

PAM �PQD [NAM1, NAM3] �PQD [PAM2, PAM4] �PQD NAM (1)

Our analysis is based on a local complementarity measure that we call synergy —

the cross partial derivative with continuous types, and the cross partial difference with

finitely many types. One way of thinking of Becker’s Theorem for marriages is that if

synergy is globally positive (or globally negative), then positive (or negative) sorting

emerges. One might then conjecture that sorting should increase if synergy globally

rises. The example in Figure 2 dashes any such hopes, since the three type matching

alternates back and forth between NAM1 and NAM3 as synergy strictly rises. But

neither NAM1 or NAM3 is more assortative for arbitrary weights on men and women.

To begin piecing together this story, Lemma 1 derives a simple formula showing

that total output only reflects the matching via the dot product of synergy and the

cumulative match distribution. Easily, increasing synergy ensures a single crossing

property. But this does not push optimizers up because the PQD order does not define

a lattice. And as we’ve seen, when synergy increases, sorting need not. We resolve this

in Proposition 1, exploiting a weak implication of the single crossing property alone:

We argue that sorting is nowhere decreasing in the PQD order — it might not rise,

but it never falls in the PQD order. While this result has some bite, still as synergy

rises, match partners could move farther apart, or the regression coefficient on match

partners could fall. This inconvenient truth highlights the need for more discipline on

synergy. For instance, in the counterexample in Figure 2, synergy rises in women’s

types for the least man, but falls in women’s types for the next man.

To deduce when sorting actually increases, we focus first on the sorting premium

on type rectangles — namely, the net payoff change from negatively to positively

sorting women x1 < x2 and men y1 < y2. This allows sharp predictions for finite type

models, for which the optimal matching is generically unique: Proposition 3 shows
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that generically sorting is increasing in the state when the sorting premium is strictly

upcrossing in types and the state.1 The proof is by induction on the number of types.

A parallel result holds for continuum type models, by taking limits. But our proof

logic requires uniqueness. For this, we need a new property of production functions.

The x-marginal product increment is the increase in the x-marginal product of the

(x, y) match when y1 increases to y2. The y-marginal product increment is analogously

defined. Exploiting recent advances in transportation theory, Lemma 5 establishes a

unique optimal matching given a monotone x- or y-marginal product increment. So

equipped, Proposition 3 shows that the very conditions for uniqueness, along with

the strictly upcrossing sorting premium ensures an increasing sorting.

The sorting premium in a rectangle is a sum of synergies, and so its properties

are often hard to check. We pursue a weaker general sufficient condition for it in

Lemma 6. Synergy is proportional upcrossing provided any positive synergy increases

proportionately more than any negative synergy absolutely increases. This result is a

novel two dimensional extension of the fundamental single-crossing preservation result

of Karlin and Rubin (1956). Proposition 4 derives the monotone sorting provided

that synergy either upcrosses or downcrosses through zero, cross sectionally.

Finally, given our cross-sectional assumptions, our theory affords comparative stat-

ics predictions for upward shifts in the type distributions (Proposition 5). Our proof

exploits the formal equivalence between these type shifts and productive shifts.

This proposition greatly expands the predictive reach of matching theory. For

instance, with 100 men and 100 women, Becker (1973) makes predictions for just two

of the possible synergy sign combinations. Our cross-sectional single crossing synergy

encompasses 2·992 sign combinations — and ones that specifically arise in applications.

Literature Review. Becker’s work sparked a vast economic literature on the

transferable utility matching paradigm. While the assignment aspects have escaped a

general attack, some papers have pursued partial characterizations of special models

without perfect sorting. Our model offers comparative statics for all of these papers.

Kremer and Maskin (1996) was an early work that made a strong case for exploring

the marriage model without supermodularity. In this motivated twist on Becker, they

proposed a partnership model with defined roles. Match output was therefore the

maximum of two supermodular functions — one for each role assignment. They claim

“there is a body of work within the labor economics literature that assumes such

imperfect substitutability. There is also empirical evidence to justify the assumption”.

Others soon highlighted the importance of matching without supermodularity.

1We call a real-valued function Υ(θ) on a partially ordered domain, like R or Rn, upcrossing if its
sign changes at most once negative to positive: Υ(θ) ≥ 0⇒ Υ(θ′) ≥ 0 and Υ(θ) > 0⇒ Υ(θ′) > 0 for
all θ′ > θ. It is downcrossing if −Υ is upcrossing, and one-crossing if it is upcrossing or downcrossing.
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Match Payoffs
A B C

c 9 14 18
b 5 2 14
a 1 5 9

→
A B C

c 9 16 24
b 5 3 16
a 1 5 9

→
A B C

c 9 20 30
b 5 6 20
a 1 5 9

→
A B C

c 9 22 36
b 5 7 22
a 1 5 9

Cross Partial Differences of Match Payoffs

AB BC
bc 8 −8
ab −7 8

→
AB BC

bc 9 −5
ab −6 9

→
AB BC

bc 10 −4
ab −3 10

→
AB BC

bc 11 −1
ab −2 11

Figure 2: Sorting Need Not Rise in Synergy. In the top row, the unique most
efficient matchings alternates between NAM1 and NAM3. In the next row, all four
match synergies — or the cross differences of match payoffs — strictly increase as we
move right. So it is not try that increasing synergy leads to more sorting.

Legros and Newman (2002) noted that in the presence of imperfect credit constraints,

supermodular production does not induce supermodular match payoff functions. Our

nowhere decreasing theory subsumes their production function. But we instead focus

on Guttman’s (2008) dynamic extension of Ghatak’s (1999) model of group lending

with adverse selection — for which our stronger increasing sorting theory applies.

Another motivated twist on matching that undermines supermodularity is moral

hazard. Serfes (2005) investigates a pairwise matching model of principals and agents.

the more risk averse male is matched with the less risk averse female

Finally, even when static payoffs are supermodular, Anderson and Smith (2010)

show that dynamic models with Bayesian updating need not inherit this. In our sub-

sequent work with evolving human capital (Anderson and Smith, 2012), we show that

preservation of supermodularity is highly exceptional. For general transition functions

of old types into new types, the dynamic match values are rarely supermodular.

Becker’s sorting result follow from standard monotone comparative statics results

for supermodular functions (pursued at length in §3.2 in Topkis (1998)). Our insights

hail from new results in monotone comparative statics, including two new ones. First,

our nowhere decreasing theory owes to a comparative static result for partially ordered

sets that are not lattices — which is the very character of bivariate matching distri-

butions that obey adding up conditions. Lemma 1 summarizes our relevant findings

here. Second, we derive an upcrossing aggregation result (Lemma 2) that extends the

fundamental preservation result of Karlin and Rubin (1956) to vector domains.

Since we avoid standard optimization theory, multipliers play no role in the analysis

and we thus are silent about wages.

Any results not proven immediately are demonstrated in the appendix.
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2 The Marriage Model

A. The Marriage Model with Global Complements or Substitutes.

Assume pairwise matching by individuals either from two heterogenous groups (men

and women, firms and workers, buyers and sellers) or the same set (partnerships). In

the general matching model, “women” and “men” have respective types x, y ∈ [0, 1]

with cdfsG andH. The matching market is balanced, with unit massG(1) = H(1) = 1.

We capture a continuum of types by absolutely continuous type distributions G and

H, and finitely many types when G and H are discrete measures with equal weights on

male types 0 ≤ x1 < x2 < · · · < xn ≤ 1 and female types 0 ≤ y1 < y2 < · · · < yn ≤ 1.

We then relabel women as i = 1, 2, . . . , n and men as j = 1, 2, . . . , n.

We assume a C2 production function φ > 0, so that types x and y jointly produce

φ(x, y). In the finite type model, the output for match (i, j) is fij = φ(xi, yj) ∈ R.

Production is supermodular or submodular (SPM or SBM) for all x′ < x′′ and y′ < y′′

if:
φ(x′, y′) + φ(x′′, y′′) ≥ (≤) φ(x′, y′′) + φ(x′′, y′) (2)

Strict supermodularity (respectively, strict SBM) asserts strict inequality in (2).

Like Becker’s, our theory does not explore an extensive margin whether to match.

A matching is a bivariate cdf M ∈M(G,H) on [0, 1]2 with marginals G and H. In the

finite type case, G and H put equal weight on {x1, x2, . . . , xn} and {y1, y2, . . . , yn}. In

this case, the matching is summarized by a nonnegative matrix [mij] where
∑

imij0 =

1 =
∑

jmi0j for all men i0 and women j0 in {1, 2, . . . , n}. In a pure matching, [mij] is

a matrix of 0’s and 1’s: every man is matched to a unique woman, and vice versa.

Of longstanding interest are the two flavors of perfect sorting. In positive assortative

matching (PAM), each woman x at quantile G(x) pairs with a man y at the same

quantile H(y), and thus M(x, y) = min(G(x), H(y)). In negative assortative matching

(NAM), complementary quantiles match, and thus M(x, y) = max(G(x)+H(y)−1, 0).

Matched types are uncorrelated given uniform matching M(x, y) = G(x)H(y).

Our matching model subsumes as a special case the partnership (or unisex) model,

where types x and y share a common distribution, G = H, production φ is symmet-

ric (φ(x, y) = φ(y, x)), and a symmetric matching distribution M(x, y) ≡ M(y, x) is

optimal. In this case, PAM is the matching y = x, and NAM the matching y = 1− x.

The Planner seeks to maximize total match output, solving for optimal matchings:

M∗ = arg max
M∈M(G,H)

∫
[0,1]2

φ(x, y)M(dx, dy) (3)
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Villani (2008) shows existence ofM∗ in his Theorem 4.1.2 We prove uniqueness in §6.

Characterizing the solution of the optimization (3) is known as the Transportation

Problem, and has been open since Monge (1781). Every feasible matching is optimal

with modular production. Becker solved the extreme sorting cases PAM and NAM:

Becker’s Theorem. Given SPM (SBM) production φ, the optimal matching exists

and is PAM (NAM). Given strict SPM (SBM), these pairings are uniquely optimal.

Proof: Existence and uniqueness are by construction with finitely many types. For if

any matches (x′, y′′) and (x′′, y′) are negatively sorted (so that x′ < x′′ and y′ < y′′),

then output is not maximal, since SPM production (2) implies a higher payoff to the

matches (x′, y′) < (x′′, y′′). Lemma 1 addresses the general (non-finite) case.

This paper gives comparative statics for intermediate cases in which φ is neither

SPM or SBM, and thus the optimal matching need not be at either extreme.

B. Matching with Local Complements and Local Substitutes.

Assume first finitely many types. Match synergy is the cross partial difference:

sij = fi+1j+1 + fij − fi+1j − fij+1

Production is SPM, e.g., when synergy is globally nonnegative. The analysis is hard

when synergy has mixed signs. We start by summing match output (3) by parts:∑n
i=1

∑n
j=1 fijmij =

∑n
i=1 fin −

∑n−1
j=1 [fnj+1 − fnj] j +

∑n−1
i=1

∑n−1
j=1 sijMij (4)

So the production only impacts match output via synergy. So if production is linear

in types, and synergy vanishes, then all match distributions yield the same output.

Notice that in Becker’s Theorem, synergy alone affects the optimal matching: any two

production functions with the same synergies have the same matching, if all match.

In the continuum case, synergy is still a local complementarity notion: φ12(x, y).

The generalization of (4) to the continuum must carefully treat any type atoms.

Lemma 1 (Match Output Reformulated). Let I ≡ [0, 1] and J ≡ (0, 1]. Then:∫
I2 φ(x, y)M(dx, dy) =

∫
I φ(x, 1)G(dx)−

∫
J φ2(1, y)H(y)dy+

∫
J 2 φ12(x, y)M(x, y)dxdy

We don’t solve the optimization (3), and instead index output φ(x, y|θ) by a state

θ in a partially ordered set (poset) Θ, and ask how optimizers M∗(θ) change as θ

increases. We often suppress the state. Throughout, a time series property relates

production to the state, and a cross-sectional property relates production to the types.

2He claims it “has probably been known from time immemorial.” Many papers have addressed
this issue over the decades since Kantorovich (1942). See also Gretsky, Ostroy, and Zame (1992).
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3 Economic Applications of the Marriage Model

We now explore some illustrative or celebrated economic applications of the marriage

model not explained by Becker’s Theorem — for production is neither SPM nor SBM.

A. Quadratic Production. We start with an instructive matching example.

Since empirical work often ventures quadratic production, posit φ(x, y) = αxy+β(xy)2.

Then synergy φ12(x, y) = α + 4βxy is increasing in α and β. By Becker’s Theorem,

PAM is optimal when α, β ≥ 0, uniquely so if also α+β>0. Likewise, NAM is optimal

when α, β ≤ 0, and uniquely so with α+β < 0. But with either of α ≶ 0 ≶ β, SPM and

SBM fail, as synergy can be positive and negative; Becker’s Theorem is inapplicable.

B. Principal-Agent Matching with Moral Hazard. Serfes (2005) explores

a pairwise matching model of principals and agents. Project variances y ∈ [y, y] vary

across principals, while agents differ by their risk aversion parameter x ∈ [x, x].

When agents share a common scalar dis-utility of effort θ > 0, Serfes derives (in his

equation (1)) the expected output and synergy of an (x, y) match:

φ(x, y) =
1

2θ (1 + θxy)
⇒ φ12(x, y) =

θxy − 1

2 (1 + θxy)3
(5)

Serfes applies Becker’s Theorem to deduce NAM for θ < θ and PAM for θ > θ. But

he is silent about all intermediate disutility of efforts, where 1/[y x] = θ < θ = 1/[yx].

C. Group Lending with Adverse Selection. We consider Guttman’s (2008)

dynamic extension of Ghatak’s (1999) model of group lending with adverse selection.

Borrowers vary by their project success chance x; a success pays π and a failure nothing.

Pairs of borrowers sign lending contracts, and project outcomes are independent.

After seeing the project outcome, a borrower either repays the loan, or defaults.

If both repay, then each pays r > 1. But if only one defaults, then the other repays

r + c>r. Assume π ≥ r + c, so that borrowers repay when their project succeeds. If

both matched borrowers default at once, each loses access to credit markets and can no

longer finance projects. Borrowers discount future payoffs by δ < 1, and default if the

project fails. The discounted payoff to the matched success chance pair (x, y) obeys:

φ(x, y) = x((π− r)− (1−y)c)+y((π− r)− (1−x)c)+ δ(1− (1−x)(1−y))φ(x, y) (6)

One can check that synergy φ12 is globally positive if δ ≤ δ∗ ≡ c/[c+(π−r)]. But with

more patience, δ > δ∗, synergy is positive for low (x, y) and negative for high (x, y).3

3Legros and Newman (2002) explore group borrowing to finance a joint project. In their model,
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D. A Partnership Model with Capital. Modify the partnership model with

types (x, y) so that the effective labor is `(x, y) = (xη+yη)1/η. Assume that production

also depends on the current technology (captured here by an index that might be viewed

as ‘capital’ κ), match output and synergy:

φ(x, y) = (`(x, y)ρ + κρ)1/ρ ⇒ φ12(x, y) ∝ (ρ− η)κρ + (1− η)`(x, y)ρ (7)

Assume greater complementarity between partner types than between labor and tech-

nology, ρ < η < 1. Then synergy is negative φ12 < 0 for low types x, y, and positive

for high types when ρ > 0. But if instead, ρ < 0, then synergy is positive for low types

and negative for high types. In either case, Becker’s Theorem does not apply.

E. Production with Defined Roles. Kremer and Maskin (1996) explore a

unisex model with output equal to the maximum of two SPM functions:

φ(x, y) ≡ max{xθy1−θ, x1−θyθ} for θ ∈ [0, 1/2] (8)

Intuitively, assume that agents can be assigned to the manager or deputy roles, where

xθy1−θ is output when x is assigned to the manager and y to the deputy.4 This produc-

tion function is neither SPM nor SBM. Indeed, consider any match (x, y) for 0 < x < y.

If z = y/x, the payoff difference of positive sorting minus negative sorting is:

φ(y, y) + φ(x, x)− 2φ(x, y) = y + zy − 2(zy)θy1−θ R 0 as θ R θ∗(z)

where θ∗(z) = (log(1 + z) − log(2))/ log(z) is an increasing function from (0, 1) onto

(0, 1/2). That is, PAM beats NAM among the types {x, y} when types are far apart

(small z), while NAM beats PAM when types close together (z near 1).

F. Dynamic Matching with Evolving Types. Assume pairwise matching

in periods one and two. Production is the symmetric, increasing and SPM function

φ0(x, y). But types evolve: If types x and y match in period one, they enter period

two as types τ(x, y) and τ(y, x), where τ is an increasing type transmission function.

Given SPM output, PAM is statically optimal in period two. But in period one,

the social planner weights output by (1− δ, δ), so that the payoff to an (x, y) match is:

φ(x, y) = (1− δ)φ0(x, y) + δ
[
φ0(τ(x, y), τ(y, x)) + φ0(τ(y, x), τ(y, x))

]
/2

Becker’s Theorem lacks bite: φ need not be SPM if φ0 and τ are increasing and SPM.

expected output is φ = (xy−q)1XY≥κ, where q is the cost of capital and κ ≥ q a financing constraint.
Output is globally SPM when κ = q, but is neither globally SPM nor globally SBM when κ > q.

4More generally, we could allow for the production max{g(x, y|θ), g(y, x|θ)}.
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Figure 3: The PQD Order. PQD increases for cdfs on [0, 1]2 increase the probability
mass on lower left rectangles with corner vertices (0, 0) and (x0, y0), and thus upper
right rectangle with corner vertices (x0, y0) and (1, 1), for every (x0, y0) ∈ [0, 1]2.

4 A Measure of Sorting

Positive quadrant dependence (PQD) partially orders bivariate probability distribu-

tions M1,M2 ∈ M(G,H). We call M2 PQD higher than M1, or M2 �PQD M1, if

M2(x, y) ≥M1(x, y) for all x, y. So M2 puts more weight than M1 on all lower (south-

west) orthants. Since M1 and M2 share marginals, M2 puts more weight than M1 on

all upper (northeast) orthants too. Easily, the PQD order correctly ranks PAM, NAM

and uniform matching: min(G(x), H(y)) ≥ G(x)H(y) ≥ max(G(x) +H(y)− 1, 0). As

noted in (1), this only partially orders the six possible pure matchings on three types.

The PQD and SPM orders coincide, i.e. for all SPM functions φ, since increases in

the PQD order increase (reduce) the total output for any SPM (SBM) function:5

M2 �PQD M1 ⇔
∫
φ(x, y)M2(dx, dy) ≥

∫
φ(x, y)M1(dx, dy) (9)

We see now that Becker’s Theorem follows from Lemma 1. For since SPM implies

globally nonnegative synergy, φxy ≥ 0, output is highest when the match cdf M(x, y)

is maximal — namely, PAM, as it dominates all other matchings in the PQD order.

Similarly, SBM implies globally nonpositive synergy, φxy ≤ 0, and thus output is

highest when the match cdf M(x, y) is minimal, namely, NAM.

The PQD sorting measure shows up in some economically relevant measures:

Lemma 2. Fix increasing functions u and v. Given a PQD order upward shift:

(a) the average geometric distance E[|u(X)−v(Y )|γ] for matched types falls, if γ ≥ 1;

(b) the covariance EM [u(X)v(Y )]− E[u(X)]E[v(Y )] across matched pairs rises;

(c) the coefficient in a linear regression of v(y) on u(x) across matched pairs rises.

5Lehmann (1973) introduced the PQD order. See 9.A.17 in Shaked and Shanthikumar (2007).
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Lemma 2 illustrates that the PQD order is scale invariant.To wit, if we claim that

educational sorting rises in the PQD order, then it does so regardless of whether it is

measured in highest degree attained, years of schooling, log years of schooling, etc.

Proof of (a): By inequality (9) it suffices that |u(x) − v(y)|γ is SBM for all γ ≥ 1.

Since −g(u−v) is SPM for all convex g, by Lemma 2.6.2-(b) in Topkis (1998), we have

−|u− v|γ SPM for all γ ≥ 1. Thus, |u(x)− v(y)|γ is SBM for all increasing u and v.

Proof of (b): Since the marginal distributions on X and Y is constant for all M ∈
M(G,H), and u(x)v(y) is supermodular for all increasing u and v, the covariance

EM [XY ]− E[X]E[Y ] between matched types increases in the PQD order by (9).

Proof of (c): The coefficient c1 = cov(u(X)v(Y ))/var(v(X)) in the univariate match

partner regression v(y) = c0 + c1u(x) increases in the PQD order, by part (b). �

For some helpful insight, assume a uniform distribution of types on [0, 1], and

assume that every x ≤ 1/2 matches with x + 1/2. While Legros and Newman (2002)

call this matching “monotone”, because it is increasing on the domain of larger match

partners. But this is not positive sorting since one can verify that it actually maximizes,

rather than minimizes, the average distance between partners. To wit, it minimizes

total match output for the supermodular production function f(x, y) = 1− |x− y|.

5 Nowhere Decreasing Sorting

When the optimal matching M∗(θ) is unique, we say that sorting is increasing if it

weakly increases in the PQD order. Figure 2 defeats a natural conjecture that sorting

increases if synergy globally increases. For it shows that the uniquely optimal matching

can shift back and forth between NAM1 and NAM3 as synergy strictly increases. But

NAM1 and NAM3 are not PQD comparable by (1), and so sorting at least never falls.

To check whether this observation is generally true, we now index the production

function φ(·|φ) by some parameter θ, and ask what happens to sorting as θ increases.

Assume that synergy φ12(·|φ) is non-decreasing in θ. By Lemma 1, the change in

total output from the cdf M to M ′ is
∫
φ12(·|θ)(M ′ −M). This gives a single crossing

condition in (M, θ), i.e. for all M ′ �PQD M (and thus M ′ ≥M everywhere) and θ′ � θ:∫
(0,1]2

φ12(·|θ)(M ′ −M) ≥ (>) 0 ⇒
∫
(0,1]2

φ12(·|θ′)(M ′ −M) ≥ (>) 0 (10)

A single crossing condition alone does not suffice for monotone comparative statics.

If total output (3) were quasi-supermodular in M , and the constraint set a lattice,

then (10) would imply that the set of maximizers M∗(θ) increases in the strong set

order (SSO) (result 2.8.6 in Topkis (1998)). Specifically, M2 � M1 in the SSO if

10



M1 ∨M2 ∈ M2 and M1 ∧M2 ∈ M1 for all M1 ∈ M1 and M2 ∈ M2.
6 But sorting

cannot rise in the SSO, since matching cdf’s are not a lattice.7

Theorem 1 in §B.1 presents a theory of monotone comparative statics on partially

ordered sets given only a single crossing property in (M, θ). This does not preclude

PQD incomparable shifts of optimal matchings as θ rises, but it precludes declines. We

say that sorting is nowhere decreasing in θ if for all θ2 � θ1, whenever M1 ∈ M∗(θ1)

and M2 ∈M∗(θ2) are ranked M1 �PQD M2, we have M2 ∈M∗(θ1) and M1 ∈M∗(θ2).

Lemma 3. If total output (3) is single crossing in (M, θ), then M∗(θ) is nowhere de-

creasing in θ. Conversely, ifM∗(θ) is nowhere decreasing in θ for all type distributions

G,H, then total output is single crossing in (M, θ).

We say that weighted synergy is upcrossing in θ if the following is upcrossing in θ:∫
φ12(x, y|θ)λ(dx, dy) with continuous types and C2 production, for all positive mea-

sures λ on [0, 1]2, and
∑n−1

i=1

∑n−1
j=1 sijλij with finite types, for all weights λ ∈ R(n−1)2

+ .

Proposition 1 (Nowhere Decreasing Sorting). Sorting is nowhere decreasing in θ if

weighted synergy is upcrossing in θ — and so if synergy is non-decreasing in θ.

Proof: First, M ′ �PQD M iff λ ≡M ′ −M ≥ 0. So if weighted synergy is upcrossing

in θ, total output obeys the single crossing condition (10) for continuous types, and an

analogous one with finite types. By Lemma 3, sorting is nowhere decreasing in θ. �

Application: Production with Defined-roles. Now return to Kremer and

Maskin (1996) in §3. Their production function is not differentiable, and so invalidates

our theory. But we can consider smoothly approximate their production function by:

φ(x, y) = xθyθ (x% + yρ)
1−2θ
% → max{xθy1−θ, x1−θyθ} as %→∞ (11)

One can check that φ is SPM iff % < (1 − 2θ)−1, and so PAM arises, by Becker’s

Theorem. In the % → ∞ limit of Kremer and Maskin (1996), φ is never SPM, and

PAM does not arise. Even though we cannot possibly solve for the optimal matching

when % ≥ (1 − 2θ)−1, our theory affords signs of the sorting comparative statics. In

Appendix D, we prove that synergy is upcrossing in θ and downcrossing in %, and

thus sorting is nowhere-decreasing in θ and 1/%. Figure 4 plots total match payoffs for

f(x, y) = max(xθy1−θ, x1−θyθ), with three types x, y ∈ {1, L,H}, for various H>L>1.

6Given M1,M2, the join M1 ∨M2 is their supremum and the meet M1 ∧M2 their infimum.
7By (1), NAM1 and NAM3 are both upper bounds for PAM2 and PAM4, but there is no pure

least upper bound. More strongly, PQD does not induce a lattice, as there is no least mixed least
upper bound, M for PAM2 and PAM4. As shown in Proposition 4.12 in Müller and Scarsini (2006):
If M dominates PAM2 and PAM4, then M(2, 1) ≥ 1/3 and M(1, 2) ≥ 1/3, but M(1, 1) = 0 if NAM1
and NAM3 dominate M . So then M(2, 2) = 2/3, but then NAM1 cannot PQD dominate M .
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Figure 4: Kremer-Maskin Payoffs. We plot payoffs for the four pure symmetric
three type matchings against θ. NAM (brown) is optimal for low θ and PAM (red)
for high θ. Sorting increases in θ at left with NAM1 (blue) optimal for intermediate
values of θ. In the middle and right, sorting is not monotone, as the PQD-incomparable
NAM1 (blue) and NAM3 (green) are each optimal for a range of parameter values.

6 Increasing Sorting and Production Changes

6.1 Increasing Sorting and the Sorting Premium Theory

We first focus on the finite case with female and male types i, j = 1, 2, . . . , n.

Lemma 4. An optimal matching is generically unique and pure for finite types.

Proof: The optimal matching is generically unique, by Koopmans and Beckmann

(1957). Since any non-pure matching M is a mixture M =
∑K

k=1 λkMk over K ≤ n+ 1

pure matchings M1, . . . ,Mn, with λk > 0 and
∑

k λk = 1.8 As the objective function (3)

is linear, if the non-pure matching M is optimal, so is each pure matching Mk. �
We now introduce a cross-sectional assumption on how synergy changes across

types. At the core of our theory is the sorting premium defined on rectangles R =

(x1, y1, x2, y2) in type space with diagonally opposite vertices (x1, y1) < (x2, y2):

S(R|θ) ≡ φ(x1, y1|θ) + φ(x2, y2|θ)− φ(x1, y2|θ)− φ(x2, y1|θ)

By (2), production is SPM (SBM) if all sorting premia are nonnegative (non-positive).9

Rectangle R dominates R′, written R � R′, if all coordinates are weakly higher and

R � R′ if at least one coordinate is strictly higher. The sorting premium is upcrossing

(downcrossing) in types if S(R|θ) is upcrossing (downcrossing) in R, for all θ. Since

we can always reverse-order types, we just develop our theory for the upcrossing case.

While sorting is nowhere decreasing in synergy, by Figure 2, it is not increasing.

8This follows from Carathéodory’s Theorem. It says that non-empty convex compact subset X ⊂
Rn are weighted averages of extreme points of X . The extreme points here are the pure matchings.

9By Proposition 1, sorting is nowhere decreasing if weighted synergy is upcrossing in θ. The sorting
premium uses a weighting function that places unit density on a rectangle, and zero weight elsewhere.
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Figure 5: Precluding Unranked Shifts with n = 3 and Nonzero Synergies.
NAM1 at θ′ and NAM3 at θ′′ is impossible, as is PAM2 at θ′ and PAM4 at θ′′. The
synergy signs in Steps 1N and 1P reflect local optimality. Step 2N deduces s11(θ

′) < 0
via upcrossing synergy from θ′′ to θ′. Given PAM on rectangles R = (1, 1|2, 3), (1, 1|3, 2)
at θ′, local optimality implies S(R|θ′) > 0. As the sorting premium is the sum of
synergies, the synergy signs in Step 3N follow — ruling out S(R|θ′) one-crossing in R,
a contradiction. Next, Step 2P deduces s12(θ

′′) > 0 via upcrossing synergy from θ′ to
θ′′. Given NAM on rectangles R = (1, 1|2, 3), (1, 1|3, 2) at θ′, local optimality implies
S(R|θ′) < 0. Since the sorting premium is the sum of synergies, we can fully sign sij.
This sign pattern in Step 3P violates S(R|θ′′) one-crossing in R, a contradiction.

Proposition 2. For the generically unique production functions with finitely many

types, sorting is increasing in θ, if S(R|θ) is upcrossing in θ and one-crossing in R.

In Appendix C.2, we prove this by induction on the number n of types. Here, we

sketch out the proof logic for the three type examples in Figure 1 in which monotonicity

fails. We assume the upcrossing case throughout, for definiteness — but this is WLOG,

as we can inversely order types.

Consider a generic case with a unique and pure optimal matchings M ′ and M ′′,

by Lemma 5 for states θ′′ � θ′. We first rule out M ′ �PQD M ′′, say, M ′ = PAM4

and M ′′ = NAM.10 Since PAM4 includes a PAM pair on the lower right quadrant, the

sorting premium obeys S(R4|θ′) ≥ 0. Since S is upcrossing in θ, we have S(R4|θ′′) ≥ 0.

But then NAM cannot be uniquely optimal for θ′′, since NAM and PAM4 differ on R4.

The result follows if we rule out M ′ and M ′′ incomparable when S(R|θ) is upcrossing

in R and θ. By the partial order (1), we must rule out transitions between NAM1 and

NAM3, and between PAM2 and PAM4. Figure 5 argues these cases.

Trading Application. Assume n potential sellers j of houses with “costs” c1 <

· · · < cn, and n potential buyers i with valuations vi1 > · · · > vin (Shapley and Shubik,

1971). The value of match (i, j) is thus f(i, j) = max(vij − cj, 0). Assume that θ ≥ 0

increases the buyers values . . . (to be continued) . . .

10Proposition 1 does not rule out a PAM4 to NAM fall, as it requires upcrossing weighted synergy
for any positive weighting function, while Proposition 3 only assumes uniform weights on rectangles.
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6.2 Increasing Sorting and the Marginal Product Increment

We now reformulate our cross-sectional premise of Proposition 2. Call ∆x(x|y1, y2, θ) ≡
φ1(x, y2|θ) − φ1(x, y1|θ) and ∆y(y|x1, x2, θ) ≡ φ2(x2, y|θ) − φ2(x1, y|θ) the x-marginal

product increment and y-marginal product increment, respectively. As production is

C2, we can compute the sorting premium from either marginal product increment:

S(R|θ) =
∫ y2
y1

∫ x2
x1
φ12(x, y|θ)dxdy =

∫ y2
y1

∆y(y|x1, x2, θ)dy =
∫ x2
x1

∆x(x|y1, y2, θ)dx (12)

Lemma 5 (Uniqueness). An optimal matching is unique given an absolutely continuous

cdf G (or H) and the x- (or y-) marginal product increment strictly one-crossing.11

Our continuum uniqueness proof in Appendix C.3 applies Theorem 5.1 in Ahmad,

Kim, and McCann (2011). Here we offer a novel intuition for why absolutely continuous

G and ∆x(x|y1, y2) strictly upcrossing in x give uniqueness. Any optimal matching can

be decentralized by competitive wage functions v(x) and w(y), where x and y match

if x = arg maxx′ φ(x′, y) − v(x′) and y′ = maxy′ φ(x, y′) − w(y′). Assume two women

x1 < x2 and two men y1 < y2. We can argue why both positive sorting (x1, y1) and

(x2, y2) and negative sorting (x1, y2) and (x2, y1) cannot be optimal. For if so, since G

is absolutely continuous and production φ is C2, an optimal partner for y obeys the

first order conditions: But v′(x1) = φ1(x1, y2) = φ1(x1, y1) and v′(x2) = φ1(x2, y1) =

φ1(x2, y2) contradicts ∆x(x|y2, y1) ≡ φ1(x, y2)− φ1(x, y1) strictly upcrossing in x.

Proposition 3 (Increasing Sorting, II). Sorting is increasing in θ if either cdf G or H is

absolutely continuous, the sorting premium S(R|θ) is strictly upcrossing in θ, and the x-

and y-marginal product increments are both strictly one-crossing in the same direction.

In Appendix C.2, we prove this by appeal to upper hemicontinuity and uniqueness

logic as we near the continuum type distribution. The above premise implies the

premise of Lemma 5, and so the optimum is unique. It follows from Proposition 2

provided the sorting premium S(R|θ) is one-crossing in R. Rewrite equation (12) as:

S(R|θ) =

∫
∆x(x|y1, y2, θ)1x∈[x1,x2]dx

Since the indicator function 1x∈[x1,x2] is log-SPM in (x, x1) and in (x, x2),
12 S(R|θ) is up-

crossing in x1 and in x2, and thus in (x1, x2), whenever ∆x(x|y1, y2, θ) is upcrossing in x,

11We call any function Υ : R 7→ R strictly upcrossing if, for all x′ > x, we have Υ(x)≥0⇒ Υ(x′)>0.
Easily, a strictly upcrossing function is upcrossing.

12It suffices to check that if x ∈ [x1, x2] and x′ ∈ [x′1, x
′
2] then max(x, x′) ∈ [max(x1, x

′
1),max(x2, x

′
2)]

and min(x, x′) ∈ [min(x1, x
′
1),min(x2, x

′
2)].
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Figure 6: Increasing Sorting in the Principal-Agent Model. NAM is optimal
for low dis-utility of effort θ, PAM for high θ, and the optimal matching is mixed for
intermediate θ. These graphs depict optimally matched pairs (blue dots) assuming a
discrete uniform distribution on 100 types of principals and agents. The left matching
is drawn for θ = 5, the middle for θ = 10, and the right is for θ = 15.

by Karlin and Rubin (1956). Likewise, if ∆y(y|x1, x2, θ) upcrossing in y, then S(R|θ)
is upcrossing in (y1, y2). Then S(R|θ) is upcrossing in R = (x1, y1, x2, y2) when the x-

and y- marginal product increments are upcrossing. Claim C.6 proves that S(R|θ) is

strictly upcrossing in R given strictly upcrossing marginal product increments.

We now return to two of the economic applications in §3.

Application to the Principal-Agent Matching with Moral Hazard.

We verify that Serfes’ production function (5) obeys the premise of Proposition 3.

Indeed:

∆x(x|y1, y2, θ) = y1 − y2
(

1 + θxy1
1 + θxy2

)2

is strictly increasing in x and θ, since y2 > y1. By symmetry, the y-marginal product

increment ∆y is strictly upcrossing in y and θ. Also, since ∆x(x|y1, y2, θ) is strictly

increasing in θ, the sorting premium S(R|θ) =
∫

∆x(x|y1, y2, θ)1x∈[x1,x2], is strictly

increasing (and so strictly upcrossing) in θ. Hence, sorting is increasing in θ. Figure 6

plots the solution for increasing values of θ (left to right).13

Application to Group Lending with Adverse Selection. The production

function obeys the premise of Proposition 3. Differentiating (6) yields:

φ1(x, y) =
(π − r − c)(1− δy2) + 2cy

(1− δx− δy + δxy)2
> 0

Then ∂[φ1(x, y2)/φ1(x, y1)]/∂x < 0 for all y2 > y1, and thus, the x-marginal product

13These finite plots suggest that the unique continuum matching is not always pure, but fortunately,
none of our continuum model sorting results require purity.
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Figure 7: Increasing Sorting in the Group Lending Model. For δ < c/(c+ π −
r), the optimal is PAM, above this threshold the optimal matching is mixed. These
graphs depict optimally matched man-woman pairs (blue dots) assuming a uniform
distribution on 100 types (blue dots). The left matching is drawn for (π, r, c) = (8, 2, 0),
the middle for (π, r, c) = (8, 2, 1), and the right for (π, r, c) = (3, 2, 1).

increment φ1(x, y2) − φ1(x, y1) is strictly downcrossing in x. Symmetrically, the y-

marginal product increment is strictly downcrossing in y. Next, write synergy as

φ12(x, y) =
2[c(1− δ)(1− δxy) + δ(π − r)(1− x− y + δxy)]

(1− δx− δy + δxy)3
≡ cA(x, y)+(π−r)B(x, y)

where A(x, y) > 0, and thus, the sorting premium S(R|θ) in (12) is strictly increasing

in c. It is also strictly downcrossing in θ = π − r, since for all θ′′ > θ′:

S(R|θ′) ≤ 0 ⇔ c
∫
R
A(x, y) + θ′

∫
R
B(x, y) ≤ 0 ⇒ c

∫
R
A(x, y) + θ′′

∫
R
B(x, y) < 0

Altogether, sorting is increasing in the repayment amounts (r, c) and decreasing in the

payoff from a success π by Proposition 3, as illustrated in Figure 7.

Sorting is not monotone in the discount factor δ. PAM obtains with sufficient

impatience δ ≤ c/(c + π − r) and perfect patience δ = 1,14 since the sorting premium

is globally positive in these cases. For intermediate δ ∈ (c/(c + π − r), 1), the sorting

premium is not globally positive and PAM is not optimal in the continuum model.15

In these and other applications, verifying the upcrossing sorting premium premise

is straightforward. But quite often, it is intractable. In the next section, we derive

conditions on synergy that deliver this conclusion.

14Payoffs are well defined when the implicit discount factor δ(1 − (1 − x)(1 − y)) < 1, where
(1− x)(1− y) is the chance that both projects fail, resulting in the borrowing partnership defaulting.

15Indeed, when δ ∈ (c/(c+ π − r), 1), the symmetric synergy function φ12(x, x) is strictly negative
for x close to 1. Thus, cross matching types x and x+ ε beats sorting them, for high x and low ε.

16



6.3 Increasing Sorting and Synergy

For our second differential variation on the cross-sectional assumption of Proposition 2,

notice that for very small rectangles, upcrossing synergy is necessary for an upcrossing

sorting premium. We now ask when it is also sufficient — namely, under what other

cross sectional or time series condition is upcrossing synergy preserved by integration.

Our theory exploits a new upcrossing aggregation result in §B.2.16 Consider the

synergy σ, either σ(x, y) = φ12(x, y) on the lattice domain D = [0, 1]2, or σ(i, j) = sij
on D = {1, . . . , n}2. Synergy is proportionately upcrossing if for all θ′ � θ and z, z′∈D,

we have:17

σ−(z ∧ z′, θ)σ+(z ∨ z′, θ′) ≥ σ−(z, θ′)σ+(z′, θ) (13)

We analogously define proportionately downcrossing and proportionately one-crossing,

except that the former assumes θ′ � θ, so that higher θ still denotes more sorting.

Synergy is proportionately upcrossing / downcrossing in types if (13) holds for fixed θ.

For example, first consider the latter cross-sectional property. With three types,

synergies s11 =−1, s12 = 2, s21 =−4, s22 = 3 are strictly upcrossing in i and j. But the

associated sorting premium is not upcrossing in types — for instance, s11 + s12 = 1 >

−1 = s21 + s22. And indeed, it is not proportionately upcrossing, since at z = (2, 1)

and z′ = (1, 2), we have s−z∧z′s
+
z∨z′ = 3 < 8 = s−z s

+
z′ . Intuitively, the proportionate gain

in negative synergy s21/s11 = 4 swamps that in positive synergy s22/s12 = 3/2.

Next, consider the time series implications of inequality (13). Easily, any monotonic

synergy function obeys it, since (z′, θ) ≤ (z∨z′, θ′) implies σ+(z∨z′, θ′) ≥ σ+(z′, θ), and

(z ∧ z′, θ) ≤ (z, θ′) implies σ−(z ∧ z′, θ)≥σ−(z, θ′). Yet monotonicity is not implied —

synergy function need only be weakly upcrossing in (z, θ); namely, σ(z, θ) > 0 implies

σ(z′, θ′) ≥ 0 for all (z′, θ′) ≥ (z, θ).18 To see how this strengthens weakly upcrossing,

assume negative synergy at couple z, and positive at a higher couple z′ = z ∨ z′ ≥
z ∨ z′ = z. Then (13) says that positive synergy proportionately rises more than

the negative synergy rises, or falls proportionately less than negative synergy falls:

σ+(z′, θ′)/σ−(z, θ′) ≥ σ+(z′, θ)/σ−(z, θ).

Lemma 6 (Aggregation). Assume proportionately one-crossing synergy.

(a) Then S(R|θ) is generically upcrossing in states and one-crossing in types;

(b) If synergy is strictly upcrossing in states and strictly one-crossing in types, the x-

and y-marginal product increments are both strictly one-crossing in the same direction.

We are now positioned to apply Propositions 2 and 3.

16We relate this condition and “signed-ratio monotonicity” (Quah and Strulovici, 2012) in §B.2.
17Denote by f+≡max(f, 0) and f−≡−min(f, 0) the positive and negative parts of a function f .
18Fix θ = θ′ and suppress θ. If z′ ≥ z, inequality (13) is an identity. If z′ < z, inequality (13)

becomes σ−(z′)σ+(z) ≥ σ−(z)σ+(z′), which precludes σ(z) < 0 < σ(z′).
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Figure 8: Increasing Sorting in the Quadratic Model. These graphs depict
optimally matched pairs (blue dots) assuming a uniform distribution on 100 types.
Sorting increases in (α, β) from left to right. The left matching is drawn for (α, β) =
(0.5,−1), the middle for (α, β) = (1.5,−1), and the right for (α, β) = (1.5,−0.6).

Proposition 4 (Increasing Sorting, III). Assume proportionately one-crossing synergy.

Sorting is increasing in θ in generic finite models, or if type distribution G (or H) is

absolutely continuous and synergy is strictly upcrossing in θ and one-crossing in R.

A simple corollary is that sorting is increasing in θ given finite types and monotone

synergy, or with absolutely continuous G or H and strictly monotone synergy.

This result sheds light on two of the economic applications in §3.

Quadratic and Cubic Production Application. With quadratic production

φ(x, y) = αxy+β(xy)2, match synergy φ12 = α+4βxy is strictly increasing in α and β

and strictly increasing (decreasing) in types when β > 0 (β < 0). Thus, sorting is

increasing in α and β for all β 6= 0, as depicted in Figure 8.

With cubic production φ = αxy + β(xy)2 + γ(xy)3, the analysis is more nuanced.

Synergy φ12 = α + 4βxy + 9γ(xy)2 is increasing in α, β, and γ; and thus, sorting is

nowhere decreasing in all parameters, by Proposition 1. Also, synergy falls in types

when β, γ < 0, and rises in types when β, γ > 0 — so that Proposition 4 predicts

sorting increases in α, β, and γ. But when βγ < 0, synergy need not be one-crossing in

types, and sorting is nowhere decreasing, but not generally monotone in α, β, or γ.19

Application to the Partnership Model with Capital. We explore how

changing technology (captured by capital κ) impacts sorting when ρ < η < 1, i.e. part-

ners are more complementary than capital and labor. For the production function (7),

synergy is:

φ12(x, y) = ς(x, y|κ) [(ρ− η)κρ + (1− η)`(x, y)ρ]

where ς(x, y|κ) ≡ (xy)η−1`(x, y)ρ−2ηφ(x, y)1−2ρ. We posit 2η ≥ 1 − ρ, so that ς is

19For example, we can construct three type examples in which the unique optimal matching shifts
from NAM1 to NAM3 (or vice-versa) as the vector (α, β, γ) increases.
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Figure 9: Sorting in the Partnership Model with Capital. [other plots?] We
assume k = 0.5, ρ = 0.3, and η = 0.7. Positive synergy is greyed in. We depict the
support of the optimal matching for a discrete uniform distribution on types (blue dots).

log-SPM in (x, y).

We claim that sorting increases in κ if ρ < 0. For g(x, y|κ) falls in (x, y) and

increases in κ. So synergy is strictly downcrossing in (x, y) and strictly upcrossing in κ.

Also, ς is log-SPM in (x, y, κ) when ρ < 0.20 So synergy is proportionately upcrossing

and strictly upcrossing in (−x,−y, κ), and sorting rises in κ, by Proposition 4.

In Appendix D.2, we show that sorting falls in the technology level κ.

7 Increasing Sorting and Type Distribution Shifts

We leverage our production comparative statics to deduce predictions for changes in

the type distributions Gθ and Hθ. We say that X types shift up (or down) in θ if Gθ

stochastically increases (or decreases) in θ, i.e. Gθ′(·) < Gθ(·) if θ′ � θ. Similarly, Y

types shift up (or down) in θ if Hθ stochastically increases (or decreases) in θ, if θ′ � θ.

The PQD sorting order only ranks matching distributions with the same marginals.

For any matching cdfM ′, we therefore consider the associated bivariate copula C(p, q) =

M(Xθ(p), Yθ(q)), where Xθ(p) = G−1θ (p) is the p quantile and Yθ(q) = H−1θ (q) is the

q quantile. If the matching cdfs M ′ and M ′′ share the same marginals, then quantile

sorting increases M ′ if their associated copulas to M ′,M ′′ are ranked C ′′ �PQD C ′.

While the production function φ(x, y) no longer depends on θ, neither does the

sorting premium S(x1, x2, y1, y2) or finite- or continuous-type synergy. Nevertheless,

the quantile sorting premium S(p1, q1, p2, q2|θ) = S(Xθ(p1), Yθ(q1), Xθ(p2), Yθ(q2)) does.

Proposition 5 (Types). Quantile sorting increases in θ if types shift up (down) in θ:

(a) generically with finitely many types, if the sorting premium S(R) upcrosses (down-

crosses), and so if synergy is proportionately upcrossing (downcrossing) in types.

20Since ς is log-SPM when 2η ≥ 1− ρ, it is log-SPM when ρ ≥ 1/2 and ρ < 0. Also, ς is log-SPM
in (x, κ) and (y, κ) whenever ρ(2ρ− 1) ≥ 0, i.e. ρ ≥ 1/2 or ρ ≤ 0.
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(b) given Gθ, Hθ absolutely continuous, if both marginal product increments strictly up-

cross (downcross), and so if synergy proportionately upcrosses (downcrosses) in types,

and strictly upcrosses (downcrosses) in types.

Proof Part (a): As types shift up in θ, quantiles Xθ(p) and Yθ(q) increase in (p, q, θ),

and so S(p1, q1, p2, q2|θ) = S(Xθ(p1), Yθ(q1), Xθ(p2), Yθ(q2)) upcrosses in (p1, q1, p2, q2)

and θ if S(x1, y1, x2, y2) is upcrossing. Quantile sorting increases in θ, by Proposition 2.

Finally, by Lemma 6, the sorting premium S(R) upcrosses (downcrosses) when synergy

is proportionately upcrossing (downcrossing) in type.

Proof Part (b): The quantile Xθ(p) is increasing in p and θ given Gθ absolutely

continuous and falling in θ. Given a strictly upcrossing marginal product increment

∆x(x|y1, y2), the p-quantile marginal product increment

∆p(p|q1, q2, θ) = ∆x(Xθ(p)|Yθ(q1), Yθ(q2))X ′θ(p)

is strictly upcrossing in p. As Hθ absolutely continuous, the q-quantile marginal prod-

uct increment ∆q(q|p1, p2, θ) is strictly upcrossing in q. Also, given ∆x(x|y1, y2) and

∆y(y|x1, x2) strictly upcrossing in x and y, respectively, the sorting premium S(R|θ) is

strictly upcrossing in R, as shown in the proof of Proposition 3. Since S(R|θ) is strictly

upcrossing in R, and Xθ(p) and Yθ(q) are increasing in θ, S(p1, q1, p2, q2|θ) is strictly

upcrossing in θ. Altogether, quantile sorting rises in θ, by Proposition 3. Finally, by

Lemma 6, if synergy strictly proportionately upcrosses (downcrosses) in types, then

the x-and y- marginal product increments both strictly upcross (downcross). �

Applications to Earlier Examples. In §6, we established the one-crossing

properties for our examples that meet the premise of Proposition 5: Namely, the

x-and y- marginal product increments are strictly increasing in the principal-agent

model; and so, quantile sorting increases when types shift up. In the group lending

model, the x-and y- marginal product increments both strictly downcross: Quantile

sorting increases when types shift down. In the quadratic production model, synergy

is increasing when β > 0 (decreasing when β < 0); and thus synergy is proportionately

upcrossing (downcrossing) in types, and quantile sorting rises when types shift up

(down).

8 Conclusion

Becker’s insight that supermodularity yields positive sorting sparked a huge literature

on matching. But the incredible mathematical complexity has prevented any general

theory for non-assortative matching. This has not stopped many impressive set of
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motivated models without perfect sorting. Still, the absence of a general theory has

rendered all such progress impressively hard. This paper provides this missing general

theory by sidestepping the solution of the optimal matching; we instead uses the logic

of monotone comparative statics to answer when the matching grows more assortative.

Our paper subsumes existing influential work, but offers a set of easily checked con-

ditions on changes in productivity or type distributions that deliver increased sorting.

Our paper should prove useful for theoretical and empirical analysis.

A Match Output Reformulation: Proof of Lemma 1

Finite Types. Summing
∑N

i=1

[∑N
j=1 f(i, j|θ)mij

]
by parts in j and then i yields:

N∑
i=1

[
f(i, N)

N∑
j=1

mij −
N−1∑
j=1

[f(i, j + 1|θ)− f(i, j|θ)]
j∑

k=1

mik

]

=
N∑
i=1

f(i, N)−
N−1∑
j=1

N∑
i=1

[f(i, j + 1|θ)− f(i, j|θ)]
j∑

k=1

mik

=
N∑
i=1

f(i, N)−
N−1∑
j=1

(
[f(N, j + 1|θ)− f(N, j|θ)]

N∑
`=1

j∑
k=1

m`k −
N−1∑
i=1

sij

i∑
`=1

j∑
k=1

m`k

)

=
N∑
i=1

f(i, N)−
N−1∑
j=1

(
[f(N, j + 1|θ)− f(N, j|θ)] j −

N−1∑
i=1

sijMij

)

Continuum Types. If f is C1 on [0, 1] and Γ is a cdf on [0, 1], integration by parts

yields: ∫
[0,1]

f(z)Γ(dz) = f(1)Γ(1)−
∫
(0,1]

f ′(z)Γ(z)dz (14)

where the interval (0, 1] accounts for the possibility that Γ may have a mass point at 0.

Since M(dx, y) ≡MY (y|x)G(dx) for a conditional matching cdf MY (y|x), we have:

M(x, y) ≡
∫
[0,x]

MY (y|x′)G(dx′) (15)

Applying Theorem 34.5 in Billingsley (1995) and then in sequence (14), (15) and Fubini,
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(14), the objective function
∫
[0,1]2

φ(x, y)M(dx, dy) in (3) equals:∫
[0,1]

∫
[0,1]

φ(x, y)MY (dy|x)G(dx)

=

∫
[0,1]

φ(x, 1)G(dx)−
∫
[0,1]

∫
(0,1]

φ2(x, y)MY (y|x)dyG(dx)

=

∫
[0,1]

φ(x, 1)G(dx)−
∫
(0,1]

∫
[0,1]

φ2(x, y)M(dx, y)dy

=

∫
[0,1]

φ(x, 1)G(dx)−
∫
(0,1]

[
φ2(1, y)M(1, y)−

∫
(0,1]

φ12(x, y)M(x, y)dx

]
dy

which easily reduces to the expression in Lemma 1 using M(1, y) = H(y).

B New Results in Monotone Comparative Statics

B.1 Nowhere Decreasing Optimizers

We now show that nowhere decreasing sorting is the appropriate partial order on sets

of maximizers of single-crossing functions on partially ordered sets (posets).

Let Z and Θ be posets. The correspondence ζ : Θ → Z is nowhere decreasing if

z1 ∈ ζ(θ1) and z2 ∈ ζ(θ2) with z1 � z2 and θ2 � θ1 imply z2 ∈ ζ(θ1) and z1 ∈ ζ(θ2).

Theorem 1 (Nowhere Decreasing Optimizers). Let F : Z × Θ 7→ R, where Z and Θ

are posets, and let Z ′ ⊆ Z. If maxz∈Z′ F (z, θ) exists for all θ and F is single crossing

in (z, θ), then Z(θ|Z ′) ≡ arg maxz∈Z′ F (z, θ) is nowhere decreasing in θ for all Z ′. If

Z(θ|Z ′) is nowhere decreasing in θ for all Z ′ ⊆ Z, then F (z, θ) is single crossing.

(⇒): If θ2 � θ1, z1∈Z(θ1), z2∈Z(θ2), and z1 � z2, optimality and single crossing give:

F (z1, θ1) ≥ F (z2, θ1) ⇒ F (z1, θ2) ≥ F (z2, θ2) ⇒ z1 ∈ Z(θ2)

Now assume z2 /∈ Z(θ1). By optimality and single crossing, we get the contradiction:

F (z1, θ1) > F (z2, θ1) ⇒ F (z1, θ2) > F (z2, θ2) ⇒ z2 /∈ Z(θ2)

(⇐): Assume F (z, θ) is not single crossing. Then for some z2 � z1 and θ2 � θ1:

either: (i) F (z2, θ1)≥ F (z1, θ1) and F (z2, θ2)< F (z1, θ2); or, (ii) F (z2, θ1)> F (z1, θ1)

and F (z2, θ2)≤ F (z1, θ2). Let Z ′ = {z1, z2}. In case (i), we have z2 ∈ Z(θ1|Z ′) and

z1 = Z(θ2|Z ′), which rules out Z(θ|Z ′) nowhere decreasing in θ, since z1 /∈ Z(θ2|Z ′). In
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case (ii), we have z2 = Z(θ1|Z ′) and z1 ∈ Z(θ2|Z ′), which precludes Z(θ|Z ′) nowhere

decreasing in θ, since z1 /∈ Z(θ1|Z ′). �

B.2 Upcrossing Preservation

Given a Euclidean lattice21 Z ⊆ RN and poset (Θ,�), the function σ : Z × Θ → R
is proportionately upcrossing if it obeys inequality (13) ∀z, z′ ∈ Z and θ′ � θ. The

measure λ on Z is non-degenerate for σ if λ[z :σ(z, θ) = 0]<λ(Z) for all θ∈Θ. So λ

does not place all mass on zeros of σ.22

Theorem 2 (Upcrossing Preservation). If σ(z, θ) obeys (13), then Σ(θ) ≡
∫
Z
σ(z, θ)dλ(z)

upcrossing in θ if λ is non-degenerate for σ.

Claim B.1 (Ahlswede and Daykin (1979)). If ξ1, ξ2, ξ3, ξ4 ≥ 0 obey the inequality

ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z
′) for z ∈ Z ⊆ RN , then for all positive measures λ:∫

ξ3(z)dλ(z)
∫
ξ4(z)dλ(z) ≥

∫
ξ1(z)dλ(z)

∫
ξ2(z)dλ(z) (16)

If θ′ � θ, then (13) is ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z
′) for non-negative functions:

ξ1(z) ≡ σ+(z, θ), ξ2(z) ≡ σ−(z, θ′), ξ3(z) ≡ σ+(z, θ′), ξ4(z) ≡ σ−(z, θ)

and thus, by Lemma B.1:∫
σ+(z, θ′)dλ(z)

∫
σ−(z, θ)dλ(z) ≥

∫
σ+(z, θ)dλ(z)

∫
σ−(z, θ′)dλ(z) (17)

In addition, when λ is non-degenerate for σ, we have:

Σ(θ) ≥ 0⇔
∫
σ+(z, θ)dλ(z) ≥

∫
σ−(z, θ)dλ(z) ⇒

∫
σ+(z, θ)dλ(z) > 0 (18)

Combining inequality (17) and (18), we discover that Σ(θ) ≥ 0 implies
∫
σ+(z, θ′)dλ(z) ≥∫

σ−(z, θ′)dλ(z), i.e. Σ(θ′) ≥ 0, for all θ′ � θ. �

Toward an easy to check sufficient condition for (13), let σ : RN 7→ < be smoothly

log-supermodular (LSPM) if all pairwise derivatives obey σijσ ≥ σiσj.

21We prove a stronger than needed result, as it applies to general lattices; we just need it for R2.
22This result is related to Theorem 2 in Quah and Strulovici (2012). They do not assume λ is

non-degenerate, but they posit that σ is upcrossing in (z, θ), while we assume that σ is merely weakly
upcrossing. This relaxation is critical for us, since σ is only weakly upcrossing in our applications.
Do they assume (13)? They do not. Instead, they separately impose a cross sectional and time
series signed ratio monotonicity condition. I will typeset exactly what they assume and relate to our
condition, and we can decide what to keep.
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Lemma B.1. If σ(z, θ) is upcrossing and smoothly LSPM on z ∈ RN−1 and θ ∈ R,

then σ obeys (13).

Step 1: Ratio Ordering. We claim that if σ : R2 7→ R is upcrossing with σ12σ ≥
σ1σ2, and σ(u2, v1) < 0 < σ(u1, v2) for some (u1, v1) < (u2, v2), then:

σ(u1, v1)

σ(u1, v2)
≤ σ(u2, v1)

σ(u2, v2)
(19)

Indeed, σ12σ ≥ σ1σ2 and v1 < v2 implies:

σ1(u, v1)

σ(u, v1)
≤ σ1(u, v2)

σ(u, v2)

but since σ is upcrossing, we know σ(u, v1) < 0 < σ(u, v2) for all u ∈ [u1, u2]; and thus

cross multiplying, we find:

σ1(u, v1)σ(u, v2) ≥ σ1(u, v2)σ(u, v1) ∀u ∈ [u1, u2]

Thus, the ratio σ(u, v1)/σ(u, v2) is non-decreasing in u on [u1, u2]; and thus (19).

Step 2: σ obeys (13). If z, z′ are ordered, then σ upcrossing immediately implies (13).

Assume instead that z, z′ are unordered and (WLOG) that the RHS of (13) is non-

zero for some θ′ ≥ θ, i.e. σ(z, θ′) < 0 < σ(z′, θ). By σ upcrossing, we must also have

σ(z ∧ z′, θ) < 0 < σ(z ∨ z′, θ′). Altogether given this sign pattern (13) becomes:

−σ(z ∧ z′, θ)σ(z ∨ z′, θ′) ≥ −σ(z, θ′)σ(z′, θ) ⇔ σ(z ∧ z′, θ)
σ(z′, θ)

≤ σ(z, θ′)

σ(z ∨ z′, θ′)

True by sequenced pairwise applications of (19) for u = zi and v = zj or v = θ. �

C Omitted Proofs

C.1 Nowhere Decreasing Sorting: Proof of Lemma 3

We apply Lemma 1 to our matching problem. Let F be aggregate output (3), Z be

the set of cdfs on R2 endowed with the PQD order, and Z ′ ≡M(G,H) be the subset

of Z with given marginals G and H. Then Lemma 1 yields sorting nowhere decreasing

in θ when output (3) is single crossing in (M, θ). The proof of the second sentence in

Lemma 3 mirrors the (⇒) step in the proof of Lemma 1 choosing marginals with point

mass at two types; so that the constraint set consists of all weighted averages of the

two pure matchings z2 = PAM and z1 = NAM. �

24



C.2 Increasing Sorting: Proof of Proposition 2

Recall that we WLOG assume S(R|θ) is upcrossing in R.

Induction Step 0: Notation and Preliminaries.

• Our general proof is by induction on the number of types.

• The result holds for n = 2 types by S(R|θ) upcrossing in R, since the only pure

matchings are the PQD-ranked NAM and PAM, and the PAM payoff is weakly

(strictly) higher than the NAM payoff if and only if S(R|θ) ≥ (>)0.

• Induction Assumption: In any model with 2, 3, . . . , n types, if the sorting pre-

mium S(R|θ) is upcrossing in R and θ and M ′′ and M ′ are the unique optimal

matchings for θ′′ � θ′, then M ′′ �PQD M ′.

• We prove the result for n + 1 types by showing that the following assumption

leads to a contradiction of the Induction Assumption.

• Contradiction Assumption: There exists an n + 1 type model with sorting pre-

mium S(R|θ) that is upcrossing in θ and R, and θ′′ � θ′ with unique pure optimal

matchings M ′ and M ′′, but not M ′′ �PQD M ′.

• Our proof uses the following four Claims.

Claim C.1. If the sorting premium S(R|θ) is upcrossing in R and the optimal matching

is unique, then no matched NAM pair vector dominates a matched PAM pair.

Proof: PAM (NAM) is optimal for a pair iff S(R|θ) ≥ (≤)0 on the associated

rectangle R. Further, we cannot have S(R|θ) = 0 for any optimally matched pair,

since this would violate the assumption that the optimal matching is unique. �

• A pure matching can be described in two equivalent ways: specify that woman i

is matched to man µi for all i = 1, 2, . . . , n, or that man j is matched to woman ωj
for all j = 1, 2, . . . , n.

Claim C.2. If two pure n type matchings M and M̂ are not identical, then µ̂i > µi
for some i and ω̂j > ωj for some j.

Proof: Since pure matchings M and M̂ are not identical, there exists a highest type

man k, such that ω̂k 6= ωk. Then, since the matchings are pure, the woman matched

to man k under matching M̂ , must be matched to a lower index man under M , i.e.

k = µ̂i > µi for i = ω̂k. �
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Claim C.3. Assume the sorting premium is upcrossing in R and θ and Induction

Assumption n holds. Removing any woman i and her partner ordered µ′i ≥ µ′′i from

unique optimal matchings µ′ and µ′′ at θ′ and θ′′ with n + 1 ≥ 3 types, results in a

matching among the remaining n other types that is PQD higher for θ′′ than θ′.

Proof:

• If an optimal matching is unique with n + 1 types, then the optimal matching

among the remaining n after removing any optimally matched pair is unique.

• If we remove woman i and man j from a market with n + 1 types, we produce

an n type model with sorting premium:

Snij(R|θ) ≡ S(R + ∆ij(R)|θ) where ∆ij(R) = (1I1≥i,1I2≥j,1I3≥i,1I4≥j)

• The vector R + ∆ij increments by one the index of every woman in R whose

index is at least i and the index of every man in R whose index is at least j.

• We complete the proof by showing that S(R|θ) upcrossing in R and θ, implies

that SniJ(θ)(R|θ) is upcrossing in R and θ for all non-increasing functions J : R →
{1, 2, . . . , N + 1}. The claimed PQD ordering on the n type matchings then

follows by Induction Assumption n.

• By assumption, S is upcrossing in R, while the indicator vector ∆ij is non-

decreasing in R. Thus, for any fixed θ, the composite function SniJ(θ)(R|θ) ≡
S(I + ∆iJ(θ)(R)|θ) is upcrossing in R.

• To see that SniJ(θ)(R|θ) is upcrossing in θ, consider any θ2 � θ1 and assume

SniJ(θ1)(R|θ1) ≥ (>)0; then by definition we have:

S(R + ∆iJ(θ1)(R)|θ1) ≥ (>)0 ⇒ S(R + ∆iJ(θ2)(R)|θ1) ≥ (>)0

⇒ S(R + ∆iJ(θ2)(R)|θ2) ≥ (>)0

⇒ SniJ(θ2)(R|θ2) ≥ (>)0

The first implication follows from J(θ2) ≥ J(θ1), ∆ij non-increasing in j, and

S(R|θ) upcrossing in R. The second implication follows from S(R|θ) upcrossing

in θ. The last line applies the definition of SniJ(θ2). �

Claim C.4. Adding matched couples (1,m′′) ≤ (1,m′) (or (w′′, 1) ≤ (w′, 1)) to n type

matchings µ′′ �PQD µ′ preserves the PQD order for the resulting n+ 1 type matchings.
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Proof:

• We consider the n+ 1 type matching induced by adding a given couple to any n

type matching.

• For pure matchings µ, let Cµ(i, j) be the count of matches by women at most i

with men at most j. Then µ �PQD µ′ iff Cµ ≥ Cµ′ .

• Starting with any pure matching µ and adding a matched couple with types

between the current (k− 1, `− 1) and (k, `) types, yields a matching with match

counts:

Ck`(µ)(i, j) ≡ Cµ (i− 1i≥k, j − 1j≥`) + 1(i,j)≥(k,`) ∀i, j ∈ {1, 2, . . . , N + 1}

• Now, consider two ranked matchings µ̂ �PQD µ. Add a matched couple between

current indices (k− 1, `− 1) and (k, `) to µ and between (k̂− 1, ˆ̀− 1) and (k̂, ˆ̀)

to µ̂. The next Lemma asserts that the N + 1 type matchings will inherit the

PQD ranking when k = k̂ = 1 and ˆ̀≤ `; or alternatively, ` = ˆ̀= 1 and k̂ ≤ k.

• In this notation Claim C.4 is: If two matchings obey µ̂ �PQD µ, then

(i) C1ˆ̀(µ̂) ≥ C1`(µ) for all ˆ̀≤ `; and, (ii) Ck̂1(µ̂) ≥ Ck1(µ) for all k̂ ≤ k.

• We will prove implication (i). The logic for case (ii) is symmetric.

• By assumption µ̂ �PQD µ and thus, Cµ̂ ≥ Cµ. Thus, for j < ˆ̀:

C1`1(µ̂)(i, j)− C1k2(µ)(i, j) = Cµ̂(i− 1, j)− Cµ(i− 1, j) ≥ 0

• If instead, j ≥ `, then:

C1`1(µ̂)(i, j)− C1`2(µ)(i, j) = Cµ̂(i− 1, j − 1)− Cµ(i− 1, j − 1) ≥ 0

• Finally, when ˆ̀≤ j < `, the difference C1`1(µ̂)(i, j)− C1`2(µ)(i, j) is:

Cµ̂(i− 1, j − 1) + 1− Cµ(i− 1, j)

= Cµ̂(i− 1, j − 1)− Cµ(i− 1, j − 1) + 1− [Cµ(i− 1, j)− Cµ(i− 1, j − 1)]

≥ Cµ̂(i− 1, j − 1)− Cµ(i− 1, j − 1) ≥ 0

where the first inequality follows from Cµ(i− 1, j)− Cµ(i− 1, j − 1) ≤ 1. �
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•µ′′1

•µ′1
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•µ′′i

•µ′i •
•µ′′1

µ′1

•
ω′1
•
ω′′1

Figure 10: The Induction Proof Illustrated: Step 1. We use green dots to denote
proposed matched pairs at θ′ and red for matched pairs at θ′′. The right panel illustrates
the conclusion of Step 1 in the proof: to avoid violating the maintained assumption
that the n+ 1 type matching is not PQD higher for θ′′, the indices of the men matched
to the lowest type woman must satisfy µ′′1 = µ′1 + 1 and the indices of the women
matched to the lowest type man must satisfy ω′′1 = ω′1 + 1.

• We now complete the proof of Proposition 2, using Claims C.1 to C.4 to pin down

properties of M ′ and M ′′ implied by the Contradiction Assumption (Steps 1-3).

We then show that these properties violate the Induction Assumption (Step 4).

• Let µ′i and µ′′i be the man matched to woman i for θ′ and θ′′, respectively. And

let ω′j and ω′′j be the woman matched to man j for θ′ and θ′′, respectively.

Induction Step 1: µ′′1 = µ′1 + 1 and ω′′1 = ω′1 + 1.

We establish the first equality. Symmetric steps prove that ω′′1 = ω′1 + 1.

Step 1-A: µ′′1 > µ′1. Assume instead that µ′′1 ≤ µ′1, as in the left panel of Figure 10.

Now, remove woman 1 and man µ′1 from the type space for θ′ and woman 1 and man

µ′′1 for θ′′. The matching among remaining n types is PQD higher for θ′′ by Induction

Assumption n and Claim C.3. Now, returning the optimally matched pairs (1, µ′1) and

(1, µ′′1), the PQD ranking still holds with n + 1 types by µ′′1 ≤ µ′1 and Claim C.4. But

this violates our Contradiction Assumption and thus µ′′1 > µ′1.

Step 1-B: µ′′1 < µ′1 + 2. Assume instead that µ′′1 ≥ µ′1 + 2. By Claim C.2, some

woman i > 1 exists for whom µ′′i < µ′i (see middle panel of Figure 10). Remove woman

i and her partner µ′i from the type space at θ′, and woman i and her partner µ′′i from

the type space at θ′′. Since µ′′i < µ′i, the matching among the remaining n types is

PQD higher at θ′′ by Claim C.3 and Induction Assumption n. In particular, woman 1

must be matched to a weakly lower index man under θ′′ in the n type model. But this

is impossible if µ′′1 ≥ µ′1 + 2, since the difference in indices µ′′1 − µ′1 falls by at most 1

when we remove man µi at θ′ and man µ′′i at θ′′.

Induction Step 2: µ′ω′′1
= µ′′1. That is, woman ω′′1 and man µ′′1 match together at θ′.
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Figure 11: The Induction Proof Illustrated: Step 2. This Figure considers the
man matched to woman ω′′1 and the woman matched to man µ′′1 under θ′. We use
green dots to denote proposed matched pairs at θ′ and red for matched pairs at θ′′.
The right panel illustrates the conclusion of Step 2 in the proof: to avoid violating the
maintained assumption that the n + 1 type matching is not PQD higher for θ′′, man
µ′′1 and woman ω′′1 must be matched together under θ′.

Step 2-A: ω′µ′′1
≥ ω′′1 and µ′ω′′1

≥ µ′′1. To prove that µ′ω′′1
≥ µ′′1, we proceed by

contradiction, assuming instead that µ′ω′′1
< µ′′1. In fact, since µ′1 = µ′′1 − 1 is already

matched, and the matching is pure, we must have µ′ω′′1
< µ′1 as illustrated in the left

panel in Figure 11. Remove woman ω′′1 and her partner µ′ω′′1
≥ 1 from the type space

at θ′, and woman ω′′1 and her partner 1 from the type space at θ′′. As before, the

matching among the remaining types is PQD higher at θ′′, by Induction Assumption

n and Claim C.3. Since the indices of the man µ′ω′′1
removed under θ′ and the man 1

removed under θ′′ are both below µ′1, the ordering of the indices of the male partners for

woman 1 is maintained with the n remaining types. In particular, woman 1 is matched

to a strictly lower index partner among the n remaining types at θ′ But this contradicts

the matching among the remaining n types PQD higher at θ′′. Thus, µ′ω′′1
≥ µ′′1 and by

symmetric reasoning ω′µ′′1
≥ ω′′1 .

Step 2-B: Cases Ruled out by Purity. Since we WLOG restrict attention to

pure matchings, we need not consider ω′µ′′1
> ω′′1 and µ′ω′′1

= µ′′1, since man µ′′1 would

then have two partners at θ′. Likewise we need not consider ω′µ′′1
= ω′′1 and µ′ω′′1

> µ′′1,

since woman ω′′1 would then have two partners at θ′.

Step 2-C: ω′µ′′1
> ω′′1 and µ′ω′′1

> µ′′1 is impossible. This ordering is illustrated in

the middle panel of Figure 11. Notice that this implies that the (green) matching for

θ′ violates the sorting premium up-crossing in the type space. In particular, the green

matching includes the PAM pair (1, µ′1) and (ω′′1 , µ
′
ω′′1

) and the NAM pair (ω′′1 , µ
′
ω′′1

) and

(ω′µ′′1
, µ′′1), violating Claim C.1.

Step 3: µ′1 ≥ µ′i = µ′′i −1 for i = 1, . . . , ω′1 and ω′1 ≥ ω′j = ω′′j −1 for j = 1, . . . , ω′1.

We have established the claim for i = 1 and j = 1, we now prove the claimed ordering

µ′1 ≥ µ′i = µ′′i − 1 for i = 2, . . . , ω′1. By symmetry, ω′1 ≥ ω′j = ω′′j − 1 for j = 2, . . . , ω′1.
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Figure 12: The Induction Proof Illustrated: Step 3 and 4. The first two panels
incorporate the conclusions of Steps 1 and 2 and consider the ordering of the men µ′i
and µ′′i matched to woman with index i ∈ {2, . . . , ω′1} as in Step 3. Step 4 establishes
that matches only form in the light blue region for θ′ and θ′′ and that the index of the
men matched to type i, obeys µ′′i = µ′′i for all i = 1, . . . , k − 1 as shown. Altogether,
the matching at θ′ PQD dominates the matches at θ′′ on the subset of types 1, 2, . . . , k.

Step 3-A: µ′1 ≥ µ′i. On the contrary assume µ′1 < µ′i for some 2 ≤ i ≤ ω′1. By

purity, we cannot have µ′i = µ′′1, since µ′′1 is matched to ω′′1 under θ′, as established in

Step 2. Further, µ′′1 = µ′1 + 1; and thus, µ′1 < µ′i implies µ′′1 < µ′i as in the left panel

of Figure 12. But notice that this implies that the optimal matching for θ′ involves a

PAM pair (1, µ′1) and (i, µ′i) below a NAM pair (i, µ′i) and (ω′′1 , µ
′′
1), a violation of S

upcrossing in types by Claim C.1.

Step 3-B: µ′i < µ′′i . On the contrary assume µ′i ≥ µ′′i for some 2 ≤ i ≤ ω′1 as shown in

the middle panel of Figure 12. Since µ′′i ≤ µ′i, if we remove woman i and her partner

µ′i from the type space at θ′, and woman i and her partner µ′′i from the type space at

θ′′, the matching among the remaining types n is PQD higher at θ′′, by Claim C.3 and

Induction Assumption n. However, woman 1 is matched to a partner with a strictly

lower index (among the remaining types) under θ′ than under θ′′, which contradicts

the matching among the remaining n types being PQD higher under θ′′.

Step 3-C: µ′i = µ′′i − 1. If we remove woman ω′′1 and her partner man µ′′1 from

the type space at θ′, and woman ω′′1 and her partner man 1 from the type space at

θ′′, the matching among the remaining types n is PQD higher at θ′′, by Claim C.3

and Induction Assumption n. But, we have have already shown that µ′i < µ′′i for all

i = 1, . . . , i′1. Thus, the matching among the remaining types under θ′ has weakly more

couples below every pair (i, j) for all i = 1, . . . , ω′1, and strictly more couples below

index (i, µ′i) if µ′i < µ′′i − 1, contradicting the matching among the remaining n types

PQD higher at θ′′. Thus, µ′i ≥ µ′′i − 1 for all i = 1, . . . , ω′1. But then given Step 3-B,

we must have µ′i = µ′′i − 1 for all i = 1, . . . , ω′1.

Step 4: The Contradiction.

• We have shown that every woman i ≤ ω′′1 matches with a man whose index j ≤ µ′′1
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and every man with an index j ≤ µ′′1 matches with a woman whose index i ≤ ω′′1 .

Given purity, we must have µ′′1 = ω′′1 = k. Altogether, all men and women with

indices less than or equal to k match with partners whose indices are also less

than or equal to k at both θ′ and θ′′. That is, matches only form in the light blue

region in the right panel of Figure 12 under both θ′ and θ′′.

• Consider the matching among these remaining k types after removing all men and

woman with indices above k at both θ′ and θ′′. Since the original matchings were

unique, the optimal matching among these lowest k types must also be unique.

Thus by the Inductive Assumption n, the matching among the remaining k types

must be PQD higher at θ′′.

• But, in fact, the matching among the remaining k types at θ′ PQD dominates the

matching among the remaining k types at θ′′. For the matching at θ′ has the same

number of couples as the matching at θ′′ below (k, k), (k−1, k), and (k, k−1), at

least as many couples on all lower orthants, and strictly more couples on lower

orthants (i, µ′i) for i < k by µ′i = µ′′i − 1 and (ω′j, j) for j < k by ω′j = ω′′j − 1.

C.3 Lemma 5: Uniqueness with Continuum Types

1. We prove the Lemma for G absolutely continuous and ∆x(x|y1, y2) strictly up-

crossing in x. The remaining cases admit symmetric logic.

2. Theorem 5.1 in Ahmad, Kim, and McCann (2011) establishes uniqueness for a C2

production function, absolutely continuous G and subtwisted production; namely,

for all y1, y2, the twist difference φ(x, y2)−φ(x, y1) has no critical points in x save

at most one local max and one local min.

3. Since the subtwist definition allows for both a global max and a global minimum,

we can WLOG assume y1 < y2.

4. Finally, notice that ∆x(x|y1, y2) ≡ φ1(x, y2) − φ1(x, y1) strictly upcrossing in x

implies that the twist difference φ(x, y2)− φ(x, y1) can have at most one critical

point, necessarily a global minimum. �

C.4 Proof of Proposition 3

Proof Outline: We construct a sequence of finite type models, establish that mono-

tone sorting obtains along this sequence, and then show that the sequence of optimal

matchings converges to a continuum limit with monotone sorting. Throughout the

proof we WLOG assume one-crossing means upcrossing.
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Step 1: S(R|θ) is Strictly Upcrossing in R. In the text we proved S(x1, y1, x2, y2)) =∫ x2
x1

∆x(x|y1, y2)dx is upcrossing in (x1, x2). Given ∆x(x|y1, y2) strictly upcrossing in x,

S(x′1, y1, x
′
2, y2) = 0 implies ∆x(x

′
1|y1, y2) < 0 < ∆x(x

′
2|y1, y2); and thus, the derivatives

obey Sx1(x
′
1, y1, x

′
2, y2) = −∆x(x

′
1|y1, y2) > 0 and Sx2(x

′
1, y1, x

′
2, y2) = ∆x(x

′
2|y1, y2) > 0.

Thus, S(x′′1, y1, x
′′
2, y2) > 0 for all (x′′1, x

′′
2) > (x′1, x

′
2). Symmetric logic establishes S also

strictly upcrossing in (y1, y2); and thus, S strictly upcrossing in R.

Step 2: A Sequence of Uniquely Optimal Finite Type Matchings.

1. Define the sequence of n type models associated with the continuum model,

such that types {x1, x2, . . . , xn} and {y1, y2, . . . , yn} equalize quantile increments:

G(x1) = 1/(2n) and G(xi) = G(xi−1) + 1/n and H(y1) = 1/(2n) and H(yj) =

H(yj−1) + 1/n; and the output function is fijn(θ) = φ(xi, yj|θ).

2. Fix θ′′ � θ′ and let M ′
n and M ′′

n be pure matchings optimal for fijn(θ′) and

fijn(θ′′).

3. Let pijn(θ) be the indicator function on (i, j) matched at Mn(θ) for θ ∈ {θ′, θ′′}.

4. Note that for any ε > 0, M ′′
n and M ′

n are uniquely optimal for payoffs:

f εijn(θ) ≡ fij(θ) + εpijn(θ) θ ∈ {θ′, θ′′}

5. Let sεijn(θ) and Sεn(R|θ) be the synergy and sorting premium associated with

f εijn(θ).

Step 3: M ′′
n �PQD M ′

n for all n.

1. Since the sorting premium Sεn(R|θ) is continuous in ε; and there is a finite grid

of rectangles R = (i1, j1, i2, j2) for all n, there exists ε∗n > 0 such that, for all

ε < ε∗n, we cannot have any strict sign changes: S0
n(R|θ) < 0⇒ Sεn(R|θ) < 0 and

S0
n(R|θ) > 0⇒ Sεn(R|θ) > 0; or equivalently:

Sεn(R|θ) ≥ 0 ⇒ S0
n(R|θ) ≥ 0 and Sεn(R|θ) ≤ 0 ⇒ S0

n(R|θ) ≤ 0 (20)

2. First, we claim that Sεn(R|θ) is strictly upcrossing in R for all ε < ε∗n. Assume

not: then there exists R′′ > R′ such that Sεn(R′′|θ) ≤ 0 ≤ Sεn(R′|θ). But then

by (20), we must also have: S0
n(R′′|θ) ≤ 0 ≤ S0

n(R′|θ), contradicting S0
n(R|θ)

strictly upcrossing in R (Step 1).
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3. We also claim that Sεn(R|θ) is strictly upcrossing in θ ∈ {θ′, θ′′) for all ε < ε∗n.

Assume not: then there exists R such that Sεn(R|θ′′) ≤ 0 ≤ Sεn(R|θ). But then

by (20), we must also have: S0
n(R|θ′′) ≤ 0 ≤ S0

n(R|θ′), contradicting S0
n(R|θ)

strictly upcrossing in θ (assumed).

4. Altogether, for all ε ∈ (0, ε∗n), the sorting premium Sεn(R|θ) is upcrossing in R

and θ ∈ {θ′, θ′′} and M ′
n and M ′′

n are uniquely optimal (Step 2). Altogether, by

Proposition 2, we have M ′′
n �PQD M ′

n for all n.

Step 4: Convergent Sequences. As usual, we say the sequence of cdfs {πk}
weakly converges to π if

∫
udπk converges to

∫
udπ for all bounded continuous functions

u. We make use of the following special case of Theorem 5.20 in Villani (2008):

Claim C.5. Let {φk} be a sequence of continuous and uniformly bounded production

function converging uniformly to φ. Let {Gk} and {Hk} be a sequence of cdfs and

let Mk be an optimal matching given φ, Gk, and Hk. If Gk and Hk weakly converge

to G and H, then there exists a subsequence of {Mk} that weakly converges to some

matching M∗, that is optimal for φ, G, and H.

Step 5: PQD Ordering in the Limit.

1. Consider the sequence of n type models defined in Step 2 with εn = ε∗n/n, defined

in Step 3, along with the associated uniquely optimal matchings M ′
n and M ′′

n .

2. By construction the n type discrete distributions weakly converge to G and H,

while the discrete production functions {f εnijn(θ′), f εnijn(θ′′)} converge uniformly to

φ(x, y|θ′) and φ(x, y|θ′′). Thus, by Claim C.5, there exists a subsequence of

{(M ′
n,M

′′
n)} that converges to (M∗(θ′′),M∗(θ′)) optimal in the continuum model.

Since the premise of Proposition 3 implies the premise of Lemma 5, these limits

are the unique optimal matchings in the continuum model.

3. Finally, we must have M∗(θ′′) �PQD M∗(θ′). For, if not, then there must be

some (x, y) with M∗(x, y)(θ′′) < M∗(x, y)(θ′). But then along the convergent

subsequence of matchings, there exists n <∞ such that M ′′
n(x̂, ŷ) < M ′

n(x̂, ŷ) for

some (x̂, ŷ) close to (x, y), violating M ′′
n �PQD M ′

n for all n (Step 3). �

C.5 Proof of Lemma 6

Throughout we WLOG assume that one-crossing means upcrossing.

33



Step 0: Lebesque Measures are Non-Degenerate for Synergy. We will

apply Theorem 2 for synergy integrated on Lebesque measures on non-empty rectangles

in R2. Trivially, such measures are non-degenerate for generic finite type synergy (case

(a)) and any strictly upcrossing synergy function (case (b)).

Step 1: S(R|θ) is upcrossing in R and θ (Part (a)). Rewrite (12) as:

S(R|θ) =

∫ 1

0

∫ 1

0

φ12(x, y|θ)1(x,y)∈Rdxdy

Easily, if (x, y) ∈ R and (x′, y′) ∈ R′, then (x, y)∧ (x′, y′) ∈ R∧R′ and (x, y)∨ (x′, y′) ∈
R∨R′; and thus, the indicator function 1z∈R is log-spm in (R, x, y), Consequently, the

product σ(z, t) = φ12(z|θ)1z∈R obeys (13) for both t = θ and t = R iff synergy does.

Altogether, if synergy is proportionately upcrossing, then the sorting premium

S(R|θ) given by (12) is upcrossing in R and θ by Lemma 2.

Step 2: Strict Upcrossing Conditions in the Continuum Case (Part (b)).

Claim C.6. Let σ be a strictly upcrossing function of (z, θ), Then
∫ z2
z1
σ(z, θ)dz is

strictly upcrossing in θ if
∫
σ(z, θ)1z∈I1∪I2dz is upcrossing in θ for all intervals I1, I2.

Proof: Toward a contradiction, assume
∫ z2
z1
σ(z, θ)dz is upcrossing, but not strictly

upcrossing, in θ. Then, there exists θ′′ � θ′ with :∫ z2

z1

σ(z, θ′)dz =

∫ z2

z1

σ(z, θ′′)dz = 0 (21)

Further, by σ(z, θ) strictly upcrossing in z and θ, we have σ(z, θ) Q 0 as z Q z∗(θ)

for θ ∈ {θ′, θ′′} with z1 < z∗(θ′′) < z∗(θ′) < z2. Thus by (21) and
∫
σ(z, θ)1z∈I1∪I2dz

upcrossing in θ:

0 =
∫ z2
z1
σ(z, θ′)dz <

∫
σ(z, θ′)1z∈[z1,z∗(θ′′)]∪[z∗(θ′),z2]dz

⇒ 0 <
∫
σ(z, θ′′)1z∈[z1,z∗(θ′′)]∪[z∗(θ′),z2]dz <

∫ z2
z1
σ(z, θ′′)dz

Altogether
∫ z2
z1
σ(z, θ′′)dz > 0, contradicting (21). �

Step 2-A: MPIX and MPIY. Since syynergy obeys (13) and the indicator func-

tion 1y∈[y1,y2] is log-spm in (y, y1, y2), the product σ(z, t) = φ12(x, z|θ)1z∈[y1,y2]∪[ŷ1,ŷ2]
obeys (13) for t = (x, y1, y2, ŷ1, ŷ2, θ), as a consequence the integral

∫
φ12(x, y|θ)1y∈I1∪I2dy

is upcrossing in x and θ for all intervals I1, I2 by Theorem 2, and thus, since synergy

φ12(x, y|θ) is strictly upcrossing in (x, y, θ), the integral ∆x(x|y1, y2, θ) =
∫ y2
y1
φ12(x, y|θ)dy

is strictly upcrossing in x and θ by Claim C.6. Symmetric logic establishes MPIY.

34



Step 2-B: S(R|θ) is strictly upcrossing in θ. Consider the integral:∫
∆x(x, y2, y1, θ)1x∈I1∪I2dx =

∫ [∫
φ(x, y|θ)1y∈[y1,y2]dy

]
1x∈I1∪I2dx

Again, since the indicator function is log-spm and synergy obeys (13), this integral is

upcrossing in θ for all I1, I2 by Theorem 2. But then since ∆x(x, y2, y1, θ) is strictly

upcrossing in x and θ (Step 2-A), Claim C.6 yields S(R|θ) ≡
∫ x2
x1

∆x(x, y2, y1, θ)dx

strictly upcrossing in θ. �

D Omitted Algebra for Economic Applications

D.1 Kremer-Maskin Example

Corollary 1. In the smooth KM model, sorting is nowhere-decreasing in α and 1/%.

Step 1: PAM obtains iff % < (1 − 2α)−1. Recall that PAM is optimal in

the unisex iff the symmetric sorting surplus is globally positive. In the smooth KM

model, the sign of the symmetric sorting surplus is constant along any ray y = kx and

proportional to:

s(k) ≡ 2
1−2α
% (1 + k)− 2kα(1 + k%)

1−2α
% (22)

Clearly, s(1) = 0, while s′(1) = 0 and s′′(1) ∝ (1 + ρ(2α − 1)), implying that s(k) is

negative close to k = 1 precisely when % > (1 − 2α)−1. In other words, the sorting

premium is negative in a cone around the diagonal and PAM cannot obtain. Conversely,

when % < (1−2α)−1, s(k) is positive near k = 1, but then it is positive for all k ∈ [0, 1],

since s obeys: (i) upcrossing condition s(k2) ≥ 0 implies s(k1) ≥ 0 for 0 < k1 < k2 < 1;

and (ii) s(0) > 0. Finally, sorting surplus is symmetric about the 45 degree line, so

s(k) ≥ 0 on [0, 1] implies that the sorting premium is globally positive and PAM is

optimal.

Step 2: A One Dimensional Integral. Using symmetry, φxy(x, y) = φxy(y, x)

and change of variable y = kx we rewrite weighted synergy ϕ(λ|θ, %):∫ ∫
φxyλ(dx, dy) =

∫ 1

0

∫ 1

0

φxy(x, y)λ(x, y)dydx = 2

∫ ∫ x

φxy(x, y)λ(x, y)dydx

= 2

∫ 1

0

∫ 1

0

xφxy(x, kx)λ(x, kx)dkdx =

∫ 1

0

∫ 1

0

γ(θ, %, k)λ(x, kx)dxdk

where γ(θ, %, k) does not depend on x;23 and thus: What the heck does this have to do

23Algebra to be typeset.

35



with synergy?

ϕ =

∫ 1

0

γ(θ, %, k)

[∫ 1

0

λ(x, kx)dx

]
dk ≡

∫ 1

0

γ(θ, %, k)∆(k)dk

where ∆(k) ≡
∫ 1

0
λ(x, kx)dx ≥ 0.

Step 3: γ is downcrossing in k. Algebra to be typeset.

Step 4: γ is upcrossing in θ. Firstly, by Step 2, the only possible sign disagreement

for k1 < k2 is γ(k2, θ, %) < 0 < γ(k1, θ, %). Secondly, [log(γ)]θk ≥ 0 when γ > 0 and

[log(−γ)]θk ≤ 0 when γ < 0; and thus, the ratio γ(k2, θ, %)/γ(k1, θ, %) is non-decreasing

in θ. Replace the following with our condition using the Lemma below.Altogether,

γ(k2, θ, %) and γ(k1, θ, %) obey signed ratio monotonicity, yielding
∫ 1

0
γ(θ, %, k)∆(k)dk

upcrossing in θ for all ∆(k) ≥ 0 by Theorem 1 in Quah and Strulovici (2012). And

thus, weighted synergy ϕ(θ, λ) is upcrossing in θ for all densities λ.

Step 4: ϕ is downcrossing in ρ. Outline: We apply second change of variable

z = kρ to
∫ 1

0
γ(θ, %, k)∆(k)dk, to express ϕ as

∫ 1

0
g(θ, %, z)∆(z)dz. We show that g is

upcrossing in 1− z and Log-SPM in (z,−%). Altogether, ϕ(%, λ) =
∫ 1

0
g(θ, %, z)∆(z)dz

is upcrossing in −ρ by Quah and Strulovici (2012). �

D.2 Partnership Model

We’ve shown that sorting falls in technology κ if either: (i) ρ ≥ 1/2 or (ii) or ρ ∈
[0, 1 − η]. Indeed, when ρ > 0, the function g(x, y|κ) ≡ (ρ − η)κρ + (1 − η)`(x, y)ρ

is strictly increasing in (x, y) and strictly decreasing in κ; and thus synergy is strictly

upcrossing in (x, y) and strictly downcrossing in κ. When ρ ≥ 1/2 (case (i)), ς is

log-spm in the triple (x, y, κ). As the product of a log-SPM function of (x, y, κ) and

a strictly monotone function of (x, y, κ), synergy is proportionately upcrossing. When

ρ ∈ (0, 1− η] (case (ii)), synergy is decreasing in κ and the product of a function that

is log-spm in (x, y) and a function that is strictly rising in (x, y). Altogether, we have

shown that in both case (i) and case (ii) synergy is proportionately upcrossing and

strictly upcrossing in (x, y,−κ).
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