
Stable Assignments and Search Frictions

Stephan Lauermann Georg Nöldeke
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1. Introduction
What we do

We embed a static assignment problem with transferable utility
into a dynamic search model . . .

I in such a way that we can identify steady-state equilibrium
outcomes of the dynamic model with feasible outcomes of the static
assignment problem.

We investigate the limits of steady-state equilibrium outcomes as
the velocity of the search technology goes to infinity . . .

I and ask whether such limit outcomes correspond to stable
outcomes of the underlying static assignment problem.
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1. Introduction
Why we do it

Investigate intuition that stable assignments are a shortcut to model
situations in which frictions are negligible.

What has been done before

Convergence to competitive equilibria in dynamic matching and
bargaining games:
Gale (JET 1987), Rubinstein and Wolinsky (Econometrica 1985), Lauermann
(AER 2013), Cho and Matsui (JET 2017)

Convergence to stable matchings in the marriage problem (NTU):
Adachi (JET 2003), Lauermann and Nöldeke (JET 2014)
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2. Assignment Problem

Assignment problem given by (B,S,v, f ):

B and S: disjoint, non-empty and finite set of agent types (buyers
and sellers)

I T = B∪S

v(b,s): value of a match between a buyer of type b and a seller of
type s

I Value of staying single/unmatched is normalized to zero
I Transferable utility

f (t)> 0: mass of agents with type t ∈ T
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2. Assignment Problem
Feasible assignment: x : B×S→ R satisfying

x(b,s)≥ 0 for all (b,s) ∈ B×S

x(t, t)≥ 0 for all t ∈ T

where

x(b,b) = f (b)−∑
s∈S

x(b,s)

x(s,s) = f (s)−∑
b∈B

x(b,s)

Optimal assignment solves

max
x feasible

V (x) = ∑
b∈B

∑
s∈S

x(b,s)v(b,s)
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2. Assignment Problem

Feasible outcome (x,u): a feasible assignment x together with a
payoff profile u : T → R satisfying

∑
t∈T

f (t)u(t) =V (x)

A feasible outcome is individually rational if

u(t)≥ 0, for all t ∈ T

and pairwise stable if

u(b)+u(s)≥ v(b,s) for all (b,s) ∈ B×S

A feasible outcome is stable if it is individually rational and
pairwise stable
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2. Assignment Problem

Recall basic results:

1 Optimal assignments and stable outcomes exist
2 If (x,u) is stable, then x is optimal

Assumption 1
There exists (b,s) such that v(b,s)> 0

v(b,s)> 0⇒ v(b,s′) 6= v(b,s) and v(b′,s) 6= v(b,s) for all b 6= b′ and
s 6= s′
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3. Search
Framework

Random-search model in continuous time
Mass f (t)> 0 of agents of each type t are “born” and enter the
market per unit time
Market is in steady-state with mass F(t)> 0 of agents of type t
searching for a partner
At rate δ > 0 agents are exogenously removed from the market
and become single with payoff of zero
Meetings between agents are generated by a quadratic search
technology with velocity parameter λ > 0:

λF(b)F(s)> 0

is the mass of agents of type b that meet agents of type s per unit
time
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3. Search
Framework

When two agents meet:
I they observe each other’s type
I each agent is selected with probability 0.5 to make a proposal for

the division of v(b,s); the other agent accepts or rejects
I if the proposal is accepted, both agents leave the market and

receive their agreed shares of v(b,s)
I if the proposal is rejected, both agents continue to search

Agents are risk neutral and there is no (further) discounting
Remarks:

I Framework as in Shimer and Smith (Econometrica 2000)
I Quadratic search technology is an innocent simplification

(Lauermann, Nöldeke, Tröger, Econometrica 2020)
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3. Search
Steady state equilibrium

Let α : B×S→ [0,1] specify the (stationary) fractions α(b,s) of
meetings between agents with types b and s that result in a match
Payoff profile u specifies the expected payoffs of those agents who
are currently searching for a partner
A (steady-state) equilibrium is a triple (α,F,u) satisfying

1 Inflows and outflows balance for all types
2 For the given u, the specification of α is consistent with (subgame

perfect) equilibrium in the induced bargaining games
3 Expected payoffs solve the appropriate value equations
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3. Search
Definition 1 (Equilibrium)
(α,F,u) is an equilibrium if for all b and s:

f (b) = F(b)[δ +λ ∑
s∈S

α(b,s)F(s)] (1a)

f (s) = F(s)[δ +λ ∑
b∈B

α(b,s)F(b)] (1b)

α(b,s) =

{
0 if u(b)+u(s)> v(b,s)
1 if u(b)+u(s)< v(b,s)

(2)

δu(b) = ∑
s∈S

λF(s)max{0,v(b,s)−u(b)−u(s)}/2 (3a)

δu(s) = ∑
b∈B

λF(b)max{0,v(b,s)−u(b)− v(s)}/2 (3b)
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3. Search
Equilibrium Outcomes

Every equilibrium (α,F,u) induces an equilibrium outcome (x,u),
which describes what happens to a “cohort” of agents entering the
market
u is the solution to the equilibrium value conditions and

x(b,s) = λ ·α(b,s) ·F(b) ·F(s)≥ 0

Equilibrium outcomes
I exist (Lauermann and Nöldeke, Economics Letters 2015)
I are feasible for the assignment problem (B,S,v, f )
I are individually rational
I are never pairwise stable
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4. Limit outcomes

Definition 2
An outcome (x∗,u∗) is a limit outcome if there exists a sequence
(λ k,xk,uk)∞

k=1 such that
λ k→ ∞

(xk,uk) is an equilibrium outcome for the search model with
velocity parameter λ k

(xk,uk)→ (x∗,u∗)

Limit outcomes exist, are feasible and individually rational.
The question is whether they are pairwise stable, too . . . .
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4. Limit outcomes
Preview of results

We find:

1 Limit outcomes may fail to be stable.
2 If a limit outcome is unstable, then it must feature excessive

matching – frictions cause too much trade.
3 Simple sufficient conditions ensuring the stability of all limit

outcomes.
4 Bounds on the efficiency loss that may arise in a limit outcome.
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4. Limit outcomes
Example with unstable limit outcome

B = {b1,b2}, S = {s1,s2}
f (b1) = 9, f (b2) = 2, f (s1) = 9, f (s2) = 1

v(b,s) given by

s2 s1
b2 10 2
b1 2 −6

Unique stable outcome (x̂, û):

x̂ =
[

1 1
0 0

]
and

û(b1) = 0, û(b2) = 2, û(s1) = 0, û(s2) = 8
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4. Limit outcomes
Example with unstable limit outcome

There is (another) limit outcome given by

x∗ =
[

0 2
1 0

]
and

u∗(b1) = 0, u∗(b2) = 2, u∗(s1) = 0, u∗(s2) = 2

The unstable limit outcome is supported by a sequence of
equilibria in which all matches with v(b,s)> 0 are consummated
For high λ , these equilibria reflect a coordination failure:
high-value agents on one side of the market are too eager to
match because high-value agents on the other side of the market
are also too eager too match
This example is robust
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4. Limit outcomes
Some Terminology

Let (x∗,u∗) be a limit outcome. We say that

Type t is fully matched if x∗(t, t) = 0

Type t is partially matched if 0 < x∗(t, t)< f (t)

Type t is unmatched if x∗(t, t) = f (t)

Type pair (b,s) is a blocking pair if u∗(b)+u∗(s)< v(b,s)
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4. Limit outcomes
Properties of limit outcomes

Lemma 1
Let (x∗,u∗) be a limit outcome in which (b,s) is a blocking pair. Then

1 b and s are fully matched: x∗(b,b) = x∗(s,s) = 0
2 b and s obtain strictly positive payoffs:

u∗(b)> 0 u∗(s)> 0

3 b and s do not match with any fully matched types:

x∗(s′,s′) = 0⇒ x∗(b,s′) = 0, x∗(b′,b′) = 0⇒ x∗(b′,s) = 0

(In particular, they do not match with each other)
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4. Limit outcomes
Properties of limit outcomes

Lemma 2
Let (x∗,u∗) be a limit outcome. Then

1 Types that are not fully matched receive a payoff of zero:

x∗(t, t)> 0⇒ u∗(t) = 0

2 Types that match with each other share the value of the
corresponding match:

x∗(b,s)> 0⇒ u∗(b)+u∗(s) = v(b,s)
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4. Limit outcomes
Properties of limit outcomes

Lemma 3
Let (x∗,u∗) be a limit outcome in which (b,s) is a blocking pair. Then
there exist partly matched types b′ 6= b and s′ 6= s such that b and s are
fully matched with these types:

x∗(b,s′) = f (b)

x∗(b′,s) = f (s)

Proof (for b; same argument applies to s):

b obtains a strictly positive payoff and must be fully matched (Lemma 1)

. . . with types that are partially matched (Lemma 1)

Partners of b obtain payoff of zero (Lemma 2). Hence, all b-agents
match with the same partner type, s′ (genericity assumption on v)
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4. Limit outcomes
Properties of limit outcomes

Proposition 1
Let (x∗,u∗) be an unstable limit outcome. Then there exist a stable
outcome (x̂, û) such that

x̂(t, t)≥ x∗(t, t)

û(t)≥ u∗(t)

holds for all types t and

∑
t

x̂(t, t)> ∑
t

x∗(t, t)

V (x̂)>V (x∗)

Proof exploits Lemma 3 to construct an auxiliary assignment problem
involving only types in blocking pairs
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4. Limit outcomes
Sufficient conditions for stability

Proposition 2
Every limit outcome is stable if all types have the same mass.

Proposition 3
Every limit outcome is stable if v(b,s)> 0 holds for all types.
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4. Limit outcomes
Bounding the efficiency loss

Assumption 2 (Monotonicity)
The sets B and S are totally ordered and

v(b,s)> 0⇒ v(b′,s)> v(b,s) and v(b,s′)> v(b,s)

for all b′ > b and s′ > s.

Monotonicity ensures that all blocking types must match with the same
type on the other side of the market
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4. Limit outcomes
Bounding the efficiency loss

Define
f̄ = maxt f (t)

v̄ = max(b,s) v(b,s)

Proposition 4
Suppose the assignment problem is monotonic. Let x∗ be a limit
assignment and x̂ be an optimal assignment. Then

V (x∗)≥V (x̂)−2 f̄ v̄

Not the best possible bound – it only exploits the structure identified in
Lemma 3
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