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Abstract

Empirically, many strategic settings are characterized by stable outcomes in which

players’ decisions are publicly observed, yet no player takes the opportunity to de-

viate. To analyze such situations, we introduce Bayes stable equilibrium, a solution

concept for estimating discrete games with weak assumptions on players’ information.

Our framework leads to computationally tractable econometric analysis while allowing

the researcher to be agnostic about the underlying information structure and the equi-

librium selection rule. We also propose a simple approach to constructing confidence

sets. We apply the framework to study the strategic entry decisions of McDonald’s and

Burger King in the US and the role of informational assumptions in identification. In a

counterfactual experiment, we examine the impact of increasing access to healthy food

on the market structure in Mississippi food deserts.
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1 Introduction

In dynamic strategic settings where firms can react after observing their opponents’ choices,

our intuitions suggest that firms’ actions would change over time. Interestingly, we often see

firms reach a certain steady-state in which no firm changes its decision even when it can. For

example, major exporters’ decisions to export products to specific markets remain unchanged

for a long period (Ciliberto and Jäkel, 2021). Airline firms’ decisions to operate between cities

tend to be persistent (Ciliberto and Tamer, 2009). Food-service retailers operate in a local

market over a long horizon, knowing precisely the identities of the competitors operating

nearby. In all these examples, each firm’s action constitutes a best response to the observed

actions of the opponents.

The prevalence of incomplete information in the real world makes the phenomenon par-

ticularly interesting. When the state of the world is unknown, firms will use all information

available to them; this includes the information revealed from their opponents’ decisions.

For example, while a coffee chain’s own research might report that a given neighborhood is

an unattractive location, observing that Starbucks—a chain known to have leading market

research technology—enter the market may make it think twice.1 Thus, if there is no further

revision of actions after they are realized and observed, it must be that each firm holds

information refined by observing the opponents’ decisions.

Although stable outcomes in the presence of information asymmetries are common in

the real world, it is not straightforward to model the data generating process. The main

difficulty arises from the requirement that the firms’ beliefs and actions must be consistent

with each other at the equilibrium situations. On the one hand, if the firms’ realized actions
1According to Tom O’Keefe, the founder of Tully’s Coffee, Tully’s early business expansion strategy was

to “open across the street from every Starbucks” because “they do a great job at finding good locations.”
(Goll, 2000).
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are best responses to each other, there must be beliefs that rationalize the actions as optimal.

On the other hand, each firm’s beliefs must be consistent with its private information about

the state of the world as well as the information extracted from observing its opponents’

decisions. Static Bayes Nash equilibrium, which has been a popular choice for empirical

analysis of games with incomplete information, is not applicable because it does not account

for the possible information updating and revision of actions after the opponents’ actions

are observed. Modeling convergence to stable outcomes via a dynamic games framework

may be feasible but likely non-trivial and reliant on ad hoc assumptions. In this paper, we

aim to develop a tractable equilibrium notion that satisfies the consistency requirement and

facilitates econometric analysis when the econometrician observes a cross-section of stable

outcomes at some point in time.

We propose a solution concept dubbed Bayes stable equilibrium as a basis for analyzing

stable outcomes in the presence of incomplete information and argue that it has attractive

properties. Bayes stable equilibrium is described as follows. A decision rule specifies a

distribution over action profiles for each realization of the state of the world and players’

private signals. Suppose that, after the state of the world and private signals are realized, an

action profile is drawn from the decision rule, and the action profile is publicly recommended

to the players. The decision rule is a Bayes stable equilibrium if the players always find

no incentives to deviate from the publicly recommended action profile after observing their

private signals and the action profile.

We justify Bayes stable equilibrium using a version of rational expectations equilibrium

à la Radner (1979). First, we argue that rational expectations equilibrium, appropriately

defined for our setting, provides a simple approach to rationalizing stable outcomes under

incomplete information. We define rational expectations equilibrium by introducing an “out-

come function” that maps players’ information to action profiles; this approach is motivated

by Liu (2020), who uses a similar approach to define the notion of stability in two-sided

markets with incomplete information. Next, we show that the set of Bayes stable equilib-
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rium predictions (joint distributions on states, signals, and actions) coincides with the set

of rational expectations equilibrium predictions that can arise when the players might have

more information than assumed by the analyst. Thus, Bayes stable equilibrium provides a

convenient tool for describing the implications of rational expectations equilibria when the

analyst only knows the minimal information available to the players; Bayes stable equilib-

rium is “informationally robust” in the same sense as the Bayes correlated equilibrium of

Bergemann and Morris (2016). The informational robustness property of Bayes stable equi-

librium is attractive given that it is often difficult to know the true information structure

governing the data generating process.

Assuming that the econometrician observes a cross-section of stable outcomes, we char-

acterize the identified set of parameters using Bayes stable equilibrium as a solution concept.

The Bayes stable equilibrium identified set has a number of attractive properties. First, it

is robust to unknown equilibrium selection rules and information structures: the identified

set is valid for arbitrary equilibrium selection rules and the possibility that the players ac-

tually observed more information than assumed by the econometrician. We let the model

be “incomplete” in the set of Tamer (2003), and the parameters are typically partially iden-

tified. Second, when strong assumptions on information are made, the Bayes stable equi-

librium identified set collapses to the pure strategy Nash equilibrium identified set studied

in Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry (2011). Third,

everything else equal, the Bayes stable equilibrium identified set is (weakly) tighter than

the Bayes correlated equilibrium identified set studied in Magnolfi and Roncoroni (2021).

While Bayes stable equilibrium and Bayes correlated equilibrium both allow estimation of

games with weak assumptions on players’ information, the former is stronger as it lever-

ages the assumption that opponents’ actions are observed to each player at the equilibrium

situations.

We propose a computationally tractable approach to estimation and inference. We show

that checking whether a candidate parameter enters the identified set (asking whether we
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can find an equilibrium consistent with data) solves a linear program. Furthermore, we

propose a simple approach to inference by combining this property with the insights from

Horowitz and Lee (2021): checking whether a candidate parameter belongs to the confidence

set amounts to solving a convex program.

As an empirical application, we use our framework to analyze the strategic entry decisions

of McDonald’s and Burger King in the US. We estimate the model parameters using Bayes

stable equilibrium and explore the role of informational assumptions on identification. We

also use the model to simulate the impact of increasing access to healthy food in Mississippi

food deserts. Our results suggest that the assumptions on players’ information that are often

used in the literature may be too strong, as the corresponding identified set can be empty.

On the other hand, making no assumption on players’ information produces an identified set

that is too large, indicating that some assumptions on information are necessary to produce

informative results. We show that an informative identified set can be obtained under an

intermediate assumption which is also credible; this specification assumes that McDonald’s

has accurate information about its payoff shocks while Burger King may observe nothing at

the minimum. We also compute the identified sets under the Bayes correlated equilibrium

assumption and find that the Bayes stable equilibrium identified sets are significantly tighter

under the same assumptions on players’ information.

Related Literature

Our work adds to the literature on econometric analysis of game-theoretic models (see

de Paula (2013) and Aradillas-López (2020) for recent surveys).2 Its key contribution lies in

designing a framework that applies to a class of situations characterized by stable outcomes.

2In his survey on the econometrics of static games, Aradillas-López (2020) classifies existing papers
around five criteria: (i) Nash equilibrium versus weaker solution concepts; (ii) the presence of multiple
solutions; (iii) complete- versus incomplete-information games; (iv) correct versus incorrect beliefs; (v) para-
metric versus nonparametric models. To place our work in these categories, this paper (i) develops a new
solution concept that is weaker than complete information pure strategy Nash equilibrium but stronger than
Bayes correlated equilibrium; (ii) admits a set of equilibria; (iii) allows a general form of incomplete infor-
mation which accommodate standard assumptions as special cases; (iv) assumes that players have correct
beliefs; (v) imposes parametric assumptions on the payoff functions and the distribution of unobservables.
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Specifically, our framework would be best applied to cases where (i) it is reasonable to as-

sume that the realized decisions represent firms’ best responses to the observed decisions of

the opponents, (ii) the stability of outcomes are not driven by high costs of revising actions,

and (iii) the econometrician observes cross-sectional data of firms’ stable decisions at some

point in time.3

Our framework differs from the usual Nash framework in that we explicitly assume oppo-

nents’ actions are observed in equilibrium situations. Static Nash frameworks are generally

not consistent with stable outcomes because players might regret their original actions af-

ter observing opponents’ actions. Furthermore, we are not aware of dynamic models (e.g.,

frameworks based on Markov perfect equilibrium) that can straightforwardly handle stable

outcomes in incomplete information environment. The empirical literature has been aware

of this issue (see the discussions in, e.g., Draganska et al. (2008), Einav (2010), and Ellick-

son and Misra (2011)). Our work fills this gap by developing an equilibrium concept that

facilitates econometric analysis.

Using Bayes stable equilibrium as a solution concept allows the researcher to relax the

common informational assumptions made in the empirical literature and make weak as-

sumptions on players’ information. An early work in this dimension is Grieco (2014) who

considers a parametric class of information structures that nest standard assumptions. Our

work is most closely related to recent papers that use Bayes correlated equilibrium as a ba-

sis for informationally robust econometric analysis: Magnolfi and Roncoroni (2021) applies

Bayes correlated equilibrium to static entry games (which are also considered in this paper),

Syrgkanis, Tamer, and Ziani (2021) to auctions, and Gualdani and Sinha (2020) to static,

single-agent models.4

3This idea behind cross-sectional analysis of games is accentuated in Ciliberto and Tamer (2009): “The
idea behind cross-section studies is that in each market, firms are in a long-run equilibrium. The objective of
our econometric analysis is to infer long-run relationships between the exogenous variables in the data and
the market structure that we observe at some point in time, without trying to explain how firms reached the
observed equilibrium.” (pp.1792-1793).

4There is also a strand of literature that studies the possibility that firms might have biased beliefs (see
Aguirregabiria and Magesan (2020) and Aguirregabiria and Jeon (2020) for a review). The main difference
is that the works in this literature assume that the econometrician knows the true information structure of
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We contribute to the literature on the econometrics of moment inequality models by

proposing a simple approach to constructing a confidence set based on the idea of Horowitz

and Lee (2021).5 Our approach is new in the context of econometric analysis of game-

theoretic models and applicable under alternative solution concepts such as pure strategy

Nash equilibrium or Bayes correlated equilibrium.

Our work also relates to the game theory literature in two dimensions. First, we in-

troduce a solution concept based on the idea of rational expectations pioneered by Radner

(1979). Our approach to defining a rational expectations equilibrium in games (the “outcome

function” approach) is largely motivated by Liu (2020), who used the same idea to define the

notion of stability in two-sided markets with incomplete information. There are works that

share similar motivations to ours—namely that the equilibrium concept should be robust

to players refining their information after observing opponents’ actions—and study solution

concepts closely related to rational expectations in games (e.g., Green and Laffont (1987),

Minehart and Scotchmer (1999), Minelli and Polemarchakis (2003), and Kalai (2004)). In

contrast to these works, the key departure is that we do not assume that individual strategy

mappings generate actions nor that players’ types are revealed.

Second, we add to the recent literature that studies solution concepts with informational

robustness properties (e.g., Bergemann and Morris (2013; 2016; 2017) and Doval and Ely

(2020)). Bergemann and Morris (2016) established the informational robustness property

of Bayes correlated equilibrium by showing that Bayes correlated equilibrium captures the

implications of Bayes Nash equilibrium when players may observe more information than

initially assumed. It turns out that we can use the same arguments to define Bayes stable

equilibrium and establish its information robustness property when the underlying solution

the game but firms may not have correct beliefs whereas we assume that firms have correct beliefs but the
econometrician does not know the true information structure.

5Recent development in inference with moment inequality models has introduced many alternative ap-
proaches for constructing confidence sets (see Ho and Rosen (2017), Canay and Shaikh (2017), and Molinari
(2020) for recent surveys). However, to the best of our knowledge, most are not directly applicable to
our setup, primarily due to the presence of a high-dimensional nuisance parameter and a large number of
inequalities.
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concept is rational expectations equilibrium.

Finally, our empirical application contributes to the literature on entry competition in

the fast-food industry. Existing empirical works that study strategic entries among the

top burger chains include Toivanen and Waterson (2005), Thomadsen (2007), Yang (2012),

Gayle and Luo (2015), Igami and Yang (2016), Yang (2020), and Aguirregabiria and Magesan

(2020). In particular, Yang (2020), who studies strategic entry decisions in the Canadian

hamburger industry, shares a similar motivation that players extract information from the

opponents’ actions, but uses a dynamic games framework to explicitly model the learning

process. Our empirical work is distinguished by the use of novel datasets and its focus on

exploring the role of informational assumptions. Moreover, to the best of our knowledge, we

are the first to study the impact of the local food environment on the burger chains’ strategic

entry decisions.6

The rest of the paper is organized as follows. Section 2 introduces the notion of Bayes

stable equilibrium in a general finite game of incomplete information and studies its prop-

erty. Section 3 sets up the econometric model and provides identification results. Section

4 provides econometric strategies for computationally tractable estimation and inference.

Section 5 applies our framework to the entry game played by McDonald’s and Burger King

in the US. Section 6 concludes. All proofs are in Appendix A.

Notation. Throughout the paper, we will use the following notation to express discrete prob-

ability distributions in a compact manner. When Y is a finite set, and p (y) denotes the

probability of y ∈ Y , we will use py ≡ p (y). Similarly, qy|x ≡ q (y|x) will be used to denote

conditional probability of y given x. We let ∆y ≡ ∆ (Y) denote the probability simplex on

Y , so that p ∈ ∆y if and only if py ≥ 0 for all y ∈ Y and
∑

y∈Y py = 1. Similarly, we let ∆y|x

denote the set of all probability distributions on Y conditional on x, so that q ∈ ∆y|x if and

only if qy|x ≥ 0 for all y and
∑

y∈Y q (y|x) = 1. We also use the convention that writes an

action profile as a = (a1, ..., aI) = (ai, a−i).
6For a list of works in economics that study issues related to food deserts, see Allcott et al. (2019) and

the references cited therein.
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2 Model

We consider empirical settings characterized by two properties. First, the setting is dynamic

in the sense that players can revise their actions after observing the opponents’ actions.

Second, players’ actions are readily and publicly observed by the others. Our objective is to

describe certain “steady-state” situations in which all players publicly observe the realized

action profile, yet no deviation occurs even when the agents have the opportunity to do so.

For empirical work, we will assume that the econometrician observes a cross-section of stable

outcomes.

In this section, we introduce Bayes stable equilibrium as a solution concept that solves the

consistency problem and facilitates econometric analysis while allowing for weak assumptions

on players’ information. Throughout the paper, we assume that the state of the world

remains persistent enough to abstract away from modeling the transition of states over time,

and that the costs of revising actions are sufficiently low so that we can ignore them.7 We

formalize the idea in a general class of discrete games of incomplete information, following

the notation of Bergemann and Morris (2016).

We proceed as follows. In Section 2.1, we lay out the game environment. In Section 2.2,

we formalize the notion of stable outcomes and motivate our solution concept. In Section 2.3,

we argue that rational expectations equilibrium à la Radner (1979) can be used as a baseline

solution concept for rationalizing stable outcomes. In Section 2.4, we introduce Bayes stable

equilibrium. Then, in Section 2.5, we show that Bayes stable equilibrium characterizes

the implications of rational expectations equilibria when the players might observe more

information than assumed by the analyst. Finally, in Section 2.6, we compare the proposed

solution concept to pure strategy Nash equilibrium and Bayes correlated equilibrium.

7In the real world, the costs of revising actions are not zero. However, the relevant question is whether
high adjustment costs are the main driver of stable outcomes. We assume that the adjustment costs are
negligible compared to the long-run profits obtained at stable outcomes.
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2.1 Discrete Games of Incomplete Information

Let I = {1, 2..., I} be the set of players. The players interact in a finite game of incomplete

information (G,S).8 A basic game G = 〈E , ψ, (Ai, ui)Ii=1〉 is a tuple of payoff-relevant primi-

tives: E is a finite set of unobserved states; ψ ∈ ∆ (E) is the common prior distribution with

full support; Ai is a finite set of actions available to player i, and A ≡ ×Ii=1Ai is the set of

action profiles; ui : A× E → R is player i’s von Neumann–Morgenstern utility function. An

information structure S = 〈(Ti)Ii=1 , π〉 is a tuple of information-related primitives: Ti is a

finite set of signals (or types), and T ≡ ×Ii=1Ti is the set of signal profiles; π : E → ∆ (T ) is

a signal distribution (which allows players’ signals to be arbitrarily correlated). The inter-

pretation is that the realized state of the world ε ∈ E drawn from the prior ψ is not directly

observed by the players, but each player observes private signal ti ∈ Ti which can be used

to learn about ε based on the signal distribution π. The game is common knowledge to

the players. As highlighted by Bergemann and Morris (2016), the separation between the

basic game and the information structure facilitates the analysis on the role of information

structures.

In empirical applications, there is a finite set of exogenous covariates X . We can augment

the notation and let (Gx, Sx) describe the game in markets with characteristics x ∈ X .

Indexing each game by x is justified by assuming that the realized x is common-knowledge

to the players and the econometrician, and that the game primitives are functions of x. We

suppress the dependence on x for now.

The following two-player entry game serves as a running example as well as a baseline

model for our empirical application.

Example 1 (Two-player entry game). The basic game G is described as follows. The

state of the world ε ∈ E is a vector of player-specific payoff shocks, ε = (ε1, ε2) ∈ R2,
8Throughout this paper, we assume that the state space is finite. The assumption simplifies the notation.

In addition, even though continuous state space can be used (see, e.g., Bergemann and Morris (2013)), we
will eventually need to discretize the space for feasible estimation. Syrgkanis, Tamer, and Ziani (2021) and
Magnolfi and Roncoroni (2021) take similar discretization approaches for estimation with Bayes correlated
equilibria.
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where ε ∼ ψ for some distribution ψ. Firm i’s action set is Ai = {0, 1} where ai = 1

represents staying in the market and ai = 0 represents staying out. The payoff function is

ui (ai, aj, εi) = ai (βi + κiaj + εi) where βi ∈ R is the intercept and κi ∈ R is the “spillover

effect” parameter which may be negative or positive depending on the nature of competition.

Then, βi + εi is the monopoly profit, βi + κi + εi is the duopoly profit, and the profit from

staying out is zero.

Next, we provide examples of information structures which we will pay special attention

to in our empirical application:

• In Scomplete, each player observes the realization of ε. Formally, we have Ti ≡ E for all

player i, and π (t1 = ε, t2 = ε|ε) = 1 for each ε;

• In Sprivate, εi is private information to player i. We have Ti ≡ Ei for all player i, and

π (t1 = ε1, t2 = ε2|ε) = 1 for each ε;

• In S1P , player 1 observes ε1, but player 2 observes nothing. We have T1 ≡ E1, T2 ≡ {0},

and π (t1 = ε1, t2 = 0|ε) = 1 for each ε. Player 2’s signal is uninformative;

• Finally, in Snull, both players observe nothing. We have T1 ≡ T2 ≡ {0}.

Note that the information structures described above can be ordered from the most infor-

mative to the least informative: Scomplete, Sprivate, S1P , Snull. For example, Scomplete is “more

informative” than Sprivate since each player is allowed to “observe more.” We will formally

define a partial ordering on information structures following Bergemann and Morris (2016)

in Section 2.5. �

2.2 Stable Outcomes

Let us formalize the notion of stable outcomes and motivate our solution concept.9 Suppose

that, at some point in time, the state of the world is ε, the private signals are t = (t1, ..., tI),
9The term “stability” has been used in different ways in the theory literature depending on the context.

Our notion of stability is the closest to the “stable matching” defined in Liu (2020) under incomplete infor-
mation matching games (the canonical complete information stable matching is a special case). There is also
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and the players’ decisions are a = (a1, ..., aI). Assume that each player i observes her private

signal ti as well as the outcome a. What are the conditions for having no deviation at this

situation? A necessary condition is that each player i holds a belief µi ∈ ∆ (E) that gives no

incentive to deviate from the status quo outome a unilaterally.

Definition 1 (Stable outcome). An outcome a = (a1, ..., aI) is stable with respect to a

system of beliefs µ = (µi)
I
i=1 if, for each player i = 1, ..., I,

Eε∼µi [ui (a, ε)] ≥ Eε∼µi [ui (a
′
i, a−i, ε)] (1)

for all a′i ∈ Ai.

But how do these beliefs arise? A sensible equilibrium would require that the equilibrium

action profiles and the equilibrium beliefs to be consistent with each other: (i) each players’

action must be optimal with respect to his belief, and (ii) each player’s belief must be

consistent with his private information as well as the observed decisions of the opponents. It

is easy to see that static Bayes Nash equilibrium will not satisfy these conditions in general;

when the players observe the realized actions, they will update their beliefs, possibly giving

incentives to revise their original actions. While it is natural to ask whether we can use a

noncooperative dynamic game to model convergence to a pair of stable decisions and stable

beliefs, such route is likely to be non-trivial and depend on ad hoc assumptions. In the

following sections, we propose a simple and pragmatic approach to the problem.

2.3 Rational Expectations Equilibrium

Before introducing Bayes stable equilibrium, which will be the solution concept we take

to econometric analysis, we argue that a version of rational expectations equilibrium à la

Radner (1979), appropriately defined for our setting, offers a simple conceptual framework for

“hindsight (or ex-post) stability” of Kalai (2004), whose motivation is very similar to ours but differs in that
it also requires players’ types to be revealed after the play. To the best of our knowledge, the term “Bayes
stable equilibrium” has not been used in the literature.
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rationalizing stable outcomes in the presence of incomplete information. After introducing

the definition of Bayes stable equilibrium in the next section, we show that Bayes stable

equilibrium characterizes the set of rational expectations equilibrium predictions when the

analyst does not know the underlying information structure. Thus, Bayes stable equilibrium

offers a tool for analyzing stable outcomes with weak assumptions on players’ information.

To define rational expectations equilibrium in our setting, we follow Liu (2020) and use

the “outcome function” approach described as follows.10 Let a game (G,S) be given. Let

δ : T → ∆ (A) be an outcome function in (G,S). Assume that δ is common knowledge

to the players. Suppose that, after the state of the world ε ∈ E and the signal profile

t ∈ T are realized according to the prior distribution and the signal distribution, an action

profile a ∈ A is drawn from the outcome function δ (·|t), and the players publicly observe a.

Each player i, having observed his private signal and the realized action profile (ti, ai, a−i),

updates his beliefs about the state of the world ε using Bayes’ rule, and decides whether

to adhere to the observed outcome (play ai) or not (deviate to a′i 6= ai). If δ is such that

the players always find the realized action profiles optimal, we call it a rational expectations

equilibrium of (G,S). Let Eδε [ui (a
′
i, a−i, ε) |ti, ai, a−i] denote the expected payoff to player i

from choosing a′i conditional on observing private signal ti and action profile (ai, a−i).

Definition 2 (Rational expectations equilibrium). An outcome function δ is a rational

expectations equilibrium for (G,S) if, for each i = 1, ..., I, ti ∈ Ti, (ai, a−i) ∈ A such that

Prδ (ti, ai, a−i) > 0, we have

Eδε [ui (ai, a−i, ε) |ti, ai, a−i] ≥ Eδε [ui (a
′
i, a−i, ε) |ti, ai, a−i] (2)

10Liu (2020) observed that the traditional idea of rational expectations equilibrium à la Radner (1979)
can be used to define stable matching in two-sided markets with incomplete information. Specifically, he
uses an “outcome function” approach and introduces a matching function that maps players’ types to an
observable match. We follow his insights and adopt the logic of rational expectations equilibrium to handle
a similar notion of stability in games with incomplete information. Minehart and Scotchmer (1999) and
Minelli and Polemarchakis (2003) have made similar attempts to connect rational expectations equilibrium
to games without price. While their definition of rational expectations equilibrium refers to strategy profiles,
we apply the definition to outcomes functions that are not necessarily the product of individual strategy
mappings.
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for all a′i ∈ Ai.

One way to understand the concept is to interpret the outcome function δ : T → ∆ (A)

as a reduced-form relationship between players’ information and the outcome of the game.

We are agnostic about the details on how δ came about. However, it is assumed that the

players agree on a common δ, and use δ to infer opponents’ information after observing the

realized decisions. Thus, δ serves as the players’ “model” for connecting the uncertainties to

the observables.

There is nothing conceptually new; we simply connect the definition of rational expec-

tations equilibrium to our setting. The rational expectations equilibrium in Radner (1979)

refers to a price function (a mapping from agents’ information to an observable price) such

that every price on its support clears the market when the agents use the prices to not only

calculate their budgets but also to refine their information by inferring others’ information.

In our setting, rational expectations equilibrium refers to an outcome function (which maps

players’ information to an action profile) such that every action profile on the its support

gives no deviation incentives to the players when they use the realized action profile to infer

opponents’ information.

In a rational expectations equilibrium, outcomes and beliefs are determined simultane-

ously such that the stability condition (1) is satisfied. If the environment—the state of the

world and the players’ signals—stays unchanged and the outcomes are generated by a ra-

tional expectations equilibrium, the realized decisions persist over time. In the econometric

analysis, we will assume that the econometrician observes these decisions at some point in

time.

2.4 Bayes Stable Equilibrium

Let us introduce Bayes stable equilibrium. Let (G,S) be given. A decision rule in (G,S) is

a mapping σ : E × T → ∆ (A) that specifies a probability distribution over action profiles

at each realization of state and signals. Assume that σ is common knowledge to the players.
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Suppose the data generating process is described as follows. First, the state of the world

ε ∈ E is drawn from ψ and the profile of private signals t ∈ T is drawn from π (·|ε). Next,

an action profile a ∈ A is drawn from σ (·|ε, t) and publicly observed by the players. Then,

each player i, having observed her private signal and the realized action profile (ti, ai, a−i),

updates his beliefs about the state of the world ε using Bayes’ rule, and decides whether to

adhere to the observed outcome (play ai) or not (deviate to a′i 6= ai). If the players always

have no incentives to deviate from the realized action profiles, we call σ a Bayes stable

equilibrium.

Definition 3 (Bayes Stable Equilibrium). A decision rule σ is a Bayes stable equilibrium

for (G,S) if, for each i = 1, ..., I, ti ∈ Ti, (ai, a−i) ∈ A such that Prσ (ti, ai, a−i) > 0, we have

Eσε [ui (ai, a−i, ε) |ti, ai, a−i] ≥ Eσε [ui (a
′
i, a−i, ε) |ti, ai, a−i] (3)

for all a′i ∈ Ai.

One way to understand the definition is to interpret σ as the recommendation strategy

of an omniscient mediator. The mediator commits to σ and announces it to the players

at the beginning of the game. Then, after (ε, t) is realized and observed by the mediator,

the mediator draws an action profile a from σ (·|ε, t) and publicly recommends it to the

players. The Bayes stable equilibrium condition requires that the publicly recommended

action profiles are always incentive compatible to the players.

Note that an outcome function δ does not depend on the state of the world ε whereas

a decision rule σ can. The measurability of an outcome function with respect to players’

information reflects the requirement that if any outcome is to be achieved, it must depend on

what the players know, but cannot depend on what they do not know. On the other hand,

a decision rule allows the realized action profiles to be correlated with the unobserved state

of the world. In the next section, we show that the correlation arises because Bayes stable

equilibrium captures the implications of rational expectations equilibria when the players
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might observe extra signals about the state of the world that is unknown to the analyst.

We can simplify the obedience condition (3) so that the decision rule enters the equilib-

rium conditions linearly. Given that player i observes signal ti and recommendation (ai, a−i),

the expected profit from choosing a′i is

Eσε [ui (a
′
i, a−i, ε) |ti, ai, a−i] =

∑
ε

ui (a
′
i, a−i, ε)Pr

σ (ε|ti, ai, a−i)

=
∑
ε

ui (a
′
i, a−i, ε)

( ∑
t−i
ψ (ε) π (ti, t−i|ε)σ (ai, a−i|ε, ti, t−i)∑

ε̃,t̃−i
ψ (ε̃) π

(
ti, t̃−i|ε̃

)
σ
(
ai, a−i|ε̃, ti, t̃−i

)) .
Then, after cancelling out the denominator,which is constant across all possible realizations

of ε ∈ E , t−i ∈ T−i, the obedience condition (3) can be rewritten as follows:

∑
ε,t−i

ψεπt|εσa|ε,tui (a, ε) ≥
∑
ε,t−i

ψεπt|εσa|ε,tui (a
′
i, a−i, ε) , ∀i ∈ I, ti ∈ Ti, a ∈ A, a′i ∈ Ai. (4)

Since σ enters the expression linearly, finding a Bayes stable equilibrium solves a linear

feasibility program; this will make econometric analysis computationally tractable.

2.5 Informational Robustness of Bayes Stable Equilibrium

In Section 2.3, we have argued that an analyst can use rational expectations equilibrium

to as a description of stable outcomes under incomplete information situations. More often

than not, however, it is difficult to know the true information structure governing the data

generating process in the real world. Clearly, attempts to characterize all feasible predictions

(joint distribution on states, signals, and actions) of a model by a direct enumeration over all

possible information structures are likely to be futile since the set of information structures

is large. Nevertheless, it would be desirable to have a tractable way of characterizing the set

of predictions without relying on a specific assumption on players’ information.

In this section, we show that Bayes stable equilibrium provides a tractable characteri-

zation of all rational expectations equilibrium predictions that can arise when the players
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might observe more information than assumed by the analyst. Thus, Bayes stable equi-

librium serves as a tool for analyzing stable outcomes with weak assumptions on players’

information. This result closely resembles the informational robustness property of Bayes

correlated equilibrium (established in Theorem 1 of Bergemann and Morris (2016)), namely

that Bayes correlated equilibrium provides a shortcut to charactering all Bayes Nash equilib-

ria predictions that can arise when the players might observe more information than specified

by the analyst.

We formalize the idea as follows. First, to formalize the idea that players observe more

information under one information structure than under another, we introduce the notion of

expansion defined in Bergemann and Morris (2016).

Definition 4 (Expansion). Let S = (T , π) be an information structure. S∗ = (T ∗, π∗) is

an expansion of S, or S∗ %E S, if there exists
(
T̃i
)I
i=1

and λ : E × T → ∆
(
T̃
)
such that

T ∗i = Ti × T̃i for all i = 1, ..., I and π∗
(
t, t̃|ε

)
= π (t|ε)λ

(
t̃|ε, t

)
.

Intuitively, S∗ is an expansion of S if each player is allowed to observe more signals under

S∗ than under S. In other words, in S, each player i observes a private signal ti, whereas

in S∗, each i gets to observe an additional signal t̃i generated by an augmenting signal

distribution λ. The notion of expansion defines a partial order on the set of information

structures which we represent as S∗ %E S.

Example 2 (Continued). Expansion defines a partial order on information structures Scomplete,

Sprivate, S1P , and Snull. Clearly, Scomplete %E Sprivate %E S1P %E Snull. For example, to show

Sprivate %E S1P , take T private1 = E1, T private2 = E2, T 1P
1 = E1, T 1P

2 = {0}, T̃1 = {0}, T̃2 = E2,

and λ
(
t̃1 = 0, t̃2 = ε2|ε2

)
= 1, i.e., in Sprivate, Player 2 receives an extra signal that informs

him the realization of ε2. �

Let PBSEε,t,a (G,S) be the set of joint distributions on E × T ×A that can arise in a Bayes

stable equilibrium of (G,S). Let PREEε,t,a (G,S) be defined similarly. Note that if S∗ %E S, the

joint distributions on E×T ∗×A induce marginals on E×T ×A. The following theorem states
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that by considering Bayes stable equilibrium of (G,S), we can capture all joint distributions

on E × T ×A that can arise in a rational expectations equilibrium under some information

structure that is more informative than S.

Theorem 1 (Informational Robustness). For any basic game G and information structure

S, PBSEε,t,a (G,S) =
⋃
S∗%ES

PREEε,t,a (G,S∗).

The proof of the theorem closely follows that of Bergemann and Morris (2016) Theorem 1.

The “⊆” direction is established by taking the equilibrium decision rule σ : E×T → ∆ (A) as

an augmenting signal function which generates a “public signal” a that is commonly observed

by the agents. We then construct a trivial outcome function δ which places unit mass on the

recommended outcome, i.e., δ (ã|a) = 1 if and only if ã = a. Then the rational expectations

equilibrium condition for δ in a game with the augmented information structure is implied

by the obedience condition for σ. Conversely, the “⊇” direction is established by integrating

out the “extra signals” t̃i from the rational expectations equilibrium condition, which directly

implies the obedience condition for σ.

Theorem 1 can be framed in terms of marginal distributions on the action profiles. This

characterization is more relevant to econometric analysis; typical data only contain informa-

tion on players’ decisions but not the signals nor the state of the world. Let PBSEa (G,S) be

the set of marginal distributions on A that can arise in a Bayes stable equilibrium of (G,S).

Let PREEa (G,S) be defined similarly.

Corollary 1 (Observational Equivalence). For any basic game G and information structure

S, PBSEa (G,S) =
⋃
S∗%ES

PREEa (G,S∗).

2.6 Relationship to Other Solution Concepts

Bayes stable equilibrium is an empirically motivated notion that offers a simple approach

to rationalizing stable outcomes while accounting for informational feedback from players’

observation of realized outcomes. Its focus is different from the traditional Nash framework
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that studies the implications of non-cooperative assumptions. We provide a comparison

in Appendix D using a simple two-player entry game example familiar in the econometric

literature on game-theoretic models.

In the rest of the section, we compare our solution concepts to pure strategy Nash equilib-

rium and Bayes correlated equilibrium. First, we show that our framework has pure strategy

Nash equilibrium as a special case. Second, we show that Bayes stable equilibrium refines

Bayes correlated equilibrium as the former imposes stronger restrictions than the latter.

2.6.1 Comparison to Pure Strategy Nash Equilibrium

The following theorem says that pure strategy Nash equilibrium arises as a special case of

rational expectations equilibrium (or Bayes stable equilibrium) when strong assumptions on

players’ information are made.

Theorem 2 (Relationship to pure strategy Nash equilibrium). 1. Let G be an arbitrary

basic game and let Scomplete be a complete information structure in which the state of

the world ε is publicly observed by the players. An outcome function δ : E → ∆ (A)

is a rational expectations equilibrium of
(
G,Scomplete

)
if and only if, for every ε ∈ E,

δã|ε > 0 implies ã is a pure-strategy Nash equilibrium action profile at ε. Furthermore,

δ is a rational expectations equilibrium of
(
G,Scomplete

)
if and only if it is a Bayes

stable equilibrium of
(
G,Scomplete

)
.

2. Suppose that the basic game G is such that ε = (ε1, ..., εI) and ui (a, ε) = ui (a, εi), and

let Sprivate be an information structure in which each player i observes εi. Then an

outcome function δ : E → ∆ (A) is a rational expectations equilibrium of (G,Sprivate)

if and only if it is a rational expectations equilibrium of
(
G,Scomplete

)
. Furthermore, δ

is a rational expectations equilibrium of (G,Sprivate) if and only if it is a Bayes stable

equilibrium of (G,Sprivate).

Theorem 2.1 states that in any game with complete information structure, assuming
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rational expectations equilibrium is equivalent to assuming pure strategy Nash equilibrium

at each ε. A rational expectations equilibrium outcome function δ is just a coordination

device (or a selection mechanism) over pure strategy Nash outcomes. It also implies that

a rational expectations equilibrium exists if and only if there is at least one pure strategy

Nash equilibrium action profile at each ε ∈ E (on the support of ψ).

Theorem 2.2 implies that in a class of games where the state of the world ε is simply a

vector player-specific payoff shocks (which is a common assumption for empirical models of

discrete games), we can use weaker informational assumptions to rationalize pure strategy

Nash outcomes. Intuitively, when each player i observes his εi and an outcome a in an

equilibrium situation, opponents’ types ε−i are payoff-irrelevant. In a pure strategy Nash

equilibrium framework, i uses its knowledge of ε−i to predict a−i. However, under the rational

expectations equilibrium assumption, it is assumed that i observes a−i so ε−i becomes irrel-

evant to i. Therefore, under a rational expectations equilibrium assumption, it is sufficient

that player i observes εi in order to support pure strategy Nash outcomes.

Note that under the assumptions in the theorem, there is no difference between an out-

come function and a decision rule because players’ signals exhaust information about the

state of the world. Hence, Bayes stable equilibrium and rational expectations equilibrium

are identical in these circumstances.

2.6.2 Comparison to Bayes Correlated Equilibrium

Bayes stable equilibrium is a refinement of Bayes correlated equilibrium because the equi-

librium conditions for the former is stronger than those for the latter. To describe Bayes

correlated equilibrium, suppose that an omniscient mediator commits to a decision rule

σ : E × T → ∆ (A) in (G,S) and announces it to the players. After the state of the world

ε is drawn from the prior ψ (·) and the signal profile t is drawn from the signal distribu-

tion π (·|ε), the mediator observes (ε, t) and draws an action profile a from the decision rule

σ (·|ε, t). Then, the mediator privately recommends ai to each player i. Each player i, having
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observed his private signal ti and the privately recommended action ai, decides whether to

follow the recommendation (play ai) or not (deviate to a′i 6= ai). If the players are always

obedient, then the decision rule is a Bayes correlated equilibrium of (G,S).

Formally, a decision rule σ : E × T → ∆ (A) in (G,S) is a Bayes correlated equilibrium

if for each i ∈ I, ti ∈ Ti, and ai ∈ Ai, we have

Eσ(ε,a−i) [ui (ai, a−i, ε) |ti, ai] ≥ Eσ(ε,a−i) [ui (a
′
i, a−i, ε) |ti, ai]

for all a′i ∈ Ai whenever Prσ (ti, ai) > 0, or more compactly,

∑
ε,t−i,a−i

ψεπt|εσa|ε,tui (ai, a−i, ε) ≥
∑

ε,t−i,a−i

ψεπt|εσa|ε,tui (a
′
i, a−i, ε) , ∀i, ti, ai, a′i. (5)

The only difference between Bayes stable equilibrium and Bayes correlated equilibrium

is that, after (ai, a−i) is drawn from the decision rule, the former assumes that the mediator

informs each player i the entire action profile (ai, a−i) whereas the latter assumes that the

mediator informs each player i only ai but not a−i. That is, compared to the Bayes correlated

equilibrium conditions (5) which integrate out opponents’ actions a−i since each player i

needs to anticipate a−i, Bayes stable equilibrium conditions (4) condition on a−i because it

is assumed that all actions are publicly observed at an equilibrium situation. The following

is immediate.

Theorem 3 (Relationship to Bayes correlated equilibrium). If a decision rule σ is a Bayes

stable equilibrium of (G,S), it is a Bayes correlated equilibrium of (G,S).

Action profiles on the equilibrium path of a Bayes correlated equilibrium may be subject

to regret; a player who observes the realized decisions of the opponents might want to revise

her action. In contrast, Bayes stable equilibrium explicitly requires that such regret not

occur.

When information is complete, Bayes correlated equilibrium reduces to the canonical
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correlated equilibrium, whereas Bayes stable equilibrium reduces to pure strategy Nash equi-

librium in the sense described in Theorem 2. When there is a single player, the two solution

concepts are identical because there is no informational feedback from observing opponents’

actions.

3 Econometric Model and Identification

In this section, we describe the econometric model which is based on a general class of discrete

games of incomplete information. We characterize the identified set under the assumption

that the data are generated by a Bayes stable equilibrium.

3.1 Setup

Let us denote market covariates as x ∈ X where X is a finite set; the covariates are

common knowledge to the players and observed by the econometrician. Players inter-

act in a set of games
(
Gx,θ, Sx

)
, each indexed by a finite-dimensional parameter θ ∈ Θ;

the game being played is common knowledge to the players. The basic game at x is

Gx,θ = 〈E , ψx,θ,
(
Ai, ux,θi

)I
i=1
〉 and the information structure at x is Sx = 〈(Ti)Ii=1 , π

x〉.11

We maintain the assumption that the set E is finite in order to make estimation feasi-

ble.12 We assume that θ enters the prior distributions ψx,θ ∈ ∆ (E) and the payoff functions

ux,θi : A × E → R, and that the econometrician knows the prior and the payoff functions

up to θ. As standard in the empirical literature, we assume that the state of the world is a

vector of player-specific payoff shocks, i.e., ε = (ε1, ε2, ..., εI) and ux,θi (a, ε) = ux,θi (a, εi).

The data {(am, xm)}nm=1 represent a cross-section of action profiles and covariates in

11It is without loss to assume that E and T do not depend on x because we can use E ≡ ∪xEx and
T ≡ ∪xT x. In general, we can also let θ enter the information structures, which would make the information
structures be part of the objects the econometrician wants to identify. In this paper, however, we focus on
identifying the parameters of the payoff functions and the distribution of the payoff shocks.

12If the benchmark distribution of unobservables is continuous, it will be discretized. Increasing the
number of points in E can make the discrete approximation more accurate at the expense of increased
computational burden. See Appendix B for the details on how we make discrete approximations to continuous
distributions.
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markets m = 1, ..., n that are independent from each other. Let φx ∈ ∆ (A) denote the

conditional choice probabilities that represent the probability of observing each action profile

conditional on covariate value x. We assume that the econometrician can identify φx at each

x ∈ X as n→∞. The set of baseline assumptions for identification analysis is summarized

below.

Assumption 1 (Baseline assumption for identification). 1. The set of covariates X and

the set of states E are finite.

2. The prior distribution ψx,θ ∈ ∆ (E) and the payoff functions ux,θi (·) are known up to a

finite-dimensional parameter θ.

3. The state of the world is a vector of player-specific payoff shocks, i.e., ε = (ε1, ..., εI)

and ux,θi (a, ε) = ux,θi (a, εi).

4. Conditional choice probabilities φx ∈ ∆ (A), x ∈ X , are identified from data.

Example. (Continued) In the baseline example, there are no covariates. The econome-

trician assumes that the prior distribution is εi
iid∼ N (0, 1) (which will be discretized).

The payoff function is uθi (ai, aj, εi) = ai (κiaj + εi) where θ = (κ1, κ2) ∈ R2 is the pa-

rameter of interest. The econometrician observes the conditional choice probabilities φ =(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
whose elements represent the probability of each action profile, e.g.,

φ(1,0) is the probability that firm 1 enters (a1 = 1) but firm 2 stays out (a2 = 0). �

Given Assumption 1, the identified set of parameters can be defined when the solu-

tion concept and the information structure are specified. For any game
(
Gx,θ, Sx

)
, let

PSCa
(
Gx,θ, Sx

)
be the set of feasible probability distribution on A (the conditional choice

probabilities) under solution concept SC. The identified set of parameters is defined as

follows.

Definition 5 (Identified set of parameters). Given Assumption 1, and solution concept SC,

23



and information structure S̃ =
(
S̃x
)
x∈X

, the identified set of parameters is defined as:

ΘSC
I

(
S̃
)
≡
{
θ ∈ Θ : ∀x ∈ X , φx ∈ PSCa

(
Gx,θ, S̃x

)}
.

In words, a candidate parameter θ enters the identified set ΘSC
I

(
S̃
)
if at each x ∈ X , the

observed conditional choice probabilities φx can arise under some equilibrium of the model.

3.2 Identification and Informational Robustness

We translate the observational equivalence between rational expectations equilibrium and

Bayes stable equilibrium (Corollary 1) in terms of identified sets. Consider the following

assumption.

Assumption 2 (Identification under rational expectations equilibrium). In each market

with covariates x ∈ X , the data are generated by a rational expectations equilibrium of(
Gx,θ0 , S̃x,0

)
for some information structure S̃x,0 which is an expansion of Sx (S̃x,0 %E Sx).

Assumption 2 says that there is a true parameter θ0 underlying the data generating

process, and that at each x ∈ X , the true information structure is some S̃x,0 that is an

expansion of Sx. In practice, we will consider a scenario where the econometrician can only

pin down Sx but not the true information structure S̃x,0. In other words, the econometrician

knows the baseline information structure Sx that describes the minimal information available

to the players, but does not know whether the players actually had access to more signals

than prescribed in Sx. Then, under Assumptions 1 and 2, the econometrician will have to

admit all information structures that are expansions of the baseline information structure

Sx. This approach contrasts with the traditional approaches that assume the econometrician

knows the true information structure exactly. For example, if the econometrician sets the

baseline information structure as Sprivate (player i observes εi), then we effectively allow each

i to have more information about ε−i whereas the traditional approaches would prohibit this

possibility.
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However, directly working with Assumption 2 is computationally infeasible because it

requires searching over the set of information structures which is large. We show that

Assumption 2 can be replaced with the following assumption, which does not rely on unknown

information structures.

Assumption 3 (Identification under Bayes stable equilibrium). In each market with covari-

ates x ∈ X , the data are generated by a Bayes stable equilibrium of
(
Gx,θ0 , Sx

)
.

The following theorem is the consequence of Corollary 1; Assumption 2 and Assumption

3 are observationally equivalent.

Theorem 4 (Equivalence of identified sets). The identified set under Assumptions 1 and 2

is equal to the identified set under Assumptions 1 and 3.

Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and Ziani (2021) use similar results

for econometric analysis, but with Bayes correlated equilibrium. They assume that the

underlying data generating process is described by Bayes Nash equilibria, whereas we rely

on rational expectations equilibria.

Our identification results make no assumptions on the equilibrium selection rule. The

Bayes stable equilibrium identified set under Assumptions 1 and 3 is valid even when the data

are generated from a mixture of multiple equilibria. The convexity of the set of Bayes stable

equilibria (readily verified from (4) since σ enters the expression linearly) makes the single

equilibrium assumption innocuous. For example, if the data are generated by two equilibria

σ1 and σ2 with mixture probability λ and (1− λ), then since σλ ≡ λσ1+(1− λ)σ2 is another

equilibrium that generates the same joint distributions, it is as if the data were generated

by a single equilibrium σλ.13

13Also see Syrgkanis, Tamer, and Ziani (2021) Lemma 2 for a general argument on why it is without loss
to assume that the data are generated by a single equilibrium if the set of predictions is convex.
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3.3 Relationship Between Identified Sets

Recall that in Scomplete each player i observes the realization of ε, and in Sprivate each player

i observes the realization of εi (see Example 1). We let ΘSC
I

(
Scomplete

)
denote the identified

set when Sx = Scomplete at every x ∈ X ; ΘSC
I (Sprivate) is defined similarly. Finally, S1 %E S2

if and only if S1,x %E S2,x at every x ∈ X . The following theorem shows the relationship

between identified sets.

Theorem 5 (Relationship between identified sets). Suppose Assumption 1 holds.

1. If S ′ %E S ′′, then ΘBSE
I (S ′) ⊆ ΘBSE

I (S ′′).

2. ΘBSE
I

(
Scomplete

)
= ΘPSNE

I

(
Scomplete

)
= ΘBSE

I (Sprivate).

3. For any information structure S, ΘBSE
I (S) ⊆ ΘBCE

I (S).

First, Theorem 5.1 says that a stronger assumption on information leads to a tighter

identified set. The result is intuitive given that the feasible set of equilibria shrinks when

more information is available to the players. A consequence of Theorem 5.1 is that we will

have ΘBSE
I

(
Scomplete

)
⊆ ΘBSE

I

(
S̃
)
⊆ ΘBSE

I

(
Snull

)
for any S̃, i.e., the tightest identified set

is obtained when Scomplete is assumed and the loosest identified set is obtained when Snull is

assumed. Note that ΘBSE
I

(
Snull

)
corresponds to the identified set that makes no assumption

on players’ information.

Second, Theorem 5.2 (which follows from Theorem 2) says that Bayes stable equilib-

rium and pure strategy Nash equilibrium are observationally equivalent when Scomplete is

assumed.14 Furthermore, due to Assumption 1.3, Bayes stable equilibrium can deliver the

same identified set under Sprivate which is weaker than Scomplete. Thus, if the researcher takes

Bayes stable equilibrium (or rational expectations equilibrium) to be a reasonable notion for

the given empirical setting, pure strategy Nash equilibrium outcomes can be rationalized

with informational assumptions that are weaker than the complete information assumption.
14When Assumption 1.3 is imposed, rational expectations equilibrium and Bayes stable equilibrium are

identical under Sprivate and Scomplete. This is because a profile of players’ signals is equal to the state of the
world, so conditioning on players’ information is equivalent to conditioning on the state of the world.
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Finally, Theorem 5.3 (which follows from Theorem 3) says that for any baseline assump-

tion on players’ information, the Bayes stable equilibrium identified set is a subset of the

Bayes correlated equilibrium identified set.

3.4 Identifying Power of Informational Assumptions

We use a two-player entry game (our running example) to numerically illustrate the identi-

fying power of various informational assumptions in the spirit of Aradillas-Lopez and Tamer

(2008). We also compare the identifying power to that of Bayes correlated equilibrium

studied in Magnolfi and Roncoroni (2021).

Each player’s payoff function is uθi (ai, aj, εi) = ai (κiaj + εi). We assume (ε1, ε2) follows

a bivariate normal distribution with zero mean, unit variance, and zero correlation. As a

discrete approximation to the prior distribution, we use a grid of 30 points for each Ei and

a Gaussian copula to put the appropriate probability mass on each grid point (ε1, ε2).15 We

set (κ1, κ2) = (−1.0,−1.0) and generate choice probabilities using the pure strategy Nash

equilibrium assumption with arbitrary selection rule.16

To construct the identified sets, we take the distribution of unobservables as known,

and collect all points (κ1, κ2) compatible with the given solution concept and information

assumptions. We plot the convex hulls of the identified sets in Figure 1.

Figure 1-(a) shows the BSE identified sets obtained under different baseline information

structures. The identified sets shrink as the informational assumptions get stronger. We

omit the complete information case since ΘBSE
I (Sprivate) = ΘBSE

I

(
Scomplete

)
. Setting the

baseline information structure as Snull (making no assumption on information) generates

an identified set that is quite permissive while using Sprivate generates a tight identified set

(which corresponds to the PSNE identified set). Similarly, Figure 1-(b) shows the BCE

identified sets obtained under different baseline information structures, and that stronger

15Computational details can be found in Appendix B.
16Specifically, we generate population choice probability by finding a feasible σ : E → ∆ (A) which satisfies

the inequalities in (8) as described in Section 4.1.
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Figure 1: Convex Hulls of Identified Sets

(a) BSE (b) BCE

assumptions on information lead to tighter identified sets. The figures show that assumptions

on players’ information play a crucial role in determining the size of the identified set. In

this sense, imposing strong assumption on players’ information may be far from innocuous

because it places strong restrictions for identification.

Comparing Figure 1-(a) and 1-(b) shows that, for any given baseline information struc-

ture, the corresponding BSE identified set is a subset of the corresponding BCE identified

set. Our numerical example shows that under the same informational assumption, BSE

identified set can be much tighter than the BCE identified set. Therefore, using restrictions

that incorporate observability of opponents’ actions can add significant identifying power.

4 Estimation and Inference

We propose a computationally attractive approach for estimation and inference. In Section

4.1, we show that whether a candidate parameter enters the identified set can be determined

by solving a single linear feasibility program. In Section 4.2, we show that this property

can be combined with the insights from Horowitz and Lee (2021) to make construction

of a confidence set simple and computationally tractable: determining whether a candidate
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parameter enters the confidence set amounts to solving a convex feasibility program. Finally,

in Section 4.3, we provide some practical suggestions for computational implementations.

4.1 A Linear Programming Characterization

The following proposition provides a computationally attractive characterization of the iden-

tified set ΘI ≡ ΘBSE
I (S). Let ∂ux,θi (a′i, a, εi) ≡ ux,θi (a′i, a−i, εi) − ux,θi (ai, a−i, εi) denote

the gains from unilaterally deviating to a′i from outcome (ai, a−i). Recall our notation:

σx ∈ ∆a|ε,t if and only if σxa|ε,t ≥ 0 for all a, ε, t and
∑

a σ
x
a|ε,t = 1.

Theorem 6 (Linear programming characterization). Under Assumptions 1 and 3, θ ∈ ΘI

if and only if, for each x ∈ X , there exists σx ∈ ∆a|ε,t such that

1. (Obedience) For all i ∈ I, ti ∈ Ti, a ∈ A, a′i ∈ Ai,

∑
ε∈E,t−i∈T−i

ψx,θε πxt|εσ
x
a|ε,t∂u

x,θ
i (a′i, a, εi) ≤ 0. (6)

2. (Consistency) For all a ∈ A,

φxa =
∑

ε∈E,t∈T

ψx,θε πxt|εσ
x
a|ε,t. (7)

Theorem 6 says that for any candidate θ ∈ Θ, whether θ ∈ ΘI can be determined by

solving a single linear feasibility program. The first condition states that the nuisance pa-

rameter σx should be a decision rule that satisfies the Bayes stable equilibrium conditions.

The second condition states that the observed conditional choice probabilities must be con-

sistent with the one implied by the equilibrium decision rule. Given a candidate θ, ψx,θε , πxt|ε,

∂ux,θi , and φxa are known objects. Then, since the variables of optimization σx enters the

constraints linearly, the program is linear.

Let ΘPSNE
I be the sharp identified set under the pure strategy Nash equilibrium assump-

tion and no assumption on the equilibrium selection rule. As a corollary to Theorem 5
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and Theorem 6, whether θ ∈ ΘPSNE
I can also be determined via a single linear feasibility

program. Thus, Bayes stable equilibrium identified sets embed the pure strategy Nash equi-

librium identified set studied in Beresteanu, Molchanov, and Molinari (2011) and Galichon

and Henry (2011) as a special case.

Corollary 2 (Linear programming characterization of PSNE identified set). θ ∈ ΘPSNE
I if

and only if, for each x ∈ X , there exists σx ∈ ∆a|ε such that

1. (Incentive Compatibility) For all i ∈ I, εi ∈ Ei, a ∈ A, a′i ∈ Ai,

∑
ε−i∈E−i

ψx,θε σxa|ε∂u
x,θ
i (a′i, a, εi) ≤ 0.

2. (Consistency) For all a ∈ A,

φxa =
∑
ε∈E

ψxεσ
x
a|ε.

Example (Continued). Suppose the econometrician wants to identify θ = (κ1, κ2) based on

the population choice probabilities φ =
(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
. Then θ ∈ ΘPSNE

I if and

only if there exists σ ∈ ∆a|ε such that

∑
ε−i

ψεσa|ε ((a′i − ai) (κia−i + εi)) ≤ 0, ∀i, εi, ai, a−i, a′i (8)

φa =
∑
ε

ψεσa|ε, ∀a.

which is a linear feasibility program. �

4.2 A Simple Approach to Inference

We leverage the insights from Horowitz and Lee (2021) and propose a simple approach to

inference on the structural parameters.17 The key idea behind our approach is summarized as
17Horowitz and Lee (2021) describe methods for carrying out non-asymptotic inference when the partially

identified parameters are solutions to a class of optimization problem. While we leverage the insights from
their work, we focus on asymptotic inference with multinomial proportion parameters.
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follows. In discrete games, all information in the data is summarized by the conditional choice

probabilities, as apparent in Theorem 6. The statistical sampling uncertainty arises only from

estimating the unknown population conditional choice probabilities which are multinomial

proportion parameters. Then, if we control for the sampling uncertainty associated with

the estimation of the conditional choice probabilities, we will be able to do inference on

the structural parameters of interest. This strategy is feasible given that the number of

multinomial proportion parameters to estimate is small relative to the sample size. We

construct a confidence set for the conditional choice probabilities, and translate inference

on the conditional choice probabilities to inference on the structural parameters using the

characterizations in Theorem 6.18

Let φ ≡ (φx)x∈X be the population choice probabilities. Let us make the dependence of

the identified set on φ explicit by writing

ΘI ≡ ΘI (φ) .

Put differently, the identified set is constructed by inverting the mapping from the structural

parameters to the conditional choice probabilities; if we know φ accurately, then we can

obtain the population identified set.

When there is a finite number of observations, φ is unknown. However, we are able to

construct a confidence region for φ that accounts for the sampling uncertainty. Let α ∈ (0, 1).

We assume that the econometrician can construct a convex confidence set Φα
n that covers φ

with high probability asymptotically.

Assumption 4 (Convex confidence set for CCP). Let α ∈ (0, 1). A set Φα
n such that

lim inf
n→∞

Pr (φ ∈ Φα
n) ≥ 1− α

18A similar idea has been used by Kline and Tamer (2016) who propose a Bayesian method for inference.
They leverage the idea that a posterior on the reduced-form parameters can be translated to posterior
statements on θ using a known mapping between them.
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is available. Moreover, φ ∈ Φα
n can be expressed as a collection of convex constraints.

Leading examples of Φα
n are box constraints or ellipsoid constraints; the former will be

characterized by constraints that are linear in φx and the latter will be characterized by those

quadratic in φx. For example, we can construct simultaneous confidence intervals for each

φxa ∈ R such that the probability of covering all {φxa}a∈A,x∈X simultaneously is asymptotically

no smaller than 1− α.

Define the confidence set for the identified set as

Θ̂α
I ≡

⋃
φ̃∈Φαn

ΘI

(
φ̃
)
. (9)

By construction, if Φα
n covers φ with high probability, then Θ̂α

I covers ΘI with high proba-

bility.

Theorem 7. Suppose Φα
n satisfies Assumption 4 and Θ̂α

I is constructed as (9).

1. lim infn→∞ Pr
(

ΘI ⊆ Θ̂α
I

)
≥ 1− α.

2. For each θ, determining θ ∈ Θ̂α
I solves a convex program.

Theorem 7.1 follows directly from (9) and the assumption on Φα
n. To understand Theorem

7.2, note that θ ∈ Θ̂α
I if and only if, for all x ∈ X , there exist σx : E × T → ∆ (A) and

φx ∈ ∆ (A) such that (6), (7), and φ ∈ Φα
n. Compared to the population program described

in Theorem 6 which treated φ as known constants, we make φ part of the optimization

variables and impose convex constraints φ ∈ Φα
n. Since all equality constraints are linear in

(σ, φ) and inequality constraints are convex in (σ, φ), the feasibility program is convex (see

Boyd and Vandenberghe (2004)). Note that the computational tractability comes from the

fact that φ enters the restrictions in Theorem 6 in an additively separable manner; letting

φ be part of the optimization variable does not disrupt the linearity of the constraints with

respect to the variables of optimization.
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Finally, we note that computation can be made faster by constructing Φα
n as linear con-

straints since determining θ ∈ Θ̂α
I will be a linear program. In our empirical application, we

construct Φα
n as simultaneous confidence intervals for the multinomial proportion parameters

φ using the results in Fitzpatrick and Scott (1987).19

4.3 Implementation

We propose a practical routine for obtaining the confidence set Θ̂α
I . Theorem 7 says that for

any candidate θ, we can determine whether θ ∈ Θ̂α
I by solving a convex (feasibility) program.

However, it only provides us a binary answer (“yes” or “no”).

As commonly done in previous works on partially identified game-theoretic models (e.g.,

Ciliberto and Tamer (2009), Syrgkanis, Tamer, and Ziani (2021), Magnolfi and Roncoroni

(2021)), we define a non-negative criterion function Q̂α
n (θ) ≥ 0 with the property that

Q̂α
n (θ) = 0 if and only if θ ∈ Θ̂α

I . The value of Q̂α
n (θ) for each θ can be obtained by solving a

convex program. The advantage of using a criterion function is that the value of Q̂α
n (θ) gives

us information on how “far” θ is from the identified set (which corresponds to the zero-level

set).

Let {wx}x∈X be the set of strictly positive weights for each bin x ∈ X . The choice

of weights can be arbitrary although we will choose values proportional to the number of

observations at each bin x. Let qx ∈ R and q ≡ (qx)x∈X . Let Q̂α
n (θ) be the value of the

19See Appendix B.2 for details. We also provide Monte Carlo evidence that the proposed method has
desirable coverage probabilities even when X has many elements.
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following convex program.

min
q,σ,φ

∑
x∈X

wxqx subject to (10)

∑
ε,t−i

ψx,θε πxt|εσ
x
a|ε,t∂u

x,θ
i (ãi, a, εi) ≤ qx, ∀i, x, ti, a, ãi

φxa =
∑
ε,t

ψx,θε πxt|εσ
x
a|ε,t, ∀a, x

qx ≥ 0, σx ∈ ∆a|ε,t, φ
x ∈ ∆a, ∀x

φ ∈ Φα
n.

Intuitively, qx ≥ 0 measures the minimal violation of the inequalities necessary at bin

x; when all equilibrium conditions can be satisfied, the solver will drive the value of qx to

zero.20 The solution to (10) measures the weighted average of the minimal violations of the

equilibrium conditions required to make θ compatible with data. Also note that the choice

of weights do not affect the results if the researcher is only interested in the set of θ’s whose

criterion function values are exactly zero.

The following summarizes the properties of the criterion function approach.

Theorem 8 (Implementation). 1. For any θ ∈ Θ, program (10) is feasible and convex.

2. Q̂α
n (θ) = 0 if and only if θ ∈ Θ̂α

I .

3. If the gradient ∇Q̂α
n (θ) exists at θ, it can be obtained as a byproduct to program (10)

via the envelope theorem.

In particular, Theorem 8.3 says that, due to the envelope theorem, we can obtain the gra-

dients for free when we evaluate the criterion function at each point (assuming the analytic

derivatives of ψx,θ and ux,θi are available). In practice, we need to identify the minimizers

20This formulation uses the fact that max {z1, ..., zK} can be obtained by solving min t subject to zk ≤ t
for k = 1, ...,K.
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of Q̂α
n (θ) in order to numerically approximate Θ̂α

I . However, doing so by conducting an ex-

tensive grid search over the whole parameter space can be computationally costly especially

when the dimension of θ is high. Due to Theorem 8.3, one can use gradient-based optimiza-

tion algorithms to identify a minimizer of the criterion function.21 The ability to quickly

identify arg minθ̃ Q̂
α
n

(
θ̃
)
is advantageous since we can quickly test whether the identified set

is empty, or restrict the search to points near the minimizer.

For our empirical application, we use a heuristic approach to approximate Θ̂α
I . The idea

is to identify a minimizer of the criterion function and run a random walk process starting

from the minimizer in order to collect nearby points that have zero criterion function values.

This way we avoid the need to evaluate points that are far from the identified set. See

Appendix B.3 for details.

5 Empirical Application: Entry Game by McDonald’s

and Burger King in the US

We apply our framework to study the entry game by McDonald’s and Burger King in the

US using a rich dataset. Entry competition in the fast food industry fits our framework

well due to two stylized facts. First, the decisions on whether or not to operate outlets

are highly persistent, indicating that the firms’ decisions are publicly observed. Tables 1

and 2 report the three-year transition probability of the firms’ decisions and the market

outcomes (aMD, aBK) (where ai = 1 if firm i is present in the market and ai = 0 otherwise),

measured for all urban census tracts (which corresponds to our definition of markets) in the

contiguous US over 1997-2019. For instance, the probability that McDonald’s has an outlet

in operation in a local market conditional on it having an outlet in operation three years

ago is 0.95. Together with the assumption that the costs of revising decisions are sufficiently

21When program (10) has a manageable number of variables, then the nested minimization problem
minθ Q̂

α
n (θ) can be solved more efficiently as a single joint minimization problem using a large-scale nonlinear

solver (Su and Judd, 2012). We use this approach for our empirical application in the next section.
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low, the evidence supports the claim that firms’ decisions are best-responses to opponents’

decisions that are readily observed.22

Table 1: Three-year Transition Probability of Decisions

McDonald’s Burger King
t\t+ 3 Out In t\t+ 3 Out In
Out 0.98 0.02 Out 0.99 0.01
In 0.05 0.95 In 0.08 0.92

Notes: Measured for urban tracts in the contiguous US, 1997-
2019.

Table 2: Three-year Transition Probability of Market Outcomes (aMD, aBK)

t\t+ 3 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0.97 0.01 0.02 0.00
(0, 1) 0.09 0.87 0.00 0.04
(1, 0) 0.06 0.00 0.92 0.02
(1, 1) 0.00 0.04 0.08 0.88

Notes: Measured for urban tracts in the contigu-
ous US, 1997-2019.

Second, information asymmetries and information spillover from observing others’ deci-

sions are common features in the industry. It is well-documented that competitors take extra

scrutiny over the locations where McDonald’s opens new outlets in order to take advantage

of McDonald’s leading market research technology.23 Our notion of equilibrium accounts for

this phenomenon.

Using the proposed framework, we estimate the entry game under different baseline infor-

mation structures in order to explore the role of informational assumptions on identification.

We also compare our results to those obtained under Bayes correlated equilibrium which also

allows estimation with weak assumptions on players’ information. We then perform a policy

22Indeed, there are usually extra costs associated with opening a new outlet or closing an existing outlet.
For example, franchisees (or franchisors) might be constrained by terms of contract or costs associated with
reverting actions, at least in the short-run. We assume away these considerations because it seems unlikely
that high adjustment costs are the driving the decisions we observe in the data.

23See Ridley (2008) and Yang (2020) who provide anecdotal evidence on how competing firms learn
about the profitability of a location from entries of leading firms such as McDonald’s and Starbucks. For
example, according to The Wall Street Journal, “In the past, many restaurants... plopped themselves next
to a McDonald’s to piggyback on the No. 1 burger chain’s market research.” (Leung, 2003)

36



exercise that studies how the market structures respond after increasing access to healthy

food in Mississippi food deserts.

5.1 Data Description

We combine multiple datasets to construct the final dataset for structural estimation of

the entry game. Our primary dataset comes from Data Axle Historical Business Database,

which contains a (approximately) complete list of fast-food chain outlets operating in the

US between 1997 and 2019 at an annual level.24 The advantage of this dataset is that it

provides the address information of the burger outlets in all regions of the US. The use of

this dataset to study strategic entry decisions is new.25

Although we use panel data to investigate the persistence of decisions over time, we

use cross-section data to estimate the structural model. The idea is to illustrate that the

econometrician can use cross-sectional data as a snapshot of the stable outcomes of the

markets at some point in time.26 We use the 2010 cross-section since it was the last year for

which decennial census data were available. We describe the main features of our dataset

below. Further details on data construction are provided in Appendix C.

24This database contains location information for a detailed list of business establishments in the US from
1997 to 2019. The provider attempts to increase accuracy by using an internal verification procedure after
collecting data from multiple sources. The dataset is approximately complete in the sense that the list is
not free of error. However, we compare the number of burger outlets in the data and the number reported
in external sources and confirm that the information is highly accurate for the case of burger chains. See
Appendix C for details.

25We are not the first to study the entry game between McDonald’s and Burger King in the US. Gayle and
Luo (2015) uses 2011 cross-sectional data hand-collected using the online restaurant locator on the brands’
websites. However, they define a local market as an “isolated city” that is more than 10 miles away from the
closest neighboring city, which is larger than our definition that uses a census tract. Moreover, they focus
on examining assumptions on the order of entries.

26If we wanted to exploit the information available in panel data, we would need to model the dependence
of observations across time. However, given that market environments usually seem to stay very stable over
time, it is not clear how to leverage the information for structural estimation. For simplicity, we focus on
analyzing a single cross-section.
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Market Definition

Markets are defined as 2010 urban census tracts in the contiguous US. A census tract is

classified as urban if its geographic centroid is in an urbanized area defined by the Census.

The final data contain 54,944 markets. We code ai = 1 if firm i had an outlet operating in

the market.27 The unconditional probabilities of market outcomes are
(
φ̂00, φ̂01, φ̂10, φ̂11

)
=

(0.74, 0.06, 0.15, 0.05) where φ̂a is the sample frequency of outcome a = (aMD, aBK).

Exclusion Restrictions

We use two firm-specific variables that have been used in existing works: distance to head-

quarters (Zhu et al. (2009), Zhu and Singh (2009), Yang (2012)) and own outlets in nearby

markets (Toivanen and Waterson (2005), Igami and Yang (2016), Yang (2020)). Variable

distance to headquarter measures the distance between the center of each market to firms’

respective headquarters. The associated exclusion restriction is valid if the cost of operating

an outlet increases with its distance to own headquarter, but is unrelated to the distance

to opponents’ headquarters. Variable own outlets in neighboring markets is constructed by

finding all outlets in tracts that are adjacent to a given tract. The underlying assumption

is that an outlet’s profit can be affected by an own-brand outlet in a neighboring market,

but not by a competing brand’s outlet in a neighboring market; competition with opponents

occur only within each market.

Summary Statistics

Summary statistics are provided in Table 3. Continuous variables are discretized to binary

variables by using cutoffs around their medians. Clearly, the entry probability of McDonald’s

is higher. McDonald’s is more likely to have an outlet present in adjacent markets. The

distance to headquarter is higher for Burger King on average because Burger King has its

headquarter in Florida while McDonald’s has its headquarter in Chicago.

27McDonald’s (resp. Burger King) has more than one outlets in 1.5% (resp. 0.3%) of the markets.
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Table 3: Summary Statistics

Mean Std dev Min Max N

Decision variables
MD Entry 0.196 0.397 0.00 1.00 54940
BK Entry 0.106 0.307 0.00 1.00 54940
Firm-specific variables
MD outlets present in nearby markets 0.720 0.449 0.00 1.00 54940
BK outlets present in nearby markets 0.483 0.500 0.00 1.00 54940
Long distance to MD HQ (>1.6K km) 0.285 0.451 0.00 1.00 54940
Long distance to BK HQ (>1.6K km) 0.712 0.453 0.00 1.00 54940
Market environment variables
Many eating/drinking places (>7 stores) 0.465 0.499 0.00 1.00 54940
High income per capita (>25K dollars) 0.502 0.500 0.00 1.00 54940
Low access to healthy food 0.856 0.351 0.00 1.00 54940
Food desert 0.334 0.472 0.00 1.00 54940

Notes: All variables are binary. Each observation corresponds to urban census tracts.

Market environment variables control for the determinants of profitability that are com-

mon across firms. We obtain the following variables to describe market environments. First,

we have an indicator for whether a tract has many eating or drinking places; the variable is

obtained from the National Neighborhood Data Archive (NaNDA) which provides business

activity information at the tract-level. Second, we have an indicator for whether a tract

has high income per capita; the variable is from the census. Finally, from the Food Access

Research Atlas, we obtain indicators for whether a tract has low access to healthy food and

whether a tract is classified as a food desert. A tract is classified as having low access to

healthy food if at least 500 or 33 percent of the population lives more than 1/2 mile from

the nearest supermarket, supercenter, or large grocery store. A tract is classified as a food

desert if it has low income and low access to healthy food, where the criteria for low-income

are from the U.S. Department of Treasury’s New Markets Tax Credit program.

The last rows of Table 3 shows that 85% of all urban census tracts are classified as having

low access to healthy food and 33% are classified as food deserts. In the counterfactual

analysis, we select food deserts in Mississippi and investigate the impact of increasing access

to healthy food on the strategic entry decisions of the firms.
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5.2 Preliminary Analysis

Before estimating the structural model, we examine the data patterns using simple probit

regressions. Each marketm contains binary decisions of each firm aim ∈ {0, 1} where aim = 0

if firm i stays out in market m and aim = 1 if i stays in. We pool the decisions of the firms

in each market (so that the unit of observation is (i,m)) and regress the binary decisions

on market characteristics. Table 4 reports the average marginal effects computed from the

regression results.

Table 4: Average Marginal Effects from Simple Probit Models

(1) (2) (3)
In In In

Own-brand outlets present in nearby markets -0.067 -0.076 -0.096
(0.002) (0.002) (0.002)

Long distance to HQ (> 1.6K km) -0.083 -0.083 -0.010
(0.003) (0.003) (0.003)

Many eating/drinking places (>7) 0.203 0.203
(0.002) (0.002)

High income per capita (>25K dollars) -0.038 -0.037
(0.002) (0.002)

Low access to healthy food 0.039 0.041
(0.004) (0.004)

McDonald’s 0.109
(0.002)

State Dummies Yes Yes Yes
N 107,042 107,042 107,042

Notes: Each observation corresponds to a firm-market pair. Standard errors,
which are given in the parentheses, are clustered at the market-level. All variables
are binary.

Table 4 conveys three messages. First, the presence of own outlets in neighboring markets

and distance to headquarter are negatively correlated with entry decisions. This appears to

be consistent with our prior that these variables have a negative impact on potential profits.

Second, the number of eating and drinking places strongly affects the burger chains’ entries.

This is presumably because districts with high concentration of food services are also places

with high traffic of people who eat out. Finally, low access to healthy food is positively

correlated with entry decisions. That is, the burger chains are more likely to enter a market

when there are fewer healthy substitutes for food.
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While Table 4 provides a helpful snapshot for what drives the chains’ entry decisions, the

estimates are likely to be biased since they ignore the fact that firms’ decisions affect each

other. Such consideration is crucial when studying a policy experiment. In the next section,

we estimate the entry game using Bayes stable equilibrium as a solution concept.

5.3 Entry Game Setup

We posit a canonical entry game that extends the running example to incorporate covariates

in the payoff functions. Let us recall the notation. We use i = 1, 2 to denote McDonald’s and

Burger King respectively. In each market m, firm i can choose a binary action aim ∈ {0, 1}

where aim = 1 if i stays in and aim = 0 if i stays out. The payoff function is specified as

uxm,θi (aim, ajm, εim) = aim
(
βTi xim + κiajm + εim

)
.

That is, the payoff from operating in the market is βTi xim + κiajm + εim where xim rep-

resents market covariates, ajm represents whether the opponent is present, and εim is the

idiosyncratic payoff shock which includes determinants of payoffs that are unobserved by the

econometrician, e.g., managerial ability. The payoff from staying out is normalized to zero.

We model (ε1m, ε2m) ∈ R2 as being normally distributed with zero mean, unit variance, and

correlation coefficient ρ ∈ [0, 1). Our specification of the payoff functions is quite standard

in the literature.28

We estimate the parameters under the baseline information assumptions specified previ-

ously in Example 1: Snull, S1P , Sprivate. To recap, Snull is the information structure in which

each player observes nothing; in S1P , Player 1 observes (only) ε1 whereas Player 2 observes

nothing; in Sprivate, Player 1 observes ε1 and Player 2 observes ε2.

Under the Bayes stable equilibrium assumption, the baseline information structures

28A more flexible specification might add a richer set of covariates or let the spillover effects κi be a
function of the observable covariates as done in Ciliberto and Tamer (2009). We keep the specification
parsimonious.
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should be interpreted as specifying what the players minimally observe. Then estimating the

model with Snull as the baseline information structure amounts to making no assumption

on players’ information. On the other hand, if the baseline information structure is set to

Sprivate, then the identified set is robust to all cases in which the players observe at least

their payoff shocks. Finally, setting the baseline information structure to S1P amounts to

assuming that McDonald’s has good information about its payoff shocks whereas Burger

King might minimally have no information about its payoff shock. This assumption relaxes

the standard assumption on information (namely the information structure is fixed at either

Sprivate or Scomplete) and is consistent with the anecdotal evidence that McDonald’s is a leader

in the market research technology.

5.4 Estimation Results

In order to keep the model parsimonious and reduce the computational burden, we take

some steps before estimation, which are described as follows (see Appendix B for further

details). First, we assume that the coefficients for common market-level variables (eating

places, income per capita, and low access to healthy food) are identical across the two

players.29 We also assume that the coefficients of the firm-specific variables (distance to

headquarter and the presence of own-brand outlets in nearby markets) are non-positive.

Second, while the benchmark distribution of the latent variables (ε1m, ε2m) is continuous, we

use discretized normal distribution for feasible estimation. Third, we discretize each variable

to binary bins; since there are 7 variables in the covariates, this gives 27 = 128 discrete

covariate bins. Conditional choice probabilities are non-parametrically estimated using the

observations within each bin. Fourth, to construct confidence sets for the conditional choice

probabilities, we used simultaneous confidence bands based on the method described in

Fitzpatrick and Scott (1987); using simultaneous confidence bands makes the evaluation of

29This assumption is not without loss and can be refuted on the basis that each chain might react
differently to market environment. However, we believe it is reasonable given that McDonald’s and Burger
King are close substitutes to each other.
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the criterion function a linear program.

5.4.1 The Role of Informational Assumptions on Identification

Table 5: Bayes Stable Equilibrium Identified Sets

Baseline Information Snull S1P Sprivate

McDonald’s Variables
Spillover Effects [−1.83, 1.62] [−0.89,−0.14] -
Constant [−1.64, 0.32] [−1.46,−1.04] -
Nearby Outlets [−1.24,−0.00] [−0.56,−0.25] -
Distance to HQ [−1.23,−0.00] [−0.26,−0.00] -

Burger King Variables
Spillover Effects [−1.81, 1.22] [−1.19,−0.25] -
Constant [−2.38, 0.44] [−1.48,−0.76] -
Nearby Outlets [−1.44,−0.00] [−0.53,−0.00] -
Distance to HQ [−1.41,−0.00] [−0.52,−0.00] -

Common Market-level Variables
Eating Places [−0.31, 1.87] [0.82, 1.21] -
Income Per Capita [−1.02, 0.75] [−0.54,−0.18] -
Low Access [−0.71, 1.31] [0.25, 0.54] -

Correlation parameter ρ [0.00, 0.99] [0.42, 0.91] -
Number of Markets 54940 54940 54940

Notes: Table reports the projections of confidence sets obtained with nominal
level α = 0.05. The identified set for Sprivate not reported because it is empty.

Table 5 reports projections of the 95% confidence sets obtained under the Bayes stable

equilibrium assumption with different baseline information structures. There are three main

findings related to the role of informational assumption. First, making no assumption on

players’ information leads to an uninformative identified set. The confidence set under

Snull is quite large, and we cannot determine the signs of the parameters. Therefore, being

utterly agnostic about players’ information does not give us enough identifying power to

draw meaningful conclusions.

Second, standard assumptions on information may be too strong. It is quite standard

to assume that each player i observes (exactly) εi or (εi, ε−i). Setting baseline information

structure as Sprivate nests all these cases. However, we find that the identified set under

Sprivate is empty, suggesting the possibility of misspecification.30 Thus, assuming that each

30Specifically, we consistently find that the minimum of the criterion function under Sprivate is strictly
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player observes at least their εi may be too strong. Since the Bayes stable equilibrium

identified set under Sprivate is equivalent to the pure strategy Nash equilibrium identified set

(see Theorem 5.2), the pure strategy Nash equilibrium assumption would also be rejected.31

Third, we find that setting the baseline information structure to S1P can produce an

informative identified set. Recall that the identified set under S1P makes the assumption that

McDonald’s has accurate information about its payoff shock, but Burger King’s information

can be arbitrary. This assumption is consistent with the anecdotal evidence that McDonald’s

has superior information on the potential profitability of each market, and Burger King tries

to free-ride on McDonald’s information by observing what McDonald’s does. Table 5 shows

that, even if we significantly relax the assumption on Burger King’s information, we can

determine the signs of the most parameters. For example, we can see that burger chains are

more likely to enter in markets that have low access to healthy food. We can also learn that

the firms’ payoff shocks are highly correlated to each other.

In conclusion, we find that the informativeness of the identified set crucially depends on

the underlying assumption on players’ information. At least in our empirical application, it is

difficult to draw a meaningful economic conclusion without making assumptions on players’

information. On the other hand, under the maintained solution concept, the model rejects

the popular assumptions made in the literature, namely that each firm i observes at least its

εi. A credible intermediate case S1P , which is consistent with our knowledge of the market

research technology in the fast food industry, delivers strong identifying power.

5.4.2 Comparison to Bayes Correlated Equilibrium Identified Sets

We compare the Bayes stable equilibrium identified sets to the Bayes correlated equilibrium

identified sets studied in Magnolfi and Roncoroni (2021). The Bayes correlated equilibrium

identified sets are reported in Table 6. We can readily see that the Bayes correlated equilib-

greater than zero. This is also true even if we do not use sign constraints or reduce the nominal level to a
very low level (e.g., α = 0.0001).

31Of course, the emptiness of the identified set might be due to misspecification in payoff functions,
distribution of errors, etc. Our statements are conditional on these specifications being correct.
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Table 6: Bayes Correlated Equilibrium Identified Sets

Baseline Information Snull S1P Sprivate

McDonald’s Variables
Spillover Effects [−4.83, 1.92] [−4.85,−0.17] [−4.85,−2.11]
Constant [−1.64, 0.34] [−1.53, 0.29] [−1.37, 0.31]
Nearby Outlets [−1.33,−0.00] [−1.11,−0.00] [−0.97,−0.00]
Distance to HQ [−1.35,−0.00] [−1.10,−0.00] [−0.88,−0.00]

Burger King Variables
Spillover Effects [−3.84, 3.33] [−3.98, 0.72] [−3.38,−1.03]
Constant [−3.71, 0.61] [−1.65, 0.62] [−1.62, 0.44]
Nearby Outlets [−1.71,−0.00] [−1.23,−0.00] [−1.11,−0.00]
Distance to HQ [−1.70,−0.00] [−1.03,−0.00] [−0.86,−0.00]

Common Market-level Variables
Eating Places [−0.24, 1.98] [0.51, 1.76] [0.49, 1.68]
Income Per Capita [−1.32, 0.84] [−1.16, 0.14] [−1.08, 0.11]
Low Access [−0.59, 1.49] [−0.37, 1.31] [−0.28, 1.07]

Correlation parameter ρ [0.00, 0.99] [0.00, 0.99] [0.00, 0.97]
BSE volume/BCE volume 0.05036 0.00000 -
Number of Markets 54940 54940 54940

Notes: Table reports the projections of confidence sets obtained with nominal level
α = 0.05. BSE/BCE volume computed by taking products of projected intervals.

rium assumption produces a much larger set under the same baseline information structure.

Even when we set Sprivate as the baseline information structure, it is not easy to learn the

signs of many parameters. For example, we cannot determine whether low access to healthy

food promotes or deters entries by the burger chains.

Comparing Tables 5 and 6 suggests that if the researcher is willing to accept the Bayes

stable equilibrium assumption, it can add significant identifying power while providing the

same kind of informational robustness as Bayes correlated equilibria. At least in the context

of our empirical application, we believe it is reasonable to assume that McDonald’s decisions

that we observe in the data represent best-responses to the observed decisions of Burger

King and vice versa.

45



5.5 Counterfactual Analysis: The Impact of Increasing Access to

Healthy Food on Market Structure

We consider a policy experiment to predict changes in market structure in Mississippi food

deserts after increasing access to healthy food.32 Mississippi is often called one of the “hun-

griest” states in the US.33 Mississippi had 664 census tracts in 2010, and 329 of them are

classified as urban tracts, which correspond to our definition of markets. Out of 329 urban

tracts, 185 tracts (approximately 56%) are classified as food deserts, according to the U.S.

Department of Agriculture. According to the definition of food deserts, all of these tracts

are classified as having low access to healthy food.

We conduct a policy experiment as follows. We select the 185 tracts classified as food

deserts in Mississippi and then increase access to healthy food. This amounts to changing

the low access indicator from one (low access) to zero (high access) in all these markets. In

reality, such policy would correspond to increasing healthy food providers (grocery stores,

supermarkets, or farmers’ markets) by providing subsidies or tax breaks. We then recompute

the equilibria in these markets and report the weighted average of the bounds associated with

each measure of market structure.34 See Appendix B.4 for computational details.

We report the results of the counterfactual analysis in Table 7. The first column reports

the estimates obtained from the data of the 185 markets corresponding to Mississippi food

deserts. For example, the probability of observing McDonald’s enter the market in Missis-

sippi food deserts is 0.30, much larger than the unconditional probability obtained using all

markets, which was around 0.20.

32Consumption of fast-food is determined by both supply-side factors (e.g., availability of healthy sub-
stitutes in the neighborhood) and demand-side factors (consumers’ inherent preference for fast-food). Some
studies point out that consumers’ eating habits may not change even after healthy food options increase
(e.g., Allcott et al. (2019)). Our model assumes that consumption responds to supply-side factors.

33For example, Mississippi has been identified as the most food insecure state in the coun-
try since 2010 according to Feeding America. See https://mississippitoday.org/2018/05/04/
mississippi-still-the-hungriest-state/.

34Our counterfactual analysis corresponds to a partial equilibrium analysis. We abstract away from
considering how entry or exit in each market can affect the burger chains’ decisions in neighboring markets
and the responses of healthy food providers.
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Table 7: The Impact of Increasing Access to Healthy Food in Mississippi Food Deserts

BSE(S1P ) BCE(S1P )

Data Pre Post Pre Post

Expected number of entrants 0.47 [0.28, 1.01] [0.15, 0.79] [0.10, 1.18] [0.03, 1.17]

Probability of MD entry 0.30 [0.11, 0.32] [0.04, 0.23] [0.00, 0.71] [0.00, 0.67]

Probability of BK entry 0.17 [0.00, 0.84] [0.00, 0.72] [0.00, 1.00] [0.00, 1.00]

Probability of no entrant 0.64 [0.15, 0.74] [0.28, 0.85] [0.00, 0.90] [0.00, 0.97]

Notes: Data column represents the sample estimates obtained using markets corresponding to
Mississippi food deserts. Final bounds obtained by simulating equilibria at each parameter in the
identified set, and then taken union over all bounds. Each number is obtained by taking a weighted
average with weights proportional to the number of markets in each covariate bin.

The second and third columns report the bounds obtained before (“Pre” has low access

indicators set to one) and after the counterfactual policy (“Post” has low access indicators

set to zero) using the S1P -Bayes stable equilibrium identified set. The bounds are pretty

wide because we have considered all parameters in the identified set and made no assumption

on the equilibrium selection. However, they shift in the expected direction. For example,

the bounds on the expected number of entrants shift from [0.28, 1.01] to [0.15, 0.79]. Since

the mean number of entrants in the data was 0.47 and the post-counterfactual bounds are

[0.15, 0.79], the maximal change we can expect is 0.15−0.47 = −0.32. In some cases, we can

make a stronger statement: while the unconditional probability of observing McDonald’s

enter in data was 0.30, the upper bound in the Post-regime decreases to 0.23, so we can

expect that the probability of McDonald’s enter to decrease by at least 0.07.

Our results suggest that meaningful counterfactual statements may be made even with

weak assumptions on players’ information. The bounds do not depend on specific assump-

tions on equilibrium selection and admit all information structures that are expansions of

the baseline information structure. Hence our approach can also serve as a useful tool to

conduct sensitivity analysis for researchers who want to see whether their predictions are

driven by assumptions on equilibrium selection or what the players know.

For comparison, in the last two columns, we report the counterfactual results obtained us-

ing the S1P -Bayes correlated equilibrium identified set. One can readily see that the bounds
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are pretty large compared to the Bayes stable equilibrium counterpart. For example, we

cannot make any statement about the probability of Burger King’s entry after the counter-

factual policy is implemented. Table 7 shows that Bayes correlated equilibrium predictions

can be too permissive, especially when no assumption is imposed on what equilibrium might

be selected in the counterfactual world.

6 Conclusion

This paper presents an empirical framework for analyzing stable outcomes with weak as-

sumptions on players’ information. We propose Bayes stable equilibrium as a framework

for analyzing stable outcomes which appear in various empirical settings. Our framework

can be an attractive alternative to existing methods for practitioners who want to work

with an empirical game-theoretic model and be robust to informational assumptions. Fur-

thermore, we believe the proposed computational algorithms can also be helpful in similar

settings, especially since reducing computational burden remains a fundamental challenge in

the literature.

We believe there are many exciting avenues for future research. First, providing a non-

cooperative foundation to our solution concepts remains an open question. While we can

imagine a dynamic adjustment process that converges to stable outcomes, how to formalize

this idea is yet unclear. Second, it will be interesting to find reasonable ways of impos-

ing equilibrium selection. While Bayes stable equilibrium (or Bayes correlated equilibrium)

has the informational robustness property, the set of predictions may be too large, limiting

our ability to make sharp predictions for counterfactual analysis. Finding ways to sharpen

predictions without sacrificing robustness to information will be helpful. Third, our coun-

terfactual analysis is limited to a partial equilibrium analysis. It will be interesting to think

about ways to model the strategic interactions of healthy food providers and unhealthy food

providers together.
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Appendix

A Proofs

A.1 Proof of Theorem 1

Let S∗ be an expansion of S. Let δ : T × T̃ → ∆ (A) be an outcome function in (G,S∗).

We say that an outcome function δ in (G,S∗) induces a decision rule σ : E × T → ∆ (A) in

(G,S) if

σ (a|ε, t) =
∑
t̃

λ
(
t̃|ε, t

)
δ
(
a|t, t̃

)
for each a whenever Pr (ε, t) > 0.

Lemma 1. A decision rule σ is a Bayes stable equilibrium of (G,S) if and only if, for some

expansion S∗ of S, there is a rational expectations equilibrium of (G,S∗) that induces σ.

The proof of Lemma 1 closely follows the proof in Theorem 1 of Bergemann and Morris

(2016). The only if (⇒) direction is established by letting the Bayes stable equilibrium deci-

sion rule σ a signal function which generates public signals (recommendations of outcomes)

for every given (ε, t), and constructing an outcome function δ as a degenerate self-map that

places unit mass on a whenever a is drawn from σ. Conversely, the if (⇐) direction is

established by constructing a decision rule that integrates out players’ signals.

Proof of Lemma 1. (⇒) Suppose σ is a Bayes stable equilibrium of (G,S). That is,

∑
ε,t−i

ψεπt|εσa|ε,tui (a, εi) ≥
∑
ε,t−i

ψεπt|εσa|ε,tui (a
′
i, a−i, εi) , ∀i, ti, a, a′i.

Construct an expansion S∗ of S as follows. With some abuse in notation, let λ be a signal

distribution that generates a public signal such that

λ
(
t̃p = a|ε, t

)
= σ (a|ε, t) .
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where t̃p denotes a public signal. Let an outcome function be degenerate as follows:

δ
(
ã|t, t̃p = a

)
=


1 if ã = a

0 if ã 6= a

.

That is, when players observe t̃p = a as a public signal, they expect a to be played. It

remains to show that every outcome a generated by the outcome function δ is optimal to

the players. The rational expectations equilibrium condition is

∑
ε,t−i

ψεπt|ελt̃p|ε,tδã|t,t̃pui (ã, ε) ≥
∑
ε,t−i

ψεπt|ελt̃p|ε,tδã|t,t̃pui (ã
′
i, ã−i, ε) , ∀i, ti, t̃p, ã, ã′i

But since λ
(
t̃p = a|ε, t

)
= σ (a|ε, t) and the inequality is trivially satisfied when t̃p 6= ã (both

sides become zero), the rational expectations equilibrium condition reduces to

∑
ε,t−i

ψεπt|εσa|ε,tui (a, ε) ≥
∑
ε,t−i

ψεπt|εσa|ε,tui (ã
′
i, a−i, ε) , ∀i, ti, a, ã′i

which holds by the assumption that σ is a Bayes stable equilibrium of (G,S).

(⇐) Suppose that δ is a rational expectations equilibrium of (G,S∗) and δ induces σ in

(G,S). That is, we have

∑
ε,t−i,t̃−i

ψεπt|ελt̃|ε,tδa|t,t̃ui (a, ε) ≥
∑

ε,t−i,t̃−i

ψεπt|ελt̃|ε,tδa|t,t̃ui (a
′
i, a−i, ε) , ∀i, ti, t̃i, a, a′i

Integrating out t̃i from both sides gives

∑
ε,t−i

ψεπt|ε

(∑
t̃

λt̃|ε,tδa|t,t̃

)
ui (a, ε) ≥

∑
ε,t−i

ψεπt|ε

(∑
t̃

λt̃|ε,tδa|t,t̃

)
ui (a

′
i, a−i, ε) , ∀i, ti, a, a′i

⇔
∑
ε,t−i

ψεπt|εσa|ε,tui (a, ε) ≥
∑
ε,t−i

ψεπt|εσa|ε,tui (a
′
i, a−i, ε) , ∀i, ti, a, a′i

which is the Bayes stable equilibrium condition for σ in (G,S).
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The statement of the Theorem then follows directly from Lemma 1 because any decision

rule σ : E × T → ∆ (A) in (G,S) pins down the joint distribution on E × T × A (the prior

distribution ψ on E is fixed by G and the signal distribution π : E → ∆ (T ) is fixed by S).

�

A.2 Proof of Corollary 1

(⊆) Take any φ ∈ ΦBSE (G,S). By definition, there is a BSE σ in (G,S) that induces φ. By

Theorem 1, there exists an expansion S∗ of S and a REE δ of (G,S∗) that induces σ. Since

δ induces σ and σ induces φ, δ induces φ. It follows that φ ∈
⋃
S̃%ES

ΦREE
(
G, S̃

)
.

(⊇) Take any φ ∈
⋃
S̃%ES

ΦREE
(
G, S̃

)
. By definition, there exists some S∗ %E S and a

REE δ of (G,S∗) such that δ induces φ, (i.e., φa =
∑

ε,t,t̃ ψεπt|ελt̃|ε,tδa|t,t̃ for all a ∈ A). Since

S∗ %E S and δ is a REE of (G,S∗), by Theorem 1, δ induces a decision rule σ in (G,S)

which is a BSE of (G,S). Since δ induces σ, it follows that σ induces φ. Therefore, we have

φ ∈ ΦBSE (G,S). �

A.3 Proof of Theorem 2

Part 1

(⇒) Since δ is a REE of
(
G,Scomplete

)
, it satisfies

ψεδa|εui (a, ε) ≥ ψεδa|εui (a
′
i, a−i, ε) , ∀i, ε, a, a′i.

Fix any ε∗ ∈ E such that ψε∗ > 0 (with full support, ψε > 0 for all ε). Consider any a∗ such

that δ puts a positive mass at ε∗, i.e., δa∗|ε∗ > 0. Since ψε∗δa∗|ε∗ > 0, the REE condition

reduces to

ui (a
∗, ε∗) ≥ ui

(
a′i, a

∗
−i, ε

∗) , ∀i, a′i

which is exactly the PSNE condition of a∗ at state ε∗.
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(⇐) Suppose that δ : E → ∆ (A) is constructed in a way such that δa|ε > 0 implies that

a is a PSNE outcome at ε. Since any on-path outcome a at ε is a PSNE at ε, it immediately

follows that the outcome is optimal to each player who observes a−i and ε, satisfying the

REE condition. �

Part 2

(⇐) Let δ : E → ∆ (A) be a REE of
(
G,Scomplete

)
. By definition, we have

ψεδa|εui (a, εi) ≥ ψεδa|εui (a
′
i, a−i, εi) , ∀i, ε, a, a′i

Integrating both sides with respect to ε−i gives

∑
ε−i

ψεδa|εui (a, εi) ≥
∑
ε−i

ψεδa|εui (a
′
i, a−i, εi) , ∀i, εi, a, a′i

which is exactly the REE condition for (G,Sprivate).

(⇒) Conversely, let δ : E → ∆ (A) be a REE of (G,Sprivate). To show that δ is a REE of(
G,Scomplete

)
, by Theorem 2.1, it is enough to show that for each ε, δa|ε > 0 implies that a

is a PSNE of Γε. Since δ is a REE of (G,Sprivate), by definition, we have

∑
ε−i

ψεδa|εui (a, εi) ≥
∑
ε−i

ψεδa|εui (a
′
i, a−i, εi) , ∀i, εi, a, a′i

⇔ ϕ (a, εi)ui (a, εi) ≥ ϕ (a, εi)ui (a
′
i, a−i, εi) , ∀i, εi, a, a′i

where ϕ (a, εi) :=
∑

ε−i
ψεδa|ε.

Now fix ε and consider any a such that δa|ε > 0. We want to show that ui (a, εi) ≥

ui (a
′
i, a−i, εi) for each player i and any deviating action a′i. Note that δa|ε > 0 implies

ϕ (a, εi) > 0 which in turn implies that

ui (a, εi) ≥ ui (a
′
i, a−i, εi) , ∀i, a′i
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which is exactly the PSNE condition of a at ε. �

A.4 Proof of Theorem 4

Let S ≡ (Sx)x∈X and S̃ ≡
(
S̃x
)
x∈X

. Let S̃ %E S if and only if S̃x %E Sx for each x ∈ X .

We want to show

ΘBSE
I (S) =

⋃
S̃%ES

ΘREE
I

(
S̃
)
.

Note that

ΘBSE
I (S) ≡

{
θ ∈ Θ : ∀x ∈ X , φx ∈ PBSEa

(
Gx,θ, Sx

)}
(11)

and

⋃
S̃%ES

ΘREE
I

(
S̃
)
≡
⋃
S̃%ES

{
θ ∈ Θ : ∀x ∈ X , φx ∈ PREEa

(
Gx,θ, S̃x

)}

=

θ ∈ Θ : ∀x ∈ X , φx ∈
⋃

S̃x%ESx

PREEa

(
Gx,θ, S̃x

) . (12)

By Corollary 1, for any given θ ∈ Θ and x ∈ X , we have

PBSEa

(
Gx,θ, Sx

)
=

⋃
S̃x%ESx

PREEa

(
Gx,θ, S̃x

)
. (13)

That (11) and (12) are equal follows from (13), which is what we wanted. �

A.5 Proof of Theorem 5

1. Let G be an arbitrary basic game. We suppress the covariates x since they do not play

a role. Let S1 and S2 be arbitrary information structures such that S1 %E S2. It is

enough to show that a BSE in (G,S1) always induces a BSE in (G,S2) because it will

imply that the set of feasible CCPs in (G,S1) is a subset of CCPs in (G,S2).

Since S1 is an expansion of S2, we can express the signal function in S1 as π1
(
t, t̃|ε

)
=
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π2 (t|ε)λ
(
t̃|ε, t

)
where t̃ denotes the extra signals available in S1. We show that if

σ1 : E × T × T̃ → ∆ (A) is a BSE in (G,S1), then σ1 induces a decision rule σ2 :

E × T → ∆ (A) in (G,S2) which is a BSE of (G,S2). Since σ1 is a BSE of (G,S1), we

have

∑
ε,t−i,t̃−i

ψεπ
1
t,t̃|εσ

1
a|ε,t,t̃u

θ
i (a, εi) ≥

∑
ε,t−i,t̃−i

ψεπ
1
t,t̃|εσ

1
a|ε,t,t̃u

θ
i (a′i, a−i, εi) , ∀i, ti, t̃i, a, a′i.

Integrating out t̃i, and defining σ2 such that π2
t|εσ

2
a|ε,t ≡

∑
t̃ π

1
t,t̃|εσ

1
a|ε,t,t̃ = π2

t|ε

(∑
t̃ λt̃|ε,tσ

1
a|ε,t,t̃

)
for each a, ε, t, we get

∑
ε,t−i

ψε

(∑
t̃

π1
t,t̃|εσ

1
a|ε,t,t̃

)
uθi (a, εi) ≥

∑
ε,t−i

ψε

(∑
t̃

π1
t,t̃|εσ

1
a|ε,t,t̃

)
uθi (a′i, a−i, εi) , ∀i, ti, a, a′i.

⇔
∑
ε,t−i

ψεπ
2
t|εσ

2
a|ε,tu

θ
i (a, εi) ≥

∑
ε,t−i

ψεπ
2
t|εσ

2
a|ε,tu

θ
i (a′i, a−i, εi) , ∀i, ti, a, a′i

which is the BSE condition for σ2 in (G,S2). It follows that any CCP that can be

induced by a BSE in (G,S1) can be induced by a BSE in (G,S2), which is what we

wanted to show. �

2. The statement follows from Theorem 2. In particular, note that when pure strategy

Nash equilibrium is the relevant solution concept, the decision rule (or the outcome

function) simply represents an arbitrary equilibrium selection mechanism; no assump-

tion is placed on the equilibrium selection rule. Since the set of probability distribu-

tions over A on each realization of ε is the same across Bayes stable equilibria and pure

strategy Nash equilibria, the resulting identified set of parameters must be identical.

�

3. The statement follows from Theorem 3. Theorem 3 says that for any (G,S), if a decision

rule σ in (G,S) is a Bayes stable equilibrium of (G,S), then it is a Bayes correlated

equilibrium of (G,S). This implies that we will have PBSEa (G,S) ⊆ PBCEa (G,S) for
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any (G,S) which leads to the statement. �

A.6 Proof of Theorem 7

1. The first statement follows directly from construction:

Pr
(

ΘI ⊆ Θ̂α
I

)
= Pr

ΘI (φ) ⊆
⋃
φ̃∈Φαn

ΘI

(
φ̃
) ≥ Pr (φ ∈ Φα

n)

(The inequality follows from the possibility that there may exist φ̄ 6= φ such that

φ̄ ∈ Φα
n but ΘI (φ) ⊆ ΘI

(
φ̄
)
.) Taking the limits on both sides gives the desired result.

2. The second statement follows from the fact that φ enters the population program (see

Theorem 6) in an additively separable manner, and that φ ∈ Φα
n represents a set of

convex constraints. To see this, note that θ ∈ Θ̂α
I if and only if the following program

is feasible: For each x ∈ X , find σx ∈ ∆a|ε,t and φx ∈ ∆a such that

∑
ε,t−i

ψx,θε πxt|εσ
x
a|ε,t∂u

x,θ
i (a′i, a, εi) ≤ 0, ∀i, ti, a, a′i

φxa =
∑
ε,t

ψx,θε πxt|εσ
x
a|ε,t, ∀a, x

φ ∈ Φα
n.

That is, compared to the population program which treats φ as known, we let φ be a

variable of optimization and add convex constraints φ ∈ Φα
n. Under the assumption

that φ ∈ Φα
n represents convex constraints, the above program is convex.

A.7 Proof of Theorem 8

1. First, let use show that (10) is always feasible for any θ. Pick any φ̄ ∈ Φα
n. For any

φ̄, we can find a σ̄ satisfying φ̄xa =
∑

ε,t ψ
x,θ
ε πxt|εσ

x
a|ε,t for all a, x. Finally, there exists
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a non-negative vector of {qx}x∈X such that
∑

ε,t−i
ψx,θε πxt|εσ

x
a|ε,t∂u

x,θ
i (ãi, a, εi) ≤ qx for

all i, x, ti, a, ãi. Therefore, the feasible set of (q, σ, φ) is always non-empty. Second,

convexity of program (10) follows from the fact that all the constraints are linear in

(q, σ, φ) and that φ ∈ Φα
n represents a set of convex constraints.

2. It is straightforward to show that Q̂α
n (θ) = 0 if and only if θ ∈ Θ̂α

I . If Q̂α
n (θ) = 0, then

it must be that q∗x = 0 for all x ∈ X , implying that θ ∈ Θ̂α
I . Conversely, if θ ∈ Θ̂α

I ,

then we can get Q̂α
n (θ) = 0 by plugging in qx = 0 for all x ∈ X .

3. Finally, we can obtain ∇Q̂α
n (θ) as a byproduct to the convex program using the enve-

lope theorem.

B Computational Details

B.1 Discretization of Unobservables

Our approach to econometric analysis requires discrete approximation to the distribution

of payoff shocks which are often assumed to be continuously distributed. We follow a dis-

cretization approach similar to that taken in Magnolfi and Roncoroni (2021), which requires

discretizing the support of continuously distributed εi ∈ R, and assigning appropriate prob-

ability mass on each point on the discretized support to capture correlation among the εi’s.

The only difference is that Magnolfi and Roncoroni (2021) uses equally spaced quantiles of

the distribution of εi’s to find the discretized support whereas we use the approach introduced

in Kennan (2006) to find the discretized support.

First, to discretize the space of each εi ∈ R, we adopt the recommendations by Kennan

(2006), which have been used in works such as Kennan and Walker (2011), Lee and Seshadri

(2019), and Aizawa and Fang (2020). Let us briefly describe the procedures as follows.

Let F0 be the true continuous distribution of a scalar random variable εi with support E0.

Suppose we want to find an N -point discrete approximation to F0. Specifically, we want to
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find a pair (E , F ) where E contains N points and F describes the probability mass on each

of the n points. How should we choose E and F?

Kennan (2006) shows an approach that finds the “best” discrete approximation (E , F ) to

(E0, F0), measured in Lp norm (for any p > 0) when the researcher can choose N points. We

restate the proposition introduced in Kennan (2006).

Proposition (Kennan 2006). The best N-point approximation F to a given distribution F0

has equally-weighted support points E ≡
{
x∗j
}N
j=1

given by

F
(
x∗j
)

=
2j − 1

2N

for j = 1, ..., N .

Following the proposition, we discretize unobservables as follows. In a two-player game

with binary actions, we take the benchmark distribution of firm i’s random shock εi to be

the standard normal distribution. We fix the number of grid points N (we use N = 10 for

empirical application) and find Ei ≡
{
x∗j
}N
j=1

as described above. Then we take the Cartesian

product of E1 and E2 to set the discrete support of (ε1, ε2). In the baseline case where ε1 is

uncorrelated with ε2, we construct the discretized prior distribution ψ as an N ×N matrix

whose entries are constant at 1
N×N . Thus, ψ (ε1, ε2) = 1

N×N for any (ε1, ε2) ∈ E ≡ E1 × E2.

For example, when each εi is approximated with N = 20 points, we have 202 = 400 points

in E with ψ assigning mass 1/400 to each point in E .

Second, to capture correlated unobservables, we apply weights to each point in E where

the weights are generated using the density of the Gaussian copula. Specifically, we find

the weight at each point ε = (ε1, ε2) ∈ E to be proportional to the density of bivariate

Gaussian copula evaluated at the point with correlation matrix R =

[
1 ρ ; ρ 1

]
. In

the special case ρ = 0, the approach applies uniform weights to each point on E , and we

return to the case where ψ has constant mass on every point on E . Our simulation shows

that discretized distribution has actual correlation coefficient slightly smaller than the input
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correlation coefficient ρ. Extension to the case with more than two players is straightforward.

Note that where as Kennan (2006) shows an “optimal” way of discretizing the support of

a univariate random variable, we do not have such optimality result for a multivariate case.

Thus, our approach to approximating the multivariate distribution by assigning probability

mass on each point using Gaussian copula should be understood as a heuristic one.

B.1.1 Maximal Error from Discrete Approximation

Given that our approach relies on discrete approximation to unobservables (as done in

Syrgkanis, Tamer, and Ziani (2021) and Magnolfi and Roncoroni (2021)), a natural ques-

tion is how accurate the approximation is. We provide a simple numerical evidence which

supports the claims that the approximation error is at most mild.

Consider a two-player entry game with payoff ui (ai, aj, εi) = ai (κiaj + εi). We generate

observed choice probability data at (κ1, κ2) = (−0.5,−0.5) using a continuous distribution

εi
iid∼ N (0, 1), and symmetric equilibrium selection probability. The population choice prob-

ability is (φ00, φ01, φ10, φ11) ≈ (0.25, 0.3274, 0.3274, 0.0952).

If we use discretized approximation to the continuously distributed εi, how much error

can there be? Our measure of discrepancy is the solution to

min
κ∈R,σ∈∆a|ε

κ subject to∑
ε−i

ψεσa|ε∂ui (ãi, a, εi) ≤ 0, ∀i, εi, a, ãi

∑
ε

ψεσa|ε − φa ≤ κ, ∀a

φa −
∑
ε

ψεσa|ε ≤ κ, ∀a

The solution κ∗ measures the maximal relaxation of the consistency condition between im-

plied CCP and population CCP given that the equilibrium conditions hold exactly. If κ∗ = 0,

there is no approximation error. In general, we can expect κ∗ > 0. Let NE be the number of
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grid points used for approximating N (0, 1). (We use NE = 10 for ε1 and ε2 in our empirical

application which produces 102 = 100 points for the support of ψ.)

Figure 2: Discrete approximation error

Figure 2 plots κ∗ against NE. The figure shows that although the discrepancy measure is

non-monotonic in NE, it is generally decreasing in NE. The maximal discrepancy is around

0.02 which occurs at NE = 11.

Since we construct confidence sets for the conditional choice probabilities when we do

inference, it is likely that the approximation error will be controlled together. For this reason,

it seems quite unlikely that discretization error will contaminate the estimation results.

B.2 Construction of Convex Confidence Sets for Conditional Choice

Probabilities

We construct simultaneous confidence intervals based on Fitzpatrick and Scott (1987). Let

X be a finite set of covariates and |X | its cardinality. Let φxa be the population choice

probability of outcome a at bin x. At each bin x ∈ X , φx ≡ (φxa)a∈A is a parameter of a

multinomial distribution. Let nx be the number of observations at bin x, and nxa the number

of observations with outcome a at bin x. Let φ̂xa ≡ nxa/n
x be the frequency estimator of φxa.

Note that samples in each bin x ∈ X are independent from each other when the data is

generated from independent markets.
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Let α ∈ (0, 1) be the level pre-determined by the researcher. Let βα = 1− (1− α)1/|X | ∈

(0, 1) (which corresponds to the Šidák correction for testing |X | number of independent

hypotheses with family-wise error rate α). At each x ∈ X , we define confidence set for φx

as follows:

Φx,βα
nx ≡

{
φx : φxa ∈ φ̂xa ±

z (βα/4)

2
√
nx

, ∀a ∈ A
}
, (14)

where z (τ) denotes the upper 100 (1− τ) % quantile of the standard normal distribution.35

Finally, we define a confidence region for φ as:

Φα
n ≡

{
φ : φx ∈ Φx,βα

nx , ∀x ∈ X
}
. (15)

Proposition 1. Let Φα
n be defined as above. Suppose that samples are independent across

x ∈ X , and nx →∞ for each x ∈ X as n→∞. If α is sufficiently low or |X | is sufficiently

large so that βα ≤ 0.032, we have

lim
n→∞

Pr (φ ∈ Φα
n) ≥ 1− α.

To prove the proposition, we use the following lemma which is from Theorem 1 of Fitz-

patrick and Scott (1987). The lemma is due to Fitzpatrick and Scott (1987) who characterize

asymptotic lower bounds of the coverage probabilities when intervals of form (14) are used.

Lemma 2 (Fitzpatrick-Scott (1987) Theorem 1). Let Φx,βα
nx be defined as above. Then

lim
nx→∞

Pr
(
φx ∈ Φx,βα

nx

)
≥ L (βα)

where

L (βα) =


1− βα, if βα ≤ 0.032

6Φ
(

3z(βα/4)√
8

)
− 5, if 0.032 ≤ βα ≤ 0.3

.

35Although the intervals may include values lower than 0 or higher than 1, we impose the condition that
φxa ∈ [0, 1] for each a, x and

∑
a φ

x
a = 1 for each x in the optimization problem.
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Now let us prove the proposition.

Proof. We have

Pr (φ ∈ Φα
n) = Pr

(
φx ∈ Φx,βα

nx , ∀x ∈ X
)

=
∏
x∈X

Pr
(
φx ∈ Φx,βα

nx

)
(16)

where (16) follows from the independence across x ∈ X . Given that βα is sufficiently small,

taking the limit gives

lim
n→∞

∏
x∈X

Pr
(
φx ∈ Φx,βα

nx

)
=
∏
x∈X

lim
nx→∞

Pr
(
φx ∈ Φx,βα

nx

)
(17)

≥
∏
x∈X

(1− βα) (18)

= (1− βα)|X |

=
(

1−
{

1− (1− α)1/|X |
})|X |

(19)

= 1− α.

where (17) follows from the product rule of limits, (18) follows from Fitzpatrick and Scott

(1987) Theorem 1, and (19) follows from the definition of βα.

The advantages of using Fitzpatrick and Scott (1987) is that the approach is extremely

simple to apply and the researcher can also apply the method when nxa = 0 for some a, x,

i.e., there is a zero count cell (which happens often when the sample size is small and

requires some correction to use normalizations). The simultaneous confidence bands can be

conservative, but retains a linear structure which is computationally attractive.

Example 3. Suppose there are two bins X = {l, h}, and that the number of observations

at each bin is nl = 400 and nh = 600. Suppose that A = {00, 01, 10, 11} so that φx =

(φx00, φ
x
01, φ

x
10, φ

x
11) and that we obtained φ̂l = (0.1, 0.1, 0.4, 0.4) and φ̂h = (0.2, 0.3, 0.3, 0.2)
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using nonparametric frequency estimators at each bin. If α = 0.05, then βα = 1−(1− α)1/2 =

0.0253. Then z (βα/4) = z (1− 0.0253/4) = 2.4931. Finally, since z (βα/4) /
(
2
√

400
)

=

0.0623 and z (βα/4) /
(
2
√

600
)

= 0.0509, our Φα
n is defined by the following inequalities:

φ̂la − 0.0623 ≤ φla ≤ φ̂la + 0.0623, ∀a ∈ A

φ̂ha − 0.0509 ≤ φha ≤ φ̂ha + 0.0509, ∀a ∈ A.

�

B.2.1 Monte Carlo Experiment

Monte Carlo experiments confirm that our approach works well. Let X = {1, 2, ..., NX} be

a finite set of indices. The following constitutes a single trial. We randomly generated a

probability vector φx ∈ R4 for x = 1, ..., NX by taking a 4-dimensional uniform vector and

normalizing it to have unit sum. We then generated random samples at each x ∈ X by taking

a draw from a multinomial distribution with parameter (nx, φx) where nx is the number trials.

Finally, we test whether a simultaneous confidence band constructed as described above

covers φx. We repeat this procedure for 100, 000 times and find the coverage probability.

Table 8: Coverage Probability of Simultaneous Confidence Bands from Simulation

(A) α = 0.05 (B) α = 0.01
NX \nx 100 200 500 1000 10000 100 200 500 1000 10000

4 0.9697 0.9707 0.9713 0.9744 0.9837 0.9950 0.9948 0.9957 0.9956 0.9975
10 0.9735 0.9731 0.9748 0.9754 0.9854 0.9955 0.9954 0.9957 0.9960 0.9978
50 0.9760 0.9760 0.9777 0.9797 0.9885 0.9958 0.9962 0.9962 0.9968 0.9981
100 0.9779 0.9788 0.9791 0.9811 0.9886 0.9959 0.9961 0.9964 0.9969 0.9982
200 0.9776 0.9783 0.9794 0.9816 0.9902 0.9964 0.9962 0.9966 0.9971 0.9984

Table 8 reports the coverage probabilities obtained under various level (α), number of

observations at each bin (nx), and number of elements in X (NX ). The confidence bands are

conservative as expected. We conclude that the proposed approach works well.
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B.3 Random Walk Surface Scanning Algorithm

Let ΘI be an identified set of parameters which is defined as the level set

ΘI ≡ {θ ∈ Θ : Q (θ) ≤ 0}

where Q (θ) is a non-negative valued criterion function. (To obtain confidence set, replace

Q (θ) with Q̂α
n (θ).) Except for special cases (e.g., when ΘI is convex), we need to approximate

ΘI by collecting a large number of points in ΘI . A naive approach is to conduct an extensive

grid search: draw a fine grid on the parameter space Θ (e.g., by taking quasi-Monte Carlo

draws) and evaluate the criterion function at all point on the grid. However, a naive grid

search can be computationally burdensome especially when the dimension of θ is large.

In our setup, Theorem 8 says that we can get the gradient information for free due to

the envelope theorem. That is, once we evaluate Q (θ) at any θ, we can get ∇Q (θ) as

well. Exploiting gradient information can make the problem of finding a minimizer of Q (θ)

far more efficient because we can use gradient-based optimization algorithms (e.g., gradient

descent or (L-)BFGS) as opposed to gradient-free algorithms. However, since we need to

find all minimizers of Q (θ), solving minθQ (θ) is insufficient.

We propose the following heuristic approach. First, we identify θ0 = arg minθQ (θ) by

using gradient-based optimization algorithms. Second, we iteratively explore the neighbors

of the identified set by running a random walk process from θ0 and accepting points at which

the criterion function is zero-valued. That we can quickly identify a point in the identified

set gives a considerable advantage over grid search algorithms because we do not have to

explore points that are “far” from the identified set. The required assumption is that ΘI is

a connected set.

We use the random walk surface scanning algorithm described as follows. Let θ0 =

arg minθQ (θ) be the identified parameter and assume that Q (θ0) = 0 (otherwise the iden-
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tified set is empty). From θ0, we take a random candidate

θ̃1 ← θ0 + η

where η ∼ N
(
0, σ2

η

)
is a vector of random shocks. We then evaluate Q

(
θ̃1
)

and check

whether the value is equal to zero. If Q
(
θ̃1
)

= 0, we accept the candidate θ̃1 and let

θ1 ← θ̃1. If Q
(
θ̃1
)
> 0, then we draw a new θ̃1 until we find a point that is accepted.

Iterating this process generates a random sequence of points θ0, θ1, θ2, ... which “bounces”

inside the level set ΘI . We iterate this process until we find a large number of points in ΘI .

To control the step size, we let ση adjust adaptively. Specifically, if a candidate point is

accepted, we increase ση before a new draw is taken to make the search more aggressive. If

a candidate point is rejected, we decrease ση to make the search more conservative (a lower

bound can be placed to prevent excessively small step size).

B.4 Counterfactual Analysis

In this section, we explain the implementation details for counterfactual analysis. Let us

first lay out the counterfactual prediction problem. Let us call the game before and after

the counterfactual policy pre-game and post-game respectively. Suppose we have a counter-

factual policy that changes the pre-game (Gpre, S) to post-game (Gpost, S) (we assume that

S is fixed). In our application, we assume the counterfactual policy changes the covariates

from xpre to xpost so that the payoff function changes from uprei (a, εi; θ) ≡ ux
pre,θ
i (a, εi) to

uposti (a, εi; θ) ≡ ux
post,θ
i (a, εi). We assume that the prior distribution ψ and the baseline

information structure S do not change.

Let h : A × E → R be the counterfactual objective of interest (examples provided

below). For a fixed payoff function ui (a, εi), we can find the bounds on the expected value

70



of counterfactual objective h by solving

min /max
σ

∑
ε,t,a

ψεπt|εσa|ε,th (a, ε) subject to

∑
ε,t−i

ψεπt|εσa|ε,t∂u
x,θ
i (ãi, a, εi) ≤ 0, ∀i, ti, a, ãi.

Note that his problem is also a linear program.

We now connect the characterizations to the empirical application. We take xpre to be

the covariates of the Mississippi food deserts. There can be multiple values of xpre because

there are multiple markets with different observable characteristics. Let X pre be the set of

covariates corresponding to Mississippi food deserts, and let {wx}x∈X pre be the corresponding

weights, where wx is proportional to the number of Mississippi food deserts in bin x ∈ X pre.

For each of the xpre, we change the indicator variable for low access to healthy food from

1 to 0 to capture that we are increasing accessibility to healthy food in the market. This

changes the game since the players’ payoff functions are changed. We let X post be the set of

post-counterfactual covariates.

We use four measures of market structure:

Counterfactual objective h (a, ε)
Number of entrants 1× (I {a = (0, 1)}+ I {a = (1, 0)}) + 2× I {a = (1, 1)}
McDonald’s entry I {a = (1, 0)}+ I {a = (1, 1)}
Burger King entry I {a = (0, 1)}+ I {a = (1, 1)}

No entry I {a = (0, 0)}

Suppose θ is given. At each xpre ∈ X pre and the corresponding xpost ∈ X post, we can

obtain the bounds on the expected value of h by solving the program described above. Since

there are multiple bins in X pre and X post, we find the weighted average of the bounds where

the weights are given by {wx}x∈X pre described above.

Finally, since ΘI is set-valued, we repeat the above process for each θ in ΘI and take

the union of the bounds. Since there is a large number of points in ΘI , to save computation

time, we use k-means clustering on ΘI to find a set of points that approximate ΘI (we choose
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k equal to 2000 or larger and compare the projection of the original set to the projection of

the approximating set to see if the approximation is accurate).

B.5 Overview of the Implementation

We provide a brief overview of the implementation behind the empirical application. To

prepare data for structural estimation, we used Stata to obtain discretized bins and estimate

conditional choice probabilities via frequency estimator. We also compute the number of

observations in each bin x ∈ X (which are inputs to constructing simultaneous confidence

intervals for the CCPs) and define weights at each x (which are inputs to criterion function)

as being proportional to the number of observations. The final dataset has |X | rows, where

each row contains vector of covariate values corresponding to bin x, CCP estimates φ̂xa for

each outcome a ∈ A, and the number of observations in x, nx. We then export the data to

Julia where all computations for structural estimation are done.

To prepare feasible optimization programs, we discretize the space of shocks using the

approach described in Section B.1. We then declare optimization program using JuMP in-

terface (Dunning et al., 2017).36 We construct simultaneous confidence sets Φα
n using the

approach described in B.2. This makes evaluation of the criterion functions Q̂α
n (θ) for each

θ a linear program. We use Gurobi to solve linear programs.

To approximate the confidence set Θ̂α
I , we need to collect many points in Θ that satisfy

the condition Q̂α
n (θ) = 0. Collecting these points are done by the random walk surface

scanning algorithm described in Section B.3. To use this approach, it is important to quickly

identify an initial point θ0 such that Q̂α
n (θ0) = 0 by solving minθ Q̂

α
n (θ). This can be done

efficiently by using gradients of Q̂α
n (θ) obtained by the envelope theorem (see Theorem 8). We

recommend using many initial points to increase the chance of convergence, and decreasing

the tolerance for optimality conditions (‖∇Q̂α
n (θ) ‖ < εtol) for higher accuracy. We use

Knitro to solve nonlinear programs. In our empirical application, we solve minθ Q̂
α
n (θ)

36The main advantages of JuMP are its ease of use and its automatic differentiation feature which does
not require the researcher to provide first- and second-order derivatives.
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jointly with the inner minimization program since the number of variables is manageable

and is faster than solving the nested optimization problem (which is similar to the key idea

of Su and Judd (2012)). More specifically, when identifying a minimizer of Q̂α
n (θ), we solve

min
θ
Q̂α
n (θ) = min

θρ

(
min
θu

Q̂α
n (θu; θρ)

)

where θu is the parameters that enter the payoff functions that θρ is the correlation parameter.

The inner problem is solved given θρ using the non-linear solver and the outer problem

searchers the optimal θρ on a grid on [0, 1]. Although we can obtain ψx,θ
ρ in closed form

so that the minimization problem can be solved jointly in (θu, θρ), we chose to divide the

minimization problem as above because ψx,θρ can be highly non-linear in θρ.
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Supplementary Materials

C Data Appendix

This section describes the datasets used for our empirical application, which studies the

entry game between McDonald’s and Burger King in the US. The following table provides

an overview of the datasets used in this paper.

Dataset Name Description
Data Axle (Infogroup)
Historical Business
Database

Proprietary; accessed via Wharton Research Data Services
https://wrds-www.wharton.upenn.edu/ using institutional subscription.37

Data Axle (formerly known as Infogroup) is a data analytics marketing firm
that provides digital and traditional marketing data on millions of consumers
and businesses. Address-level records on business entities operating in the US
are available for 1997-2019 at the annual level. We obtain the addresses of
burger outlets in operation, which in turn are translated into tract-level entry
decisions for each calendar year using census shapefiles.

US Census Shapefiles Accessible from https://www.census.gov/geographies/mapping-files/
time-series/geo/tiger-line-file.html. Used to get 2010 census tract
boundaries. Shapefiles are needed to find tract ids for each physical store
given their location coordinates.

Longitudinal Tract Data
Base (LTDB)

Accessible from https:
//s4.ad.brown.edu/projects/diversity/researcher/bridging.htm.
LTDB provides tract-level demographic information for 1970-2010
harmonized to 2010 tract boundaries. We obtain population and income per
capita for year 2000 and 2010 from here.

National Neighborhood
Data Archive (NaNDA)

Accessible from https://www.openicpsr.org/openicpsr/nanda. NaNDA
provides measures of business activities at each tract. We obtain the number
of eating and drinking places, the number of grocery stores (per square
miles), the number of super-centers, and the number of retail stores for year
2010 at the census tract level.

37Wharton Research Data Services (WRDS) was used in preparing part of the data set used in the research
reported in this paper. This service and the data available thereon constitute valuable intellectual property
and trade secrets of WRDS and/or its third-party suppliers.
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Food Access Research
Atlas

Accessible from https:
//www.ers.usda.gov/data-products/food-access-research-atlas/.
Food Access Research Atlas provides information on whether a census tract
has limited access to supermarkets, super-centers, grocery stores, or other
sources of healthy and affordable food. We obtain indicators for “low access to
healthy food” and “food deserts” at the census tract level for year 2010. A
census tract is classified as a food desert if it is identified as having low access
to healthy food and low income. A census tract is classified as low-access
tract if at least 500 people or at least 33 percent of the population is greater
than 1/2 mile from the nearest supermarket, supercenter, or large grocery
store for an urban area or greater than 10 miles for a rural area.38 The
criteria for identifying a census tract as low-income are from the Department
of Treasury’s New Markets Tax Credit (NMTC) program.

C.1 Data Construction

We merge multiple data sets to construct the final sample used for empirical application.

The details are described as follows.

Panel data at tract-year level

Although we use 2010 cross-section for estimation of the structural model, we construct a

panel dataset at a tract-year level to track the openings and closings of fast-food outlets in

the US. We make the sample period run from 1997 to 2019, corresponding to the period for

which business location data from Data Axle Historical Business Database are available.

We define units for markets as 2010 census tracts designated by the US Census Bureau.

(We define potential markets 2010 urban tracts. See below for the definition of urban tracts.)

The year 2010 was selected since it was the latest year for which decennial census data was

available when we started the empirical analysis. For all years in the sample period, we

fix markets as 2010 census tracts; although census tract boundaries change slightly every

decade, we fixed the boundaries for consistency across time.

38An alternative measure uses 1 mile radius for urban area. Using the 1 mile radius measure does not
change the qualitative conclusion of our empirical analysis.
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To construct tract-level data, we first download 2010 census shapefiles from the US

Census to obtain the list of all 2010 census tracts (there are 74,134 tracts defined for the

2010 decennial census in the US and its territories). Next, we exclude all tracts outside the

contiguous US: Alaska, Hawaii, American Samoa, Guam, Northern Mariana Islands, Puerto

Rico, and the Virgin Islands. We drop these regions since the data generating process

(specifically how the game depends on observable market characteristics) is likely to differ

from the rest.

Using the market-year panel data as a “blank sheet”, we append relevant variables that

include the firms’ entry decisions in each tract for a given year and observable tract charac-

teristics such as population.

At this stage, we can create a variable distance to headquarter by measuring the distance

between the location of a firm’s headquarter and the centroid of a tract (McDonald’s and

Burger King have their headquarters in Chicago and Florida, respectively).

In the final dataset used for the empirical application, we restrict attention to 2010

urban census tracts, i.e., we drop all rural tracts. A census tract is defined as urban if

its population-weighted centroid is in an “urban area” as defined in the Census Bureau’s

urbanized area definition; a census tract is rural if not urban. We obtain the urban tract

indicator from the Food Access Research Atlas.

Coding Entry Decisions

The primary source of data for our empirical application is Data Axle’s Historical Business

Database. The dataset contains the list of local business establishments operating in the

US over 1997-2019 at an annual level. Each establishment is assigned a unique identifica-

tion number which can be used to construct establishment-level panel data. In addition,

the dataset contains information such as company name, parent company, location of the

establishment in coordinates, number of employees, industry codes.

We first need to download the entire list of burger outlets that were in operation. We
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download raw data from Wharton Research Data Services (WRDS) using the qualifier “SIC

code=58” (retail eating places). We then identify relevant burger chains using company

(brand) names and their parent number. In principle, each burger chain should have a

unique parent number by the data provider. For example, all McDonald’s outlets have parent

number “001682400”. Ideally, one can identify all burger chains that belong to a brand using

their names and parent numbers. However, there are some errors due to misclassifications,

which makes identifying all relevant burger chains more difficult. For example, McDonald’s

outlets will have different company names such as “MC DONALD’S”, “MCDONALDS”, and

“MC DONALD”. In addition, some McDonald’s outlets have parent numbers missing for

some subset of years, or some establishments have duplicate observations.39

To overcome this issue, we rely on the coordinates information to identify unique estab-

lishments. Since the same establishment can have different coordinates assigned over time

depending on which point of place is used to measure the coordinates, we put each estab-

lishment in blocks approximately 250 meters in height and width. This procedure puts all

observations whose coordinates are very close to each other in a single bin; we assign a unique

establishment id to them, i.e., we treat them as corresponding to a single store. We find that

while it is challenging to avoid minor classification errors, the total number of burger chains

outlets identified by our procedure closely follows the total number of outlets reported by

other sources (e.g., reports in Statista https://www.statista.com/). Identifying unique

establishments allows the construction of establishment-level panel data, which can be used

to track firm entries and exits in each market.

The final step is to reshape the establishment-level panel data to market-level data to

tabulate the number of burger chains operating in each market-year pair. We accomplish

this with the help of Stata’s geocoding function, which helps identify census tract id’s

39The main hurdle in constructing establishment-level panel data is the following. Each establishment is
assigned a unique “ABI number” which allows the analyst to track how the establishment operates over time.
However, we found that some establishments had their ABIs changing over time or one establishment had
duplicate observations with different ABI numbers assigned. When we inquired the original data provider
support team about why this issue might be arising, they responded that it seems to be errors generated in
the data recording stage.
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corresponding to each coordinate (location of establishments). We then tabulate the number

of outlets by each brand at a year-tract level.

In each market, we code entry decisions as binary variables. There were very few cases

of a firm having more than one outlet in a single tract. We also construct a firm-specific

variable own outlets in nearby markets. This variable records the number of own-brand

outlets operating in adjacent markets (they share the same borders). For example, if for

market m, McDonald’s nearby outlets are 2, it means that there were a total of 2 outlets

operating in markets adjacent to market m. We constructed this variable with the help of a

dataset downloaded from Diversity and Disparities project website that provides the list of

2010 census tracts and adjacent tracts.40

Market Characteristics

We obtain tract-level characteristics from multiple sources described in the table above. All

of these datasets provide variables at tract-level for the year 2010. We append tract-level

characteristics to the main dataset that has entry decisions and firm-specific variables at

tract-level.

D Information and Stability in a Two-player Entry Game

Example

In this section, we compare Bayes stable equilibrium and static Nash equilibrium using a

two-player entry game similar to Example 1. While the static Nash equilibrium framework

has been a dominant approach for estimating games with cross-sectional data, we claim

that it may not be applicable when the researcher is interested in analyzing stable outcomes

(i.e., the researcher observes firms’ decisions that are assumed to be stable). Static Nash

equilibrium assumes that players’ decisions are irreversible, i.e., players cannot revise their

40Accessible from https://s4.ad.brown.edu/Projects/Diversity/Researcher/Pooling.htm.
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actions after observing opponents’ actions. Thus, if the empirical setting allows players to

revise their actions frictionlessly, the researcher may want to consider alternative solution

concepts as identifying restrictions. We illuminate this point in the examples below.

D.1 Instability of Nash Equilibrium Outcomes

Figure 3: Nash equilibrium in entry game

(a) Complete information (Scomplete) (b) Private information (Sprivate)

Consider a two-player entry game with payoffs ui (ai, aj, εi) = ai (κiaj + εi) for i = 1, 2

and assume εi
iid∼ U [−1, 1]. We set the true parameters at κ1 = κ2 = −1

2
.

Consider Scomplete and Sprivate which are the two information structures most commonly

used in the empirical literature. Figure 3 summarizes the Nash equilibrium predictions under

each informational assumption. In Figure 3-(a), as is well-known, the center region admits

multiple equilibria, including a (totally) mixed strategy equilibrium. Figure 3-(b) plots the

predictions of Bayes Nash equilibrium in which outcomes are determined by a profile of

threshold strategies such that ai = 1 if and only if εi ≥ 1
5
. Note that in both cases, the

behavioral assumption underlying the static Nash equilibrium is that the players are trying

to predict opponents’ actions.

We claim that some outcomes might be unstable: players might want to revise their

actions after observing the opponents’ realized actions. Figure 4 illustrates the instability of

the Nash equilibrium outcomes. The shaded regions represent the set of ε’s whose associated
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Figure 4: Unstable region under Nash equilibria

(a) Complete information (Scomplete) (b) Private information (Sprivate)

equilibrium outcomes may be unstable. In Figure 4-(a), regret may arise when either a =

(0, 0) or (1, 1) occurs “accidentally” due to totally mixed strategies; deviation incentives exist

after observing the realized outcome. In this case, regrets occur with positive probability

since players are mixing over their actions. It is also easy to see that if only pure strategies are

allowed, then ex post regret problem does not arise because knowing others’ pure strategies

and the realization of ε = (ε1, ε2) makes opponents’ actions “known”.

Figure 4-(b) is more interesting. Outcomes in the shaded region are unstable because the

revelation of opponents’ actions determined by the Nash play may create incentives to revise

the original actions. For instance, suppose ε0 in the figure is realized so that the Bayes Nash

strategy profile results in outcome a = (0, 0). Then player 1 will find deviation to a′1 = 1

strictly profitable because the profit from operating as a monopolist is strictly positive.

Also note that rational agents can update their beliefs using information from the actions.

For example, when the same ε0 leads to a = (0, 0), player 1 can infer that ε0,2 ∈ [−1, 1/5]

(although ε0,2 is payoff-irrelevant to player 1 in this example). The refinement of information

via observation of endogenous outcomes is exactly the idea of “rational expectations.” The

lesson is that endogenous actions reveal information and hence leads the posterior beliefs to

become systematically different from the prior belief.
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D.2 Examples of Bayes Stable Equilibria

We provide simple examples of Bayes stable equilibria under Sprivate and Snull. Consider

a game (G,Sprivate) in which player i observes εi, but not εj, j 6= i. A decision rule σ :

E1 × E2 → ∆ (A1 ×A2) is a Bayes stable equilibrium of (G,Sprivate) if

∑
ε−i

ψεσa|εui (a, εi) ≥
∑
ε−i

ψεσa|εui (a
′
i, a−i, εi) , ∀i, εi, a, a′i.

Figure 5: Bayes stable equilibrium in a simple two-player entry game

(a) BSE under Sprivate (b) BSE under Snull

Figure 5-(a) shows the structure of the BSE under Sprivate. The listed outcomes rep-

resent the support of σ (·|ε) for each ε ∈ [−1, 1]2. For example, if ε0 = (ε0,1, ε0,2) in the

figure is realized, the mediator publicly recommends a = (1, 0) with probability one since

σ ((1, 0) |ε0) = 1. When a = (1, 0) is realized, each player i can partially infer ε−i (e.g.,

player 1 infers that ε0,2 ∈ [−1, 1/2)) although ε−i is payoff-irrelevant. One can readily check

that each player has no incentive to deviate from a = (1, 0).41

Figure 5-(b) shows an example of a Bayes stable equilibrium under Snull in which players’

41Note the similarity between Figure 5-(a) and 4-(a). Figure 5-(a) also illustrates Theorem 2 that says the
predictions of Bayes stable equilibria under Sprivate is the same and those of pure strategy Nash equilibria
under Scomplete. In a Bayes stable equilibrium under Sprivate, whenever an outcome (ai, a−i) is recommended,
player i knows all of her payoff-relevant variables (ai, a−i, εi); knowledge of ε−i is irrelevant. Then, at an
equilibrium situation, each player acts as if she is in a pure strategy Nash equilibrium of Scomplete.
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signals are null. The equilibrium condition is

∑
ε

ψεσa|εui (a, εi) ≥
∑
ε

ψεσa|εui (a
′
i, a−i, εi) , ∀i, a, a′i.

In this case, the players have no private signals and the players’ posteriors are derived solely

from observing a. For example, suppose that the outcome function σ is given as shown in

Figure 5-(b), where z is an arbitrary threshold parameter. If ε0 in the figure is realized, then

σ dictates that outcome a = (1, 1) is realized. Upon observing a = (1, 1), Player 1 learns

that ε0,1 ∈ (z, 1) (the case for Player 2 is symmetric). For the recommended outcome to be

incentive compatible, we need that

δ2 + Eσ [ε0,1|ε0,1 ∈ (z, 1)] ≥ 0⇔ z ≥ 0.

One can further verify that the obedience condition requires that z ≥ −1, z ≤ 2, and z ≤ 1

for outcome a = (1, 0), (0, 1), and (0, 0) to be incentive compatible to player 1. In sum, when

the outcome function is assumed to have a parametric structure as in Figure 5-(b), any σ

with z ∈ [0, 1] constitutes a BSE under Snull.
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