
Competition and Errors in Breaking News

Sara Shahanaghi

November 9, 2021

Click here for latest version.

Abstract

Reporting errors are endemic to breaking news, even though accuracy is prized

by consumers. I present a continuous-time model to understand the strategic forces

behind such reporting errors. News firms are rewarded for reporting before their com-

petitors, but also for making reports that are credible in the eyes of consumers. Errors

occur when firms fake, reporting a story despite lacking evidence. I establish existence

and uniqueness of an equilibrium, which is characterized by a system of ordinary dif-

ferential equations. Errors are driven by both a lack of commitment and by competition.

A lack of commitment power gives rise to errors even in the absence of competition:

firms are tempted to fake after their credibility has been established, capitalizing on

the inability of consumers to detect fake reports. Competition exacerbates faking by

engendering a preemptive motive. In addition, competition introduces observational

learning, which causes errors to propagate through the market. The equilibrium fea-

tures rich dynamics. Firms become gradually more credible over time whenever there

is a preemptive motive. The increase in credibility rewards firms for taking their time,

and thus endogenously mitigates the haste-inducing effects of preemption. A firm’s be-

havior will also change in response to a rival report. This can take the form of a copycat
effect, in which one firm’s report triggers an immediate surge in faking by others.
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1. Introduction

What a newspaper needs in its news, in its headlines, and on its editorial page is
terseness, humor, descriptive power, satire, originality, good literary style, clever
condensation, and accuracy, accuracy, accuracy!

— Joseph Pulitzer

Accuracy is often considered to be the core tenet of news media. This belief is widely
held by consumers of news: when asked in a 2018 Pew survey, the majority of respon-
dents listed accuracy as a primary function of news, valuing it over thorough coverage,
unbiasedness, and relevance.

Despite this, public perceptions of news accuracy are not favorable. In a 2020 Survey,
38% of respondents stated that they go into a news story thinking it will be largely inaccu-
rate. While many factors may contribute to this skepticism, consumers express particular
concern about hasty reporting: 53% of respondents believe that news breaking too quickly
is a major source of errors.

These concerns are supported by a multitude of instances in which news media have
made major factual errors. In the immediate aftermath of the 9/11 attacks, cable news
stations made multiple statements that were false: NBC reported an explosion outside the
pentagon, CNN reported a fire outside the national mall, and CBS claimed the existence
of a car bomb outside the state department. Erroneous reporting has been endemic to ter-
rorist attacks in general, with news media misidentifying perpetrators or other key details
of the Boston bombings, Sandy Hook massacre, London bombings, and Oklahoma City
bombings. Furthermore, such errors are not limited to terrorist attacks. Notoriously, in
2004 CBS news, under the direction of Dan Rather, published the Killian Documents, a
set of memos which called into question George W. Bush’s military record. These docu-
ments could never be authenticated and were widely believed to be forged. More recent
media blunders are ever present: in 2017, ABC news falsely reported that Michael Flynn
would testify that Donald Trump had directed him “to make contact with the Russians.” In
2019, ABC News headlined its nightly news broadcast with what it claimed to be exclusive
footage of the ongoing air strikes on Syria. It was later uncovered that this footage was in
fact taken at a machine gun convention in Oklahoma.

While such errors are commonplace, they are also costly to news firms. For one, ex-
posure of errors can be reputational damaging. This was acutely true of the Rolling Stone
scandal, in which the magazine published a story that falsely accused a group of Univer-
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sity of Virginia students of sexual assault. Not only was the journalistic failure widely
reported by other firms, the error resulted in several publicized lawsuits against the maga-
zine. Major errors can also lead a firm to part with valuable journalists in order to maintain
its reputation for journalistic integrity. This is evident in the terminations of Dan Rather
and Brian Ross —both of whom were lead journalists at major news stations—following
their respective reporting blunders.

The objective of this paper is twofold. First, I seek to understand why reporting er-
rors are pervasive despite their costliness to firms. In particular, I explore how strategic
forces can induce firms to commit errors that are completely avoidable. My second objec-
tive is to understand when reporting are more probable, and relatedly, when firms are less
trustworthy. That is, I seek to understand both the dynamics of reporting errors and the
environmental factors that can make them more prevalent.

Model To answer these questions, I present a dynamic model of breaking news. I con-
sider a continuous-time setting in which multiple firms dynamically and privately learn
about a story and must choose if and when to report it. Firms learn by seeking confir-
mation that the story is true. Reporting errors occur when firms fake, i.e., report the story
despite lacking confirmation. Because reports are publically observed, firms have an ad-
ditional means by which they may learn, namely by observing the reports of rival firms.
I thus account for an important feature of the newsroom setting: firms learn privately but
also observationally.

Firms in this model seek viewership. Error-prone reporting conflicts with this objective,
and is thus costly to the firm, in two ways. First, errors harm firms ex post (after they
have been exposed). This ex-post cost captures the detrimental effect of errors on a firm’s
future livelihood. Importantly, error-prone reporting is also costly ex ante (before errors
can be unearthed). This is due to the fact that the viewership the firm enjoys hinges on
its credibility, i.e., the consumer’s belief that the report is not fake. This belief is formed
rationally with knowledge of the firm’s reporting strategy: firms who fake more achieve
lower credibility in equilibrium. I thus take the stance that a story is valued to the extent
that there is trust in its journalistic standards, a notion that is informed by consumers’
demonstrated preference for accuracy in news.

Finally, this model accounts for one of the most salient qualities of the breaking news
problem: competition. All else equal, a firm who preempts its rivals (e.g., by being the first
to report) is rewarded with greater viewership. This allows us to understand the impact of
competition on the propensity of firms to err. Doing so is especially pertinent given rise of
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digital news. Since the ascent of the internet, there has been a documented shift from print
to digital news.1 This shift is arguably contributing to a news industry where firms feel
greater pressure to get stories out quickly in an effort to beat out competitors. This is due
to the fact that, while print news is limited to daily publication at most, digital news faces
no such constraints. 2 By considering a continuous-time setting, one can better understand
24-hour news environment, where preemptive concerns are not only present but ceaseless.

Analysis I analyze this model, establishing both existence and uniqueness of an equilib-
rium. Under this equilibrium, fake reports do not occur at set times, but are rather dis-
tributed continuously over time. This mixing implies an indifference condition: at any time
in which faking might happen, the firm is indifferent between faking immediately and af-
ter some short wait. Formally, this indifference condition implies an ordinary differential
equation (ODE) on the firm’s reporting behavior. I thus show that the equilibrium is char-
acterized by a system of ODEs, a result which is which is central to our analysis and guide
many of the economic implications that follow.

Economic Implications I find that errors are strategic responses to two features of the
news setting: a lack of commitment by firms, and competition.

To this end, I begin by showing that competition alone is not responsible for reporting
errors. In particular, if ex-post cost of errors is relatively small —because consumers are
less aware or critical of them —even a monopolist will fake. Such errors are driven by a
firm’s inability to commit to a reporting strategy: a firm is tempted fake after its credibility
has been assessed. This is due to a moral hazard problem: consumers cannot observe
whether a firm is faking, and thus there is no direct punishment for doing so. I substaniate
the notion that a lack of commitment causes errors by proving that a firm who does have
commitment power will always report truthfully, and thus never erro.

I then show that competition exacerbates errors, and does so through two separate chan-
nels. First, competition can give rise to a preemptive motive in equilibrium. Namely, firms
have an incentive to speed up their reporting in order to beat out competitors. This incen-
tive for speed induces firms to fake, and is thus responsible for reporting errors. Second,
competition causes errors through another, less obvious channel: observational learning.
When one firm reports a story, other firms become more confident that the story is true.
This increased confidence in turn yields firms more likely to fake and therefore err. I thus

1 While 16% of 2018 survey respondents often receive news from print newspapers, 33% do so from news
websites.

2 This is also true of TV news, which is the most popular news medium in the United States.
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find that observational learning exacerbates errors not by giving rise to them in the first
place, but by causing an existing error to propagate through the market.

This paper also sheds light on the dynamics of reporting behavior and credibility. These
dynamics take two different forms in equilibrium: gradual changes that happen in the
absence of new reports and sudden changes that occur in response to a new report.

I first show show that firms become gradually more truthful —i.e., less inclined to
fake—as time passes. Furthermore, firms become more credible over time whenever pre-
emptive concerns are present. In other words, consumers are less trusting of reports that
are made quickly. This model thus justifies consumers’ expressed concerns about hasty re-
porting. The reason for this gradual improvement in credibility lies in the firms incentives.
The risk of being preempted introduces an endogenous cost to delay. Thus, the firm must
somehow be compensated for this cost to ensure that its indifference condition is satisfied.
This is achieved by means of increasing credibility. That is, increasing credibility mitigates
the haste-inducing effects of preemption.

In addition to this gradual increase in credibility: I find that dynamics can take a second
form: discrete changes in a firm’s reporting behavior and credibility in response to a rival
report. In particular, this can take the form of a copycat effect, in which one firm’s report
causes an instantaneous boost in faking by others. The copycat effect implies that quick
follow ups of one firm’s report by other firms often lack in credibility, because such reports
are often not independently verified. It illustrates that firms herd on not only the reports
themselves, but also on on the timing of their reports. This provides an explanation for the
“clustering” of reporting errors that often occur in breaking news.3

In addition to these core results, I consider comparative statics and an extension of the
model. I find that, unsurprisingly, firms are more credible when there is a higher ex-post
cost of error, and also when firms have a greater ability to learn. I also further explore the
role of competition by considering the marginal effect of an additional firm in the market.
I find that whenever preemptive concerns are present, adding a competitor will make each
individual firm more likely to fake early on by increasing the preemptive threat they face.
However, this is mitigated later on by the effects of observational learning: existing firms
are able to learn that the story is false more quickly by observing the silence of an additional
competitor, which will yield will yield them less willing to fake. Finally, I extend the model
to allow for heterogeneity in firms’ ability to learn. This extended model yields an intuitive
result: firms with greater ability to learn are also more credible in equilibrium. Though

3 Examples of this include the reporting surrounding the Boston bombings and the 2000 US presidential
election.
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there are many potential reasons why ability and accuracy can correlate in the market for
news, this model provides a novel reason for this: firms with lower ability face a greater
preemptive threat, and are thus more willing to fake.

Related Literature. The preemption literature models variety of scenarios, including patent
races (Fudenberg, Gilbert, Stiglitz, and Tirole (1983)), technology adoption (Fudenberg and
Tirole (1985)), strategic exercise of options (Grenadier (1996)), and financial bubbles (Abreu
and Brunnermeier (2003)). This paper contributes to this literature in two key ways. The
first is in the endogenous nature of the payoff function. In the existing literature, a player’s
decision to preempt does not affect its underlying payoff function. That is, the benefit of
preempting may be stochastic (e.g., Grenadier (1996)), but it is exogenous. In our setting,
however, a firm’s payoff from reporting hinges on consumers’ beliefs about its reporting
behavior. Such beliefs are important in the market for news because consumers cannot
directly observe quality. This assumption has implications for the nature of the firm’s in-
centives. While in the existing literature, players earn some exogenous benefit from delay-
ing their actions which counteracts the incentive to preempt, this is not true in our setting.
Rather, I find that even if no such benefit exists, it will arise endogenously.

This paper is not the first to consider observational learning in a preemption setting. In
Hopenhayn and Squintani (2011), firms can only observe their own payoffs, and thus draw
inferences about the payoffs of their competitors by observing when and whether they
act. Meanwhile, in Bobtcheff, Bolte, and Mariotti (2017), players receive breakthroughs
which are privately observed, and thus at every moment are uncertain about how much
competition they face. In contrast, I assume that firms learn observationally about their
own payoffs, namely whether publishing the story will result in error. It is for this reason
that observational learning gives rise to herding in in this setting. Specifically, it causes
firms to herd on not only on the decisions of their opponents but also in the timing of
these decisions. In this sense, this paper also connects to the literature on herding with
endogenously-timed decisions (Gul and Lundholm (1995), Chamley and Gale (1994), Levin
and Peck (2008)). Specifically, notion that an action by one individuals can trigger others to
quickly follow suit arises in Gul and Lundholm (1995). While such behavior is efficient in
their setting, that is not the case in ours, where such behavior can causes errors to propagate
through the market.

To my knowledge, there are two other papers which also consider preemption in break-
ing news: Lin (2014) and Pant and Trombetta (2019). In both settings, a firm benefits in
some way from being the first to report, and in Lin (2014), some cost of error. However,
neither of these existing works account for the two novel features highlighted above, i.e.,
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the role of credibility and observational learning. It is because I account for these addi-
tional features that I find errors to be driven by not preemption alone, but also a lack of
commitment power and observational learning. Furthermore, this paper differs from these
other works by giving rise to dynamics in the firm’s reporting behavior, including herding.

This paper also contributes to a broad literature that considers the impact of competition
on the quality of news. This literature is surveyed by Gentzkow and Shapiro (2008), with
more recent contributions by Liang, Mu, and Syrgkanis (2021), Galperti and Trevino (2020),
Chen and Suen (2019), and Perego and Yuksel (2018). Chen and Suen (2019) and Galperti
and Trevino (2020) specifically consider the effects of competition on news accuracy. In
both papers, firms compete for the attention of consumers and face constraints or cost to
accuracy. Meanwhile, in our setting, accuracy is not intrinsically costly. Rather, accurate re-
porting entails an indirect cost, namely that of being preempted. I contribute more broadly
to the literature on competition in news in two ways. First, I consider the effects of compe-
tition on a different notion accuracy, namely the prevalence of factual errors. Second, this
paper also sheds light on the dynamics of firm behavior. This allows us one to understand
the effects of competition not only on news quality as a whole, but also on its time path.

Finally, this paper connects broadly to the literature on the strategic provision of infor-
mation. Unlike frameworks where a firm’s aim to manipulate a receiver’s actions (Craw-
ford and Sobel (1982), Kamenica and Gentzkow (2011)), firms in our framework treat in-
formation as a good, aiming to maximize its appeal to consumers. This notion underlies
in the literature on demand-driven media bias. In Mullainathan and Shleifer (2005), firms
bias their reports in an appeal to consumers’ preferences for having their beliefs confirmed.
Meanwhile, in Gentzkow and Shapiro (2006) bias arises purely in response to reputational
concerns, and is thus driven by an aim for long-term profitability. Our framework accounts
for both the short-term and long-term objectives of a news firm. This sheds light on an in-
tertemporal tradeoff faced by news media: low-quality reporting may benefit a firm in a
short run, but can cause damage in the long run. Separately, I note that the kind of de-
ception firms engage in shares common threads with other work. The notion of faking is
also studied in Boleslavsky and Taylor (2020) in a competition-free setting that encorpo-
rates discounting. Furthermore, the endogenous Poisson arrival of inaccurate information,
a feature our equilibrium exhibits, also arises in Che and Hörner (2018), and takes the form
of “spamming” by recommender systems.

Outline The remainder of the paper is organized as follows. Section 2 presents the model.
Section 3 is dedicated to characterizing its equilibrium, first considering the monopoly
benchmark and then the more general case where competition is present. In Section 4, I
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present the core economic implications of this equilibrium, regarding both the effects of
competition and equilibrium dynamics. In Section 5, I present comparative statics. Section
6 considers an extension of the model in which firms differ in their abilities to learn. Finally,
Section 7 concludes. All formal proofs are relegated to the Appendix.

2. A model of breaking news

There are N ≥ 1 firms, indexed by i, and one consumer. Time, which is continuous and
has an infinite horizon, is denote by t ∈ [0,∞) . There is a time-invariant state θ ∈ {0, 1},
which denotes whether a particular story is true (θ = 1) or false (θ = 0). All players are
endowed with a common prior p0 ≡ Pr(θ = 1) ∈ (0, 1).

Each firm privately learns about the state by means of a one-sided Poisson signal: if θ =

1, a signal confirming this arrives to each firm at a Poisson rate λ > 0. This learning process
can be interpreted as one in which firms research the story by seeking confirmation that it is
true. I assume such a learning process because it serves as a reasonable approximation for
the learning that takes in a breaking news setting. For instance, a firm researching whether
an individual is the perpetrator of a terrorist attack can confirm this by discovering that
they are either in custody or the subject of a search effort, but would find it much more
difficult to prove their innocence while the investigation is still ongoing. To formalize this
learning process, let si ∈ [0,∞] denote the time at which such a conclusive signal arrives
to firm i, with si =∞ denoting that a signal never arrives. I assume that si ∼ (1− e−λsi) if
θ = 1, and si = ∞ if θ = 0. We further assume that conditional on θ = 1, si is i.i.d. across
firms.

Each firm has a single opportunity to make a report over the course of the game. No-
tably, the firm does not choose what to report, but instead whether and when to do so. As
the payoff function will soon illustrate, the content of this report can be interpreted as an
assertion that the story is true, i.e., that θ = 1. A report history H is a set {(i, ti)}i∈{1,...,N},
pairing each firm i to the time at which it reported, ti, with ti = ∅ if the firm has not yet
reported. Report histories are public information: at every time t, all players observe the
current report history. Thus, firms not only learn about θ via their private signal, but also
observationally by means of their rival firms’ reports.

A firm who never reports over the course of the game earns a payoff of 0. Meanwhile, a
firm who does report earns

knα− βI(θ = 0)

Let us now discuss the components of this payoff function. The first term, knα, captures
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the firm’s immediate payoff from making a report. This component captures the view-
ership or readership the firm enjoys from reporting a story. This immediate payoff is a
product of two separate components: kn and α. While kn captures the role of the firm’s
order n in its payoff, α denotes the credibility of the firm’s report.

Let us now formally define kn and α. A firm order of n denotes that the firm was the
nth firm to report. We assume that the kn are constants, where k1 ≥ k2 ≥ ... ≥ kN ≥ 0. This
assumption accounting for a key feature of the breaking news setting: competition. All else
equal, firms who report early compared to their competitors enjoy greater market share.
The firm’s payoff is also increasing in the credibility of its report, α. A report’s credibility is
the consumer’s belief, at the time the report was sent, that the firm has received evidence
that θ = 1. Formally, this is the belief that si ∈ [0, t], where t is the time of the firm’s report.
While the kn are exogenous parameters, α is an endogenous belief. In assuming this functional
form, we take the stance that a firm’s report will benefit it insofar that consumers believe it
was informed. This captures the notion that consumers value accuracy in journalism, and
thus only consume news to the extent that they find it credible.

The second term, −βI(θ = 0), captures the ex-post penalty of an erroneous report: a
firm who reports when θ = 0 incurs a penalty, given by a constant β > 0. This penalty
captures the reputational harm a firm suffers from making a report that is later uncovered
to be false.

2.1. Equilibrium

For each belief p = Pr(θ = 1) ∈ [0, 1] and order n ∈ {1, ..., N} of the next firm to report,
denotes Fp,n is a distribution over future report times: at each (p, n), let t denote the span
of time the firm waits before reporting conditional on not receiving a conclusive signal.
Then, t is distributed according to Fp,n ∈ ∆[0,∞], where t = ∞ denotes a lack of report
altogether. A Markov strategy F is a collection of the Fp,n. I restrict attention to symmetric
equilibria, and thus will omit the firm’s index from the Fp,n in much of the analysis below.

I place a number of restrictions on F . First, I assume that for all (p, n), Fp,n must be
piecewise twice differentiable and right-differentiable everywhere on [0,∞). This restric-
tion both grants analytical convenience and ensures that all equilibrium objects are well-
defined.

Second I impose a selection criterion (SC): a firm immediately reports once it has learned
the story is true. Formally, this criterion is stated as follows
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Definition 1. F satisfies (SC) if

F1,n(t) = 1 for all t ≥ 0, n ∈ {1, ..., N}.

This condition imposes that firms do not abstain from reporting a story they know to be
true. Importantly, it allows one to rule out equilibria with periods of silence supported by
off-path beliefs that reports made during these gaps entail zero credibility. An implication
of this assumption is that fixing any starting belief p, all players who have not yet reported
will share the same common belief about the state after t time has passed. We denote this
common belief by p(t).

Finally, note that that defining strategies in this way, i.e. with a separate distribution for
each (p, n), is convenient, it introduces redudancy. Thus, we impose a consistency condi-
tion to ensure that the Fp,n are consistent with each other whenever on-path.4 Specifically,
this condition stipulates that Fp,n and Fp(t),n are related via the following formula:

Fp(t),n(s) =
Fp,n(s+ t)− Fp,n(t−)

1− Fp,n(t−)
for all s ≥ 0 whenever Fp,n(t) < 1, (1)

where Fp,n(t−) ≡ limτ↑t Fp,n(τ). This formula is an immediate result of Bayes Rule.

Before proceeding, we define two intuitive terms to describe both a report and the re-
porting behavior of a firm: faking and truth telling. A report is fake if it is made by a firm
despite lacking independent confirmation, i.e., a signal si = ∅. Meanwhile, a report that
is made in response to such a signal is truthful. We use these terms to not only describe a
firm’s report, but also its behavior: a firm is faking if it is sending a fake reports, while it
is truth telling if its reports are exclusively truthful. Given the above selection assumption,
strategies only differ in the distributions they place over fake reports.

We seek a symmetric perfect Bayesian equilibrium of this game. This is defined as a
Markov strategy F paired with beliefs α and p at each history such that F satisfies sequen-
tial rationality and both α and p are consistent with Bayes Rule.

The consistency of α with Bayes Rule implies that it must be given by the following
formula at all (p, n) on-path: 5

4 This condition is analogous to the closed-loop property specified in Fudenberg and Tirole (1985). We
adopt the term consistency condition from Laraki, Solan, and Vieille (2005), who define this condition for a
general class of continuous-time games of timing.

5 Formally, the formula is derived by applying Bayes Rule to a discrete-time approximation of the beliefs
that obtain under this game. This derivation is presented in Appendix A.
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αn(p) =


λp

λp+bn(p)
if Fp,n(0) = 0

0 if Fp,n(0) > 0
(2)

where bn(p) ≡ F ′p,n(0+) denotes the right-derivative of Fp,n at 0. That is bn(p) denotes the
instantaneous hazard rate of fake reports by a firm. This can be interpreted as the intensity
with which a firm fakes at a particular (p, n).

This formula is intuitive. If Fp,n(0) > 0, there exists a point mass of reports at (p, n).
However, because conclusive signals are continuously distributed over time, the probabil-
ity with which a valid report is made at (p, n) is zero. Thus, the consumer and all compet-
ing firms know with certainty that a report made at (p, n) was fake, and thus assigns to it a
credibility of zero. Meanwhile if there does not exist a point mass of reports at (p, n), credi-
bility is assessed by comparing the instantaneous arrival rate of truthful reports (λp) to that
of fake reports (bn(p)), assigning a higher credibility to reports made when the hazard rate
of fake reports is comparatively low.

3. Equilibrium characterization

3.1. Properties of equilibrium

We begin by establishing two necessary conditions on the firm’s equilibrium strategy
that will guide the characterization that follows. Namely, we show that there there are
no jumps and no gaps in the distribution of fake reports whenever credibility is less-than-
perfect. These two properties, albeit in different forms, arise in other games with continu-
ous strategy spaces.6 What is distinct about our setting is that these properties hold even
when competition is absent. As I will illustrate below, this is due to the fact that these prop-
erties are not driven by competition per se, but by the endogeneity of the firm’s payoff.

These two properties are stated formally as Lemma 1:

Lemma 1. In equilibrium, at any (p, n) on-path Fp,n is

(a) continuous at all t whenever p < 1

(b) strictly increasing at any t such that αn(p(t)) < 1.

Let us begin by considering part (a) of Lemma 1, i.e., the “no jumps” property. This states
that fake reports are distributed continuously over time whenever a firm is not certain

6 In particular, similar properties have been established in war of attrition games (Hendricks, Weiss, and
Wilson (1988)) and all-pay auctions (Baye, Kovenock, and De Vries (1996)).
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that the story is true. That is, there can never be a point mass in faking. Notably, this
property holds even when competition is absent (n = 1). I will now argue that such point
masses cannot occur because they give rise to a profitable deviation. This is driven by the
association between the firm’s strategy and its credibility in equilibrium (2): reports that
are made whenever there is a point mass in faking yield zero credibility. Meanwhile, faking
while also not being certain than the story is true yields a strictly positive expected penalty
β(1 − p). This implies that a firm’s value from faking at such a time is strictly negative.
Thus, firm can profitably deviate by truth telling at that time: truth telling precludes the
firm from making an error, and therefore ensures a weakly positive payoff.

Next, we turn to part (b) of Lemma 1, the “no gaps” property. This states that whenever
the firm is less-than-fully credible, the hazard rate of fake reports must be strictly posi-
tive. In other words, firms must mix between faking at all times in which αn(p(t)) < 1.
This property results directly from the formula for α (2): whenever credibility is less-than-
perfect, the firm must be faking with at some positive rate bn(p). While straightforward,
this property of the firm’s strategy has important implications for the firm’s incentives in
equilibrium. In particular, it implies that whenever a firm’s credibility is less-than-perfect,
it must be indifferent between faking instantly, and waiting an infinitesimal increment of
time before faking. This indifference condition is crucial to characterizing the firm’s behav-
ior in equilibrium.

3.2. The monopoly benchmark and role of commitment

Before proceeding with the full model characterization, we consider the special case in
which there is a single firm, i.e. n = 1. This serves two purposes. First, it elucidates the
forces at play when competition is absent. In particular, it shows that errors can occur even
without competition, and that these errors are driven by a lack of commitment power by
the firm. Second, it serves as a benchmark for understanding the marginal impact compe-
tition on both incentives and behavior.

We now state the monopoly characterization in terms of the firm’s credibility. Note that
because there is a single firm, we will drop the n index from all functions and parameters.

Claim 1. Under a monopoly, for all p on-path

α(p) = min{β/k, 1}

Claim 1 establishes two core facts about monopoly equilibrium. First, credibility is con-
stant over time. As I will illustrate below, this contant credibility implies that the firm’s
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reporting behavior is often not static. Specifically, the firm becomes more truthful over
time. Second, the monopolist’s credibility is weakly increasing in β, and is less-than-perfect
whenever β is sufficiently small. That is, errors occur even in the absence of competition,
as long as the ex-post penalty from erring is sufficiently small. The remainder of this sub-
section is dedicated to understanding why these two properties hold under a monopoly,
and what they imply about the firm’s reporting behavior.

Let us begin by understanding why the firm’s credibility must be constant in equilib-
rium. Recall that a firm must mix between faking at all times in which its credibility is
less-than-perfect (Lemma 1(b)). Thus, whenever αn(p) < 1, the firm must find it optimal to
both fake immediately and after some short wait dt.7 By the martingale property of firm’s
belief p about the state, both of these strategies will yield the same expected penalty from
error β(1 − p). Then, in order to ensure that both strategies are optimal, the firm’s prize
from reporting must be the same as well. This implies that credibility must be constant in
equilibrium. What is implicit in this reasoning is that in our setting, waiting is not costly
to a monopolist. In part this is because waiting is not intrisically costly to the firm, i.e.,
future payoffs are not discounted. This is also due to the fact that a monopolist does not
face competitors, and thus does not incur the implicit cost to waiting that comes from being
preempted. In fact, when we discuss the equilibrium dyanamics (Subsection 4.1) it will be
shown that a cost of preemption precludes α from being constant to equilibrium.

The constant nature of the monopolist’s credibility implies that its reporting behavior
will often not be static. Namely, the hazard rate of faking (b) strictly decreases over time and
tends to zero whenever credibility is less-than-perfect. That is, even when a firm fakes,
it will become gradually more truthful over time. This is illustrated by Figure 1, which
graphs b over time. While the decreasing nature of b follows directly from (2), there is
also an intuition behind this. Without observing a report, the consumer becomes gradually
more skeptical that the story is true. This is an artifact of the firm’s one-sided Poisson
learning process: the absence of a report means that firm has not received a conclusive
signal, and thus the common belief p(t) that the story is true decays over time.8 Thus, she
believes truthful reports to become increasingly less probable. To ensure that the firm’s
credibility remains constant, the hazard rate of fake reports must then decline as well, and
eventually vanish.

Let us now consider the second property mentioned above, i.e., that a monopolist will

7 Implicitly, this relies on the assumption that αn(p(t)) is continuous over time: this ensures that if
αn(p) < 1, then αn(p(dt)) < 1 for dt sufficiently small. While we do not discuss this here, I formally es-
tablish continuity in Appendix D (see Lemma 4).

8 Formally, in the monopoly case, p(t) = pe−λt

pe−λt+(1−p)
.
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Figure 1: Hazard rate of fake reports in monopoly case
when β < kn.

err with positive probability as long as the penalty of error is sufficiently small. This prop-
erty demonstrates that competition alone is not responsible for errors in equilibrium. I now
argue that such errors are driven by a firm’s inability to commit to a reporting strategy.

To illustrate this point, let us first understand why truth telling cannot be sustained
when k > β. A firm that truth tells in equilibrium enjoys full credibility when making a
report. Thus, the firm’s payoff from reporting when the story is false (θ = 0) is positive: the
immediate payoff of the report, k, strictly exceeds the penalty β from error. Consequently,
faking is a profitable deviation. When θ = 1, both faking and truth telling will ensure the
firm reports eventually, earning a payoff of k. However, faking is strictly better for the
firm when θ = 0: it ensures a strictly positive payoff whereas truth telling yields nothing.
The profitability of this deviation is driven by a moral hazard problem: because consumers
cannot discern by merely observing a report whether it is fake. They only holds a beliefs
in this regard, i.e., they assess credibility. While this assessment is made rationally based
the beliefs about the firm’s strategy, the firm can always deviate after credibility has been
determined. This is because the firm is unable commit to a reporting strategy, i.e., to forbid
itself from deviating after the credibility has been assessed. Faking is especially tempting
to the firm after its credibility has been assessed because it will not damage the firm’s
immediate payoff of reporting.

Let us now consider how a monopolist firm would behave if it did had the ability to
commit. That is, suppose that the the firm could announce its strategy at the start of the
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game, and was unable to deviate from that once credibility had been assessed.9 Under com-
mitment, faking is more costly for the firm: it would always damage the firm’s credibility,
and thus its immediate payoff from reporting.

One can immediately see that under commitment, the firm would always choose truth-
telling over its non-commitment strategy when β < k. By committing to truth-telling, the
firm guarantees that it will earn a payoff of k if θ = 1, and 0 if θ = 0. Meanwhile, under
no-commitment equilibrium, the firm will earn strictly less (β) when θ = 1, because it’s
credibility will be strictly lower (β/k). Meanwhile, it will also earn 0 when θ = 0: though
the firm may fake, its payoff from faking is exactly equal to the penalty of error, meaning
that the firm will break even. In fact, one can show that truth-telling is not only better than
the equilibrium strategy, but that it is the unique commitment solution under a monopoly.
That is, given the ability to commit, a monopolist would never commit errors. This result,
and its proof, is presented formally in Appendix F. We can thus conclude that a lack of
commitment is responsible for errors under a monopoly. This also illustrates an important
point about a firm’s incentives: while commitment makes faking more costly for a firm, it
in fact leaves the firm better off in equilibrium. This observation points to a larger theme
that will persist even under competition: firms fake not because it intrinsically benefits
them, but because it is a side effect of their strategic considerations.

3.3. Full model characterization

Here, I establish existence and uniqueness of an equilibrium in the full model. To this
end, I show that any equilibrium is the solution to a certain boundary value problem.
Specifically, whenever the firm is not truthful, its credibility must satisfy an ODE and ap-
propriate boundary condition. Characterizing the equilibrium in this way not only allows
one to establish existence and uniqueness, but lays the foundation for the economic analy-
sis that follows.

We begin by establishing the precise conditions under which a firm is truthful. We
present this result for two reasons. First, it serves as a first step towards a full charac-
terization. Second, while we illustrate this point more generally in the section that follows,
this result shows how competition can deteriorate credibility and exacerbate faking.

Proposition 1. In equilibrium, at any (p, n) on-path, αn(p) = 1 if and only if the following two
conditions hold:

1. kn ≤ β

9 While we discuss the commitment solution informally here, a formal treatment is presented in Ap-
pendix F.
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2. p ≤ p∗n ≡ min{ kn−β
kn

N−n+1
−β , 1}

Let us take stock of this result. It provides two conditions, on the model parameters
and the common belief about the state, that are both necessary and sufficient for the firm
to truth tell. The first condition, that kn ≤ β, was both necessary and sufficient for truth-
telling under a monopoly (Claim 1). However, Proposition 1 asserts that when firms face
competition, this condition alone is not enough to ensure truth telling. A second condition
is required: the common belief about the state must be sufficently low, lying below some
threshold p∗n. That is, firms must be sufficiently skeptical about the validity of the story.

The necessity of this second condition illustrates an important point: truth telling is harder
to sustain under competition. To understand why, note that truth telling is possible only if
the firm does not have an incentive to deviate by faking. In the monopoly case, this was
true as long as the cost of an incorrect report β outweighed the benefit from reporting
(k). However competition introduces an additional cost to truth telling: the risk of being
preempted. If a firm engages in truth telling, there is a risk that its opponent learns the
story is true, and thus reports first. A firm can evade this risk by faking, which ensures that
it won’t be preempted.

In the above reasoning, we took for granted that being preempted is costly for the firm
whenever it is truth-telling Let us now explain why this is the case. It is most obvious
in the winner takes all case: all firms, with the exception of the first to make a report, are
guaranteed to earn a payoff of zero, i.e., kn = 0 for all n > 1. In this case, the costliness of
being preempted is an artifact of the model parameters: a firm who is preempted will earn
nothing from reporting. Generally, however, the decreasing nature of the kn alone does
not guarantee that being preempted is costly: improved credibility for succeeding firms
could endogenously counteract the decay in the kn and make being preempted costless.
However, one can show that being preempted must be costly for the firm whenever it is
truth telling. This is due to the fact that truthfulness guarantees that the firm enjoys full
credibility, which leaves no room for improvement in credibility.

Now, let us consider the significance of the second condition, i.e., that the firm will only
be truthful if it is sufficiently pessimistic about the story’s validity. While truth telling en-
tails a risk of being preempted, faking entails a different kidn of risk: that of making an
error and incurring penalty β. Both of these risks depend on the belief p about the state.
A higher belief p is associated with both a lower risk of error and a higher risk of being
preempted. Both of these make faking relatively more appealing to the firm, and conse-
quently, make truth-telling more difficult to sustain. While it is immediate that a greater
p implies a smaller risk of error, that it implies a greater risk of being preempted is less
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obvious. To see why, note that if the story is true, a competitor may preempt either because
it has learned the story is true or it is faking. However, if the story is false, preemption is
triggered solely by faking, and thus the risk of being preempted is lower. Thus, a firm who
holds a greater p will perceive its risk of being preempted to be greater.

While Proposition 1 pins down the conditions under which the firm is fully credible in
equilibrium, it remains to characterize the firm’s behavior when truth telling does not hold.
To this end, we obtain a key result: whenever not truth-telling, the firm’s credibility must
satisfy a particular ODE and limit condition.

Proposition 2. In equilibrium, for all (p, n) on-path, if kn ≥ β, or p > p∗n ≡
kn−β
kn/n−β , then the

following ODE must be satisfied:

α′n(p) = − 1

kn(1− p)αn(p)

N − n
N − n+ 1

[knαn(p)− Vp̃,n+1 − β(1− αn(p))(1− p)] (ODE)

where p̃ ≡ αn(p) + (1− αn(p))p.

In addition, limp→0+ αn(p) = β/kn must hold if kn > β, and limp→p∗n+ αn(p) = 1 if kn ≤ β.

The proof for Proposition 2 relies critically on our above observation that whenever a
firm is less-than-fully credible, it must mix between faking immediately and faking after
some short wait, and thus must be indifferent between the two. To state this formally, let δs
denote the pure strategy distribution that places full mass on faking after s time has passed.
In particular, δ0 denotes immediate faking, while δdt denotes faking after some short wait
dt > 0. The indifference condition can then be written as follows:

Vp,n(δ0) = Vp,n(δdt)

where Vp,n(·) denotes the firm’s value from playing a particular strategy at (p, n).

To see how this indifference condition implies (ODE), note that a Taylor approximation
of the firm’s value from waiting, Vp,n(δdt), yields the following:

Vp,n(δdt)− Vp,n(δ0) = [
dp

dt
(knα

′
n(p))− λp(N − n)

αn(p)
(Vp̃,n − Vp̃,n+1)]dt+ o(dt2) (3)

(3) is intuitive. It tells us that waiting to fake, rather than faking immediately, has two
implications for the firm’s payoff. The first is that the firm’s credibility αn(p), and thus
the payoff enjoyed from reporting, may potentially change. This change in credibility is
approximated by dp

dt
(knα

′
n(p))dt. In addition, by waiting, the firm risks being preempted.

Precisely, with probability λp(N−n)
αn(p)

dt the firm is preempted, in which case her expected
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payoff will decline by Vp̃,n − Vp̃,n+1. We interpret this decrease in value as the firm’s cost
from being preempted.

Let us now examine both the probability and cost of preemption more closely. As one
might expect, the probability of being preempted is increasing in the number of rival firms
(N − n) and the expected rate at which these rivals receives confirmation of the story (λp).
Importantly, it is also decreasing in the equilibrium credibility. This is due to the fact that
lower credibility firms are more likely to fake, and thus pose a greater preemptive threat.

As for the firm’s cost of being preempted, let us begin by considering the second com-
ponent of this expression, given by Vp̃,n+1. This denotes the firm’s continuation value in the
event that it is preempted. Importantly, being preempted not only affects the firm’s order
but also the the common belief about the state. While the common belief was p prior to the
rival firm’s report, it increases to p̃ ≡ αn(p) + (1− αn(p))p following the report. This is due
to observational learning. To understand why the common belief becomes p̃, note that a
rival firm’s report could mean one of two things: either the report was triggered by the ar-
rival of a conclusive signal, in which case the story is certainly true, or it was not, in which
case the report provides no new information and the belief remains p. The common belief
following this report is a weighted sum of these two conditional beliefs. In particular, the
weight given to the rival firm’s report being informed by a conclusive signal is precisely its
credibility at the time of the report, αn(p). This new common belief will in turn determine
the firm’s continuation value in the event that it is preempted.

The cost of being preempted measures the impact of being preempted on the firm’s
continuation value. I.e., it measures how much the firm’s continuation value when it is
preempted differs from that in which it is not. Importantly, both continuation values are
assessed at the common belief after being preempted, p̃. In this sense, we can view the cost
of being preempted as the firm’s ex-post regret from being preempted.

Note that in order for the indifference condition to be satisfied, the linear term of (3)
must equal zero. This equality yields (ODE). That is, αn(p(t)) must change in precisely
such a way that preserves the firm’s indifference condition.

In addition to establishing (ODE), Proposition 2 imposes a limit condition on the firm’s
credibility. The precise limit condition that must hold depends on whether kn ≤ β, but al-
ways applies at the boundary of the region in which the firm is faking. Let us first consider
the case where kn ≤ β. Recall from Proposition 1 that in this case, αn(p) = 1 whenever
p ≤ p∗n. We must then thus have that αn(p) limits to 1 as it approaches p∗n. If it did not,
then as the belief approached p∗n, the firm could profitably deviate by not faking immedi-
ately, and rather waiting until p∗n is reached to do so. Thus, this limit condition is needed
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to sustain the firm’s indifference condition.

Let us next consider the case where kn > β. In this case, the firm never truth tells in
equilibrium, and thus the indifference condition must always be satisifed. As the common
belief p approaches zero, a firm who fakes does so being increasingly certain that its report
is erroneous, and thus expects to incur the full penalty β. Thus, the firm’s payoff from
faking limits to the following:

lim
p→0+

Vp,n(δ0) = kn lim
p→0+

αn(p)− β

Separately, even though the firm sometimes fakes, it must also never fake, i.e., play strategy
δ∞, with positive probability. This guarantees that the hazard rate of fake reporting remains
low enough to ensure that credibility remains sufficiently high, and thus that the firm will
indeed find it optimal to fake.10 As p → 0+, the value of truth-telling tends to zero, as
it becomes increasingly likely that the firm never reports. We can thus see that the limit
condition in this case, limp→0+ αn(p) = β/kn, is precisely what is need to ensure that the
firm is indifferent between faking and truth telling.

To take stock, Proposition 1 and Proposition 2 provide two different necessary condi-
tions on equilibrium credibility. They establish a region under which truth telling must
occur in equilibrium (Proposition 1), and show that otherwise, credibility must satisfy a re-
cursive boundary value problem (Proposition 2). While we relegate this statement formally
to the appendix, one can show these two conditions are not only necessary, but sufficient,
for an equilibrium.11 Establishing sufficiently entails showing that the firm cannot prof-
itably deviate as long as its credibility satisfies these conditions. There is a clear intuition
for this. On the region where truthfulness is necessary, it must also be optimal. This is
for the same reason that faking cannot occur on this region: the expected cost of erring is
so high that it counteracts any benefit that faking might bring. Meanwhile on the region
where αn(p) < 1, the firm’s strategy involves faking. Faking is optimal on this region be-
cause (ODE) guarantees it. In particular, it ensures firm’s indifference condition holds, i.e.,
that faking at any such time is optimal.

We thus establish that the equilibrium is fully characterized by the solution to a recursive
boundary value problem. While we do not have a closed-form solution to this problem on
the region where αn(p) < 1, we are able to establish both existence and uniqueness of a
solution. This is done by means of the Picard Theorem. This result is stated formally as
Theorem 1.

10 We formalize this result in the Appendix as Lemma 2.
11 This result is stated formally in the Appendix as Lemma 5.
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Theorem 1. There exists a unique equilibrium (where uniqueness applies at (p, n) on-path).

4. Economic Implications

In this section, I consider the economic implications of this equilibrium. In particular, I
explore two notions: (1) the dynamics of firm behavior and (2) the impact of competition
on both credibility and the prevalence of errors.

4.1. Equilibrium dynamics

In this section, I consider how a firm’s credibility and reporting behavior evolves over
the course of time. These results will not only illustrate when firms are most prone to
erring, but will also allow us to better understand the endogenous nature of the firm’s
incentives.

Dynamics take two separate forms in equilibrium: continuous changes as well as discrete
changes. As we will show, continuous changes occur in the absence of any new reports,
while discrete changes are triggered by a new report. More formally, let us denote a sub-
game by a pair (p, n), where p denotes a starting belief and n the order of the next firm
to report. We claim that fixing a subgame, i.e., assuming that no new firms report, the
firm’s credibility will change continuously over time. In particular it will gradually improve
whenever preemptive concerns are present. This result is stated formally as Proposition 3.

Proposition 3. For all (p, n) on-path, αn(p(t)) is weakly increasing in t. Furthermore,

1. If β > kN , then α′n(p(t)) > 0 whenever αn(p(t)) < 1.

2. If β ≤ kN , then αn(p(t)) is constant in t.

While αn(p(t)) must be constant under a monopoly, competition can introduce dynam-
ics. In particular, Proposition 3 asserts that as long as αn(p(t)) has not reached its upper
bound of 1, it is strictly increasing precisely when being preempted is costly to the firm.

Formally, this follows directly from (ODE). This is especially clear when we write (ODE)
in the following form:

d

dt
αn(p(t)) =

λp(N − n)

αn(p(t))kn
[Vp̃,n − Vp̃,n+1]

We can see that αn(p(t)) must strictly increase over time whenever the cost of preemption,
is strictly positive.
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There is also a clear intuition for this result. Whenever the firm is less-than-fully cred-
ible, it must be indifferent between faking immediately and waiting some period of time
before doing so. However, if credibility remained constant, this indifference would fail
whenever preemption is costly: the firm would obtain the same expected payoff from re-
porting in both cases, but by reporting immediately would avert being preempted. To
ensure that indifference is preserved, the firm must somehow be compensated for waiting.
This must be achieved by means of strictly increasing credibility. While waiting presents
a cost to being preempted, a strictly increasing αn(p(t)) ensures that the firm’s report will
be rewarded more in the event that it is not preempted. Thus, the increasing nature of
αn(p(t)) is crucial to balancing the firm’s equilibrium incentives: it endogenously mitigates
the haste-inducing effects of preemptive risk.

Let us now consider the implications of this result. It asserts that news reports that
are made with greater delay for research are generally more trustworthy in the eyes of
consumers. That is, absent new reports by competitors, consumers will have greater trust
in a firm’s journalistic standards when a report is not made quickly. In this sense, this result
conforms with consumers’ stated concerns about hasty reporting. This model provides a
justification for such concerns that are grounded in the firm’s incentives. Furthermore, by
the same reasoning presented in the monopoly section, the increasing nature of credibility
within a subgame implies that firms become gradually more truthful over the course of the
game. That is, bn(p(t)) is strictly decreases over time whenever the firm is not fully credible.

Finally, I note that while Proposition 3 asserts that αn(p(t)) must be strictly increasing
when there is a cost to being preempted, this is not always the case. Specifically, when
kN ≥ β, being preempted is costless in equilibrium (i.e., Vp̃,n−Vp̃,n+1 = 0), and thus αn(p(t))

is constant. In other words, preemptive concerns endogenously disappear whenever the
ex-post cost of error, β, is sufficiently small. Formally, the credibility function will adjust in
such a way that ensures knαn(p) = kn+1αn+1(p) for all p. This highlights an notable feature
of our model: competition alone does not imply preemptive concerns. Even if competition
is present, credibility can change in such a way that ensures preemption is costless.

Let us now consider discrete changes in the firm’s credibility and faking. While credibil-
ity changes continuously within a subgame, a rival report will cause the firm’s subgame to
change. That is, a report made at (p, n) will cause the order of the next reporter to increase
to n+1, and also cause the common belief to increase to p̃. This will in turn result in discrete
jumps in the firm’s credibility and faking rate (b). These discrete jumps are apparent in Fig-
ure 2, which plots a simulation of α and b over the course of the game. As these graphs
illustrate, jumps in both α and b are not monotonic. An opponent report may trigger either
a boost or decline in α and b. This is illustrated in Figure 2, while the first four reports cause
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Figure 2: Simulations of crediblity and the hazard rate of fake reports, respectively, over the course
of the game. Discrete jumps in both graphs signify that a firm has made a report.

credibility to decrease and faking to increase, the fifth report causes credibility to decrease
and faking to increase.

These first four reports illustrate a copycat effect, in which one firm’s report causes an
immediate a surge in the rate at which others fake.

To do so, first note that the discrete change in credibility that happens when a firm makes
the nth report under common belief p is given by the following:

αn+1(p̃)− αn(p)

where again p̃ > p denotes the common belief in the immediate aftermath of the report.
This expression shows that a report by one firm affects credibility by imposing two differ-
ent changes to the environment. First, it impacts the order of the next firm, i.e., by ensuring
that the next firm to report will be the n+1th firm to report, rather than the nth. Secondly, it
causes discrete upwards jump in the common belief: firms will learn observationally from
the report of their opponent, and thus become more confident about the story being true.
The following decomposition isolates the respective impacts of these two changes:

αn+1(p̃)− αn(p) = [αn+1(p̃)− αn+1(p)]︸ ︷︷ ︸
change in belief

+ [αn+1(p)− αn(p)]︸ ︷︷ ︸
change in order

The effects of a change in order alone, αn+1(p) − αn(p), can have an ambiguous impact on
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firms’ credibility in equilibrium. In particular, it hinges on the way in which the maximal
prize kn changes with a firm’s order.

However, there is no ambiguity with regards to the effects of observational learning: it
will always cause a deterioration in credibility. Formally, αn+1(p̃) − αn+1(p) will always
be negative in equilibrium, and strictly so whenever premeptive concerns are present (i.e.,
whenever kN < β). This negative correlation between credibility and the firm’s belief that
the story is true is also apparent in Proposition 3: later reports are associated with lower
common beliefs about the story being true, and also with higher credibility. There is also
a clear intuition to this: the more pessimistic the firm is about the story being true, the
higher its expected penalty from faking will be. This in turn will yeild the firm less willing
to fake, and thus more credible in equilibrium. This illustrates that the downwards jumps
in credibility are caused, at least in part, by observational learning.

4.2. Effects of Competition

In this section, we consider the impact of competition on both credibility and faking
in equilibrium. We assess the impact of competition by comparing the equilibrium under
competition (n ≥ 2) to that under the monopoly benchmark.

In order to isolate the effects of competition, we assume that the total ability of the mar-
ket to learn is constant across these two cases. In particular, we assume that if each firm
has ability λ under competition, then the firm has ability nλ under the monopoly bench-
mark. In making this normalization, we ensure that our comparison accounts for only the
impact of competition per se and does not confound this with the effects of an increased
aggregate ability to learn that firm entry may entail. We do however consider the effects
of market entry in the comparative statics section below, in which we do not normalize the
total ability to learn.

Our findings are shown in Figure 3, which depicts both credibility and hazard rate of
faking for a firm within a subgame, i.e., fixing a p and an n. The top and bottom row
show the case where β ∈ (kN , kn) and β > kn, respectively. In both cases, we see that that
competition causes a deterioration in credibility and an increase in faking. Futhermore, this holds
true for each individual firm. The effect of competition in this case is driven the cost of
preemption that it induces. Firms are more inclined to fake, and thus less credible because
the cost of preemption makes truth telling more costly for the firm. When β ∈ (kN , kn), the
firm fakes even under a monopoly, but strictly moreso under competition. That being said
the effects of competition dissipate over time, as the competition level of credibility limits
to the monopoly value as time passes. Meanwhile, in the case where β > kn, a monopolist
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Figure 3: Credibility αn(p(t)) (left) and the hazard rate of faking bn(p(t)) (right) under competition
and a monopoly. Top row depicts case where kn > β, while bottom row depicts case where β ∈
(kN , kn).

firm will never fake, faking does temporarily occur under competition. Again, the effects of
competition are greatest early on with firms faking gradually less as time passes.

5. Comparative Statics

In this section, I consider how the equilibrium changes with the parameters of the
model. This will in shed light on how various features of the news market can contribute
to, or curb, erroneous reporting. These findings are stated as Proposition 4.

Proposition 4. In any equilibrium, for any n, αn(p(t)) is

(a) weakly increasing in β, and strictly so whenever αn(p(t)) < 1.
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(b) weakly increasing in λ, and strictly so for t > 0 whenever αn(p(t)) < 1 and kN < β.

(c) weakly decreasing in N , and strictly so whenever αn(p(t)) < 1, when t ∈ [0, t] for some
t > 0.

Part (a) states that no matter when a firm reports, it will be more credible under high
β. This result is intuitive: a higher ex-post cost of error means firms are less likely to fake,
and thus more credible. This result is a consequence of the firm’s equilbrium incentives: a
higher β makes faking more costly. This will either induce the firm to resort to truth-telling
instead, or require that it is compensated for this coster faking with greater credibility.

Now, let us consider the comparative static on λ. This result is also intuitive: it states
that credibility is higher when firms have a greater ability to learn. Let us now understand
what is driving this result. We first note that at any belief p the firm may hold, a change
in λ will have no effect on αn(p) in equilibrium. This is due to the fact that λ does not enter
the boundary value problem which dictates the firm’s credibility, and thus changes in λ

have no effect αn(p). However, changes in λ will have an effect on the time path of the
common belief p(t). Under a higher λ, firms learn about the state more quickly, and thus
p(t), the belief that θ = 1 conditional on no reports, will decay faster. That is, firms will be
more pessimistic about the story being true under a higher λ at any time t > 0. This greater
pessimism about the story translates to a higher expected cost of erring, thus making faking
more costly. As was true for the comparative static on β, this increased cost of faking must
be counterbalanced by a higher credibility αN(p(t)) at every time t > 0. This comparative
static is illustrated by Figure 4, which shows simulations of the firm’s credibility function
under high and low values of λ.

Let us finally consider the comparative static on the total number of firms N . While it
pertains to the level of competition, this exercise is notably distinct from our analysis in
the previous section. Therein, we studied the overall impact of competition on equlibrium
outcomes. This was done by comparing the case where competition is present (N > 1) to
the monopoly case (N = 1) while holding constant the total learning ability of the market,
Nλ. With this comparative static, we are instead considering the marginal impact of an
additional firm entering the market. In particular, we do not hold fixed total learning
ability of the market, and assume that this additional firm adds to the total learning ability
of the market. In doing so, we capture the effect of proliferation in the news industry.

Proposition 4 states that adding a firm to the market will guarantee a deterioration in
credibility, but only for a limited amount of time. In fact, the addition of a firm may result
in an improvement in credibility during later periods. This phenomenon is captured by
Figure 5. This figure plots simulations of αN under N = 5 and N = 6, respectively, holding
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Figure 4: A simulation of αN (p(t)) when λ = 1 (blue line)
and λ = 0.5 (red line). For the remaining parameter values,
the following specifications were made: β = 0.5, p0 = 0.7,
N = 8, kn = 0.7(N−n).

all other parameters fixed. While the addition of a firm lowers credibility in early periods,
it improves credibility in later periods.

To understand this result, we note that addition of a firm will effect two separate changes
to the market. First, each firm faces greater competition, and thus a greater risk of being
preempted. This change is precisely what was captured in our earlier exercise regarding
the effects of competition. As illustrated by Figure 3, this change will cause a deterioration
in credibility. However, an additional firm also increases the market’s total ability to learn.
This change is captured by our comparative static on λ, which shows that an increase in
the market’s learning ability will cause an improvement in credibility. Thus the effect of an
additional firm can be understood as the combination of two countervailing forces: higher
competition and a higher ability to learn within the market.

To understand why the credibility-diminishing effect of higher competition must dom-
inate in early periods, we must compare the relative magnitudes of these the two counter-
vailing forces. Figure 4 illustrates that while credibility is pointwise higher at every t > 0

under high λ, this difference is negligible in early periods. This is due to the fact that
firms learn gradually over time, and thus it takes time for differences in learning ability
to substantially impact firms’ beliefs. Meanwhile, as illustrated by Figure 3, an increase
in competition will have a non-negligible impact on credibility even when t = 0. For this
reason, the impact of higher competition must dominate in early periods, resulting in a net
reduction in credibility. However, as time passes and the effect of faster learning grows, a
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Figure 5: A simulation of αN (p(t)) when N = 5 (blue line)
and N = 6 (red line). For the remaining parameter values,
the following specifications were made: β = 0.5, p0 = 0.7,
λ = 1, kn = 0.7(N−n).

reversal may take place, i.e., there may be a net improvement in credibility. Such a scenario
is precisely what is depicted by Figure 5.

6. Extension: Heterogeneous Ability

In this section, we consider an extension in which firms are heterogeneous in their abil-
ities to learn. Doing so will allow us to understand how a firm’s reporting behavior corre-
lates with it’s ability in equilibrium.

Formally, our extended model is identical to the model above except for three changes.
First, rather than assuming that each firm is endowed with the same ability λ, we assume
that each firm i is endowed with an individual-specific ability λi. As with all other param-
eters, we assume that these individual-specific abilities are common knowledge. Second,
to simplify our analysis for this exercise, we will restrict attention to a winner-takes-all
setting: i.e., we assume that kn = 0 for all n > 1. Finally, we relax our assumption that
the equilibrium is symmetric. Thus, different firms (and in particular, firms with different
abilities) may play different strategies in equilibrium and are thus a firm’s credibility is
individual-specific. Accordingly, we let αi denote the credibility of firm i.

We obtain an intuitive result: a firm’s ability correlates positively with its credibility in
equilibrium. This is stated formally as Proposition 5.
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Proposition 5. For all (i, j) such that λi < λj , αi1(p(t)) ≤ αj1(p(t)). Furthermore, this inequality
is strict whenever αi1(p(t)) < 1.

Proposition 5 states that regardless of when a report is made, a firm with higher ability
will be more credible.12 Furthermore, a high ability firm will be strictly more credible than
a low ability firm whenever firms are not fully truthful.

Let us now understand why this correlation arises. First, note that high ability firms are
able to confirm a story more quickly and thus, all else equal, pose a greater preemptive
threat in equilibrium. This in turn implies that in comparison to a high-ability firm, a low-
ability firm faces a greater preemptive threat. This means that, all else equal, the low-ability
firm finds immediate faking more advantageous. In light of this, the firms’ credibilities
must adjust in such a way to preserve their respective indifference conditions. This is
achieved endogenously by means of a lower credibility for the low-ability firm, which
ensures that it has less to gain from faking immediately.

7. Conclusion

In this paper, I presented a dynamic model of breaking news to understand the nature of
reporting errors. I sought to explain how strategic forces that could induce firms to err. In
this setting, errors were driven by two qualities of the breaking news environment: a firm’s
lack of commitment power as well as competition. I find that competition induces firms to
err through two separate channels: preemptive motives and observational learning. While
preemptive motives can give rise to errors by encouraging firms to report hastily, observa-
tional learning can cause an existing error to propagate through the market.

The second key objective was to understand the dynamics of reporting errors. In equi-
librium, these dynamics take two forms. First, firms become gradually more truthful over
time as long as no new reports are made. Furthermore, a firm’s credibility gradually in-
creases whenever preemptive motives are at play. Importantly, this improvement in cred-
ibility incentivizes firms to take their time, and thus counteracts the haste-inducing effects
of preemption. Dynamics also take the form of discrete changes in the firm’s behavior and
credibility which are triggered by a rival report. In particular, I document a copycat effect,
where a report by one firm can induce a surge in faking by other firms in the market.

While I consider breaking news specifically, this model provides broader insight into
how preemptive concerns can affect the quality of information provided by experts. To

12 This claim restricts attention to the first firm to report, because by the winner-takes-all assumption, all
following senders will never fake, i.e., αi

n(p) = 1 whenever n > 1.
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understand how preemption impacts information provision more broadly is a topic that
warrants further investigation.
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Appendix A Discrete-time approximation of α

In this section, we formally justify equation (2), our equilibrium formula for αn(p), by
showing that it is the limit of Bayes-consistent beliefs under a discretized version of the
game presented in section (2). For any ε > 0, let the ε-approximation of the game be
identical to the game presented in section (2), except with the following modification: any
report made by a firm on [0, ε] is observed by all other players (including the consumer) at
ε. Formally, rather than observing ti, the players observe t̃i, where

t̃i = max{ti, ε}

At any (p, n) that is on-path, let αεn(p) denote the firm’s credibility, i.e., the consumer’s
belief that si ≤ ε given that t̃i = ε, under the ε approximation of the game. Let us define αεn
to be the right-limit of the αε, formally:

αn(p) ≡ lim
ε→0+

αεn(p)

We now establish that on-path, αn(p) is given by (2).

Claim 2. For any (p, n) on-path,

αn(p) =


λp

λp+F ′p,n(0+)
if Fp,n(0) = 0

0 if Fp,n(0) > 0

Proof. For any ε > 0, αεn(p, n) is uniquely determiend by Bayes Rule and given by

αε(p, n) =
p(1− e−λε)

p(1− e−λε) + Fp,n(ε)e−λε
.

First, consider the case where Fp,n(0) = 0. In this case, it follows from L’Hôpital’s Rule that:

lim
ε→0+

αε(p, n) =
λp

λp+ F ′p,n(0+)
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Next, consider the case where Fp,n(0) > 0. In this case, we obtain

lim
ε→0+

αε(p, n) =
0

0 + limε→0+ Fp,n(ε)
= 0

where the final equality follows from the fact that limε→0+ Fp,n(ε) = Fp,n(0) > 0.

�

Appendix B Beliefs in equilibrium

We begin by stating some relevant properties and notation regarding the players’ beliefs
about the state.

First, we remark that at all times t and histories H , all players, with the exception of
those who have already reported, must hold a common belief about the state. We omit a
formal proof as this follows directly from our selection assumption that F1,n(0) = 1. This
assumption implies that it is common knowledge that all firms who have not yet reported
have not observed a conclusive signal. Thus, all such players, in addition to the consumer,
share the same information set, and thus a common belief about the state.

Next, fixing an initial common belief p, and number of remaining firms n, we define
two conditional beliefs, p(s) and pi(s), which we will reference frequently in the analysis
that follows. We let p(s) denote the common updated belief, conditional on no new reports
being made after s time passes. It follows from Bayes Rule that

p(s) =
pe−nλs

pe−nλs + (1− p)
(4)

Meanwhile, we let pi(s) denote the common updated belief, conditional on the event
that player i report at s, and no other reports were made. Again, pi(s) follows directly from
Bayes Rule, given α:

pi(s) = αn(p(s)) + (1− αn(p(s))p(s) (5)

To understand how pi(s) is computed, note that if a report is made after time s has passed,
conditioning on the event that i’s report was informed, the common belief will update to
1. However, conditioning on the event that i was uninformed when making the report,
the report would have no impact on the common belief, which would thus be given by
p(s). Thus, pi(s) is given by the weighted sum of these two beliefs, where the weighting is
specified by the belief that the report was informed, i.e., αn(p(s)).
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Appendix C The firm’s problem

Before proceeding, we define a useful object, the first report distribution Ψ. Formally,
fixing a (p, n), Ψi(s) denotes the probability that player i reported at or before s and was not
preceded by any of the remaining firms in doing so. Fixing a strategy profile (F 1

p,n, ..., F
n
p,n),

it is given by:

Ψi(s) = p

∫ s

0

e−λr(N−n)
∏
j 6=i

(1−F j
p,n(r))d(e−λr(F i

p,n(r)−1))+(1−p)
∫ s

0

∏
j 6=i

(1−F j
p,n(r))dF i

p,n(r)

The first integral of the expression denotes the probability that i is the first firm conditional
on θ = 1, while the second integral denotes the same probability conditional on θ = 0.
Ψi(s) is then the weighted sum of these two probabilities, where the weight is given by the
common belief p about θ. Note that while Ψ is a function of the strategy profile, p, and n,
we omit this dependence for brevity.

The firm’s problem is defined recursively as follows. Fix a firm i, n, p, α, and continua-
tion value function V·,n+1. Trivially, Vp,0 = 0 for all p. Assume all firms j 6= i play the same
strategy F , and let−i to generically to refer to j 6= i. Then i’s expected payoff from playing
strategy F i at (p, n) is given by:

Vp,n(F i) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ−i(s)

Note that first integral of this expression is firm i’s expected payoff from reporting, when
it is the first to do so. Meanwhile, the second integral is the firm’s expected payoff in
the circumstance where it is preempted. The firm’s problem at (p, n) is then given by the
following:

max
F i∈F

Vp,n(F i),

where F denotes the set of permissible distributions, i.e., those that are piecewise con-
tinuously differenetiable, right-differentiable, and that satisfy the selection criterion. We
further define Vp,n = maxF i∈F Vp,n(F i).

Appendix D Regularity of F and α

Proof of Lemma 1. We will begin by showing that at all (p, n) on-path such that p < 1, Fp,n
is continuous at 0. To this end, suppose by contradiction that Fp,n exhibits discontinuous
at 0. By the right-continuity of Fp,n, Fp,n(0) > 0. Because (p, n) is on path, by (2), αn(p) = 0.
Furthermore, it follows by (5) that pi(0) = p. Recalling that we are restricting attention
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to symmetric equilibria, let Ψ denote the first-report distribution at (p, n) under the equi-
librium strategy profile in which all firms who have not yet reported play Fp,n. Because
Fp,n(0) > 0, Ψj(0) > 0 for all j who have not yet reported.

Now define the following deviation F̂p,n. This strategy is identical to Fp,n, except that all
the mass that Fp,n places on 0 is shifted to∞:

F̂p,n(s) =

Fp,n(s)− Fp,n(0) if s <∞

1 if s =∞

Now, fix some iwho has not yet reported. Let Ψ̂ denote the first-report distribution at (p, n)

under the strategy profile where i plays F̂p,n and all j 6= i play Fp,n. By definition, for all
s ≥ 0,

Ψ̂i(s) = Ψi(s)−Ψi(0).

Thus∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + β(1− pi(0))Ψi(0)

>

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s).

Again by definition, for all s ≥ 0,

Ψ̂−i(s) = Ψ−i(s) +X(s),

where

X(s) ≡ Ψi(0)[p

∫ s

0

(1− Fp,n)n−2(1− F̂p,n(r))e−λrd(e−λr(Fp,n(r)− 1))

+(1− p)
∫ s

0

(1− Fp,n(r))n−2(1− F̂p,n(r))dFp,n(r)]

Since X(s) is weakly increasing in s,∫ ∞
0

Vp−i(s),n+1dΨ̂−i(s)−
∫ ∞

0

Vp−i(s),N=1dΨ−i(s) =

∫ ∞
0

Vp−i(s),n+1dX(s) ≥ 0.

where the final inequality follows from the fact that X(s) is increasing in s and Vp−i(s),n+1 ≥
Vp−i(s),n+1(delta∞) ≥ 0.
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Combining the above two inequalities we have

Vp,n(F̂p,n) =

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ̂−i(s)

>

∫ ∞
0

[knαn(p(s))− β(1− pi(s))]dΨi(s) + (N − n)

∫ ∞
0

Vp−i(s),n+1dΨ−i(s) = Vp,n(Fp,n)

Thus, i can profitably deviate at (p, n): contradiction.

We will now show that for all (p, n) on-path such that p < 1, Fp,n must be continuous at
all t. Suppose by contradiction that it is not. Let t denote the time at which a discontinuity
occurs. Because Fp,n is increasing and right-differentiable by assumption, this must be a
jump discontinuity, i.e.,

lim
r→t−

Fp,n(r) < Fp,n(t)

By (1),

Fp(t),n(0) =
Fp,n(t)− limr↑t Fp,n(r)

1− limr↑t Fp,n(r)
> 0.

But then, this implies that Fp(t),n is discontinuous at 0, contradicting the above.

Part (b) of the statement follows directly from (2). �

Lemma 2. For any (p, n) on-path,

• αn(p) ≥ αn(p) ≡ min{β(1− p)/kn, 1}

• F ′p,n(0+) ≤ f ≡ λp( 1
α(p,n)

− 1)

Proof of Lemma 2. We begin by showing the first point above. The second point follows
by definition of αn(p).

First, suppose by contradiction that there exists a (p, n) on-path such that

αn(p) < min{β(1− p)/kn, 1}

Recalling that p(s) is given by (4), we begin by claiming that for all s sufficiently small,
(p(s), n) is on-path. Suppose not by contradiction. Since (p, n) is on-path by assumption,
this implies that Fp,n(0) = 1, which contradicts Lemma 1. It thus follows from (2), combined
with the piecewise twice differentiability and right-differentiability of Fp,n, that α(p(s), n)

is continuous in some right-neighborhood of s = 0. Formally, there exists an ε > 0 such
that for all s ∈ [0, ε],

knαn(p(s)) < β(1− p).
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Next, I claim that Fp,n(ε) > 0. Suppose this is not true by contradiction. Then, it follows
that Fp,n(s) = 0 for all s ∈ [0, ε], implying by definition of α that αn(p) = 1, contradicting
our assumption that αn(p) < 1.

Now, define the following deviation F̃p,n, which shifts the mass Fp,n places on [0, ε] to∞:

F̃p,n(s) =


0 if s ∈ [0, ε]

Fp,n(s)− Fp,n(ε) if s ∈ (ε,∞)

1 if s =∞

The admissibility of F̃p,n follows from the admissibility of Fp,n. We now wish to show that
F̃p,n is a profitable deviation at (p, n). Let Ψ denote the first-report distribution under the
strategy profile where all players play Fp,n, and let Ψ̃ denote the first-report distribution
under the strategy profile where i plays F̃p,n and all j 6= i play Fp,n.

By definition of Ψ,
Ψ̃i(s) = Ψi(s)−X(s)

where

X(s) =

p
∫ s

0
e−λr(N−n)(1− Fp,n(r))N−nd(e−λr(Fp,n(r)− 1)) + (1− p)

∫ s
0

(1− Fp,n(r))N−ndFp,n(r) if s ∈ [0, ε]

X(ε) if s > ε

Now, note that X(s) is weakly increasing in s. Note further that because Fp,n(ε) ∈ (0, 1],
it follows that Fp,n(s) strictly increases on [0, ε]. Thus, X(s) is strictly increasing at some
s ∈ [0, ε]. Now, by the above definition:∫ ∞

0

[knαn(p(s))− β(1− pi(s))]dΨ̃i(s)−
∫ ∞

0

[knαn(p(s))− β(1− pi(s))]dΨi(s)

=

∫ ε

0

[knαn(p(s))− β(1− p(s))]dX(s) > 0

where the strict inequality follows from the fact that X(s) is strictly increasing on [0, ε] and
the above-established fact that knαn(p(s)) < β(1− p(s)) for all s ∈ [0, ε].

Next, let us examine Ψ̃(−i, s). It again follows from the definition of Ψ that

Ψ̃−i(s) = Ψ−i(s) = Y (s)
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where

Y (s) = p

∫ s

0

[e−λr(1− Fp,n(r))]n−2F (min{r, ε})d(e−λr(Fp,n(r)− 1))+

(1− p)
∫ s

0

(1− Fp,n(r))n−2Fp,n(min{r, ε})dFp,n(r)

Thus, ∫ ∞
0

Vp−i(s),n+1dΨ̃−i(s)−
∫ ∞

0

Vp−i(s),n+1dΨ−i(s) =

∫ ∞
0

Vp−i(s),n+1dY (s) ≥ 0

where the final inequality follows for from the fact that Y (s) is increasing in s and Vp−i(s),n+1 ≥
0. Combining the previous two inequalities, we obtain that

Vp,n(F̃p,n) > Vp,n(Fp,n)

and thus i can profitably deviate at (p, n). Contradiction. �

Lemma 3. If αn(p) < 1 and (p, n) is on-path, then there exists an ε > 0 such that

Vp,n = Vp,n(δs) for all s ∈ [0, ε] ∪∞.

Proof of Lemma 3. Assume that αn(p) < 1. Note that by the right twice-differentiability of
Fp,n, and by (2), that αn(p(s)) is right-continuous in s. Thus, there exists an ε > 0 and d > 0

such that
αn(p(s)) < 1− d for all s ∈ [0, ε].

I claim that for all s ∈ [0, ε), Vp,n = Vp,n(δs). Suppose to the contrary that for some s ∈ [0, ε),

Vp,n(δs) < Vp,n

Now, I claim that Vp,n(δs) is right-continuous in s. To see why this is the case, note that by
definition,

Vp,n(δs) =

∫ s

0

knαn(p(r))dΨi(r) + (N − n)

∫ s

0

Vpi(r),ndΨ−i(r)+

(1−
∑
j

Ψj(s))[knα(p(s), n)− β(1− p(s))]

Where Ψj(s) is the first-report distribution that arises when i plays δ∞ and all j 6= i play
Fp,n. The right-continuity with respect to s then follows from the absolute continuity of Ψj
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(which follows from Lemma 1), as well as the right-continuity of α(p(s), n) with respect to
s, which follows from the right-continuity of Fp,n(s), which follows by assumption.

Given this right-continuity, some ε′ ∈ (0, ε− s) and x > 0 such that

Vp,n − Vp,n(δr) > x for all r ∈ [s, s+ ε′]

Note that there must exist some s∗ ∈ [0,∞] such that Vp,n = Vp,n(δs∗). Then, define the
following deviation F̃p,n which shifts all the mass from [s, s + ε′] to s∗. Specifically, when
s∗ < s:

F̃p,n(t) =


Fp,n(t) + Fp,n(s+ ε)− Fp,n(s) if t ∈ [s∗, s]

Fp,n(s+ ε) if t ∈ (s, s+ ε′]

Fp,n(t) otherwise.

Meanwhile, when s∗ > s+ ε:

F̃p,n(t) =


Fp,n(s) if t ∈ [s, s+ ε]

Fp,n(t)− [Fp,n(s+ ε′)− Fp,n(s)] if t ∈ (s+ ε′, s∗)

Fp,n(t) otherwise.

Now, by definition:

Vp,n(F̃p,n) = Vp,n(Fp,n) +

∫ s+ε′

s

Vp,n(δs∗)− Vp,n(δr)dFp,n(r) ≥ Vp,n(Fp,n) + xε′ > Vp,n(Fp,n)

Thus, F̃p,n serves as a profitable deviation. Contradiction.

It remains to show that Vp,n = Vp,n(δ∞). Suppose by contradiction that Vp,n > Vp,n(δ∞).
It follows that limt→∞ Fp,n(t) = 0, because otherwise, the firm could profitably deviate by
placing no mass on t =∞. But this implies that for some s ∈ (0,∞],

lim
t→s−

F ′p,n(t+) =∞⇒ lim
t→s−

αn(p(t)) = 0,

which contradicts Lemma 2. �

Lemma 4. αn(p(s)) is continuous in s for all (p, n) on path such that s > 0.

Proof of Lemma 4. Fix a (p, n) on-path. I first claim that for all s ≥ 0,

αn(p(s)) =
λp

λp+
F ′p,n(s+)

1−Fp,n(s)

(6)
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To see why this must hold, note that it follows from Lemma 2 that (p(s), n) is on-path for
all s ≥ 0. Thus, by Lemma 1, Fp(s),n(0) = 0, and thus it follows from (2) that for all s ≥ 0,

αn(p(s)) =
λp(s)

λp(s) + F ′p(s),n(0+)
.

Next, it follows from (1) that

F ′p(s),n(0+) =
F ′p,n(s+)

1− Fp,n(s)
.

Combining the previous two equations yields (6). It thus follows from the right-continuity
of Fp,n that αn(p(s)) is right-continuous in s. It remains to show that it is left-continuous.
Suppose by contradiction there exists an s such that αn(p(s)) is left-discontinuous. Then
there exists some d > 0 such that for all ε > 0, there exists an sε ∈ (s− ε, s) such that

|αn(p(sε))− αn(p(s))| > d.

First consider the case where for all ε > 0, αn(p(sε))−αn(p(s)) > d. I begin by claiming that
for all ε > 0,

Vp(sε),n = Vp(sε),n(δs−sε). (7)

To this end, first note that there exists some s∗ ∈ (s,∞] such that Vp(sε),n = Vp(sε),n(δs∗,s∞). To
see why this must hold, suppose not, by contradiction. Then it must be that Fp(sε),n places
full support on [sε, s], and thus, either Lemma 1 or (2) would be violated. Thus, we have

Vp(sε),n =

∫ s−sε

0

knα(p(r))dΨi(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)+

(1−
∑
j

Ψj(s))Vp(s),n(δs∗−s) ≤
∫ s−sε

0

knα(p(r))dΨi(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)

+(1−
∑
j

Ψj(s))Vp(s),n(δ0) = Vp(sε),n(δs−sε)

where Ψ is the first-report distribution associated witht he strategy profile in which i plays
δ∞ and all j 6= i play Fp(sε),n. Note that the inequality follows from the fact that αn(p(s)) < 1,
and thus by Lemma 3, Vp(s),n = Vp(s),n(δ0). However, note that for all ε > 0,

Vp(sε),n(δs−ε) =

∫ s−sε

0

knαn(p(r))dΨI(r) + (N − n)

∫ s−sε

0

Vpi(r),n+1dΨ−i(r)

+(1−
∑
j

Ψj(r))[knαn(p(s), n)− β(1− p(s))]
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Because the Ψj are absolutely continuous,

lim
ε→0

Vp(sε),n(δs−sε) = knαn(p(s), n)− β(1− p(s))

Thus, for all ε > 0 sufficiently small, Vp(sε),n(δ0) > Vp(sε),n(δs−sε), contradicting (7).

Next, consider the case where for all ε > 0, αn(p(s)) − αn(p(sε)) > d. As noted above,
limε→0 Vp(sε),n(δs−sε) = Vp(s),n(δ0). Thus, for ε sufficiently small,

Vp(sε),n(δs−sε) > knαn(p(sε))− β(1− p(sε)) = Vp(sε),n(δ0)

However, since for all ε > 0, αn(p(sε)) < 1. By Lemma 3, Vp(sε),n = Vp(sε),n(δ0). Contradic-
tion. �

Appendix E Characterization proofs

Proof of Proposition 1. We begin by showing that αn(p) = 1 whenever kn < β and p ≤
p∗n ≡

kn−β
kn/n−β .

To this end, fix any n, and suppose that kn < β. We begin by showing that for all
q < β−kn

β
, αn(q) = 1. Note that for all such q

Vq,n(δ0) = knαn(q)− β(1− q) ≤ kn − β(1− q) < kn − β(1− β − kn
β

) = 0.

Since Vq,n ≥ Vq,n(δ∞) ≥ 0, it follows Vq,n > Vq,n(δ0). Thus, by Lemma 3, αn(q) = 1. Now, let

q∗n ≡ sup{p|αn(q) = 1 for all q < p}

It follows from the above that q∗n ≥
β−kn
β

> 0. Now suppose by contradiction that q∗n < p∗n.
By Lemma 4, there exists an ε > 0 such that for all p ∈ (q∗n, q

∗
n + ε), αn(p) < 1, and thus, by

Lemma 3
Vp,n = Vp,n(δ0) = knαn(p)− β(1− p)

Thus, it follows from Lemma 4 that

lim
p→q∗n+

Vp,n = kn − β(1− q∗n) (8)

By definition of V , because by Lemma 1 Fp,n is absolutely continuous, it follows that

39



Vp,n(δ∞) is as well, and thus:

lim
p→q∗n+

Vp,n(δ∞) = Vq∗n,n(δ∞) =
knq

∗
n

n
(9)

In for δ∞ to not serve as a profitable deviation for p ∈ (q∗n, q
∗
n+ε), it must be that for all such

p, Vp,n(δ0) ≥ Vp,n(δ∞). Taking a limit we obtain that

lim
p→q∗n+

Vp,n ≥ lim
p→q∗n+

Vp,n

Substituting (8) and (9) above, we obtain that knq∗n
n
≤ kn − β(1− q∗n). However, kn ≤ β and

q∗n < p implies that knq∗

n
> kn − β(1− q). Contradiction.

Next, we show that αn(p) < 1 whenever β ≤ kn or p > p∗n. To this end, assume β ≤ kn

or p > p∗n. Assume by contradiction that αn(p) = 1. Also assume by induction that if n > 1,
then the statement holds for n+ 1.

First, consider the case where αn(q) = 1 for all q < p. By (2), this implies that F ′(q, n) = 0.
Furthermore, by Lemma 1, this implies that Fp,n(s) = 0 for all s > 0, i.e., Fp,n = δ∞.
However,

Vp,n(δ0) = kn − β(1− p) > knp

n
= Vp,n(δ∞),

where the above strict inequality follows from the above assumption that either β ≤ kn or
p > p∗n.

Next, consider the case where αn(q) < 1 for some q < p. By Lemma 4, for all ε > 0

sufficiently small, there exists some p < p and s > 0 such that αn(p) ∈ (1 − ε, 1) and αn(q)

is strictly increasing on [p(s), p]. By Lemma 3, there exists some ∆ ∈ (0, s) such that

Vp,n(δ∆) = V (p, n, δ0).

By definition,

V (p, n, δ∆) =

∫ ∆

0

knαn(p(s))dΨi(s) + (N − n)

∫ ∆

0

V (pi(s), n+ 1)dΨ−i(s)+

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆))

where Ψ is the first-report distribution associated with the strategy profile where i plays δ∆
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and all j = i play Fp,n. Meanwhile,

V (p, n, δ0) = knαn(p)− β(1− p)

=

∫ ∆

0

knαn(p)dΨi(s) + (N − n)

∫ ∆

0

knαn(p)− β(1− pi(s))dΨ−i(s)

+ (1−
∑
j

Ψj(∆))(knαn(p)− β(1− p(∆))

Thus, in order to preserve the above equality, for some r ∈ (0, s),

knαn(p)− β(1− pi(r)) < V (pi(r), n+ 1). (10)

First, consider the case where αn+1(pi(r))) < 1. Then, for ε > 0 sufficiently small

Vpi(r),n+1 = Vpi(r),n+1(δ0) = kn+1αn+1(pi(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r))

where the first equality follows from Lemma 3. Thus, equation (10) is violated. Contradic-
tion.

Next, consider the case where αn+1(pi(r)) = 1 and β < kn. By the inductive assumption,
it follows that αn+1(q) = 1 for all q ≤ pi(s). Thus, Fpi(s),n+1 = δ∞. So, we have that for ε
sufficiently small:

Vpi(r),n+1 = Vpi(r),n+1(δ∞) =
kn+1p

i(r)

N − n
≤ pi(r)knαn(p) + (1− pi(s))knαn(p)− β)

= knαn(p)− β(1− pi(s))

Again, this is a contradiction of (10).

Finally, consider the case where αn+1(pi(r)) = 1 and β ≥ kn. Recall by Proposition 1 that
αn(q) = 1 for all q ≥ p∗n. Thus, because αn(p) < 1, it follows from (4) that αn(p(s)) must be
strictly increasing in s for some s > r. Formally, let

r′ = inf{s > r|αn(p(s)) is strictly increasing}.

First, we claim that
knαn(p(r′))− β(1− pi(r)) < Vpi(r),n+1 (11)

By the inductive assumption, since αn+1(pi) = 1, it must be that αn+1(q) = 1 for all q < pi(r).
Because αn(p(s)) is weakly decreasing for s ∈ [r, r′], it follows by definition of pi(s) that
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pi(s) < pi(r) for all s ∈ [r, r′]. Thus, for all s ∈ [r, r′]

Vpi(s),n+1 =
kn+1p

i(s)

N − n
.

It follows from this that for all s ≥ r,

knαn(p(s))− β(1− pi(s)) < Vpi(s),n+1

⇔ knαn(p(s))− β(1− pi(s)) < kn+1p
i(s)

N − n

⇔ pi(s) <
β − knαn(p(r))

β − kn+1/(N − n)

Now, because αn(p(s)) is strictly decreasing on s ∈ [0, r].

knαn(p(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r)) < Vpi(r),n+1

where the second inequality was established above. Thus we have

pi(r′) < pi(r) <
β − knαn+1(p(r))

β − kn+1/(N − n)
<
β − knαn+1(p(r′))

β − kn+1/(N − n)

which implies (11).

It follows from this that there exists an r′′ > r′ such that for all s ∈ [r′, r′′], αn(p(s)) is
weakly decreasing and Vpi(s),n+1 > knαn(p(r′))− β(1− pi(s)). Now I claim that

Vp(r′),n(δ0) < Vp(r′),n(δr′′−r′).

To see why this must be true, note that by definition,

Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) =

∫ r′′

r′
kn[αn(p(s))− αn(p(r′))]dΨ(i, s)+∫ r′′

r′
[Vpi(s),n+1 − (knαn(p(r′))− β(1− pi(s)))]dΨ−i(s)

+
∑
j

(Ψ(j, r′′)−Ψ(j, r′))kn(αn(p(r′′))− knαn(p(r′)))

Since αn(p(s)) ≥ αn(p(r′)) and Vpi(s),n+1 > knαn(p(r′)) − β(1 − pi(s)) s ∈ [r′, r′′], it follows
that Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) > 0. However, this contradicts Lemma 3. �

Proof of Proposition 2. Proof by induction. Fix an n, and assume that αm(p) satisfies the
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above for all m < n such that (p,m) is on-path.

We begin by showing that (ODE) must hold whenever αn(p) < 1. To this end, assume
that αn(p) < 1. Then, by Lemma 3, there exists an ε > 0 such that for all ∆ ∈ (0, ε),

Vp,n(δ∆)− Vp,n(δ0)

∆
= 0 (12)

Recall that by definition of V , that

Vp,n(δ0) = knαn(p)− β(1− p).

Meanwhile

Vp,n(δ∆) =

∫ ∆

0

knαn(p(s))Ψ(i, s)ds+ (N − n)

∫ ∆

0

Vp−i(s),n+1Ψ(−i, s)ds+

(1−
∑
j

lim
s→∆−

Ψ(s, j))[knαn(p(∆))− β(1− p(∆))]

where Ψ is the first-report distribution associated with the strategy profile in which i plays
δ∞ and all j 6= i play F j

p,S . Specifically, for all s > 0,

Ψi(s) = pλ

∫ s

0

e−λrn(1− Fp,n(r))N−ndr

Ψ−i(s) = p

∫ s

0

e−λr(N−n)(1−Fp,n(r))n−2d(−e−λr(1−Fp,S(r)))+(1−p)
∫ s

0

(1−Fp,n(r))n−2dFp,n(r)

Note that it follows from Lemma 1 that, for all j, Ψj is also absolutely continuous, I.e., there
exists a function ψj such that:

Ψj(s) =

∫ s

0

ψj(r)dr.

Specifically, according to Lemma 1, one such ψi and ψ−i are given by the following:

ψi(s) = pλe−λsn(1− Fp,n(s))N−n

ψ−i(s) = pe−λsn(λ+ F ′p,n(s+)− λFp,n(s))(1− Fp,n(s))n−2 + (1− p)(1− Fp,n(s))F ′p,n(s+)

Substituting these expressions for both Vp,n(δ0) and Vp,n(δ∆) into (12) and rearranging, we
obtain that for all ∆ ∈ (0, ε),

K1(∆) +K2(∆) +K3(∆) = 0 (13)
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where

K1(∆) ≡
∫ ∆

0
kn[(αn(p(s))− αn(p)) + β(1− p)]ψi(s)ds

∆

K2(∆) ≡
(N − n)

∫ ∆

0
[Vp−i(s),n+1 − knαn(p) + β(1− p)]ψ−i(s)ds

∆

K3(∆) ≡
(1−

∑
j lims→∆− ψj(∆))[kn(αn(p(∆))− αn(p)) + β(p(∆)− p)]

∆

Now, we consider lim∆→0+ of K1(∆), K2(∆), and K3(∆) separately.

For K1(∆), it follows from L’Hôpital’s Rule, together with the continuity of αn(p(∆))

(i.e., Lemma 4) and ψi(∆) in ∆ that

lim
∆→0+

K1(∆) = lim
∆→0+

[kn(αn(p(∆))− αn(p)) + β(1− p)]ψi(∆) = β(1− p)ψi(0) = β(1− p)pλ.

For K2(∆), it again follows from L’Hôpital’s Rule, together with the right-continuity of
Vp−i(∆),n+1 in ∆ that

lim
∆→0+

K2(∆) = (N − n) lim
∆→0+

[Vp−i(∆),n+1 − knαn(p) + β(1− p)]ψ−i(∆)

= (N − n)[Vp−i,n+1 − knαn(p) + β(1− p)]( λp

αn(p)
)

where the final inequality follows from the fact that at all (p, n) on-path, αn(p) = λp
λp+F ′p,n(0)

.

For K2(∆), first note that by the continuous differentiability of Ψj(s) that

lim
∆→0+

∑
j

lim
s→∆−

Ψ(s, j) = 0.

Thus, it follows from the right-differentiability of αn(p(∆)) in ∆ that

lim
∆→0+

K3(∆) = kn lim
∆→0

αn(p(∆))− αn(p)

∆
+ β lim

∆→0+

p(∆)− p
∆

= kn
d

d∆
αn(p(∆))

∣∣∣
∆=0+

+ βp′(∆)
∣∣∣
∆=0+

= p′(∆)
∣∣∣
∆=0+

[knα
′
n(p) + β] = −λpn(1− p)[knα′n(p) + β]

Since we have shown that lim∆→0+ K1(∆), lim∆→0+K2(∆), and lim∆→0+K3(∆) exist, and
are given by the above expressions, it follows from (13) that

lim
∆→0+

K1(∆) + lim
∆→0+

K2(∆) + lim
∆→0+

K3(∆) = 0.
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Substituting in the above expressions for K1(∆), K2(∆) and K3(∆), we obtain (ODE).

Now, we wish to establish that (ODE) must hold whenever kn ≥ β or p > p∗n. It follows
from Proposition 1 that αn(p) < 1, and thus by the above, (ODE) must hold.

Finally, we establish the two limit conditions presented in the proposition. We begin by
establishing that when kn ≥ β, limp→0+ αn(p) = β/kn. To this end, first note by Lemma 3
that for all p > 0, Vp,n(δ0) = Vp,n(δ∞). Note further that

lim
p→0+

Vp,n(δ∞) = 0.

Thus,
lim
p→0+

Vp,n(δ0) = lim
p→0+

knαn(p)− β = 0,

and therefore, limp→0+ αn(p) = β
kn

. Next, let us consider the case where kn < β. That
limp→p∗n+ αn(p) = 1 follows from Lemma 4, since by Proposition 1, αn(p∗n) = 1. �

Definition 2. α is a solution to (P) if it satisfies the following for all n ≤ N and p ∈ (0, 1]:

• If kn < β and p ≤ p∗n ≡
kn−β
kn/n−β , then αn(p) = 1.

• If kn ≥ β or p < p∗n, then α satisfies (ODE), with limit condition limp→0+ αn(p) = β/kn

if kn ≥ β and limp→pn∗+ αn(p) = 1 if kn < β.

• αn(1) = 0.

Lemma 5. (α, F ) is an equilibrium if and only if at all (p, n) on-path, α is both consistent with F
and a solution to (P).

Proof of Lemma 5. Fix an (α, F ). We begin by establishing the necessity of the three con-
ditions specified in Definition 2 for (α, F ) to be an equilibrium. First we establish the ne-
cessity of the first bullet of Definition 2. To this end, recall that by the selection assumption,
F1,n(0) = 1. Thus, it follows from (2) that αn(1) = 0 if (p = 1, n) is on-path. Bullets two and
three of Definition (2) follow from Proposition 1 and Proposition 2, respectively.

Next, we establish the sufficiency of the above conditions for (α, F ) to be an equilibrium.
We begin by considering the case in which kn < β and p ≤ p∗n. It follows from (P) that
αn(q) = 1 for all q ≤ p. Thus, by (2), Fp,n = δ∞. We thus wish to show that there exist no
profitable deviations in this case, i.e., that Vp,n = Vp,n(δ∞). It suffices to show that

Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞). (14)
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First, note that for all s ∈ (0,∞),

Vp,n(δs) = kn(1− p(1− e−λsn)(
N − n

N − n+ 1
))− β(1− p) ≤ kn − β(1− p) = Vp,n(δ0).

Further, kn ≤ β and p ≤ p∗n implies that

Vp,n(δ0) = kn − β(1− p) ≤ kn
n

= Vp,n(δ∞)

Thus, Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞)

Next, we show that Fp,n is optimal when kn ≥ β or p < p∗n. To this end, we begin by
showing that

d

d∆
Vp,n(δ∆) = 0 for all ∆ ∈ [0,∞) if kn ≥ β and for all ∆ ∈ [0, t∗) if kn < β (15)

where t∗ is the unique value such that p(t∗) = p∗n. Note that

Vp,n(δ∆) =

∫ ∆

0

knαn(p(s))dΨi(s) +

∫ ∆

0

Vpi(s),n+1dΨ−i(s)+

(1−
∑
j

Ψj(∆))(αn(p(∆))− β(1− p(∆)))
(16)

where Ψ is the first-report distribution associated with the strategy profile in which i plays
δ∞ and all j 6= i play Fp,n. Then, it follows that

d

d∆
Vp,n(δ∆)

= knαn(p(∆))Ψi′(∆) + (N − n)Vpi(∆),n+1Ψ−i′(∆) + (1−
∑
j

Ψj(∆))p′(∆)[α′n(p(∆))− β]

−
∑
j

Ψj′(∆)(knαn(p(∆))− β(1− p(∆)))

= (N − n)[Vpi(∆),n+1 − knαn(p(∆)) + β(1− p(∆))]Ψ−i′(∆)− β(1− p(∆))Ψi′(∆)

+ (1−
∑
j

Ψj(∆))p′(∆)(knα
′(p(∆), n)− β)

Note that in the above, the existence of Ψj′(∆) follows from the differentiability of αn
at p(∆), and thus, the differentiability of Fp,n at ∆. We wish to show that d

d∆
Vp,n(δ∆) = 0.

To this end, we begin by deriving expressions for Ψi′(∆) and Ψ−i′(∆). First, it follows by
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definition of the first-report distribution that:

Ψi(∆) = pλ

∫ ∆

0

(1− Fp,n(s))N−ne−λnsds.

Differentiating this, we obtain:

Ψi′(∆) = pλ(1− Fp,n(∆))N−ne−λn∆

Meanwhile:

Ψ−i(∆) = p

∫ ∆

0

(1−Fp,n(s))n−2e−λ(N−n)sd((Fp,n(s)−1)e−λs)+(1−p)
∫ ∆

0

(1−Fp,n(s))n−2F ′p,n(s)ds

where the existence of F ′p,n(s) again follows from the assumption that αn is differentiable
at p(s). Differentiating this, we obtain:

Ψ−i′(∆) = p(1− Fp,n(∆))n−2e−λ∆n[F ′p,n(∆) + λ(1− Fp,n(∆))] + (1− p)(1− Fp,n(∆))n−2fp,n(∆)

= (1− Fp,n(∆))N−n[
fp,n(∆)

1− Fp,n(∆)
(pe−λ∆n + (1− p)) + pe−λ∆nλ]

It follows from the definition of α (equation (2)) and the consistency condition (equation
(1)) that

F ′p,n(∆)

1− Fp,n(∆)
= λp(∆)(

1

αn(p(∆))
− 1).

Substituting this, along with the definition of p(∆) (equation (4)), we obtain:

Ψ−i′(∆) = λ(1− Fp,n(∆))N−n(pe−λ∆n + (1− p)) p(∆)

αn(p(∆))

Note further that

1−
∑
j

Ψj(∆) = (1− F (∆))N−n(pe−λ∆n + (1− p)) (17)

Substituting equations the expressions for Ψi′(∆), Ψ−i′(∆), and 1 −
∑

j Ψj(∆) into the
above equation for d

d∆
Vp,n(δ∆), and simplyifying, we obtain:

d

d∆
Vp,n(δ∆) = K[

(N − n)

αn(p(∆))
(V i(p(∆), n+ 1)− knαn(p(∆)) + β(1− p(∆))(1− αn(p(∆))))

−knα′(p(∆), n)(1− p(∆))n]
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whereK ≡ λ(1−Fp,n(∆))N−n(pe−λ∆n+(1−p))p(∆). Because (ODE) is satisfied at (p(∆), n),
using it to substitute in for α′(p(∆, n), we obtain (15).

Now, consider the case where kn ≥ β. To show Fp,n is optimal, it suffices to show that
all pure strategies δ∆ yield the same payoff, i.e., that

Vp,n(δ0) = Vp,n(δ∆) (18)

for all ∆ ∈ [0,∞]. It follows directly from (15) that (18) holds for all ∆ ∈ [0,∞). It remains
to show that (18) holds for ∆ =∞. To this end, first note that by (15),

Vp,n(δ0) = lim
∆→∞

Vp,n(δ∆)

= lim
∆→∞

∫ ∆

0

knαn(p(s))dΨi(s) + (N − n) lim
∆→∞

∫ ∆

0

V (pi(s), n+ 1)dΨ−i(s)+

lim
∆→∞

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆)))

=

∫ ∞
0

knαn(p(∆))dΨi(s) + (N − n)

∫ ∞
0

V (pi(∆), n+ 1)dΨ−i(s) = Vp,n(δ∞)

where the third equality follows from the limit condition limp→0+ α(p, n) = β/kn:

lim
∆→∞

knαn(p(∆))− β(1− p(∆)) = lim
p→0+

knαn(0)− β = 0.

Finally, consider the case where kn < β and p > p∗n. Note that because αn(p(s)) = 1 for all
s > t∗, by (2), it follows that F ′p,n(s) = 0 for all such s. It follows from this that the support
of Fp,n lies within [0, t∗] ∪ ∞. Thus, to show Fp,n is optimal, it suffices to show that δ∆ is
optimal for ∆ ∈ [0, t∗] ∪∞. To this end, we will proceed by first showing

Vp,n(δ∆) = Vp,n(0) for all ∆ ∈ [0, t∗] ∪∞ (19)

and then showing
Vp,n(δt∗) ≥ Vp,n(δ∆)for all ∆ ∈ (t∗,∞). (20)

To show (19), first recall that it follows from (15) that

Vp,n(δ0) = Vp,n(δ∆) for all ∆ ∈ [0, t∗).

It remains to show Vp,n(δ0) = Vp,n(δs) for s ∈ {t∗,∞}. For s = t∗, note that it follows from
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the above that
Vp,n(δ0) = lim

∆→t∗−
Vp,n(δ∆) = Vp,n(δt∗)

where the final inequality follows from (16), observing that αn is continuous at p∗n and Ψj

is continuous at t∗. We will now show Vp,n(δt∗) = Vp,n(δ∞). To this end, note that for all
∆ ∈ [t∗,∞]:

Vp,n(δ∆) =

∫ t∗

0

knαn(p(s))dΨi(s)+(N−n)

∫ t∗

0

V (pi(s), n+1)dΨ−i(s)+(1−
∑
j

Ψj(t∗))V (p∗n, n, δ∆−t∗)

Thus, to show V (p, n, δ∗t ) = Vp,n(δ∞), it suffices to show that V (p∗n, n, δ0) = V (p∗n, n, δ∞). But
it follows from the definition of p∗n that:

V (p∗n, n, δ0) = kn − β(1− p∗n) =
knp

∗
n

n
= V (p∗n, n, δ∞).

Similarly, to show (20), it suffices to show that V (p∗n, n, δ0) ≥ V (p∗n, n, δ∆) for all ∆ ∈
(0,∞), which we had previously established in (14). �

Proof of Theorem 1. Fix an n. Assume inductively that there exists a unique solution to (P)
for all m < n. We wish to show that ther exists a unique solution to (P) for n. To establish
this, it suffices to show there exists a unique solution to the following two limit problems,
when β ≤ kn and β > kn, respectively:

(ODE) is satisfied on (0, 1), and lim
p→0+

αn(p) = β/kn (LP: β ≤ kn)

(ODE) is satisfied on (0, p∗), and lim
p→p∗n+

αn(p) = 1. (LP: β > kn)

To establish existence and uniqueness two the two above problems, we proceed by ex-
tending them to two boundary value problems. To this end, we begin by defining an ex-
tension of (ODE’) of (ODE), which is identical to (ODE), except that it is well-defined when
pi ≥ 1. Specifically, define:

α′n(p) = − 1

kn(1− p)αn(p)

N − n
N − n+ 1

[knαn(p)− Ṽ (pi, n+ 1)− β(1− αn(p))(1− p)] (ODE’)

where

Ṽ (pi, n+ 1) =

V (pi, n+ 1) if pi ∈ (0, 1)

0 if pi ≥ 1
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Now let us define two boundary value problems on (ODE’):

(ODE’) is satisfied on [0, 1), and αn(0) = β/kn (BVP: β ≤ kn)

(ODE) is satisfied on (0, p∗n], and αn(p∗) = 1. (BVP: β ≥ kn)

Now we claim that the existence and uniqueness of a solution to (BVP: β ≤ kn) and
(BVP: β ≥ kn) implies the existence and uniqueness of a solution to (LP: β ≤ kn) and (LP: β > kn),
respectively. Let us begin by considering the case where kn ≥ β. Assume that there exists
a unique solution αn to (BVP: β ≤ kn). Note that order for αn to satisfy (BVP: β ≤ kn), it
must be that limp→0+ αn(p) = kn/β. Furthermore, (ODE) and (ODE’) are equivalent on
(0, 1). It follows that αn is a solution to (LP: β ≤ kn), thus establishing existence. To estab-
lish uniqueness, assume by contradiction there exists some α̃n defined on p ∈ (0, 1) that is
a solution to (LP: β ≤ kn) where α̃n(p) 6= αn(p). Now, define α̂n as follows, which extends
the domain of α̃n:

α̂n(p) =

α̃n(p) if p ∈ (0, 1)

kn/β if p = 0

Because lim p→ 0+α̃n(p) = kn/β, it follows that α̂n(p) satisfies (ODE’) on p ∈ [0, 1] and is
thus a solution to (BVP: β ≤ kn). Thus, (BVP: β ≤ kn) does not have a unique solution, a
contradiction. Note that the argument in the case where kn < β is analogous.

It remains for us to establish that there exist unique solutions to both (BVP: β ≤ kn) and
(BVP: β ≥ kn). We do this by invoking the Picard existence and uniqueness theorem, and
thus begin by establishing that the right-hand side of (ODE’) is Lipschitz continuous in
αn(p) and continuous in p for p ∈ [−ε, 1) and αn(p) ∈ [c, 1 + ε] for any c > 0 and some ε > 0.
Since pi ≡ αn(p) + (1−αn(p))p, it suffices to show that Ṽ (·, n+ 1) is Lipschitz continuous in
pi for pi ≥ 0. In the case where n = 1, Ṽ (pi, n+ 1) = 0 for all pi, and this is immediate. Next,
suppose n > 1. First, consider the case where kn+1 ≥ β. It follows from Lemma 3 that:

Ṽ (pi, n+ 1) =

knαn+1(pi)− β(1− pi) if pi < 1

0 if pi > 1

Because Ṽ (pi, n + 1) is continuously differentiable in pi when pi 6= 1, to establish that it is
Lipschitz continuous it suffices to show that limpi→1− V (pi, n+1) = 0. Suppose this does not
hold, by contradiction. Because αn+1(·) satisfies (ODE), this implies that limpi→1− α

′
n+1(pi) =

∞. This in turn implies that limpi→1 αn+1(pi) = ∞, and thus that (ODE) is not satisfied at
pi = 1. Contradiction.
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Next, consider the case where kn+1 < β. In this case:

Ṽ (pi, n+ 1) =


kn+1p

i/n if pi < p∗n+1

knαn+1(pi)− β(1− pi) if pi ∈ (p∗n+1, 1)

0 if pi = 1

By the reasoning from the case where kn+1 ≥ β, Ṽ (pi, n + 1) is Lipschitz continuous for all
pi > p∗n+1. Furthermore, Lipschitz continuity holds on pi < p∗n+1. To show that Lipschitz
continuity holds across all pi, it suffices to show that Ṽ (·, n+ 1) is differentiable at p∗n+1. To
this end, we take the left- and right- derivative of Ṽ (·, n+ 1) at p∗n+1 and show that they are
equal:

Ṽ1(p∗−, n+ 1) =
kn+1

N − n

Ṽ1(p∗+, n+ 1) = −kn+1α
′
n+1(p∗n+1) + β =

kn+1

1− p∗n+1

N − n
N − n+ 1

− β =
kn+1

N − n

Now, we show that there exists a unique solution for both (BVP: β ≤ kn) and (BVP: β ≥ kn)
in some neighborhood of their respective boundary conditions. By the Picard Theorem, this
follows immediately from our above-established result that the right-hand side of (ODE) is
Lipschitz continuous in αn(p) and continuous in p in some neighborhood of the boundary
conditions (αn(p) = 1, p = p∗) and (αn(p) = β/kn, p = 0).

Next, we seek to establish global existence and uniqueness of solutions to both (BVP: β ≤ kn)
and (BVP: β ≥ kn). First, consider (BVP: β ≥ kn). The argument for (BVP: β ≤ kn) fol-
lows analogously. Let [p∗, p) denote the largest right-open interval such that existence and
uniqueness are both satisfied. Assume by contradiction that p < 1. Let αn(p) denote the
solution along this interval.

We begin by showing that on this interval, αn(p) ∈ (α, 1], where α > 0 is some constant.
The upper bound is established as follows: suppose by contradiction that αn(p) > 1 some-
where on the interval. By the continuous differentiability of αn along the interval, there
must exist some q < p such that αn(q) = 1 and α′n(q) ≥ 0. However, it follows from (ODE’)
that

α′n(q) = − 1

kn(1− q)
N − n

N − n+ 1
[kn − Ṽ (pi, n+ 1)] < 0

where the strict inequality follows from the fact that Ṽ (pi, n + 1) ≤ kn+1 < kn. Contra-
diction. The lower bound is established as follows: suppose by contradiction that such a
lower bound does not exist. Then, again by the continuous differentiability of αn along the
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interval, there exists some p̂ ∈ [p∗, p) such that

lim
p→p̂−

αn(p) = 0 and αn(p) > 0 for all p < p̂

However, it then follows from (ODE) that limp→p̂− α
′
n(p) =∞. Thus, (ODE’) is not satisfied

on [p∗, p). Contradiction.

Having established that on [p∗, p), 1 ≤ αn(p) > α > 0, it follows from (ODE’), and the
observation that V (pi, n + 1) is bounded, that α′n is also bounded on this range. Thus, it
follows that limp→p− αn(p) ≡ α > 0 exists.

Now, consider the following modified boundary value problem, which is identical to
(BVP: β ≥ kn), except with boundary condition (p, α). by our prior-established result, we
recall that (ODE’) is Lipschitz continuous in αn(p) and continuous in p in some neighbor-
hood of the boundary condition. Thus, we can again apply the Picard Theorem to obtain
that there exists a unique solution to the modified boundary value problem in some neigh-
borhood of (p, α). Formally, there exists some ε > 0 such that there is a unique solution
α̃n(p) on interval (p − ε, p + ε). Now, we can “paste” this solution α̃n, with our prior solu-
tion αn. Formally, let

α̂n(p) =

αn(p) if p ∈ [p∗n, p)

α̃n(p) if p ∈ [p, p+ ε)

Now, note that α̂n(p) is a unique solution to (BVP: β ≥ kn) on [p∗n, p+ε), which contradicts
our earlier assumption that [p∗, p) was the largest right-open interval such that existence
and uniqueness are satisfied. Contradiction. �

Proof of Proposition 3. Let us begin by showing that αn(p) is decreasing in p for all (p, n)

on-path. When by Lemma 5, it follows that when k1 < β, α1(p) = 1 for all p, and otherwise,
α′1(p) = 0 for all p. Thus we have shown that α1(p) is constant in p. Now, consider the case
where n ≥ 2. Assume inductively that αn+1(p) is weakly decreasing in pwhenever (p, n+1)

is on path.

Assume by contradiction that there exists some p such that αn is strictly increasing. Note
that Lemma 5, α′n(p) = 0 whenever β ≥ kn and p < p∗n. Thus it must be that β > kn or p > p∗n.
In this case, it again follows from Lemma 5 that (ODE) must be satisfied. Now define the
function X(p) as follows:

X(p) ≡ knαn(p)− β(1− pi)− V (pi, n+ 1) (21)
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Note that whenever (ODE) is satisfied, the following holds:

α′n(p) > (=)0 if and only if X(p) < (=)0 (22)

Thus, X(p) < 0. Now, I claim that there exists p < p such that limp→p+X(p) ≥ 0. To
establish this, first consider the case where kn ≥ β. In this case,

lim
p→0+

X(p) = kn lim
p→0+

αn(p)−β(1− lim
p→0+

)− lim
p→0+

V (αn(p), n+1) = (kn+β) lim
p→0+

αn(p)−β− lim
p→0+

V (αn(p), n+1)

When limp→0+ αn+1(αn(p)) < 1, it follows from Lemma 3 that

lim
p→0+

V (αn(p), n+ 1) = lim
p→0+

V (αn(p), n+ 1, δ0) = kn+1 lim
p→0+

αn+1(αn(p))− β(1− lim
p→0+

αn(p))

= kn+1αn+1(β/kn)− β(1− β/kn)

Note that because kn ≥ β, the final equality from Lemma 5. Substituting this into our above
expression for limp→0+X(p), we obtain

lim
p→0+

X(p) = β − kn+1αn+1(β/kn)

In the case where kn+1 < β, it follows directly that limp→0+ X(p) > 0. Otherwise, if kn+1 ≥
β, then because limp→0+ αn+1(p) = β/kn+1, it follows from the inductive assumption that
αn+1(p) ≤ β/kn+1 for all p, and thus that limp→0+X(p) > 0.

Meanwhile, when limp→0+ αn+1(αn(p)) = 1, it follows from the inductive assumption
that αn+1(q) = 1 for all q ≥ limp→0+ αn(p). It thus follows that

lim
p→0+

V (pi, n+ 1) = lim
p→0+

V (pi, n+ 1, δ∞) =
kn+1

N − n
β

kn

Substituting into the above expression for limp→0+X(p) and simplifying, we obtain

lim
p→0+

X(p) = (β/kn)(β − kn+1/(N − n)) ≥ 0,

where the inequality follows from the fact that αn+1(β/kn) = 1, implying by Lemma 5 that
kn+1 ≥ β.

Next, consider the case where kn < β. In this case,

lim
p→p∗n+

X(p) = kn − lim
pi→1−

V (pi, n+ 1)
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If limpi→1− αn+1(pi) < 1, then by Lemma 3,

lim
pi→1−

V (pi, n+ 1) = lim
pi→1−

V (pi, n+ 1, δ0) = kn+1 lim
pi→1−

αn+1(pi) < kn.

Thus, in this case, we obtain that limp→p∗n+X(p) > 0. Meanwhile, if limpi→1− αn+1(pi) = 1,
then by the inductive assumption, αn+1(p) = 1 for all p. Thus,

lim
pi→1−

V (pi, n+ 1) = lim
pi→1−

V (pi, n+ 1, δ∞) = lim
pi→1−

kn+1p
i

N − n
=

kn+1

N − n
.

We once again obtain limp→p∗n+X(p) > 0. We have thus completed showing that there
always exists p < p such that limp→p+X(p) ≥ 0.

Because X(p) < 0 by assumption, there must exist some q ∈ [p, p] X(q) < 0 and X ′(q) <

0. Note that differentiating our above expression for X , we have

X ′(q) = knα
′
n(q) + β((1− q)α′n(q) + (1− αn(q)))− d

dq
V (αn(q) + (1− αn(q))q). (23)

First, consider the case where αn+1(qi) < 1. Then by Lemma 3,

V (qi, n+ 1) = V (qi, n+ 1, δ0) = kn+1αn+1(qi)− β(1− qi).

Substituting this into (23), we obtain

X ′(q) = knα
′
n(q)− kn+1α

′
n+1(qi)((1− q)α′n(q) + (1− αn(q))).

Note that because X(q) < 0 it follows from (22) that α′n(q) > 0. Furthermore, by the
inductive assumption, α′n+1(qi) ≤ 0. Thus, in this case, X ′(q) > 0. Contradiction.

Next, consider the case where αn+1(qi) = 1. By the inductive assumption, αn+1(p) = 1

for all p ≤ qi. Thus,

V (qi, n+ 1) = V (qi, n+ 1, δ∞) =
kn+1q

i

N − n
.

Substituting this into (23), we have

X ′(q) = knα
′
n(q) + (β − kn+1

N − n
)((1− q)α′n(q) + (1− αn(q)))

Because αn+1(qi) = 1, by Proposition 1 (if n > 2) and Lemma 5 (if n = 2), it must be that
β ≥ kn+1. Thus, it must be that X ′(q) > 0. Contradiction.

Next, we will show that if k1 ≥ β, then αn(p) = β/kn. Assume that k1 ≥ β. First
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consider the case where n = 1. By Lemma 5, α′n(p) = 0 for all p on-path, and thus, α1(p)

is constant in p. Since Lemma 5 also asserts that limp→0+ k1α1(p) = β, it must be that
α1(p) = β/k1 for all p. Now, consider n > 1. Assume inductively that αn+1(p) = β/kn+1

at all p. We begin by showinggmail that αn(p) is constant in p. Since kn > β, by Lemma 5,
(ODE) must hold at all p. By (22)showing αn(p) is constant in p is equivalent to showing
that X(p) = 0. To establish this, I begin by claiming that V (pi, n + 1) = V (pi, n + 1, δ0).
In the case where kn+1 > β, it follows from that αn+1(pi) < 1, and thus must hold by
Lemma 3. In the case where kn+1 = β, because for km > k1 ≥ β for all m ≥ 2, it follows that
n + 1 = N . In this case, all pure strategies δs must yield the same value. In particular, for
all s ∈ [0,∞], V (p,N, δs) = k1p. Thus, δ0 must be trivially optimal. Having established that
V (pi, n+ 1) = V (pi, n+ 1, δ0), we have:

V (pi, n+ 1) = kn+1αn+1(pi)− β(1− pi) = βpi

Substituting this into (21), we obtainX(p) = knαn(p)−β. Now, note that because limp→0+ αn(p) =

kn/β. Since we established above that αn(p) is weakly decreasing, αn(p) ≤ kn/β for all p,
and thus X(p) ≤ 0. Separately, by (22) αn(p) weakly decreasing implies that X(p) ≥ 0.
Combining these, inequalities, we have X(p) = 0.

Finally, we will show that k1 < β implies that α′(p) < 0 whenever αn(p) < 1. To this
end, suppose k1 < β, and suppose by contradiction that at some q such that αn(q) < 1,
α′n(q) = 0. It follows from 22 that X(q) = 0.

First, consider the case where αn+1(qi) = 1. Recall from the above that in this case, we
have

X ′(q) = knα
′
n(q) + (β − kn+1

N − n
)((1− q)α′n(q) + (1− αn(q)) = (β − kn+1

N − n
)(1− αn(q)) (24)

Now, I claim that β > kn+1

N−n . In the case where n = 2, this follows directly from our as-
sumption that k1 < β. Meanwhile, in the case where n = 2, αn+1(qi) = 1, this follows from
Proposition 1. It thus follows from (24) that X ′(q) > 0. Since X(q) = 0, it follows that for
some p < q, we must have X(p) < 0. By (23) it then follows that α′n(p) > 0. This is a a
contradiction of our above-established assertion that αn(p) is weakly decreasing in p.

Next, consider the case where αn+1(qi) < 1. As we have established above, in this case,

X ′(q) = knα
′
n(q)− kn+1α

′
n+1(qi)[(1− q)α′n(q) + (1− αn(q))] = −kn+1α

′
n+1(q)[1− αn(q)] > 0.

Again, this implies that there exists some p < q such that X(p) < 0 and thus that α′(p) > 0.
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Contradiction. �

Appendix F Commitment solution

Here, we seek the optimal solution to the monopoly case of the baseline model in which
the firm has the ability to commit to a reporting strategy. Formally, the only modification
we introduce is that rather than F and α being determined simultaneously as they are in
equilibrium, the firm chooses its strategy F before α is determined. Thus, in the commit-
ment case, the credibility function is a function of the firm’s strategy. We formalize this
dependence by denoting the firm’s credibility function as αF . αF is then given by (2) as
in the non-commitment case, except that the strategy F upon which it is computed is the
firm’s choice of strategy, rather than the equilibrium strategy.

The firm’s objective is to choose a permissible strategy F ∈ F which maximizes its
expected payoff over the course of the game. Specifically, its problem is given by the fol-
lowing:

max
F∈F

∫ ∞
0

[αF (t)− β(1− p(t))(1− α(t))]dΨ(t) (25)

where, as in the baseline setup, Ψ(t) denotes probability that the firm reports before time
t under strategy F . Before proceeding, we highlight that the only difference between this
problem and the problem of the monopoly case of the baseline model is that the credibility
function is not taken as given, but is rather a function of the firm’s choice of strategy F .

In the analysis that follows, it will be useful for us to cast this problem as a choice of
an optimal credibility function α, rahter than an optimal strategy F . In order to do so,
we begin with a useful observation, which is analogous to Lemma 1, except under the
commitment setting:

Lemma 6. F must be continuous in equilibrium.

We omit a proof for this claim, as it follows analogously to the proof for Lemma 1. The
proof is analogous because its underlying reasoning is identical to the non-commitment
case: if F exhibits a discontinuity at some time t, reporting at this time must yield a negative
expected payoff. Thus, the firm can profitably deviate by shifting that it had placed on t to
∞.

It follows immediately from Lemma 6 that in equilibrium, both the firm’s strategy F and
the corresponding commitment function, αF , are fully defined by the right-hazard rate b(t)
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of the firm’s strategy. That is the case of αF , we have

αF (t) =
λp(t)

λp(t) + b(t)

It further follows that Ψ is continuous and can thus be written as a function fo αF as follows:

Ψ(t) = 1− e−
∫ t
0 (b(s)+p(s)λ)ds = 1− e−

∫ t
0
λp(s)
α(s)

ds

Having written Ψ in terms of αF , and noting that at any given t αF (t) is a one-to-one
function of b(t), we can recast the optimization problem given by (25) as one one over αF :

max
αF

∫ ∞
0

λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e

−
∫ t
0
λp(s)
αF (s)

ds

In the following claim, we show that the optimal strategy for the firm consists of truth-
telling always (i.e., αF (t) = 1 for all t). In the proof that follows, we will let V (t, αF ) denote
the firm’s value at time t given that it has chosen αF .

Proposition 6. In equilibrium, αF (t) = 1 for all t.

Proof. Assume not, by contradiction. Then there exists a t∗ such that α(t∗) < 1. It follows
from Lemma 6, and the assumption that F is right-continuously differentiable, that αF
must be right-continuous. Thus, there must exist a α̂ < 1 and ε > 0 such that αF (t) < α̂ for
all t ∈ [t∗, t∗ + ε].

Note that for any αF , including the equilibrium αF , we can write the time-0 value as
follows:

V (0, αF ) =

∫ t∗+ε

0

λp(t)[1− β(1− p(t))]( 1

αF (t)
− 1)e

−
∫ t
0
λp(s)
αF (s)

ds
dt+ e

−
∫ t∗+ε
0

λp(s)
αF (s)

ds
V (t∗ + ε, αF )

(26)
Now, consider the following deviation α̃F , which is identical to αF , except that it is 1 on the
interval [t∗, t∗ + ε]:

α̃F (t) =

1 if t ∈ [t∗, t∗ + ε]

αF (t) otherwise
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Now, it follows from (26) that

V (0, αF ) = V (0, α̃F ) +

∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e−

∫ t
0
λp(s)
α(s)

dsdt−
∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt

+(e−
∫ t∗+ε
t∗

λp(s)
α(s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds)V (t∗ + ε, αF )

(27)

Now, we will note the following two inequalities:∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

αF (t)
− 1)]e

−
∫ t
0
λp(s)
αF (s)

ds
dt ≤

∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))( 1

α
− 1)]e−

∫ t
0
λp(s)
α

dsdt

<

∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt

e
−

∫ t∗+ε
t∗

λp(s)
αF (s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds ≤ e−

∫ t∗+ε
t∗

λp(s)
α

ds − e−
∫ t∗+ε
t∗ λp(s)ds < 0

Applying these two inequalites to (27) we obtain

V (0, αF ) < V (0, α̃),

and thus, α̃F serves as a profitable deviation. Contradiction. �

Appendix G Comparative statics: proofs
Proof of Proposition 4. First, let us show part (a). Fix all other parameters and let 0 < β <

β̃. Let α and α̃ denote the equilibrium credibility functions under β and β̃, respectively. Fix
an n and assume inductively that the proposition holds for n + 1 if n < N . Note that for
any (p, n) and t, p(t) will be the same p(t) will be the same under β and β̃. Thus to show the
above claim, it suffices to show that for any p, αn(p) is weakly increasing in β, and strictly
so whenever αn(p) < 1.

We begin by showing that αn(p) = 1 implies that α̃n(p) = 1. First, consider the case
where n = 1. By Proposition 2, α1(p) = 1 implies that k1 ≤ β. Thus, k1 < β̃, which by
Proposition 1 implies that α̃1(p) = 1. Next, consider the case where n > 1, and assume
α1(p) = 1. By Proposition 1, this implies that kn < β and p ≤ p∗n ≡

β−kn
β−kn/n . Further note that

p̃∗n ≡
β̃ − kn
β̃ − kn/n

>
β − kn
β − kn/n

≡ p∗n.

Thus, k1 < β̃ and p < p̃∗n, which by Proposition 1 implies α̃n(p) = 1.
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Now, suppose that αn(p) < 1. We wish to show that α̃n(p) > αn(p). Suppose by contra-
diction that α̃n(p) ≤ αn(p). Now, it follows from Proposition 2 that if kn > β̃,

lim
q→0+

αn(q) = β/kn < β̃/kn = lim
q→0+

α̃n(q).

Meanwhile, if kn ≤ β̃.
lim

q→p̃∗n+
αn(q) < 1 = lim

q→p̃∗n+
α̃n(q)

To see why the latter must must hold, first consider the case where n = 1. It follows from
Lemma 5 that α̃n(q) = 1 for all q. Meanwhile, it follows again from Proposition 2 that α1(q)

is constant in q, and because α1(p) < 1, limq→p̃∗n+ αn(q) < 1. In the case where n = 2, because
p∗n < p̃∗n, it follows from Proposition 1 that αn(p̃∗n) < 1.

Thus, we have that both when kn > β̃ and when kn ≤ β̃, there exists some p̂ < p such
that α̃n(p̂) > αn(p̂) and α̃n, αn satisfy (ODE) on [p̂, p] , for their respective value of β. Thus,
there exists a q ∈ [p̂, p] such that αn(q) = α̃n(q) and α′n(q) ≥ α̃′n(q). It follows from (ODE)
that in order for the above two conditions to hold, it must be that

X ≡ (β − β̃)(
1− αn(q)

αn(q)
)(1− q) +

V (qi, n+ 1)− Ṽ (qi, n+ 1)

αn(q)
≥ 0 (28)

where V and Ṽ denote the value functions under β and β̃, respectively. First consider the
case where n = 1. Then V (qi, n+ 1) = V (q̃i, n+ 1) = 0, and thus X < 0, contradicting (28).

Next, consider the case where n > 1. First suppose that αn+1(qi) = 1. It follows from the
inductive assumption that α̃n+1(qi) = 1. Thus, by Lemma 5, V (qi, n+1) = kn+1qi

N−n = Ṽ (qi, n+

1). Again this implies that X < 0, contradicting (28). Now, suppose that αn+1(qi) < 1. It
then follows from Lemma 3 that

V (qi, n+ 1) = V (qi, n+ 1, δ0) = kn+1αn+1(qi)− β(1− qi)

Furthermore,

Ṽ (qi, n+ 1) = Ṽ (qi, n+ 1, δ0) = kn+1α̃n+1(qi)− β̃(1− qi)

Thus, recalling from (5) that qi = αn+1(q) + (1− αn+1(q))q, we have

V (qi, n+ 1)− Ṽ (qi, n+ 1) ≤ kn+1(αn+1(qi)− α̃n+1(qi))
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Substituting this into the above expression for X , we obtain

X ≤ kn+1(αn+1(qi)− α̃n+1(qi))

αn(q)
< 0.

where the strict inequality follows from the inductive assumption that αn+1(qi) < α̃n+1(qi)).
Again, this is a contradiction of (28).

Next, let us establish part (b). Let λ̃ > λ > 0, and let α, α̃ denote the equilibria under λ
and λ̃, respectively, fixing all other parameters. We begin by showing that α̃n(p) = α̃n(p)

for any p and n. Fix an n and assume inductively that if n > 1, αn+1(p) = α̃n+1(p) for all p
on-path.

Letting V , Ṽ denote the value functions under the equilibria associated with λ and λ̃,
respectively. Note that V (p, n + 1) = Ṽ (p, n + 1) for all p on-path. In the case where n = 1,
V (p, n + 1) = Ṽ (p, n + 1) = 0, and thus this holds trivially. In the case where n > 1, this
follows from the inductive assumption.

Now, note that by Lemma 5, αn and α̃n must both be a solution to (P) at all (p, n) on-path,
which does not depend on λ. By Theorem 1, the solution to (P) is unique, and αn(p) = α̃n(p)

at all (p, n) on-path.

Now fixing any p and n, let p(t) and p̃(t) denote the common beliefs under λ and λ̃,
respectively. It then follows from (4) that p(t) > p̃(t) for all t > 0. Thus, because α(p) and
α̃(p) are both weakly decreasing in p (Proposition 3), it follows that αn(p(t)) ≤ α̃n(p(t)).
Furthermore, since α̃(p) is strictly decreasing in p (Proposition 3) whenever αn(p) < 1 and
kN > β, it follows that αn(p(t)) < αn( ˜p(t)) in this case.

Finally, let us establish part (c). Let α and α̃ denote the equilibria under N and N + 1

firms, respectively, fixing all other parameters. We begin by showing that for all p, αn(p) ≥
α̃n(p), and αn(p) > α̃n(p) when alphan(p) < 1. To this end, fix an n ∈ {1, ..., N} and assume
inductively that the claim holds for n+ 1 whenever n < N .

We begin by showing that α̃n(p) = 1 implies that αn(p) = 1. Suppose that α̃n(p) = 1. By
Proposition 1, β > kn and p < p̃ + n∗ ≡ β−kn

β−kn/(N+1−n)
. Note that because p∗n ≡

β−kn
β−kn/(N−n)

>

p̃∗n, it follows from Proposition 1 that αn(p) = 1.

Now consider the case where α̃n(p) < 1. We wish tot show that α̃n(p) < αn(p). To this
end, we begin by making a useful observation:

If αn and α̃n both satisfy (ODE) at q, and αn(q) = α̃n(q), then α′n(q) > α̃′n(q). (29)
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We will now establish this. Note first that for αn and α̃n to both satisfy (ODE) at q, given
that αn(q) = α̃n(q), the following must hold:

α′n(q) =
−1

kn(1− q)αn(q)

N − n
N − n+ 1

(knαn(q)− V (qi, n+ 1)− β(1− αn(q))(1− q))

α̃′n(q) =
−1

kn(1− q)αn(q)

N − n+ 1

N − n+ 2
(knαn(q)− Ṽ (qi, n+ 1)− β(1− αn(q))(1− q)),

where V and Ṽ denote the value functions under the equilibria withN andN+1 total firms,
respectively. Note that if n = N , α′n(q) = 0. Meanwhile, by Proposition 3, α̃′n(q) < 0. Thus,
α̃′n(q) < αn(q) must hold. Next, consider the case where n < N . We begin by observting
that V (qi, n + 1) > Ṽ (qi, n + 1). To see why this must hold, first consider the case where
α̃n+1(qi) = 1. It then follows from the inductive assumption that αn(qi) = 1. Then, by
Lemma 5,

Ṽ (qi, n+ 1) = Ṽ (qi, n+ 1, δ∞) =
kn+1q

i

N − n
<

kn+1q
i

N − n− 1
= V (qi, n+ 1, δ∞) = V (qi, n+ 1).

Next, consider the case where α̃n(qi) < 1. In this case, tif ollows from Lemma 3 that

Ṽ (qi, n+ 1) = Ṽ (qi, n+ 1, δ0) = kn+1α̃n+1(qi)− β(1− qi) < kn+1αn+1(qi)− β(1− qi)

= V (qi, n+ 1, δ0) ≤ V (qi, n+ 1)

where the strict inequality follows from the inductive assumption made above. Examining
the two ODEs listed above, since by Proposition 3, α′n(q) ≤ 0, it follows that α̃′n(q) < α′n(q).

Now, assume by contradiction that αn(p) ≤ α̃n(p). We begin by showing that there exists
a q∗ < p such that α̃n(q∗) < αn(q∗). To show this, first consider the case where kn ≥ β. Then,
by Proposition 2,

lim
q→0+

αn(q) = lim
q→0+

α̃n(q) =
β

kn

Then, by the continuous differentiability of αn and α̃n on (0, p), it follows from Equation 29
that for some q∗ < p sufficiently small αn(q∗) > α̃n(q∗). Next, consider the case where
kn < β, and let p∗n ≡

β−kn
β/(N−n+1)−kn . Note by Proposition 1 that αn(p∗n) = 1. Meanwhile,

because p∗n < p̃∗n ≡
β−kn

β/(N−n+2)−kn , it follows from Proposition 1 that α̃n(p∗n) < 1, and thus, we
have for q∗ = p∗n, α̃n(q∗) < αn(q∗).

Since α̃n(q∗) < αn(q∗) and α̃n(p) ≥ αn(p), by the continuous differentiability of α on
[q∗, p], there must exist some q ∈ (q∗, p] such that αn(q) = α̃n(q) and α′n(q) ≤ α̃′n(q). How-
ever, this is a contradiction of (29).
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Now fixing any p and n, let p(t) and p̃(t) denote the common beliefs under N and N + 1

firms, respectively. We wish to show that on some interval [0, t], where t > 0, αn(p(t)) ≥
α̃n(p̃(t)) is weakly increasing in t, and strictly so whenever αn(p(t)) < 1. First consider the
case where αn(p(t)) = 1. In this case, the statement holds trivially. Next, consider the case
where αn(p) < 1. It follows from the above that αn(p) > α̃n(p). Now note that it follows
from (4) that limt→0+ p(t) − p̃(t) = 0. Since αn(p(t)) and α̃n(p̃(t)) are both continuous in t

(Lemma 4), it follows that for some t > 0, αn(p(t)) > α̃n(p̃(t)) for all t ∈ [0, t]. �

Appendix H Heterogeneous learning abilities: proofs

In the analysis that follows, we will take as given that Lemma 1-4 apply to each firm i’s
strategy and credibility function under the general model in which firms possess hetero-
geneous learning abilities. Formal proofs of this are omitted as the above proofs under the
baseline model hold analogously under the extended model.

We begin by establishing an extension of Proposition 1 to the extended model. This
claim is presented as Proposition 1’ below. In the analysis below, we let V i

n denote the
value function associated with firm i when they are the nth firm to report.

Proposition 1’. For all s, there exists a pi∗S ∈ (0, 1] such that at any p on-path, αi1(p) = 1 if and
only if the following two conditions hold:

1. k1 ≤ β

2. p ≤ pi∗

Furthermore, pj∗ > pi∗ whenever λj > λi and n > 1.

Proof. Fix an i. Suppose that k1 ≤ β. By identical reasoning as Proposition 1, for all
q < β−k1

k1
, αi1(q) = 1. Let

pi∗ ≡ sup{p|αi1(p) = 1 for all q < p}

Note that it follows by definition that αi1(p) = 1 for all p ≤ pi∗n .

Next, we will show that αi1(q) < 1 whenever k1 > β or p > pi∗1 . Suppose not by con-
tradiction. First, consider the case where k1 > β and αi1(p) = 1 for some p. Then we have
that

V i
1 (p, δ0) = k1p+ (k1 − β)(1− p) > k1p ≤ V i

1 (p, δ∞)

Thus, i can profitably deviate at p. Contradiction. Next, consider the case where q > pi∗n

and αi1(p) = 1. Here, a contradiction follows from identical reasoning to what is presented
in Proposition 1.
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Finally, we show that pj∗ > pi∗ whenever λj > λi. Suppose by contradiction that
pj∗ ≤ pi∗. Note that because j is truth telling at (n = 1, pj∗S ), V j

1 (pj∗S , δ∞) ≥ V j
1 (pj∗, δ0).

Furthermore, because pj∗ ≤ pi∗, i is also truthful at (n = 1, pj
∗
n ). Thus,

V j
1 (pj∗S , δ0) = V i

1 (pj∗S , δ∞) = k1 − β(1− p).

Now, note that because λj > λi,

V j
1 (pj∗S , δ∞) > V i

1 (pj∗S , δ∞).

Combining these inequalities we have V i
1 (pj∗S , δ∞) < V i

1 (pj∗S , δ0). However, because αi1(pj∗) =

1, V j
1 (pj∗n ) = V j

1 (pj∗n , δ∞). Contradiction. �

Next, we extend Proposition 2 to this setting. Note this entails deriving an ODE which
applies specifically to this setting, (ODE’).

Proposition 2’. In equilibrium, for any p on-path, if k1 ≥ β or p > pi∗, then the following ODE
must be satisfied:

αi′1 (p) = −β −

∑
j 6=i

λj

αj1(p)∑
j λ

j(1− p)
[αi(p)− β(1− p)] (ODE’)

In addition, limp→0+ α
i
1(p) = β/k1 must hold if k1 > β, and limp→pi∗+ α

i
1(p) = 1 if k1 ≤ β.

Proof. Let us first establish that Equation ODE’ must hold under the conditions specified.

When k1 ≥ β or p > pi∗, it follows from Proposition 1’ that αi1(p(t)) < 1. It then follows
from Lemma 3 that there exsits an ε > 0 such that for all ∆ ∈ (0, ε),

V i
p,1(δ∆)− V i

p,1(δ0)

∆
= 0

Recall that V i
p,1(δ0) = k1α

i
1(p)− β(1− p). Meanwhile,

V i
p,1(δ∆) =

∫ ∆

0

k1α
i
1(p(s))Ψ(i, s)ds+ (1−

∑
j

lim
s→∆−

Ψ(j, s))[k1α1(p(∆))− β(1− p(∆))]

where Ψ is the first-report distribution associated with the strategy profile in which i

plays δ∞ and all j 6= i play Fp,1. Specifically, for all s > 0,

Ψ(i, s) = pλi
∫ s

0

e−
∏
j∈S λ

jr
∏
j 6=i

(1− F i
p,1(r)))dr
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and for j 6= i,

Ψ(j, s) = p

∫ s

0

e−
∏
k 6=j λ

kr
∏
k 6=i 6=j

(1− F k
p,1(r))d(−e−λjr(1− F j

p,1(r)))

+(1− p)
∫ s

0

∏
k 6=k 6=j

(1− F k
p,1(r))dF j

p,1(r)

Substituting these two expressions into the above equation for V i
p,1(δ0) and following the

same sequence of steps in Proposition 2 yields (ODE’).

Finally, the two limit conditions are established by the same reasoning presented in
Proposition 2. �

Proof of Proposition 4. First suppose αi1(p) = 1. It trivially holds that αi1(p) ≥ αj1(p) in this
case.

Next, suppose αi1(p) < 1. We want to show that αi1(p) > αi1(p). Suppose by contradiction
that αi1(p) ≤ αj1(p). Furthermore, first consider the case where k1 < β. Then, let

q∗ ≡ inf{q|αj1(p) < 1 and αj1(p) < αi1(p)}.

Because the αi1 are continuous, it follows from Proposition 1’, and the assumption that
αi1(p) ≤ αj1(p), that q∗ < p exists. Again, by continuity, αj1(q∗) = αi1(q∗). It then follows
from (ODE’) that αj′1 (q∗) < αi′1 (q∗). But this implies that for some q > q∗, αj1(q∗) > αi1(q∗).
Contradiction.

Next, consider the case where k1 ≥ β. Recall by Proposition 2’ that limp→0+ α
i
1(p) =

limp→0+ α
j
1(p). Thus, there exists some q ∈ (0, p] such that αi1(p) ≤ αj1(p) and αi′1 (p) ≤ αj′1 (p).

However, it again follows from (ODE’) that αi′1 (p) > αj′1 (p). Contradiction.

�
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