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Abstract

We show that adding noise to data before making data public is effective at screening
p-hacked findings: spurious explanations of the outcome variable produced by attempting
multiple econometric specifications. Noise creates “baits” that attract p-hackers, who engage
in data mining with no prior information about the true cause behind the outcome, inducing
them to report verifiably wrong results. But, noise only minimally impacts honest researchers
who use data to test an ex-ante hypothesis about the causal mechanism. We characterize the
optimal level of dissemination noise and highlight the relevant tradeoffs in a simple theoretical
model. Dissemination noise is a tool that statistical agencies (e.g., the US Census Bureau)
currently to protect privacy, and we show this existing practice can be repurposed to improve
research credibility.
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1 Introduction
In the past 15 years, academics have become increasingly concerned with the harms of p-
hacking : researchers’ degrees of freedom that lead to spurious empirical findings. For obser-
vational studies common in economics and other social sciences, p-hacking can mean trying
out many regression specifications on the data, without an ex-ante hypothesis, and then
selectively reporting the results that appear statistically significant. Such p-hacked results
can lead to misguided and harmful policies. Recent developments in data and technology
have also made p-hacking easier: today’s rich datasets often contain a large number of co-
variates that can be potentially correlated with a given outcome of interest, while powerful
computers enable faster and easier specification-searching.

In this paper, we propose to use dissemination noise to address and mitigate the negative
effects of p-hacking. Dissemination noise is purely statistical noise that is intentionally added
to raw data before the dataset is made public. Statistical agencies, such as the US Census
Bureau, already use dissemination noise to protect respondents’ privacy. Our paper suggests
that dissemination noise may be repurposed to screen out p-hackers. Noise can limit the
ability of p-hackers to discover spurious, but statistically significant results, and thus “game”
standards of evidence. The right amount of noise can serve as an impediment to p-hacking,
while minimally impacting honest researchers who have an ex-ante hypothesis that they wish
to test in the data.

1.1 p-Hacking

Spurious results in many areas of science have been ascribed to the ability of researchers
to, consciously or not, vary procedures and models to achieve statistically significant results.
The reproducibility crisis in Psychology has been blamed to a large extent on p-hacking.1 For
example, one representative study in Psychology (Open Science Collaboration, 2015) tried
to replicate 100 papers, 97 of which reported statistically significant results. Only 36 of the
results remained significant in the replication. As a response to p-hacking, one Psychology
journal has taken the extraordinary step of banning the use of statistical inference altogether
(Woolston, 2015). In a follow-up to the reproducibility crises in Psychology, Camerer et al.
(2016) evaluate economic experiments. They too find a significant number of experiments
that do not replicate.2

Most empirical work in economics and other social sciences are observational studies that
use existing field data, and not experiments that produce new data. Observational studies
lead to a different sort of challenge for research credibility. In the social sciences, p-hacking
stems mostly from discretion in econometric specification, rather than in experimental design
and data generation. In experimental work, a remedy for p-hacking is available in the form
of pre-registration: researchers must describe their methods and procedures before data is

1Simmons, Nelson, and Simonsohn (2011) is the classic study that started off the reproducibility crisis in
psychology. See also the follow-up Simonsohn, Nelson, and Simmons (2014), which coins the term p-hacking.
An earlier influential paper Ioannidis (2005) touches upon some of the same issues, with a focus on the
medical literature and using the term “data dredging.”

2See also Camerer et al. (2018) and Altmejd et al. (2019). Imai, Zemlianova, Kotecha, and Camerer
(2017) find evidence against p-hacking in experimental economics.
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collected. Pre-registration limits researchers’ degrees of freedom to generate a positive result.
But pre-registration is problematic for observational studies because of an obvious credibility
problem, as the data in question have already been made publicly accessible by statistical
agencies (e.g. the US Census Bureau or the Bureau of Labor Statistics). Even if an economist
pre-registers a methodological procedure that is to be applied to existing data, one cannot
rule out that they tried other procedures on the same data before formulating the proposal.3

Our paper focuses on researchers who use an existing dataset. The dataset contains an
outcome variable that can be potentially explained, in some statistical sense, using a large
set of possible explanatory variables: what we call a “wide” dataset. In a wide dataset, the
number of econometric specifications is large relative to the number of observations. This
allows p-hackers to find, and pass as legitimate, statistical models that are spurious in reality.
In Section 2 we present a simple numerical example.

1.2 Dissemination Noise

Dissemination noise is currently used by major statistical agencies to preserve privacy. The
US Census Bureau, for instance, will only disseminate a noisy version of the data from
the 2020 Census. They use the notion of differential privacy, an algorithm proposed and
promoted in computer science to protect the privacy of individual census records while pre-
serving the value of aggregate statistics.4 The 2020 Census is not the first data product
that the Bureau has released with noise. Previously, the Bureau also released a geographic
tool called “On the map” whose underlying data was infused with noise, following the differ-
ential privacy paradigm. Even earlier technologies for preserving respondent confidentiality
like swapping data and imputing data can also be interpreted as noisy data releases. The
contribution of our paper is to propose a new use for dissemination noise.

1.3 Setup and Key Results

In our proposal, dissemination noise introduces spurious correlations that can be proven to
be spurious. These acts like baits for p-hackers. The idea is simple: adding noise to the data
creates potential spurious correlations that can be checked against the non-noisy version of
the data. Of course, this comes at a cost. It makes the data less useful for honest researchers
who wish to use the data to test a specific ex-ante hypothesis.

We explore this tradeoff in a simple model with two types of researchers: a hacker and a
maven. The researchers analyze a noisy dataset released by a statistical agency, and propose
a causal explanation for a given outcome variable. Researchers’ payoffs depend on whether
their model is implemented by a policymaker who validates their finding on the raw, noiseless,
data according to an exogenous statistical standard.

The hacker and the maven are distinguished by domain expertise: the maven’s expertise
narrows down the candidate explanations for the outcome variable, while the hacker has no

3Pre-registration in Economics remains very rare, even for field experiments that generate their own data
(Abrams, Libgober, and List, 2021).

4See https://www.census.gov/about/policies/privacy/statistical_safeguards.html and
https://www2.census.gov/about/policies/2019-11-paper-differential-privacy.pdf
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prior information about the causal mechanism. All researchers act strategically to maximize
their expected payoffs, but their optimal behavior differ.

The key intuition for why dissemination noise can help screen out p-hackers is that a
small amount of noise hurts hackers more than mavens (Lemma 2). Mavens entertain only
a small number of hypotheses, so a small amount of noise does not interfere too much with
their chances of detecting the truth. Hackers, by contrast, rationally try out a very large
number of model specifications because they have no private information about the true
cause behind the outcome variable. The hackers’ data mining amplifies the effect of even a
small amount of noise, making them more likely to fall for a bait and get screened out. So,
a strictly positive amount of noise is optimal. Moreover, we derive comparative statics on
how the optimal level of noise varies with the fraction of hackers and with the size of the
dataset.

One caveat is that it may not be credible to test researchers’ findings on a raw dataset
that is kept secret. For the sake of transparency, the statistical agency may be required to
publish the dataset that is used to validate the reported causal covariate and make policy
decisions. This raises the question of whether we can keep screening out p-hackers if the same
raw dataset must be reused to answer different research questions over time. To address this
problem, we study a dynamic model with periodic noisy releases of an original dataset (see
Section 4). In our dynamic model, a finding submitted for validation on February of 2021
is tested against the March 2021 release of noisy data. We show that it remains optimal
to release data with a strictly positive amount of noise, but over time the hackers’ access
to all past data releases diminishes the effectiveness of noise. We show that eventually it is
optimal to give up on noise, and return to a world in which p-hacking power is unchecked.

1.4 Alternative Solutions to p-Hacking

As already mentioned, the most common proposal to remedy p-hacking is pre-registration.
This requires researchers to detail the analysis that they plan to carry out, before actually
starting to analyze the data. One promising policy for journal publications is so-called “reg-
istered reports,” whereby a paper is evaluated for publication based on the question it seeks
to answer, and the methods it plans to use, before any results are obtained.5 Pre-registration
is a very good idea in many scientific areas, but it is of limited use for observational stud-
ies, which are ubiquitous in the social sciences. Not only does it preclude useful exploratory
work, it is also impossible to audit or enforce because publicly available data can be privately
accessed by a researcher before pre-registration.

A second solution is to change statistical conventions to make p-hacking more difficult.
An extreme example is banning the use of statistical inference altogether (Woolston, 2015),
arguably a case of throwing out the baby with the bath water. A less drastic proposal is
contained in the collective manuscript Benjamin et al. (2018), which proposes to redefine
the p-value threshold for statistical significance by an order of magnitude — from 5% to
0.5%. Of course this makes p-hacking harder, but a p-hacker armed with a sufficiently
“wide” dataset and cheap enough computation power can discover spurious correlations that
satisfy any significance threshold. We address this idea within our model (see Proposition 3 in

5Registered reports are used, for example, by Nature Human Behaviour.
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Section 3.3) and argue that our proposed use of dissemination noise is largely complementary
to requiring more demanding statistical significance.

An idea related to our proposal is simply to reserve data for out-of-sample testing. In
fact, our static model can be understood as reserving all of the original raw data for out-
of-sample testing, while the noisy data is released publicly. This approach differs from the
usual out-of-sample testing procedure, where the raw data is partitioned in two portions.
One portion is released publicly, and the rest is a “hold-out” dataset reserved for out-of-
sample testing. It is worth emphasizing that our version of out-of-sample testing is based on
repurposing the current practice of adding dissemination noise.

Indeed, we are motivated by the form of the dissemination noise currently in use by
statistical agencies like the US Census Bureau, which more closely resembles perturbing each
data entry rather than withholding some rows of the dataset altogether. For instance, the
Bureau publishes the annual Statistics of U.S. Businesses that contains payroll and employee
data on small American businesses. Statisticians at the Bureau point out that separately
adding noise to each business establishment’s survey response provides “an alternative to
cell suppression that would allow us to publish more data and to fulfill more requests for
special tabulations” (Evans, Zayatz, and Slanta, 1998). The dataset has been released with
this form of dissemination noise since 2007 (US Census Bureau, 2021b). More recently,
the Bureau has finalized the parameters of the noise infusion system for the 2020 Census
redistricting data in June 2021 (US Census Bureau, 2021a). The noise will be added through
the new differentially private TopDown Algorithm that replaces the previous methods of data
suppression and data swapping (Hawes and Rodriguez, 2021).

The usual approach of reserving a hold-out dataset has some limitations. The first is that
partitioning the data by observations makes more sense for datasets that consist of records
that are meant to be independent realizations of some statistical model. If the observations
represent individuals on a social network where neighbors influence each other, or time-
series observation of some economic indicators, then it is not obvious how the data could
be partitioned. More generally, it may be hard to find any reasonable way to partition the
data before knowing how various researchers intend to use the data. We show in Section 5.1
that dissemination noise can continue to work even with non-i.i.d. observations. A second
problem concerns the use of holdout data to test multiple empirical results. Should the
holdout be made public after each tests? This would require a large holdout data, so as to
test each result on a portion of the data that was not used in estimation. Such dynamic
considerations also arise with our proposal in Section 4.

The out-of-sample approach is the focus of Dwork et al. (2015), who propose to give
researchers free access to a portion of the data while only allowing them limited access to
the portion of the data reserved for validation – the holdout data. By using tools from
differential privacy, these authors ensure that the holdout can be re-used through controlling
how much information about the hold-out dataset is leaked in each query. These ideas have
a connection to our work because differential privacy rests on adding noise to the data, but
the mechanisms analyzed in their paper are very different from ours. There is no role in
their proposal for the bait that we plant for p-hackers. We consider a world with two kinds
of researchers and the dissemination noise here serves a screening role and aims to separate
the two types who act strategically to maximize their expected payoffs.
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1.5 Related Literature

There is an extensive literature outside of Economics documenting the prevalence and effects
of p-hacking. We are not going to review this literature here.6 In Economics, a series of
papers seeks to understand the incentives and tradeoffs behind p-hacking. Henry (2009);
Felgenhauer and Schulte (2014); Felgenhauer and Loerke (2017); Di Tillio, Ottaviani, and
Sørensen (2021); Henry and Ottaviani (2019) all study different games between a researcher
(an agent) and a receiver (a principal). The agent has access to some p-hacking technology,
which can amount to reporting a subset of results (only the positive results), or to stop
sampling when they are ahead. These papers seek to better understand the interaction
between p-hacking agents and their principals, and study how such interactions are affected
by variations in the hacking technology. In all of these papers, the agent faces some cost
from hacking. We instead consider hackers who incur zero cost from p-hacking, motivated
by our focus on researchers who data mine an existing dataset (which is essentially free with
powerful computers) instead of researchers who acquire new data at a cost. The equilibria in
the papers in this literature would be uninteresting with free hacking. Our focus is instead
on a specific intervention, dissemination noise, that can help screen out even very powerful
p-hackers who face no hacking costs.

Di Tillio, Ottaviani, and Sørensen (2017) also studies a game between a p-hacker and a
principal, but gives the agent some private information and the ability to select an area to
do research in. This is a mechanism for hacking that is outside of the scope of our paper.

2 Motivating Example
As motivation for our model, we discuss an environment prone to p-hacking, explain how
p-hackers lead to the implementation of socially harmful policies, and illustrate how dissem-
ination noise can help screen out p-hackers and improve social welfare.

Imagine that a society is trying to learn the causal model generating some outcome
variable Y in order to implement an appropriate policy intervention. For instance, Y might
be a measure of education attainment. Identifying the true socioeconomic causes of Y allows
the government to implement a targeted policy that increases its citizens’ education level.
But, implement a misguided policy based on a wrong causal model of education attainment
will only waste resources without bringing about the desired social change.

There are 20 covariates X1, . . . , X20, with each X i ∼ N (0, 1), where N (µ, σ2) is the
normal distribution with mean µ and variance σ2. It is known that Y is generated from
a linear model Y = X i∗1 + X i∗2 + X i∗3 + ε where 1 ≤ i∗1 < i∗2 < i∗3 ≤ 20 are three of the
covariates, and ε ∼ N (0, 4) is an error term. Without loss, say the causal covariates are
(i∗1, i∗2, i∗3) = (1, 2, 3). A dataset is available to help find the causal model. This dataset
consists of 20 independent observations of the outcome variable and the covariates from
their joint distribution.

A researcher (the “agent”) analyzes the data and proposes a model (̂ı1, ı̂2, ı̂3) for Y . Then,
6For a casual read, see the Wired article “We are all p-hacking now” in the November 26 (2019) issue.

For (literally!) an illustration, see xkcd # 882 (https://xkcd.com/882/).
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a policymaker7 runs a test on the proposed model and implements a policy targeting the
covariates (̂ı1, ı̂2, ı̂3) if the model passes the test. The policymaker is a stand-in for statistical
conventions, such as a p-value of 0.05, or some other standard of evidence required for policy
intervention. For this example, suppose (̂ı1, ı̂2, ı̂3) passes the test when the linear regression’s
R2 exceeds a critical value, otherwise a null action (e.g., no intervention) is taken. The critical
value is the 95-percentile R2 when a triplet of covariates is chosen uniformly at random from
all possible ones.

The trouble is that the agent’s incentives are not necessarily aligned with discovering
the three causal covariates. With some probability, he is an unscrupulous p-hacker who has
no expertise about the causes of Y , but derives utility when the policymaker implements a
policy based on his model proposal, even if the policy is misguided. The dataset is wide in
the sense that there is a large number of possible models for the number of observations.
Indeed, there are

(
20
3

)
= 1140 linear models of the form Y = X i1 +X i2 +X i3 + ε for different

choices of the three covariates i1, i2, i3. The abundance of potential models implies enormous
scope for data mining, and the p-hacker has more than 70% chance of finding a regression
that, although different from the true specification, nevertheless passes the policymaker’s
seemingly stringent test.

With complementary probability, the agent is a maven whose expertise in the subject
lets him narrow down the causal model of Y to a few candidates before seeing the data.
Suppose the maven knows the causal model is either the true Y = X1 +X2 +X3 + ε, or the
incorrect model Y = X4 +X5 +X6 + ε. The maven runs two regressions using the dataset,
and proposes either (1, 2, 3) or (4, 5, 6) to the policymaker, depending on which regression
has a higher R2.

The policymaker cannot distinguish between the two types of agents. Suppose that social
welfare is 1 if the correct model (1, 2, 3) passes the test and the correct policy is implemented,
−1 if any other model passes the test and the policymaker implements a misguided policy,
and 0 if the proposal is rejected (and the status quo prevails, or some fixed alternative action
is taken). If the agent is a hacker, the expected social welfare is -0.702. This reflects the
harms of p-hacking on policy-making: the hacker mines the data and discovers a statistical
relationship that passes some conventional standard of evidence, but the finding is likely to
be a false discovery given the hacker’s lack of expertise in the true causes of the outcome
of interest. Implementing a misguided policy based on this “discovery” harms society. On
the other hand, when the agent is a maven, the expected social welfare is 0.562. The maven
proposes the correct policy most of the time by combining his domain knowledge with data,
but he could also propose the wrong model (4, 5, 6) for some misleading realizations of the
data.

Hackers are harmful even when they are a minority. Their presence can greatly reduce
the potential social gains from using the dataset to target an appropriate policy intervention.
When most of the agents are hackers, society would be better off if the policymaker ignores
all research and never implements any policy based on them.

In the world of our example, where policies are implemented based on an exogenous
7We can alternatively phrase the whole exercise using the language of researchers submitting their find-

ings for publication, in which the policymaker is a journal editor who upholds statistical conventions, but
throughout the paper we instead adopt the policy-making story.
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Figure 1: Social welfare conditional on the agent being a hacker or a maven, as a function
of the amount of dissemination noise.

statistical threshold and p-hackers can exhaustively search through all models, how can
we mitigate the harms of misguided policies based on p-hacked results and increase social
welfare from research? One solution is to only release a noisy version of the data to the
agent. Consider the problem of a data steward (the “principal”), who controls access to the
dataset. Think of the principal as the US Census Bureau or 23andMe, an organization that
can decide how to release the data to researchers but cannot affect the institutional norms
that determine the policy-making procedure. The principal disseminates a noisy version of
the data to the agent by adding an independent noise term with the distribution N (0, σ2

noise)
to every realization of each covariate in the dataset. The agent, who may be a hacker
or a maven, performs his estimation procedure as described before, and proposes a model
(̂ı1, ı̂2, ı̂3). Finally, the principal gives the original dataset without the extra noise to the
policymaker, so the R2 test on the regression Y = X ı̂1 + X ı̂2 + X ı̂3 + ε is conducted on the
untainted data. The principal’s problem is to maximize expected social welfare, taking the
policymaker’s test as exogenously given and optimizing over the amount of dissemination
noise σ2

noise.
Figure 1 depicts expected social welfare conditional on the agent’s type, as a function of

the amount of dissemination noise that the principal adds to the covariates before releasing
the dataset. The expected social harm from a hacker agent is mitigated when there is more
noise. The idea is that when a hacker analyzes a noisy dataset, the model (i1, i2, i3) with the
highest regression R2 in the noisy data is often a bait with poor R2 performance in the true
dataset. The covariates i1, i2, i3 look correlated with the outcome Y only because they were
hit with just the right noise realizations, but a hacker who falls for these baits and proposes
the model (i1, i2, i3) will get screened out by the policymaker’s test, which is conducted in
the original data.

As is intuitive, a maven agent is hurt by noise. The expected payoff from the maven falls
with more dissemination noise. The maven needs to use the data to compare the two policy
candidates (1, 2, 3) and (4, 5, 6), and noisier data makes it harder to identify the true causal
model.

Suppose 20% of the agents are hackers and 80% are mavens. Figure 2 shows the expected
social welfare as a function of the amount of dissemination noise. The optimal dissemination
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Figure 2: Expected social welfare as a function of the standard deviation of dissemination
noise, when 20% of the agents are hackers and 80% are mavens.
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Figure 3: Comparative statics of the optimal amount of dissemination noise with respect to
the fraction of hackers.

noise trades off screening out hackers using the baits created by noise, versus preserving data
quality for mavens to identify the correct model.

The optimal amount of dissemination noise is strictly positive because a small amount
of noise hurts hackers more than mavens. The intuition is that it is likely that noise creates
some baits in the disseminated dataset, but it is unlikely that the model (4, 5, 6) happens to
contain one of the baits. The maven, who only considers the two candidate models (1, 2, 3)
and (4, 5, 6), is much less likely to fall for a bait than the hacker who exhaustively search
through all possible models. The hackers fall for the baits and get screened out precisely
because they engage in extensive data mining. As we shall see, the idea that small amounts
of noise differentially impacts hackers and mavens is a general feature of dissemination noise.
It implies that a strictly positive amount of noise is optimal under the assumptions of our
theoretical model.

Finally, Figure 3 illustrates the comparative statics of how the optimal level of dissemi-
nation noise varies with changes in the environment. When the fraction of hackers increases,
more noise is optimal.
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3 Optimal Dissemination Noise in a Static Environment

3.1 The Model

We propose a model that captures the essence of our motivating example in Section 2 while
remaining theoretically tractable. Our model features a principal with a dataset to dissem-
inate, and an agent that will analyze the disseminated dataset. The agent can be a maven
(with probability 1−h) or a hacker (with probability h). The dataset contains N realizations
of an outcome variable Y and a set A of covariates (Xa)a∈A. For tractability, we suppose
that all of the variables are binary. So Y and Xa for each a ∈ A take values 0 or 1. We
make the following assumptions.

• The dataset is “wide,” meaning that there is a very large set of possible causal models
of Y relative to the number of observations N . Specifically, we suppose that A = [0, 1],
so there is a continuum of covariates (this assumption is discussed in Section 5.3). In
Section 2 we started out from 20 observations and variables, but by considering all
possible specifications we obtain a wide dataset with

(
20
3

)
possible models.

• There is one covariate a∗, the true cause, that is perfectly correlated with Y . In
Section 2 there was a true specification for the regression with an error term. Here, for
tractability, the true specification is simply Y = Xa∗ .

• There is one false specification, a red herring. The red herring represents a theoretically
plausible mechanism for the outcome Y that can only be disproved with data. In our
example, this was the erroneous specification Y = X4 +X5 +X6 + ε. Here we suppose
that the red herring is a covariate ar ∈ A with Y = 1 − Xar . So, for the baseline
model we analyze the easiest case where even a small amount of data can rule out the
red herring, as it is perfectly negatively correlated with the outcome. We relax the
assumption of perfect negative correlation in Section 5.2.

• The true cause a∗ and red herring ar are drawn independently from the uniform dis-
tribution on A. The maven knows that the true specification is either Y = Xa∗ or
Y = Xar , and assigns them equal probabilities, but the hacker is ignorant about the
realizations of a∗ and ar. The idea is that the maven uses domain expertise (e.g.,
theory about the outcome Y ) to narrow down the true cause to the set {a∗, ar}. The
hacker, in contrast, is completely uninformed about the mechanism causing Y .

• The true cause a∗ and red herring ar are held fixed for all observations. Covariates Xa

where a ∈ A\{a∗, ar} are independent Bernoulli(1/2) variables that are also indepen-
dent of Y . So once a∗ and ar are drawn, we have fixed a joint distribution between Y
and the covariates (Xa)a∈A, and the principal’s dataset consists of draws from this joint
distribution. In the motivating example from before, not all models are independent
as two different models may share some covariates, but the independence assumption
holds for most pairs of specifications.

We now describe the timing of the model. First, nature draws a∗ and ar. The principal
then obtains the raw dataset : a realization

(Yn, (X
a
n)a∈A) for 1 ≤ n ≤ N

9



of N ≥ 2 i.i.d draws from the joint distribution of Y and the covariates described before (the
i.i.d. assumption is relaxed in Section 5.1).

The principal releases a noisy dataset D(q) by perturbing the raw data. Specifically,
she chooses a number q ∈ [0, 1/2] and every binary realization of each covariate is flipped
independently with probability q. So the noisy dataset D(q) is (Yn, (X̂

a
n)a∈A), where X̂a

n = Xa
n

with probability 1 − q, and X̂a
n = 1 −Xa

n with probability q. Recall that in the motivating
example of Section 2 the principal added Gaussian noise to each covariate. With binary
variables it is natural for the noise to instead take the form of random flipping. We call the
number q the level of noise used by the principal in her data release; q is common knowledge.

After the data D(q) has been released, the agent conducts her analysis and proposes a
policy a ∈ A. Think of the agent as proposing a cause for Y , which is then used in a decision
about policy. The agent may be a maven, who has private information that narrows down
the true cause to the set {a∗, ar} with both candidates equally likely, or a hacker who only
knows that the true cause is drawn uniformly at random from A.

Finally, the agent’s proposal is evaluated on the raw dataset using a test exogenously set
by the policymaker, the third agent in our setup. We say that a passes if the covariate Xa

equals the outcome Y in all N observations, that is Yn = Xa
n for all 1 ≤ n ≤ N , and that it

fails otherwise. The policymaker will adopt a policy proposal if and only if it passes the test
on the raw data. Note that passing the test is a necessary but insufficient condition for a to
be the true cause of Y . So it is possible that a passing proposal still leads to a misguided
policy targeting some wrong covariate a 6= a∗.

The agent and the principal act to maximize their own expected payoffs. The agent’s
payoffs reflect both a desire for reporting the true cause and a desire for policy impact. If
the agent proposes a when the true cause is a∗, then his payoff is

w · 1{a=a∗} + (1− w) · 1{Yn=Xa
n:1≤n≤N}.

Here, we interpret 1{a=a∗} as the effect of proposing a on the agent’s long-run reputation
when the true cause a∗ of the outcome Y eventually becomes known some years into the
future. The other component 1{Yn=Xa

n:1≤n≤N} models the agent’s gain from proposing a policy
that passes and is implemented by the policymaker. The relative weight w ∈ [0, 1] on these
two components may differ for the two agent types. For our results to go through, we can
have any 0 ≤ w ≤ 1 for the hacker, but we need to assume w > 2/3 for the maven — that
is, mavens care more about reporting the true cause than making a proposal that passes the
test and gets implemented as policy.

The principal obtains a payoff of 1 if a true cause passes, a payoff of −1 if any other
a 6= a∗ passes, and a payoff of 0 if the agent’s proposal is rejected. The principal wants to
maximize the positive policy impact of the research done on her data. A policy targeting
the true cause is helpful and a misguided policy targeting any other covariate is harmful,
relative to the default option of rejecting the proposal and implementing no interventions.

We make four remarks about the model.
First, this model features very powerful p-hackers. Although they are totally ignorant

about the true cause, they have a continuum of covariates to search over and incur no cost
from data mining. This represents today’s “wide” datasets and fast computers that enable
ever easier p-hacking. (The case with finitely many covariates is discussed in Section 5.3.)
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Second, the principal has limited power to influence the policy-making procedure. The
principal cannot elicit the agent’s domain expertise, write a contract to punish an agent in
the future when it becomes known that his proposal led to a misguided policy, or change
the legislating norms as to affect how proposals get tested and turned into policies. The
principal’s problem reduces to using her only available lever, the quality of the disseminated
data, to maximize social welfare.

Third, the dataset in our model contains just one outcome variable, but in reality a typical
dataset (e.g., the US Census data) contains many outcome variables and can be used to
address many different questions. We can extend our model to allow for a countably infinite
number of outcome variables Y 1, Y 2, . . ., with each outcome associated with an independently
drawn true cause and red herring. After the principal releases a noisy version of the data,
one random outcome becomes research relevant and the agent proposes a model for this
specific outcome. Our analysis, including the characterization of the optimal level of noise,
remains unchanged in this world where the research question is not known at the time when
the principal publishes the data. The crucial aspect of the dataset is that it is wide, which
is captured by having an countable number of outcomes but an uncountable number of
covariates a. The more realistic setting where data is released before a relevant question
emerges provides a foundation for the principal not being able to screen the agent types by
eliciting their private information about the true cause without giving them any data: the
maven’s expertise can only help him narrow down the true cause once the research question
becomes clear.

Finally, the model presumes that there exists a correct explanation for the variable of
interest in the dataset. In Section 5.4 we relax this assumption.

3.2 Optimal Level of Noise

To find the optimal level of noise, we first derive the behavior of the hacker and the maven
from their payoffs given a noise level q.

Lemma 1. For any q ∈ [0, 1/2], it is optimal for the hacker to propose any a ∈ A that
satisfies X̂a

n = Yn for every 1 ≤ n ≤ N , and it is optimal for the maven to propose either
a∗ or ar depending on which maximizes the number of observations n for which X̂a

n = Yn
(and randomize uniformly if there is a tie). Under any optimal behavior of the agents, the
hacker’s proposal is equal to the true cause with probability 0, while the maven’s proposal is
equal to the true cause if and only if it passes the policymaker’s test.

If the principal releases data without noise, then a maven will be able to discover the true
cause, but a hacker will also find an almost surely misguided policy based on a covariate that
is perfectly correlated with Y in the raw data. The payoff to the principal from releasing the
data without noise is therefore 1 − 2h. More generally, when the agents follow the optimal
behavior described in Lemma 1, the principal’s expected utility from choosing noise level q
is

−hVhacker(q) + (1− h)Vmaven(q),

where Vi(q) is the probability that agent type i’s recommendation passes the policymaker’s
test in the raw data, when the data was released with noise level q.
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Our next observation represents the key idea in the paper: A small amount of noise does
not harm the maven’s chances to find a passing policy, but it creates baits for the hacker
that hinders their ability to find a passing policy.

Lemma 2. If Vi(q) is the probability that agent type i’s recommendation passes the policy
maker’s test in the raw data, then V

′
maven(q) = −

(
2N−1
N

)
NqN−1(1 − q)N−1 and V ′hacker(q) =

−N(1− q)N−1. In particular, V ′maven(0) = 0 while V ′hacker(0) = −N .

The intuition is that a small amount of noise does not prevent the agent from finding
a passing policy if the agent has a small set of candidate covariates in mind before seeing
the data. But if the agent has a very large set of candidate covariates, then there is a good
chance that the noise turns several covariates out of this large set into baits — covariates a
such that X̂a

n = Yn in every observation in the noisy dataset, but Xa
n 6= Yn for at least one

observation in the raw data. For example if N = 100 and q = 0.01, the probability that a
covariate that perfectly correlates with Y in the noisy dataset is a bait is 63.4%. But the
probability that one of the maven’s two covariates (a∗ or ar) is a bait, given it is equal to Y
in every observation in the noisy dataset, is close to 0%.

We can show the principal’s overall objective −hVhacker(q) + (1 − h)Vmaven(q) is strictly
concave and therefore the first-order condition characterizes the optimal q, provided the
solution is interior:

Proposition 1. If h
1−h ≤

(
2N−1
N

)
(1/2)N−1 then the optimal noise level is

q∗ =

(
h

1− h
1(

2N−1
N

))1/(N−1)

.

More noise is optimal when there are more hackers and less is optimal when there are more
observations. If h

1−h ≥
(
2N−1
N

)
(1/2)N−1 then the optimal noise level is q∗ = 1/2.

Proposition 1 gives the optimal dissemination noise in closed form. With more hackers,
screening out their misguided policies becomes more important, so the optimal noise level
increases. With more observations, the same level of noise can create more baits, so the
principal can dial back the noise to provide more accurate data to help the mavens.

The principal cannot hope for an expected payoff higher than 1 − h. This first-best
benchmark corresponds to the policymaker always implementing the correct policy when the
agent is a maven, and not implementing any policy when the agent is a hacker (recall that
hackers have zero probability of reporting the true cause). As the number of observations N
grows large, the principal’s expected payoff under the optimal noise approaches this first-best
benchmark.

Proposition 2. For any 0 < h < 1, the principal’s expected payoff under the optimal noise
level approaches 1− h as N →∞.

That is to say, injecting the optimal level of noise is asymptotically optimal among all
mechanisms for screening the two agent types, including mechanisms that involve a hold-out
dataset, or take on more complex forms that we have not considered in our analysis.
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3.3 Dissemination Noise and p-Values Thresholds

So far, we have taken the policymaker’s test as exogenously given, so that the agent’s proposal
a passes only if Xa

n = Yn for every observation n. Now suppose the principal can choose both
the level of noise q ∈ [0, 1/2] and a passing threshold N ∈ {1, ..., N} for the test, so that a
proposal passes whenever Xa

n = Yn for at least N out of the N observations.

Proposition 3. When the principal can optimize over both the passing threshold and the
noise level, the optimal threshold is N = N and the optimal noise level is the same as in
Proposition 1.

The main intuition is that the passing threshold does not influence either the hacker or
the maven’s behavior. In particular, the hacker’s payoff-maximizing strategy always involves
proposing a policy a so thatXa

n = Yn in every observation n, as this maximizes the probability
of passing a test with any threshold. Lowering the passing threshold hurts the principal when
she faces a hacker, since it means the policymaker implements misguided policies more often.

We can interpret this result to say that stringent p-value thresholds and dissemination
noise are complementary tools for screening out p-hackers and misguided policies. We can
think of different passing thresholds as different p-value thresholds, with the thresholdN = N
as the most stringent p-value criterion that one could impose in this environment. Benjamin
et al. (2018)’s article about lowering the “statistical significance” p-value threshold for new
findings includes the following discussion:

“The proposal does not address multiple-hypothesis testing, P-hacking, [...]
Reducing the P value threshold complements — but does not substitute for —
solutions to these other problems.”

Our result formalizes the sense in which reducing p-value threshold complements dissemina-
tion noise in improving social welfare from research.

4 Dynamic Environment with Data Reuse
Our discussion of the static problem presumes that the agents’ proposals are tested on the
raw dataset, but the raw data itself is never publicly revealed. In practice, it may be hard to
credibly conduct these tests on a secret dataset because the data being used for testing may
have to be made public for the sake of transparency. We now turn to a model of periodic
releases of noisy data – multiple noisy “waves” of the data are made public over time, which
are then used to test the most recent policy proposals. A policy proposal made in February of
2021, for example, would be tested using the March release of noisy data. A March proposal
would be tested against the April release.

In the dynamic version of the model, time works in the hackers’ favor, as p-hacking
becomes easier when data is reused. Hackers can exploit all past releases of the noisy data to
propose policies that are increasingly likely to pass the policymaker’s test. As we shall see,
in the end, the principal will rationally give up on adding noise to test data, and will release
the original raw dataset. At that point, the hacker can always find misguided policies that
pass the test and get implemented by the policymaker. The promise of using noisy data to
deal with p-hacking is real, but finitely lived.
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In the dynamic version of our model, time is discrete and infinite: t = 0, 1, 2, . . . In period
0, the principal receives a raw dataset as before, but with the following changes compared
to the baseline static model:

• There is a countably infinite number of outcome variables, (Y t)t=0,1,2,.... A true cause
a∗t ∈ A is drawn uniformly at random from A for each outcome Y t. Suppose for
simplicity the maven knows the true cause of every outcome, so red herrings are not
generated.

• For simplicity, suppose there is only a single observation N = 1 of the outcomes and
the covariates. This is for tractability so that the state space of the resulting model
becomes one-dimensional. It is, of course, an extreme version of the assumption of a
wide dataset.

• Suppose the unconditional distribution of each outcome variable and each covariate is
Bernoulli(κ) for some 0 < κ < 1. The baseline model looked at the case where κ = 0.5.

These simplifying changes allow us to focus on the intertemporal tradeoffs facing the
principal. She will have a short-term incentive to decrease noise and thus improve the
quality of tests for current proposals, but a long-term incentive to increase noise so as to
plant baits for future hackers. The intertemporal tradeoff will be affected by a “stock of
randomness” that is decreased as time passes.

In each period the principal releases a possibly noisy version of the data: in period t she
releases a dataset D(qt) after adding a level qt of noise to the raw dataset. The parameter
qt is, as before, the probability that each Xa is flipped. Each release is a testing dataset.

In each period t = 1, 2, . . ., society is interested in enacting a policy to target the true
cause behind the outcome Y m(t), where m(t) is the t-th outcome with a realization of 1 in
the principal’s dataset. So, in the dynamic model we interpret an outcome realization of
0 as benign and an outcome realization of 1 as problematic and requiring intervention. A
short-lived agent arrives in each period t; the agent is a hacker with probability h and a
maven with complementary probability. If the agent is a maven, recall that we are assuming
the agent always knows and proposes the true cause of Y m(t). If the agent is a hacker, he uses
all of the testing datasets released by the principal up to time t− 1 to make a proposal that
maximizes the chance that the proposal is implemented. After receiving the agent’s proposal
a, the principal generates and publishes period t’s testing dataset D(qt). The policymaker
implements policy a if Y m(t) = X̂a in this period’s (possibly noisy) testing dataset. In period
t, the principal gets a payoff of 1 if the true cause for Y m(t) passes the test, -1 if any other
covariate passes the test, and 0 if the proposal is rejected. The principal maximizes expected
discounted utility with discount factor δ ∈ (0, 1)

In each period t ≥ 2, a hacker proposes a policy a with Xa = 1 in all of the past testing
datasets. Such a exists because there are infinitely many policies. (In the first period, the
hacker has no information and proposes a policy uniformly at random.) Suppose a covariate
a that shows as “1” in all the noisy testing datasets up to period t − 1 has some bt chance
of being a bait, that is Xa 6= 1 in the raw data. Then the principal’s utility today from
releasing a testing dataset with noise level qt is

u(qt; bt) := (1− h)(1− qt) + h(−(1− bt)(1− qt)− btqt).
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In the expression for u, (1− h)(1− qt) is the probability that the agent is a maven and the
value of the true cause for Y t in the period t testing dataset, X̂a∗t , has not been flipped. The
term (1− bt)(1− qt) represents the probability that the hacker’s policy is not a bait and its
covariate value has not been flipped in the testing dataset. Finally, btqt is the probability
that the hacker’s policy is a bait, but its covariate value has been flipped in the testing
dataset.

The principal’s problem is similar to an intertemporal consumption problem. We can
think of bt as a stock variable that gets consumed over time. But rather than a stock of
some physical capital, it measures the stock of randomness in the principal’s raw dataset.
This stock depletes as more and more noisy versions of the data are made public. We view
u(q; b) as the principal’s flow utility from “consuming” 1

2
− q, where the stock of randomness

left is b, and the stock evolves according to bt+1 = btqt
(1−bt)(1−qt)+btqt .

The intertemporal tradeoffs faced by the principal are captured by ∂u
∂q
< 0, ∂u

∂b
> 0, and

∂bt+1

∂qt
> 0. In words, adding less noise to the testing dataset today gives higher utility today,

since the maven’s correct policy is more likely to pass the test and the hacker’s misguided
policy is more likely to get screened out. But this depletes the stock of randomness faster
and makes it harder to defend against future hackers.

Our next result shows that, in every optimal solution to the principal’s problem, the stock
of randomness is always depleted in finite time. The basic idea is that noise has decreasing
returns: the marginal effect of noise on slowing the decline of bt+1 is reduced as bt decreases.
There is a time t∗ at which the principal abandons the use of noise.

Proposition 4. Suppose that h < 1/2 and p ∈ (0, 1). Let {(bt, qt)} be a solution to the
principal’s problem. Then, for all t, qt < 1/2 and bt is (weakly) monotonically decreasing.
There t∗ such that

• If t < t∗ then bt+1 < bt;

• If t ≥ t∗ then qt = 0 and bt+1 = 0.

Figure 4 shows an example with κ = 0.01, δ = 0.99, and h = 0.45. In period 1, a
hacker has a 1% chance of guessing a covariate that would validate in the raw dataset. The
principal releases noisy testing datasets at the end of periods 1, 2, 3, and 4. In period 5, a
hacker can look for a covariate that has a value of “1” in each of the four testing datasets
from the previous periods, and propose it as the model for today’s outcome variable Y m(5).
This proposal will validate in the raw dataset with more than 65% probability, reflecting a
weakening defense against p-hackers as data is reused and the stock of randomness depletes.
At this point, the principal finds it optimal to give up on dissemination noise and releases the
raw dataset as the testing dataset at the end of period 5. In every subsequent period, both
agent types will propose passing policies, so the policymaker implements correct policies 55%
of the time and misguided policies 45% of the time.

5 Discussion and Extensions
The model we have laid out is clearly stylized to focus on the central ideas. We explore a
number of ways in which its simplifying assumptions can be relaxed. First, we consider non-
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Figure 4: The evolution of the stock of randomness (i.e., the probability bt that the hacker’s
best guess a is a bait with Xa 6= 1 in the raw dataset) and the noise level in an environment
with 45% hackers, discount factor δ = 0.99, and an unconditional probability κ = 0.01 that
each covariate is equal to 1.

i.i.d. observations, such as those in time series data, or data from social networks. Second,
we look at a model in which the maven can face a red herring that is harder to detect than we
have assumed so far. Third, we relax the assumption of a continuum of potential covariates.
Finally, we relax the assumption that there exists a correct explanation for the outcome
variable in the data.

5.1 Non-i.i.d. Observations

In the baseline model, for each a ∈ A the raw data contains N i.i.d. observations of the a
covariate Xa. This gives a vector Xa ∈ {0, 1}N with independent and identically-distributed
components Xa

n. The i.i.d. assumption rules out certain applications where there is natural
dependence between different observations of the same covariate, such as data from social
networks, panel data, or time-series data. We now relax this assumption. For each policy
a there is associated a covariate Xa ∈ {0, 1}N , but the ex-ante distribution of Xa is given
by an arbitrary, full-support µ ∈ ∆({0, 1}N). (Full support means that µ(x) > 0 for every
x ∈ {0, 1}N .)

The model is otherwise the same as the static model of Section 3. In particular, the true
cause and the red herring covariates still exhibit perfect correlation and perfect negative
correlation with the outcome variable, viewed as random vectors in {0, 1}N . To be concrete,
we first generate the outcome variable Y ∼ µ. Then we draw the true cause a∗ ∈ A uniformly
at random and put Xa∗ = Y. Next, we draw the red herring ar ∈ A uniformly at random
and put Xar = 1−Y . Finally, for each a ∈ A\{a∗, ar}, generate Xa ∼ µ independently (and
independently of Y ).

From the raw dataset (Y,X), the principal generates and releases a noisy dataset (Y, X̂)
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where X̂a
n = Xa

n with probability 1 − q and X̂a
n = 1 −Xa

n with complementary probability,
independently across covariates a and observations n. The agent, who may be a maven or
a hacker, makes a proposal a ∈ A. The proposal passes the test and gets implemented as
policy if Yn = Xa

n in the raw dataset for every observation n.
As in Section 3, the principal’s expected payoff from choosing noise level q is

−hVhacker(q) + (1− h)Vmaven(q),

where Vi(q) is the probability that agent type i’s recommendation passes the policymaker’s
test in the raw data, when the data is released with noise level q. To show that a small amount
of noise still improves the principal’s expected payoff, we first show that the hacker’s payoff-
maximizing strategy is still to propose a covariate a with Yn = X̂a

n for every observation
n in the noisy data. That is, regardless of how the N observations are correlated, there is
nothing more “clever” that a hacker could do to increase the probability of passing the test
than to “maximally p-hack” and propose a covariate that appears perfectly correlated with
the outcome variable in the noisy dataset.

Lemma 3. For any y ∈ {0, 1}N , P[Xa = y | X̂a = x] is maximized across all x ∈ {0, 1}N at
x = y, for any 0 ≤ q ≤ 1/2 and full-support µ.

Using the hacker’s optimal behavior in Lemma 3, we can show that a small amount of
dissemination noise will differentially impact the two types’ chances of passing the test, thus
it improve the principal’s expected payoff as in the case when the observations are i.i.d.

Proposition 5. For any full support µ ∈ {0, 1}N , V ′maven(0) = 0 while V ′hacker(0) < 0. In
particular, there exists q̄ > 0 so that any noise level 0 < q ≤ q̄ is strictly better than q = 0.

When the raw dataset consists of correlated observations — for example, data on indi-
viduals who influence each other in a social network or time series data of different economic
indicators — it may be unreasonable for the principal to only release some of the observa-
tions (e.g., only the time series data for even-number years) and keep the rest of the raw
dataset as a secret holdout set to test the agent’s proposal and identify the p-hackers. Our
procedure of releasing all of the observations infused with i.i.d. dissemination noise may be
more reasonable in such contexts, and Proposition 5 shows our main insight continues to
be valid. Even when the observations have arbitrary correlation, which the hackers may
take advantage of in their data mining, a small amount of dissemination noise still strictly
improves the principal’s expected payoff.

5.2 More Misleading Red Herrings

In the baseline model of Section 3, we assumed that the “red herring,” the covariate that
the maven considers as a competing mechanism for the outcome Y , is in fact perfectly
negatively correlated with Y . This corresponds to an extreme kind of complementarity
between theory and data in learning the true cause, as even a small amount of data can
disprove the theoretically plausible alternative and identify the truth.

We now consider a situation where the red herring is more misleading, and not always
easily ruled out by the data. We allow the red herring to be just like any other covariate in A,
so that it is simply uncorrelated with the outcome instead of perfectly negatively correlated.
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Formally, the covariate for the true cause a∗ ∈ A is perfectly correlated with Y with
Y = Xa∗ . There is also one false specification, ar ∈ A. The true cause and the red herring
are drawn independently from the uniform distribution on A = [0, 1]. The maven knows that
the true specification is either Y = Xa∗ or Y = Xar , and assigns them equal probabilities.
Covariates Xa where a ∈ A\{a∗} are independent Bernoulli(1/2) variables that are also
independent of Y . So, the only modification relative to the baseline model is that Xar is
also independent of Y .

The principal’s raw dataset consists of a finite number N of independent observations
from (Y, (Xa)a∈A), according to the joint distribution we have just described. The principal
releases a noisy dataset D(q) with noise level 0 ≤ q ≤ 1/2. It is easy to see that the change
in how we model the red herring covariate does not affect the optimal behavior of either the
hacker or the maven. A hacker proposes some covariate a that perfectly correlates with Y
in the noisy dataset. A maven chooses between a∗ and ar according to how they correlate
with Y in the noisy data, randomizing if there is a tie. When the red herring covariate is
independent of the outcome in the raw dataset, the maven falls for the red herring with a
higher probability for every level of noise. Also, unlike in the baseline model where the maven
gets rejected by the policymaker if he happens to propose the red herring, here the maven
may propose a misguided policy that passes the test if all N realizations of Xar perfectly
match that of the outcome Y in the raw dataset.

Our next result implies that a strictly positive amount of dissemination noise still im-
proves the principal’s expected payoffs given “reasonable” parameter values.

Proposition 6. The derivative of the principal’s expected payoff, as a function of the noise
level q, is hN − (1− h)N(N + 1)2−(N+1) when evaluated at q = 0. This derivative is strictly
positive when h > N+1

2N+1+N+1
. In particular, when this condition on h is satisfied, there exists

q̄ > 0 so that any noise level 0 < q ≤ q̄ is strictly better than q = 0.

When the red herring covariate is perfectly negatively correlated with the outcome vari-
able, we found that the optimal level of noise is always strictly positive. Proposition 6 says
this result remains true even when the red herring can be more misleading, provided there
are enough hackers relative to the number of observations in the data. The lowest amount
of hackers required for dissemination noise to be useful converges to 0 at an exponential rate
as N grows. For example, even when there are only N = 10 observations, the result holds
whenever more than 0.53% of all researchers are p-hackers.

5.3 Finite Number of Covariates

In the baseline model, we imagine there is a continuum of covariates a ∈ A = [0, 1]. This
represents an environment with a very “wide” dataset, where there are many more candidate
econometric models than observations. But the main idea behind our result remains true if
there is a finite but large number of covariates.

Suppose A = {1, 2, ..., K}, so there are 2 ≤ K < ∞ covariates. As in the baseline
model, a true cause and a red herring are drawn from the set of all covariates, with all pairs
(a∗, ar) ∈ A2, a∗ 6= ar equally likely. The outcome Y is perfectly positively correlated with
the true cause, so Y = Xa∗ . The other covariates are independent of the outcome, including
the red herring covariate (as in the extension in Section 5.2).
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Once (a∗, ar) are drawn, we have fixed a joint distribution among the K + 1 random
variables (Y,X1, ..., XK). The raw dataset consists of N independent observations drawn
from this joint distribution. The principal releases a noisy version of the dataset with noise
level q ∈ [0, 1/2] as before, where each observation of each covariate is flipped with probability
q. The agent’s utilities and the policymaker’s test remain the same as in the baseline model.

As the number of covariates K grows, there is more scope for p-hacking to generate
misguided policies. This happens for two reasons. First, holding fixed the policymaker’s test
and the number of observations, it is easier for the p-hacker to find a covariate that passes the
test when there are more covariates to data mine. Second, the probability that the p-hacker
proposes an incorrect policy also increases with K. When the number of covariates is finite,
a p-hacker has a positive probability of stumbling upon the true cause by chance, but this
probability converges to 0 as K goes to infinity. As the statistical environment becomes more
complex and the number of potential models explodes (K → ∞), not only is the p-hacker
more likely to pass the test, but his proposal also leads to a misguided policy with a higher
probability conditional on passing.

In fact, the social harm of a p-hacker converges to that of the baseline model with a
continuum of covariates as K → ∞. As a result, we can show that a small amount of
dissemination noise improves the principal’s payoffs relative to no noise when K is finite but
large, provided the fraction of hackers is not too close to 0.

Proposition 7. Let the number of observations N and the fraction of hackers 0 < h < 1 be
fixed, and suppose h > N+1

2N+1+N+1
. There exists a noise level q′ > 0 and an integer K so that

when there are K covariates with K ≥ K, the principal does strictly better with noise level
q′ than noise level 0.

5.4 No True Cause

We turn to a version of our environment where all models are wrong. Suppose that, with
some probability, none of the covariates in the dataset is the causal mechanism behind
the outcome. As in the baseline model, there is a continuum of covariates (Xa)a∈[0,1] and
an outcome variable Y . Nature draws a∗ and ar uniformly at random from [0, 1]. With
probability 0 < β ≤ 1, the covariate a∗ is the true cause and Xa∗ is perfectly correlated with
Y . But with the complementary probability, a∗ is another red herring and Xa∗ is perfectly
negatively correlated with Y (just as Xar is). The maven observes ar and a∗ — the maven
does not know which is which, and does not know whether a∗ is the true cause or another
red herring.

The agent can either report a covariate a ∈ A, or report ∅ indicating that none of the
covariates is the true cause. If the agent reports a covariate, the policymaker implements it
if and only if it passes the policymakers’ test (that is, if it is perfectly correlated with Y in
the original dataset). The principal gets 1 if the true cause is implemented, 0 if the proposal
is rejected, and -1 if any other covariate is implemented: so when the data does not contain
the true cause, the principal gets -1 no matter which policy gets implemented. If the agent
reports ∅, then no policy is implemented and the principal gets 0.

The agent gets 0 < w < 1 from being right (either reporting the true cause when there
is one, or reporting ∅ when no true cause exists in the dataset), and gets 1 − w when the

19



reported covariate is implemented.

Proposition 8. Suppose w > 3/4 and β > w. Then there exists some q̄ > 0 so that the
principal strictly prefers any q level of noise with 0 < q ≤ q̄ to 0 noise.

This result says that even when there is some probability that none of the covariates is
the true cause, provided this probability is not too high and agents put enough weight on
being right, a small enough amount of dissemination noise is still strictly better than no
noise.

6 Conclusion
We propose that the practice of releasing noisy versions of raw data has benefits beyond the
privacy protection guarantees for which it is currently being used. When noise is added to a
dataset, it serves to bait uninformed p-hackers into finding correlations that can be shown to
be spurious. The paper investigates these ideas in a simple model that captures the tradeoff
between preventing hackers from passing off false findings as true, and harming “legitimate”
research that seeks to test an ex-ante hypothesis.

The paper is focused on the basic tradeoffs involved in whether noise should be added
at all, and does not address some of the more practical issues in implementing our proposal.
One practical issue is that noisy data leads to biased statistical estimates, but for many
common statistical procedures there is a simple fix (at least for large datasets). We imagine
that the statistical agency would release information on the probability distribution of the
noise it used. It is then possible to compute, and thus at least asymptotically correct for,
the bias induced by noise. Another issue is related to the periodic releases of noisy data
we have discussed in Section 4. How frequent should they be? There would likely be a
conflict of interest between researchers who want frequent releases, and policy makers (or
journal editors) who wish to preserve the stock of randomness. One solution might involve
combining our proposal with the differentially private access to the hold-out data advocated
by Dwork et al. (2015). Finally, our model is stylized and not suited to a precise quantitative
recommendation of how much noise should be added. There is clearly scope for further
research in refining these questions.
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7 Proofs

7.1 Proof of Lemma 1

Proof. Any strategy of the hacker leads to zero probability of proposing the true cause, so
the hacker finds it optimal to just maximize the probability of the proposal passing the
test. If the hacker proposes a covariate that matches Y in n1 observations and mismatches
in n0 observations, then the distribution of the number of matches in the raw dataset is
Binom(n0, q) + Binom(n1, 1 − q). A covariate that matches the outcome variable in every
observation in noisy dataset will have a distribution of Binom(n0+n1, 1−q) = Binom(n0, 1−
q) + Binom(n1, 1 − q) as its number of matches in the raw dataset, and Binom(n0, 1 − q)
strictly first-order stochastic dominates Binom(n0, q) if n0 ≥ 1 and q < 1/2. Therefore the
hacker finds it optimal to propose any a ∈ A that satisfies X̂a

n = Yn for every 1 ≤ n ≤ N .
For the maven, since the weight on being correct is more than 1/2, it is never optimal to

propose covariates other than a∗ or ar since these have zero chance of being the true cause.
Out of the two candidate covariates that the maven narrows down to, the one that matches
Y in more observations in the noisy dataset has a higher posterior probability of being the
true cause. Note that if the maven proposes ar, the policymaker always rejects the proposal
since Xar = 1− Y in the raw dataset. Also, if the maven proposes a∗, it always passes the
test since Xa∗ = Y in the raw dataset.
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7.2 Proof of Lemma 2

Proof. Without loss, look at the case where Yn = 1 in every observation n. The hacker picks
a policy a where Xa

n = 1 in every observation in the noisy dataset, so

Vhacker(q) = (1− q)N .

For the maven, there are 2N bits of observations on the variables Xa∗ and Xar . If strictly
fewer than N bits are flipped, then the maven recommends the correct policy. If exactly N
bits are flipped, then the maven recommends the correct policy 1/2 of the time. So,

Vmaven(q) = (P[Binom(2N, q) < N ] +
1

2
P[Binom(2N, q) = N ])

We have

V ′maven(q) =
d

dq
(P[Binom(2N, q) < N ] +

1

2
P[Binom(2N, q) = N ])

=
d

dq
(P[Binom(2N, q) ≤ N ]− 1

2
P[Binom(2N, q) = N ])

=− 2N · P[Binom(2N − 1, q) = N ]− 1

2

d

dq
(qN(1− q)N

(
2N

N

)
),

where the last step used the identity that d
dq
P[Binom(M, q) ≤ N ] = −M ·P[Binom(M−1, q) =

N ]. Continuing,

− 2N · qN(1− q)N−1
(

2N − 1

N

)
− 1

2

(
2N

N

)
N(qN−1(1− q)N − qN(1− q)N−1)

=

(
2N − 1

N

)
NqN−1(1− q)N−1

(
−2q − 1

2
· 2 · ((1− q)− q)

)
,

using the identity
(
2N
N

)
= 2 ·

(
2N−1
N

)
. Rearranging shows the lemma.

7.3 Proof of Proposition 1

Proof. Using the Lemma 2,

d

dq
[−hVhacker(q) + (1− h)Vmaven(q)] = hN(1− q)N−1 − (1− h)

(
2N − 1

N

)
NqN−1(1− q)N−1.

The FOC sets this to 0, so h−(1−h)
(
2N−1
N

)
qN−1 = 0. Rearranging gives q∗ =

(
h

1−h
1

(2N−1
N )

)1/(N−1)

.

We know h 7→ h
1−h is increasing, so ∂q∗

∂h
> 0. We know N 7→

(
2N−1
N

)
is increasing in N , there-

fore both the base and the exponent in q∗ decrease in N , so ∂q∗

∂N
< 0.
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7.4 Proof of Proposition 2

Proof. For any fixed noise level 0 < q < 0.5, the principal’s expected payoff with N observa-
tions is −h · (1− q)N + (1−h) · [

∑N−1
k=0 q

k(1− q)2N−k ·
(
2N
k

)
+ 1

2
· qN · (1− q)N ·

(
2N
N

)
]. We have

limN→∞(1−q)N = 0, while
∑N−1

k=0 q
k(1−q)2N−k ·

(
2N
k

)
is the probability P[B(2N, q) ≤ N −1]

with B(2N, q) a binomial random variable with 2N trials and a success rate q strictly less
than 0.5. We have limN→∞ P[B(2N, q) ≤ N−1] = 1. The limit of this expression as N →∞
is 1−h. The principal’s expected payoff using the optimal level of noise for each observation
size N must be even higher, so it must also converge to 1− h.

7.5 Proof of Proposition 3

Proof. The principal’s expected utility conditional on the agent being a maven is the same
for every N ∈ {1, ..., N}, since the maven always proposes either a∗ or ar depending on which
covariate matches Y in more observations, and the proposal passes the N threshold if and
only if it is a∗, since Xar = 1−Y does not match the outcome in any observation in the raw
dataset.

As shown in the proof of Lemma 1, the distribution of the number of matches between
Xa and Y in the raw dataset increases in the first-order stochastic sense with the number of
matches between X̂a and Y in the noisy dataset. So, for any test threshold N, the hacker
finds it optimal to propose a covariate a with X̂a

n = Yn for every n.
Therefore, the only effect of lowering N from N is to increase the probability of the

hacker’s misguided policies passing the test.

7.6 Proof of Proposition 4

Proof. Define 1 minus the state, f = 1− b. Define u(q, f) as the principal’s expected utility
today from releasing testing set with noise level q when the hacker’s best guess has 1 − f
chance of being a bait in the raw dataset. We are studying the Bellman equation

v(f) = max{u(q, f) + δv

(
f(1− q)

f(1− q) + (1− f)q

)
: q ∈ [0, 1/2]}

First we argue that v : [0, 1] → R is monotone increasing and convex. Let CB([0, 1])
denote the set of continuous bounded functions on [0, 1]. Recall that v is the unique fixed
point of the Bellman operator T : CB([0, 1])→ CB([0, 1]), with

Tw(f) = max{u(q; b) + δw

(
bq

(1− b)(1− q) + bq

)
: q ∈ [0, 1/2]}.

Observe that b 7→ bq
(1−b)(1−q)+bq is concave when q ≤ 1/2 (its second derivative is q(1−q)(2q−1)

[(1−b)(1−q)+bq]3 ).

Then when w is convex and monotone increasing, so is b 7→ w
(

bq
(1−b)(1−q)+bq

)
, as the compo-

sition of a concave function and a monotone decreasing convex function is convex. Finally,
Tw is convex because f 7→ u(q, f) is convex (linear), and Tw thus is the pointwise maximum
of convex functions. And Tw is monotone decreasing. The fixed point v of T is the limit of
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T nw, starting from any monotone decreasing and convex w ∈ CB([0, 1]), so v is monotone
decreasing and convex.

Observe that f ≤ f(1−q)
f(1−q)+(1−f)q = θ(q, f), so along any path (qt, ft), ft is monotone

(weakly) increasing. In consequence, if ft is large enough, ft′ will be large enough for all
t′ ≥ t.

Recall that

u(q, f) = (1− h)[(1− q0)3(1 + q0)− q]− h[f(1− q) + (1− f)q],

so
∂qu(q, f) = −1 + 2hf < 0

as h < 1/2. Hence, we have that

u(0, f) = (1−h)(1−q0)3(1+q0)−hf ≥ u(q, f) ≥ (1−h)[(1−q0)3(1+q0)−1/2]−h(1/2) = u(1/2, f).

Note that θ(1/2, f) = f , so that

v(f) ≥ (1− h)(1− q0)3(1 + q0)− 1/2

1− δ
.

We proceed to show that qt < 1/2. Observe that if, for some ft it is optimal to set
qt = 1/2 then ft+1 = θ(qt, ft) = ft, and it will remain optimal to set qt+1 = 1/2. This means
that, if it is optimal to set q = 1/2 for f , then v(f) = (1−h)(1−q0)3(1+q0)−1/2

1−δ . Since h < 1/2, u
is strictly decreasing in q. So there is a gain in decreasing q from 1/2, which will result in
transitioning to f ′ = θ(q, f) > f = θ(1/2, f). But recall that (1−h)(1−q0)3(1+q0)−1/2

1−δ is a lower
bound on v. So v(f ′) ≥ v(f) and v(f) ≤ v(f ′). Hence,

u(q, f) + δv(f ′)− [u(1/2, f) + δv(f)] = (2hf − 1)(q′ − (1/2)) + δ(v(f ′)− v(f))

≥ (2hf − 1)(q′ − (1/2)) > 0.

Now we show that for f large enough, but bounded away from 1, it is optimal to set
q = 0. Given that v is convex, it has a subdifferential: for any f there exists ∂v(f) ∈ R with
the property that v(f ′) ≥ v(f) + ∂v(f)(f ′ − f) for all f ′. Since v is monotone decreasing,
∂v(f) ≤ 0. Moreover, we can choose a subdifferential for each f so that f 7→ ∂v(f) is
monotone (weakly) increasing.

Let q′ < q. Suppose that q results in f ′ = θ(q, f) and q′ in f ′′ = θ(q′, f). The function θ
is twice differentiable, with derivatives

∂xθ(x, f) =
−f(1− f)

[f(1− x) + x(1− f)]2
and ∂2xθ(x, f) =

2f(1− f)(1− 2f)

[f(1− x) + x(1− f)]2
.

Hence, q 7→ θ(q, f) is concave when f ≥ 1/2.
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Now we have:

u(q′, f) + δv(f ′′)− [u(q, f) + δv(f ′)] = (2hf − 1)(q′ − q) + δ(v(f ′′)− v(f ′))

≥ (2hf − 1)(q′ − q) + δ∂v(f ′)(f ′′ − f ′)
≥ (2hf − 1)(q′ − q) + δ∂v(f ′)∂qθ(q, f)(q′ − q)

>

(1− 2h) + δ ∂v(f ′)
f(1− f)

[f(1− q) + (1− f)q]2︸ ︷︷ ︸
A

 (q − q′),

where the first inequality uses the definition of subdifferential, and the second the concavity
of θ, so that f ′′ − f ′ ≤ ∂θ(q, f)(q′ − q′′), and the fact that ∂v(f ′) ≤ 0. The last inequality
uses that f < 1. Recall that 1− 2h > 0.

For f close enough to 1, and since ∂v(f ′) ≤ 0 are monotone increasing and therefore
bounded below, we can make A as close to zero as desired. Thus, for f < 1 close to 1, we
have that u(q′, f) + δv(f ′′)− u(q, f) + δv(f ′) > 0 when q′ < q. Hence the solution will be to
set q = 0.

To finish the proof we show that ft ↑ 1 and hence there is t∗ at which ft is large enough
that it is optimal to set qt = 0.

Suppose that ft ↑ f ∗ < 1. Note that if f ′ = θ(q, f) then q = f(1−f ′)
f(1−f ′)+(1−f)f ′ . Thus (using

K for the terms that do not depend on q or f)

u(qt, ft) = K−hft−(1−2hft)

[
ft(1− ft+1)

ft(1− ft+1) + (1− ft)ft+1

.

]
→ K−hf ∗−(1−2hf ∗)

1

2
= K−1

2
.

Then for any ε there is t such that v(ft) =
∑

t′≥t δ
t′−tu(qt′ , fr′) <

K− 1
2

1−δ + ε.
On the other hand, if the principal sets qt = 0 it gets u(0, ft) = K − hft, and transitions

to 1 = θ(0, ft). Hence the value of setting q = 0 at t is

u(0, ft) + δ
u(0, 1)

1− δ
= K − hft + δ

K − h
1− δ

>
K − h
1− δ

>
K − 1/2

1− δ
.

as ft ≤ f ∗ < 1 and h < 1/2.
Now choose ε such that K− 1

2

1−δ + ε < K−h
1−δ . Then for t large enough we have

v(ft) < u(0, ft) + δ
u(0, 1)

1− δ
,

a contradiction because setting qt = 0 gives the principal a higher payoff than in the optimal
path.

7.7 Proof of Lemma 3

Proof. Let y ∈ {0, 1}N and q ∈ [0, 1/2] be given. Let µq ∈ ∆({0, 1}N} be the distribution of
covariate realizations in the noisy dataset with q level of noise. We have P[Xa = y | X̂a =
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y] = (1−q)N ·µ(y)
µq(y)

. Also, for any x ∈ {0, 1}N so that y and x differ in k of the N coordinates,

we have P[Xa = y | X̂a = x] = (1−q)N−kqk·µ(y)
µq(x)

. Note that

µq(x) =
∑

z∈{0,1}N
µ(z) · qD(z,x)(1− q)N−D(z,x)

where D(z, x) is the number of coordinates where z differs from x. By the triangle inequality,
D(z, y) ≤ D(z, x) +D(x, y) = D(z, x) + k. This shows for every z ∈ {0, 1}N ,

qD(z,y)(1− q)N−D(z,y) ≥ qD(z,x)(1− q)N−D(z,x) · ( q

1− q
)k.

So,
µq(x) ≤ (

q

1− q
)k ·

∑
z∈{0,1}N

µ(z) · qD(z,y)(1− q)N−D(z,y) = (
q

1− q
)kµq(y).

This shows
(1− q)N · µ(y)

µq(y)
≥ (1− q)N · µ(y)

µq(x) · (1−q
q

)k
=

(1− q)N−kqk · µ(y)

µq(x)
.

7.8 Proof of Proposition 5

Proof. First, observe the maven will choose the covariate a ∈ {a∗, ar} whose noisy realization
X̂a matches the outcome Y in more observations, regardless of µ. This is because the maven
learns two candidates a1, a2 ∈ A and knows either (Xa1 = Y,Xa2 = 1 − Y ) or (Xa1 =
1−Y,Xa2 = Y ), equally likely. The likelihood of the former is 1

2
·q(N−m1)+m2(1−q)m1+(N−m2)

and the likelihood of the latter is 1
2
· qm1+(N−m2)(1 − q)(N−m1)+m2 , where m1,m2 count the

numbers of observations n where X̂a1
n = Yn an X̂a2

n = Yn, respectively. Since q ∈ [0, 1/2],
the first likelihood is larger if m1 > m2, and vice versa. Also, maven’s proposal is a∗ if and
only if it passes the policymaker’s test. Thus we see that for any µ, Vmaven(q) is the same as
when the observations are i.i.d.

Given the hacker’s behavior in Lemma 3, to prove V ′hacker(0) < 0 it suffices to show that
for every y ∈ {0, 1}N and µ, we have ∂

∂q

[
P[Xa = y | X̂a = y]

]
q=0

< 0. For z, x ∈ {0, 1}N , let

D(z, x) count the number of coordinates where z differs from x. Let µq ∈ ∆({0, 1}N} be the
distribution of covariate realizations in the noisy dataset with q level of noise. We may write
(using the fact N ≥ 2) that µq(y) = µ(y) · (1− q)N + µ(z : D(z, y) = 1) · (1− q)N−1q+ f(q2)
where f(q2) is a polynomial expression where every term contains at least the second power
of q. Therefore, ∂

∂q

[
(1−q)Nµ(y)

µq(y)

]
q=0

is:

µ(y)·
[
−N(1− q)N−1µq(y)− (1− q)N · [−Nµ(y)(1− q)N−1 + µ(z : D(z, y) = 1) · ((1− q)N−1 + g(q))]

(µq(y))2

]
q=0

where f(0) = 0. Evaluating, we get µ(y) · −Nµ(y)−[−Nµ(y)+µ(z:D(z,y)=1)]
(µ(y))2

= −µ(z:D(z,y)=1)
(µ(y))

.
Since µ has full support, both the numerator and the denominator are strictly positive, so
∂
∂q

[
P[Xa = y | X̂a = y]

]
q=0

< 0.
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7.9 Proof of Proposition 6

In this proof we adopt the following notation: we write dY for the realized vector Yn, da for
the realized vector Xa

n, for the ath covariate. In the noisy data, we use d̃a for the realization
of the noisy version of the a covariate. As in other results, it is without loss to analyze the
case where dY = 1, so the policy maker will only accept a proposal a if it satisfies that da = 1
in the raw data.

First, we derive the posterior probability of da = 1 given a realization of d̃a in the noisy
dataset, and the resulting behavior of the hacker and the maven. The n component of d̃a is
denoted d̃an.

Lemma 4. Suppose that d̃a satisfies
∑

n d̃
a
n = k. We have P[da = 1 | d̃a] = (1 − q)k(q)N−k.

In particular, the hacker chooses some action a with d̃a = 1, and the maven chooses the
policy with the higher number of 1’s among d̃a∗ and d̃ar .

Proof. Consider any d̃a with
∑

n d̃
a
n = k. In the noisy dataset, for any q, every vector in

{0, 1}N is equally likely. So the probability of the data for policy a having realization d̃a is
2−N . The probability of this realization in the noisy data and the realization being da = 1
in D is 2−N · (1− q)k(q)N−k. So the posterior probability is (1− q)k(q)N−k.

The hacker chooses an action a as to maximize P[da = 1 | d̃a]. The term (1− q)k(q)N−k
is maximized when k = N, since 0 ≤ q ≤ 1/2.

The maven sees vectors with k1, k2 numbers of 1’s. The likelihood of the data given the
first action is the correct one is (1− q)k1(q)N−k1 · 2−N (since all vectors are equally likely in
the noisy dataset conditional on Y = 1, for a 6= a∗). This is larger than (1−q)k2(q)N−k2 ·2−N
when k1 ≥ k2.

Here is the expression for the principal’s expected payoff as a function of q.

Lemma 5. Let A,C ∼ Binom(1 − q,N) and B ∼ Binom(1/2, N), mutually independent.
The principal’s expected payoff after releasing a noisy dataset D(q) is

−h(1−q)N+(1−h)·

[
N∑
k=0

P(A = k) ·
(
P(B < k) +

1

2
P(B = k)− 2−N(P(C > k) +

1

2
P(C = k))

)]
.

Proof. With probability h, the agent is a hacker. By Lemma 4, the hacker recommends a
policy â with d̃â = 1, which has (1 − q)N chance of being accepted by the principal due to
dâ = 1.

With probability 1−h, the agent is a maven. For the maven,
∑

n d̃
a∗
n ∼ Binom(1− q,N)

and
∑

n d̃
ar

n ∼ Binom(1/2, N) are independent. Whenever
∑

n d̃
a∗
n >

∑
n d̃

ar

n , and with 50%
probability when

∑
n d̃

a∗
n >

∑
n d̃

ar

n , the maven recommend a∗ by Lemma 4, which will be
implemented by the principal.

When maven recommends ar, the principal only implements it (and gets utility -1) if
da

r
= 1. The probability of dar = 1 is 2−N , and the probability of ar being recommended

given dar = 1 and
∑

n d̃
a∗
n = k is P(C > k) + 1

2
P(C = k), interpreting C as the number of

coordinates that did not switch from da
r to d̃ar .
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Now, with the formula for the principal’s expected payoff in place, we can evaluate the
derivative at q = 0 to prove Proposition 6.

Proof. We apply the product rule. First consider d
dq
P(A = k)|q=0.

We have P(A = k) = (1 − q)kqN−k
(
N
k

)
. If k < N − 1, then every term contains at least

q2 and its derivative evaluated at 0 is 0. For k = N, we get (1− q)N whose derivative in q is
−N(1− q)N−1, which is −N evaluated at 0. For k = N − 1, we get (1− q)N−1q ·N , whose
derivative evaluated at 0 is N.

We now evaluate, for k = N − 1, N :(
P(B < k) +

1

2
P(B = k)− 2−N(P(C > k) +

1

2
P(C = k))

)
|q=0

When k = N and q = 0, P(B < N) = 1 − 2−N , P(B = N) = 2−N , P(C > N) = 0,
P(C = N) = 1. So we collect the term −N((1− 2−N) + 1

2
· 2−N − 2−N · 1

2
) = −N(1− 2−N).

When k = N − 1 and q = 0, P(B < N − 1) = 1− 2−N −N2−N , P(B = N − 1) = N2−N ,
P(C > N − 1) = 1, P(C = N) = 0. So we collect

N(1− 2−N −N2−N +
1

2
N2−N − 2−N) = N(1− 2−N [2 +

N

2
]).

Next, we consider terms of the form

P(A = k)|q=0 ·
d

dq
(P(B < k) +

1

2
P(B = k)− 2−N(P(C > k) +

1

2
P(C = k)))|q=0.

Note that P(A = k)|q=0 = 0 for all k < N . The derivative of P(C > k) is d
dq

(1 − P[C ≤
k]) = −NP[Bin(N − 1, 1 − q) = k]. Evaluated at q = 0, this is 0 except when k = N − 1,
but in that case we have P(A = N − 1) = 0 when q = 0.

The derivative of P(C = k) evaluated at 0 is −N for k = N, N for k = N−1, 0 otherwise.
But P(A = N − 1) = 0 if q = 0, so we collect 1 · (−2−N)1

2
(−N).

Collecting the terms we have obtained, and adding up, we have that:

−N(1− 2−N) +N(1− 2−N [2 +
N

2
]) + (−2−N)

1

2
(−N)

=N

[
−1 + 2−N + 1− 2−N [2 +

N

2
] +

2−N

2

]
=N

[
2−N − 2−N+1 − (N − 1)2−N−1

]
= −N(N + 1)2−(N+1).

Overall, then, using the formula for the principal’s payoff from Lemma 5, the derivative
of payoffs evaluated at q = 0 is

hN − (1− h)N(N + 1)2−(N+1),

the sign of which equals the sign of h/(1− h)− (N + 1)2−(N+1).
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7.10 Proof of Proposition 7

Proof. Write UK(q) for the principal’s expected utility from noise level q withK covariates, N
observations, and h fraction of hackers. Write U(q) for the principal’s expected utility in the
model with the same parameters from Section 5.2, but a continuum of covariates A = [0, 1].
From Proposition 6, U ′(0) > 0, therefore there exists some q′ > 0 so that U(q′) > U(0).

We argue that UK(q′) > U(q′) for every finite K ≥ 2. Note that a maven has the same
probability of proposing the true cause when A = [0, 1] and when K is any finite number.
This is because the maven’s inference problem is restricted to only Xa∗ and Xar and the
presence of the other covariates does not matter. For the hacker’s problem, note that the
optimal behavior of the hacker is to propose the a that maximizes the number of observations
where X̂a matches the outcome variable Y in the noisy dataset. For a hacker who has no
private information about a∗, such a covariate has the highest probability of being the true
cause and the highest probability of passing the test. The principal’s utility conditional on
the hacker passing the test when A = [0, 1] is -1, but this conditional utility is strictly larger
than -1 when K is finite as the hacker has a positive probability of choosing the true cause.
Also, the probability of the hacker passing the test with proposal a only depends on the
number of observations where X̂a matches Y , and the probability is an increasing function
of the number of matches. When A = [0, 1], the hacker can always find a covariate that
matches Y in all N observations in the noisy dataset, but the hacker is sometimes unable to
do so with a finite K. So overall, we must have UK(q′) > U(q′) > U(0).

Finally, we show that UK(0) − U(0) = h
[
2 (1−[1−(1/2)N ]K)

(1/2)NK
− 1
]

+ h, an expression that
converges to 0 as K → ∞. Clearly, if noise level is 0 and A = [0, 1], then the principal’s
expected utility when facing the hacker is -1. For the case of a finite A, note Xa∗ is perfectly
correlated with Y . Each of the remaining K − 1 covariates has probability (1/2)N of being
perfectly correlated with Y , so the number of perfectly correlated variables is 1 + B, with
B ∼ Binom((1/2)N , K − 1).

The hacker will recommend a perfectly correlated action at random, so the recommen-
dation is correct and yields of payoff of 1 with probability 1/(1 + b), and incorrect with
probability b/(1 + b), for each realization b of B. Hence the expected payoff from facing a
hacker is E(1−B

1+B
). Using the calculation of E(1/(1 +B)) in Chao and Strawderman (1972),

E(
1−B
1 +B

) = 2E(
1

1 +B
)− 1 =

2(1− (1− p)K)

pK
− 1,

where p = (1/2)N .
Combining the fact that limK→∞(UK(0)− U(0)) = 0 with UK(q′) > U(q′) > U(0), there

exists some K so that UK(q′) > U(q′) > UK(0) for every K ≥ K.

7.11 Proof of Proposition 8

Proof. First, there exists some q̄1 > 0 so that for any noise level 0 ≤ q ≤ q̄1, the hacker
finds it optimal to report a covariate a that satisfies Xa

n = Yn for every observation n in the
data. Such a covariate has probability 0 of being correct but the highest probability of being
implemented out of all covariates a ∈ [0, 1]. If the hacker instead reports ∅, the expected
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payoff is 1 − β. When q = 0, the expected payoff from reporting a is 1 − w > 1 − β since
w < β. The chance of such a covariate passing the policymaker’s test is continuous in noise
level, so there is some q̄1 > 0 so that for every noise level 0 ≤ q ≤ q̄1, the hacker’s optimal
behavior involves reporting a covariate that perfectly matches the outcome in the noisy data.

This means for 0 ≤ q ≤ q̄1, the principal’s expected payoff with dissemination noise q
when facing a hacker is −Vhacker(q) = −(1− q)N , with −V ′hacker(q) = N(1− q)N−1.

For any 0 ≤ q ≤ 1/2, after the maven observes the two covariates a1, a2 ∈ [0, 1] (one of
them being a∗ and the other being ar, and there is some β probability that a∗ is the true
cause), it is optimal to either report the covariate a ∈ {a1, a2} that satisfies Xa

n = Yn for
a larger number of observations n, or to report ∅. To see that it is suboptimal to report
any other covariate, note the maven knows that the correct report is either a1, a2, or ∅, and
assigns some posterior belief to each. At least one of the three option must have a posterior
belief that is at least 1/3, therefore the best option out of a1, a2, or ∅ must give an expected
payoff of at least 1

3
w. On the other hand, reporting a covariate a ∈ [0, 1]\{a1, a2} gives at

most an expected payoff of 1− w. We have 1
3
w > 1− w by the hypothesis w > 3

4
.

We show that there is some q̄2 > 0 so that for any noise level 0 ≤ q ≤ q̄2, if in the noisy
dataset we have (i) Xa1

n = Yn for all n, Xa2
n = 1 − Yn for all n, or (ii) Xa1

n = Yn for all n,
Xa2
n = 1−Yn for all except one n; or (iii) Xa1

n = Yn for all except one n, Xa2
n = 1−Yn for all

n, then the maven reports a1. It suffices to show that for small enough q, in all three cases
the posterior probability of a1 being the true cause exceeds 1/2 (so that the expected utility
from reporting a1 exceeds that of reporting ∅). In case (i), this posterior probability is

0.5β(1− q)2N

0.5β(1− q)2N + 0.5βq2N + (1− β)(1− q)NqN
,

which converges to 1 as q → 0. In case (ii), this posterior probability is

0.5β(1− q)2N−1q
0.5β(1− q)2N−1q + 0.5βq2N−1(1− q) + (1− β)qN+1(1− q)N−1

.

Factoring out q from the numerator and the denominator, this converges to 1 as q → 0. In
case (iii), this posterior probability is

0.5β(1− q)2N−1q
0.5β(1− q)2N−1q + 0.5βq2N−1(1− q) + (1− β)qN−1(1− q)N+1

.

Factoring out q from the numerator and the denominator, this converges to 1 as q → 0.
The principal’s expected payoff from facing the maven is the probability that a true cause

exists in the data and the maven reports a∗. This is because the maven either reports ∅ (so
the principal gets 0), or reports a covariate that is either the true cause or gets rejected by the
policymaker. When q = 0, the principal’s expected payoff is β. A lower bound on the prin-
cipal’s payoff for 0 ≤ q ≤ q̄2 is L(q) := β · P[noise level q flips 0 or 1 entries in Xa∗

n , X
ar

n , 1 ≤
n ≤ N ]. If a∗ is the true cause and the noise flips no more than 1 entry in Xa∗

n , X
ar

n , then
the maven sees one of cases (i), (ii), or (iii) in the noisy data, and by the argument before
the maven will report a∗ if q ≤ q̄2. Note this lower bound is equal to the principal’s expected
payoff when q = 0.
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We have
L(q) = β · (1− q)2N + 2N · (1− q)2N−1 · q.

The derivative is:

L′(q) = β · [−2N(1− q)2N−1 + 2N · (1− q)2N−1 − 2N · (2N − 1) · (1− q)2N−2 · q]

so L′(0) = 0. We have that L(q) − Vhacker(q) is a lower bound on the principal’s expected
payoff with dissemination noise q for all 0 ≤ q ≤ min(q̄1, q̄2), and the bound is equal to the
expected payoff when q = 0. We have L′(0) − V ′hacker(0) > 0, therefore there exists some
0 < q̄ < min(q̄1, q̄2) so that the lower bound on payoff L(q)− Vhacker(q) is strictly increasing
up to q̄. This shows any noise level 0 < q < q̄ is strictly better than zero noise for the
principal.

32


	Introduction
	p-Hacking
	Dissemination Noise
	Setup and Key Results
	Alternative Solutions to p-Hacking
	Related Literature

	Motivating Example
	Optimal Dissemination Noise in a Static Environment
	The Model
	Optimal Level of Noise
	Dissemination Noise and p-Values Thresholds

	Dynamic Environment with Data Reuse
	Discussion and Extensions 
	Non-i.i.d. Observations 
	More Misleading Red Herrings 
	Finite Number of Covariates 
	No True Cause

	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Lemma 3
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8


