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1 Introduction

Moral hazard is central to economics. The past two decades have seen the pro-

liferation of research that significantly enriches our understanding in dynamic moral

hazard problems in employment relationships, organizational structures, and regula-

tory policies. With few exceptions, existing work focuses on incentive provision under

exogenous monitoring technologies. In many applications, however, the monitoring

technology is a critical endogenous component of incentive design. The goal of this

paper is to study dynamic incentive provision without restrictions on the monitoring

technology. I study a dynamic moral hazard model in which the principal monitors

the agent’s effort by acquiring informative signals, and adapts the incentive scheme

contingent on the acquired signals. The monitoring design raises two connected ques-

tions: “which signals to acquire” and “how to adapt to the acquired signals”. For

example, a medical board can incentivize a physician to provide quality service by

acquiring either a strong signal of malpractice that leads to delicensing, or weak sig-

nals that in multitude lead to suspension; a supervisor can incentivize a worker to

exert effort by adapting future employment to past evaluations.

In the model, the principal (she) has full commitment to monitoring the agent’s

(his) binary private effort subject to a monitoring cost, and adapting future employ-

ment contingent on past signals. The wage is fixed. I model flexible public monitoring

by a Blackwell experiment on the agent’s effort. I assume the monitoring cost func-

tion satisfies likelihood ratio separability (Assumption 1) and compound reduction

(Assumption 2), with the relative entropy function as the leading example.

I consider first the main model in which the principal must incentivize effort when

the agent is employed. I show that the optimal monitoring takes the form of Poisson

bad news that leads to immediate termination, i.e., the agent is never employed again

(Theorem 1). The optimal incentive scheme features minimal history dependence:

conditional on the agent being employed, the non-stationary monitoring depends

only on the length of employment. Over time, the Poisson bad news becomes more

precise and less frequent. The agent’s continuation value increases with the length

of employment because termination becomes a more effective incentive instrument.

The frequency decreases so quickly that the relationship continues indefinitely with
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positive probability. My results are consistent with Mincer and Jovanovic (1981) who

find that the length of employment explains half of the variation in termination, and

the hazard rate of termination (turnover) is decreasing.

The non-stationarity follows from the main tradeoff between the principal’s costly

monitoring and information exposure to the agent. To provide incentives, the princi-

pal can acquire more precise signals or adapt future employment more sensitively to

acquired signals. On one hand, more precise signals are more costly to the principal.

On the other hand, more sensitive adaption means that the agent’s continuation value

is more volatile in the sense of second-order stochastic dominance. The public signal

exposes more information about his continuation value to the agent, and allows him

to devise more elaborate deviations from the recommended effort. The information

exposure imposes a cost to the principal because she faces more stringent incentive

constraints to prevent such deviations. As the agent’s continuation value increases,

the public signal exposes more information about the continuation value to the agent.

To reduce this cost, the principal decreases the public signal’s information about the

continuation value by substituting the frequency by the precision of arrival.

My analysis makes use of two salient features of flexible endogenous monitoring

in stark contrast with exogenous monitoring. The first feature is that the princi-

pal can probabilistically mix informative monitoring with uninformative signals, on

which she chooses not to adapt the incentive scheme, i.e., the scheme continues as

if the uninformative signal has not been acquired. The uninformative signal exposes

no payoff-relevant information to the agent and thus creates no additional incen-

tive constraints. I show that, as the agent takes action more often, the principal’s

value weakly increases and the mixed monitoring converges to Poisson monitoring

(Lemma 1). This contrasts with exogenous monitoring models in which players must

adapt to frequent signals of limited informativeness. The players’ values decrease

because they observe more signals informative about the continuation play and cre-

ate more incentive constraints, as shown by Abreu, Milgrom, and Pearce (1991) in

partnership games.

The second feature is that the principal can acquire more precise signals by ag-

gregating multiple signals across periods into a one-off signal. Because more precise

signals warrants greater change in the incentive scheme, the principal combines mul-
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tiple signals to make sure that some signal is precise enough to warrant immediate

reaction in the form of termination (Lemma 2). It is also optimal to pool all other

signals that do not warrant immediate reaction in order to expose less payoff-relevant

information to the agent. This explains the minimal history dependence in the optimal

incentive scheme. The endogenous signal aggregation contrasts exogenous monitor-

ing models in which the principal must accumulate signals of limited precision over

time for signals precise enough to warrant reaction. Before termination, the incentive

scheme depends sensitively on the history of accumulated signals.

I consider then an extension in which the principal needs not incentivize effort

when employing the agent. The extension allows shirking as a new incentive instru-

ment. I show that the optimal incentive scheme takes one of four possible forms

(Theorem 2). They feature Poisson bad news that leads to termination and Poisson

good news that leads to tenure, e.g., permanent shirking. The monitoring shows

increasing precision and decreasing frequency during a trial period of deterministic

length. The first two forms are up-or-out schemes, i.e., the agent becomes either

terminated or tenured by the end of the trial period. The first form uses Poisson

bad news in the trial period during which the agent’s continuation value increases

so much that, absent arrivals, he obtains tenure at the end. The second form uses

Poisson good news in the trial period during which the agent’s continuation value

decreases so much that, absent arrivals, he gets terminated at the end. As tenure

becomes a more effective incentive instrument, it also exposes more payoff-relevant

information to the agent and so the principal substitutes the frequency of good news

with precision. The last two form features stationary two-sided Poisson monitoring

(bad news that leads to termination and good news that leads to tenure) after the

trial period. The third form uses Poisson bad news during the trial period, and the

fourth form uses Poisson good news.

Related literature

My paper incorporates flexible endogenous monitoring to the dynamic moral haz-

ard problem with imperfect monitoring. Pioneering papers including Rubinstein

(1979) and Rogerson (1985) formulate the problem by repeated games with stationary
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exogenous monitoring. DeMarzo and Sannikov (2006) and Sannikov (2008) formu-

late the incentive provision problem in continuous time and introduce the martingale

representation approach. One key insight from this literature is that the continuation

of incentive scheme depends not only on the history of actions but also the history

of signals because players need to accumulate signals of limited precision over time.

With endogenous monitoring, however, I show that the optimal incentive scheme fea-

tures minimal history dependence in that, contingent on the agent being employed,

the continuation of the incentive scheme only depends on the length of employment.

The role of monitoring in dynamic moral hazard problems is discussed as early as

in Abreu, Milgrom, and Pearce (1991). They show in a partnership game that, when

players observe exogenous signals more often, the set of equilibrium values shrinks

due to the cost of information exposure. Sannikov and Skrzypacz (2010) show that

Brownian monitoring and Poisson monitoring provide incentives in different ways in

a continuous-time partnership game. Fudenberg and Levine (2007, 2009) and Sadzik

and Stacchetti (2015) study how the details of the monitoring technology in discrete

time affect the incentive provision and value of incentive schemes at the continuous-

time limit. I contribute to this literature by resolving the tradeoff between costly

monitoring and information exposure.

Recent developments in dynamic incentive provision incorporate restricted forms

of endogenous monitoring.1 Marinovic, Skrzypacz, and Varas (2018) and Varas, Mari-

novic, and Skrzypacz (2020) endogenize the timing of monitoring with costly state

verification; Piskorski and Westerfield (2016) the frequency of conclusive Poisson bad

news; Fahim, Gervais, and Krishna (2021) the precision of Brownian monitoring. In

particular, Dai, Wang, and Yang (2021) endogenize the direction of conclusive Poisson

news of fixed frequency and find that, when the agent has low continuation value, the

optimal incentive scheme monitors with good news because the conclusive bad news is

not frequent enough to incentivize effort. In contrast, by endogenizing the frequency

and precision as well, I find that the optimal incentive scheme monitors with frequent

but inconclusive bad news. This highlights how restrictions in endogenous monitoring

can affect qualitative predictions.

1Georgiadis and Szentes (2020) and Li and Yang (2020) study optimal static incentive
schemes with flexible endogenous monitoring.

4



The flexible monitoring technology in my model relates to the literature of infor-

mation design. Kamenica and Gentzkow (2011) introduces the Bayesian persuasion

problem and belief-based approach. Ely (2017), Ely and Szydlowski (2020), Hébert

and Zhong (2022), and Koh and Sanguanmoo (2022) use the posterior belief to study

dynamic persuasion problems. See Bergemann and Morris (2019) for a survey. The

belief-based approach is also used to study rational inattention problems under pos-

terior separable attention costs (Caplin and Dean, 2015). Morris and Strack (2019)

study the relation between attention cost and sequential sampling. Ravid (2020)

studies a game with rationally inattentive players and finds that unreasonable equi-

libria arise from the possibly degenerate belief over endogenous actions. To over-

come this problem, I model the monitoring by the distribution of likelihood ratios

and the monitoring cost by an “experimental cost” (Denti, Marinacci, and Rusti-

chini, 2022). I adapt properties of attention costs to the monitoring cost: posterior

separability to likelihood ratio separability (Assumption 1) and sequential learning

proofness (Bloedel and Zhong, 2020) to compound reduction (Assumption 2). Using

the belief-based approach, Zhong (2022) and Georgiadis-Harris (2021) study dynamic

information acquisition under a posterior separable cost.

Notably, Zhong (2022) is the most closely related paper in information design. He

studies the Wald problem of information acquisition before a one-off decision, and

shows the optimality of Poisson signals that lead to immediate decision. His deci-

sion problem differs from my incentive provision problem which features the agent’s

incentive compatibility constraint. In his model, Poisson signal induces the riskiest

decision time and thus maximizes expected utility under risk-loving exponential dis-

counting. The immediate decision follows because, with higher continuation value,

the impatient decision maker faces higher opportunity cost of not taking the one-off

decision. His intuition, however, does not apply to my incentive provision problem

due to flow payoffs and the additional dimension of future employment.

My model provides a moral hazard theory for the negative empirical relationship

between termination and length of employment, complementing the existing search

theory (Burdett, 1978; Jovanovic, 1984) and experience theory (Jovanovic, 1979).2

2Jovanovic (2021) finds a decreasing hazard rate of product recall in a moral hazard
model in which reputation has direct utility consequence.
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See Gibbons and Waldman (1999) for a survey.

2 Dynamic monitoring model

I model the dynamic incentive provision problem in continuous time. The prin-

cipal commits to a signal history-dependent incentive scheme which consists of the

monitoring technology to acquire public signals about the agent’s private effort, and

the contingent plan to adapt future employment decisions to the signal history. The

agent has no commitment and chooses whether to exert effort when he is employed.

I introduce the timeline of the dynamic incentive scheme and then formulate the

principal’s design problem. Heuristically, the stage game at each instant t ∈ [0,∞)

in continuous time follows the timeline below.

1. The principal publicly chooses whether to employ the agent for the instant

ht ∈ {0, 1}. The stage game ends if she chooses not to employ ht = 0.

2. The principal publicly chooses a costly monitoring.

3. The agent privately chooses whether to exert costly effort at ∈ {0, 1}.

4. The chosen monitoring generates a public signal about the current private effort.

2.1 Monitoring technology and monitoring cost

The principal chooses the monitoring technology that specifies how to monitor the

agent’s private effort based on past signals. I model the monitoring technology by a

càdlàg martingale Γ with Γ0 = 0 that specifies the cumulative likelihood ratio Γt−Γs

during time interval (s, t]. For such monitoring technology, I define the cumulative

monitoring cost up to time t as a stochastic process

Ct(Γ) := lim sup
∆t→0

dt/∆te∑
m=1

C
(
1 + Γm∆t − Γ(m−1)∆t

)
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where d·e rounds up to the nearest integer and C is the monitoring cost function.

In this section, I shall explain how continuous-time processes Γ and Ct(Γ) model

the monitoring technology and monitoring cost by introducing their discrete-time

counterparts.

In discrete time, the principal monitors the agent’s current effort by choosing

a Blackwell experiment, which can be represented by a distribution of likelihood

ratio subject to the Bayes rule. A Blackwell experiment specifies the distribution

of signal Pa for each of binary private effort a ∈ {0, 1} in the current period. A

signal is informative about the private effort only through its likelihood ratio3 L :=

dPa=0/dPa=1 ∈ (0,∞). Moreover, a distribution of likelihood ratio corresponds to a

Blackwell experiment if and only if it satisfies the Bayes rule Pa=1 [L] = 1. Therefore,

I represent the Blackwell experiment by likelihood ratio distribution L ∈ ∆1(0,∞)

and its signal by likelihood ratio L ∼ L, where ∆1(0,∞) denotes the set of probability

measures on (0,∞) with expectation one.

The Blackwell experiment incurs a monitoring cost to the principal. The moni-

toring cost function C maps each experiment L ∈ ∆1(0,∞) to its cost C(L) ∈ [0,∞].

I make two two main assumptions on the non-parametric monitoring cost: likelihood

ratio separability and compound reduction. My leading example is the relative entropy

cost function C(L) = EL∼L [− log(L) + L− 1].

Likelihood-ratio separability states that the monitoring cost is linear in probability—

it is a convex moment of the distribution of likelihood ratio.

Assumption 1 (Likelihood-ratio separability) There exists convex C2 function

c : (0,∞)→ [0,∞) such that C(L) = EL∼L [c(L)] for all L ∈ ∆1(0,∞).

Cost function c is convex so that the monitoring cost is monotonic in the Blackwell

order, i.e., a more precise monitoring is more costly. I normalize c such that c(1) =

c′(1) = 0. One interpretation of separability is that each signal L costs c(L), so that

the monitoring cost of an experiment equals the expected cost of the realized signal

when the agent exerts effort.

Compound reduction states that compound monitoring is no cheaper than the

3I assume away perfectly informative signals L = 0,∞, which will be infinitely costly.
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reduced monitoring.

Assumption 2 (Compound reduction) For all L1 ∈ ∆1(0,∞) with finite sup-

port, and L2 : supp(L1)→ ∆1(0,∞), the monitoring costs satisfy

C (L1) + EL1∼L1 [C (L2(L1))] ≥ C (L1 × L2(L1))

where L2(L1) is the mixture distribution of L1 and L2.

The assumption concerns a hypothetical scenario where the principal monitors the

same private effort twice (Figure 1). Conditional on first signal L1, the principal

independently monitors the effort again to obtain the second signal L2, so that the

likelihood ratio of the two monitoring together is the product of the two likelihood

ratios L1L2. Compound reduction states that the compound monitoring, which gen-

erates L1 and then L2, costs no less than the reduced monitoring, which generates

the product likelihood ratio L1L2 directly. One interpretation is that the monitoring

cost is the reduced form of the least costly compound monitoring for a given distri-

bution of product likelihood ratios. Note that compound monitoring costs the same

as reduced monitoring under the relative entropy cost function; see Pomatto, Strack,

and Tamuz (2018).

In addition to likelihood ratio separability and compound reduction, I assume the

Inada condition limL→0,∞ c
′(L)(L − 1) − c(L) = ∞ to guarantee the existence of an

L0 = 1

L′1
L′1L

′′′
2

L′1L
′′
2

L1

L1L
′
2

L1L2

p1

p2

(a) Compound monitoring.

L0 = 1

L′1L
′′′
2

L′1L
′′
2

L1L
′
2

L1L2

p1p2

(b) Reduced monitoring.

Figure 1: Compound monitoring and the corresponding reduced monitoring.
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optimal incentive scheme. See Mirrlees (1999) for an example of non-existence.

I represent the discrete-time monitoring technology by the cumulative likelihood

ratio and define the cumulative monitoring cost by partial sums. Let Lm denote

the monitoring and Lm the realized signal in period m. The monitoring may de-

pend on past signals. I write the cumulative likelihood ratio up to period n as a

stochastic process Γn :=
∑n

m=1(Lm− 1). It is a discrete-time martingale because the

likelihood ratio has expectation one. The cumulative monitoring cost up to period

n is a stochastic process that can be written in terms of the martingale difference

{Γm − Γm−1 : m ≤ n}

n∑
m=1

C(Lm) =
n∑

m=1

C (1 + Γm − Γm−1) =: Cn(Γ)

where Γ0 := 0. I write C(L) =∞ if L /∈ ∆1(0,∞). For any discrete-time martingale Γ

such that Cn(Γ) is almost-surely finite for all n, there exists a sequence of monitoring

{Lm} adapted to past signals such that Γn :=
∑n

m=1(Lm − 1).

Any (continuous-time) monitoring technology Γ, such that Ct(Γ) is finite almost

surely, is the limit of a sequence of the discrete-time counterparts {L∆t,m : m ≤
dt/∆te} in that

∑ds/∆te
m=1 (L∆t,m − 1)→ Γs in distribution for all s ≤ t.

2.2 Payoffs from employment, effort, and monitoring

The principal and agent derive flow payoffs from employment, effort, and mon-

itoring. Moral hazard arises as the principal earns revenue from the agent’s costly

private effort.

The agent derives utility from being employed and incurs an effort cost. When

employed ht = 1, he derives a constant flow utility u > 0 which can be interpreted

as the benefit of being employed or a fixed wage. He also incurs an effort cost k > 0

in exerting effort at = 1. When he is not employed ht = 0, the agent’s flow payoff is

normalized to zero. The agent’s von Neumann-Morgenstern payoff is then∫ ∞
0

re−rtht(u− kat)dt
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where r > 0 is the discount rate common to both the principal and agent. I assume

the agent prefers being employed and exerting effort over not being employed, i.e.,

u− k > 0.

The principal derives utility from the agent’s private effort and incurs the moni-

toring cost. When employing the agent ht = 1, she earns flow revenue π > 0 if the

agent exerts effort at = 1, and zero if not at = 0. The principal does not observe her

revenue; she can only infer from her monitoring. She incurs incremental monitoring

cost dCt(Γ) for monitoring Γ over small time interval ∆t. When not employing the

agent, the principal’s flow payoff is zero.4 The principal’s von Neumann-Morgenstern

payoff is then ∫ ∞
0

e−rtht (rπatdt− dCt(Γ)) .

2.3 Dynamic monitoring problem

The principal commits to a dynamic incentive scheme to maximize her expected

payoff subject to the agent’s incentive compatibility.

A dynamic incentive scheme M consists of

� filtered probability space (Ω,F,P) which satisfies the usual conditions and to

which calendar time t is adapted,

� monitoring technology Γ which is a càdlàg martingale with Γ0 = 0,

� predictable employment decision h and effort recommendation a.

The filtered probability space can be larger than the natural filtration of the mon-

itoring technology and calendar time to accommodate public randomizations. The

probability law P corresponds to the case in which the agent always exerts effort.

Because the signal realization depends on the private effort, I denote by Pa′ the law

4In other words, the principal does not pay to employ the agent. Costly employment
does not qualitatively change the results.
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under predictable effort5 a′.

The principal’s problem is to choose a dynamic incentive schemeM to maximize

her expected payoff

Ea
[∫ ∞

0

e−rtht (rπatdt− dCt(Γ))

]
subject to the agent’s incentive compatibility constraint

a ∈ max
a′

Ea′
[∫ ∞

0

re−rtht(u− ka′t)dt
]
.

I denote the principal’s value of incentive scheme M by V (M). I restrict the prin-

cipal’s choice to continuous-time incentive schemes that can be approximated by

discrete-time incentive schemes in value. Formally, there exists a sequence of discrete-

time incentive schemes {M∆t} that converges to the continuous-time incentive scheme

in value lim∆t→0 V∆t(M∆t) = V (M), where V∆t(M∆t) is the principal’s value inM∆t.

See Appendix A.1 for the discrete-time monitoring problem.

Remark 1 My restriction connects the tractable continuous-time abstraction to the

well-grounded economic models in discrete time. As Fudenberg and Levine (2007,

2009) and Sadzik and Stacchetti (2015) point out under exogenous monitoring with

Brownian motion, continuous-time incentive schemes need not be a good approxima-

tion of discrete-time incentive schemes with short time periods. My restriction rules

out pathological cases such as the “infinite switches” equilibrium of Keller, Rady,

and Cripps (2005).6 A sufficient condition for the restriction is that the monitoring

technology Γ is a simple or compound Poisson process of bounded frequency.

5I define Pa′
as the extension to the change of measure dPa′

dP

∣∣∣
Ft

= Za
′

t where Za
′

t is

the stochastic exponential of the martingale
∫

(1 − a′t)dΓt, i.e., dZa
′

t = Za
′

t−(1 − a′t)dΓt and

Za
′

0 = 1. The extension exists and is unique by the Girsanov theorem.
6See the discrete time version of that model in Hörner, Klein, and Rady (2022).
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3 Optimal dynamic incentive scheme

To highlight the economic forces, I first study the main model in which the prin-

cipal must incentivize effort when the agent is employed, e.g., ht = 1 =⇒ at = 1. I

defer the extension with the possibility of shirking to Section 4.

3.1 Main result

The optimal dynamic incentive scheme uses Poisson monitoring—the cumulative

likelihood ratio Γ is a compensated Poisson process parameterized by Poisson jump

size ∆Γt ∈ (−1,∞) and bounded frequency λt, and the filtered probability space is

the augmented natural filtration of Γ and time t. The likelihood ratio upon Poisson

arrival is given by Lt := ∆Γt+1 ∈ (0,∞) due to normalization. I call such monitoring

technology Poisson bad news if Lt > 1 because the arrival is more likely when the

agent does not exert effort, and I call it Poisson good news if Lt < 1. With abuse of

notation, I refer to the arrival by Poisson bad news/good news. I say a Poisson news

is more precise if Lt is further away from 1.

I state the optimal dynamic incentive scheme and then elaborate on its properties.

Theorem 1 In the optimal dynamic incentive scheme,

� the principal monitors the agent’s effort by Poisson bad news that leads to im-

mediate termination;

� conditional on no bad news arrival, the Poisson monitoring increases in preci-

sion, decreases in frequency, and eventually increases in monitoring cost. The

frequency decreases so quickly that the agent is employed indefinitely with posi-

tive probability.

The optimal incentive scheme features minimal history dependence. Because the

agent is terminated upon one bad news arrival, the signal history must be an interval

of “no arrivals” conditional on the agent being employed. Calendar time corresponds

12



one-to-one with this unique history, and therefore the likelihood ratio and frequency

of the optimal Poisson monitoring, conditional on no arrival, are functions of the

length of employment.

The optimal dynamic incentive scheme is non-stationary in that the likelihood

ratio and frequency of Poisson bad news depends on the length of employment (Fig-

ure 2). It is instructive to contrast it with a stationary incentive scheme in which the

principal monitors with stationary Poisson bad news that leads to termination.

The agent’s continuation value is increasing because a more punishing termination

eases incentive provision. For illustration, suppose the optimal incentive scheme is

stationary so that the agent’s continuation value is constant. Flexible monitoring

allows us to consider a one-step deviation: a short and small increase in frequency and

decrease in precision such that incentive compatibility is preserved. To compensate for

the additional risk of termination, the agent’s continuation value increases conditional

on no arrival. After the one-step deviation, the principal resumes the stationary

monitoring with decreased frequency for this increased continuation value.

The deviation yields the principal higher value and thus contradicts the optimality

0 τ
u− k..

1
Frequency

Likelihood ratio

L λ

τ
0

u− k Agent’s cont value

Time

Figure 2: A realization of the optimal dynamic incentive scheme. The Poisson bad
news arrives at τ .
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of stationary incentive schemes. By supposition, the stationary monitoring is optimal

so that the small changes in monitoring entail a second-order increase in monitor-

ing cost during the deviation. The additional probability of termination during the

deviation is exactly compensated by the decrease in the future, and therefore the prin-

cipal receives the same revenue from the agent’s effort. However, when the agent has

more to lose from termination, the principal can incentivize effort with less frequent

bad news which decreases future monitoring costs. The decrease is of the first-order

because termination gives the minimum continuation value.

The increasing precision, decreasing frequency, and eventually increasing monitor-

ing cost follow from the tradeoff between costly monitoring and information exposure.

For fixed frequency λ, when the agent’s continuation value is higher, the public sig-

nal is more informative about the continuation value in the sense of second-order

stochastic dominance—with arrival at frequency λ, the continuation value experi-

ences a bigger drop to zero upon termination; with no arrival, the continuation value

experiences a bigger upward drift proportional to λ to compensate for the risk of

termination. Exposed to such improved information, the agent can devise more elab-

orate deviations which are more costly for the principal to prevent. To reduce the

cost of information exposure, the principal is willing to expend greater monitoring

costs to substitute the frequency by the precision of Poisson monitoring.

Because of compound reduction, the Poisson monitoring decreases in frequency

so quickly that, with positive probability, the agent is employed and exerts effort

indefinitely. Assumption 2 implies that the marginal cost c′ increases with likelihood

ratio L so slowly that it is bounded from above limL→∞ c
′(L) < ∞. As the agent

accumulates continuation value, the principal finds it less expensive to monitor with

explosively precise bad news with vanishing frequency. This contrasts with exogenous

monitoring models in which the likelihood ratio is bounded from 0 and ∞ such that

the agent is terminated eventually.7

Following Spear and Srivastava (1987), the optimal dynamic incentive scheme

7Due to bounded likelihood ratio, the sensitivity of the agent’s continuation value to the
likelihood ratio is bounded from below. No-shirking implies the existence of uniform finite
time and positive probability such that the agent is terminated within the stated time with
at least that probability, regardless of his continuation value. The Borel–Cantelli lemma
thus implies the eventual termination.
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admits a recursive formulation with the agent’s continuation value W as the state

variable. The continuation value Wt is the payoff the agent expects to derive after

time t

Wt := Et
[∫ ∞

t

re−r(s−t)hs (u− kas) ds
]
.

With abuse of notation, I denote by V (W ) the principal’s value function, which is

concave and attains value zero at termination V (0) = 0. As W ranges from 0 to

u − k, the likelihood ratio L of Poisson bad news monitoring increases from the

uninformative 1 to the conclusive ∞, and frequency λ decreasing from ∞ to 0.

0 u− k

0

Value function V

Promised utility W
0 u− k

0

Monitoring cost C

Promised utility W

0 u− k
1

Likelihood ratio L

Promised utility W
0 u− k

0

Frequency λ

Promised utility W

Figure 3: Value function and optimal monitoring.
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3.2 Overview of proof strategy

I highlight the main challenges and overview my strategy to derive the optimal

incentive scheme.

The dynamic monitoring problem presents two main challenges. First, the rich

space of monitoring technologies prevents direct applications of the dynamic program-

ming principle. In particular, I cannot establish an Hamilton-Jacobi-Bellman (HJB)

equation by comparing with discrete-time Bellman equations because the agent’s flow

payoff can contribute to incentive provision.8 Second, the evolution of dynamic incen-

tive scheme is endogenously determined by the cost of information exposure, which

is in turn determined by future evolutions of the scheme.

I derive the optimal dynamic incentive scheme in four steps by leveraging the

discrete-time counterpart. First, the optimal discrete-time scheme does not use public

randomization, which exposes information to the agent without providing incentives.

As a consequence, optimal signals lead to either immediate termination or continued

employment and monitoring in the next period. Second, Poisson monitoring is suf-

ficient to maximize the principal’s value. For any discrete-time schemes, I construct

a continuous-time incentive scheme with compound Poisson monitoring by mixing

the uninformative signal with informative monitoring, in a way that does not expose

the agent to more information despite more frequent observations. This allows me to

establish an HJB equation of Poisson monitoring about the value function. Third, I

show that, in the optimal discrete-time incentive scheme, there exists a positive proba-

bility signal that leads to immediate termination. Otherwise, the principal can delay

costly monitoring and expose less information by pooling the agent’s information

sets by aggregating monitoring across periods, which decreases the monitoring cost

by compound reduction. The immediate termination in discrete time implies that

the principal’s value function satisfies an HJB equation of immediate termination

upon Poisson arrival, and thus resolves the evolution of the optimal incentive scheme.

Fourth, I construct a candidate value function, verify its optimality, and derive the

optimal incentive scheme by solving a first-order ordinary differential equation about

8In contrast, Zhong (2022) studies flexible dynamic information acquisition and manages
to establish an HJB equation by comparing with discrete-time Bellman equations because
the decision maker faces no incentive constraints and derives no flow payoffs.
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the optimal likelihood ratio.

In the remainder of this section, I shall elaborate on the sufficiency of Poisson

monitoring and the existence of signal that leads to immediate termination because

these two steps highlight the roles of flexible monitoring and information exposure in

dynamic incentive provision.

3.3 Sufficiency of Poisson monitoring

Within the rich space of monitoring technologies, Poisson monitoring is sufficient

to maximize the principal’s value. As a result, the value function satisfies an HJB

equation of Poisson monitoring.

Proposition 1 The value function V is a viscosity solution to HJB equation

rv(W ) = sup
λ,L,J

rπ + r(W − u+ k)v′(W ) + λ (v(J)− v(W )− (J −W )v′(W ))− λc(L)

subject to instantaneous incentive compatibility constraint

λ(1− L)(J −W ) = rk (1)

for W ∈ (0, u− k) and boundary condition v(0) = 0.

See Definition 3 in the appendix for the definition of viscosity solution.

Under Poisson monitoring, the incentive scheme specifies three control variables:

frequency λ and likelihood ratio L of Poisson monitoring, and the agent’s continuation

value upon arrival, jump J , which is the state variable for the incentive scheme. The

control needs to satisfy the agent’s instantaneous incentive compatibility (IC), which

is the continuous-time version of the one-step deviation principle. Intuitively, the

continuation value must decrease J < W for Poisson bad news 1 − L < 0, and vice

versa. The frequency λ needs to be sufficiently high to provide enough incentives to

overcome flow effort cost rk.

The HJB equation decomposes the principal’s value into four terms. The first

term is the flow revenue rπ derived from the agent’s effort. The second term is the
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change in the principal’s value due to the expected change in the agent’s continuation

value. To account for the promised value the principal owes to the agent, Wt grows

at interest rate r and falls due to the flow payoff r(u − k). The expected change

translates to the principal’s value by marginal value V ′(W ). The third term is the cost

of information exposure. Mathematically, the cost equals the expected change in the

principal’s value from the mean-preserving spread in the agent’s Poisson continuation

value. With arrival at frequency λ the principal’s value jumps from V (W ) to V (J),

and with no arrival it drifts by −λ(J −W )V ′(W ). The fourth term is the cost of

Poisson monitoring λc(L).

The optimal controls (λ, L, J) follow from an incentive-cost analysis. They pro-

vide incentives in IC (1) but incurs the monitoring cost and the cost of information

exposure in the HJB equation. The incentive and costs are linear in frequency λ due

to expected utility and likelihood ratio separability, and so the optimal likelihood

ratio and jump maximize the incentive-cost ratio

(L∗, J∗) ∈ arg max
L,J

(1− L)(J −W )

− (V (J)− V (W )− V ′(W )(J −W )− c(L))
. (2)

The optimal frequency then follows from binding IC.

For fixed jump J , the optimal likelihood ratio L features the intratemporal tradeoff

between the monitoring cost and the cost of information exposure, summarized by a

first-order condition (FOC)

c′(L)(L− 1)− c(L) = − (V (J)− V (W )− (J −W )V ′(W )) . (3)

When the principal optimally combines the monitoring technology and contingent

plan of future employment, the marginal monitoring cost per incentive provided equals

the marginal cost of information exposure. When the jump J is further from W , the

public signal is more informative about the continuation value in the sense of second-

order stochastic dominance. The cost of information exposure increases and so the

principal expends greater monitoring costs for more precise signals in order to reduce

the frequency of payoff-relevant information exposure.

The key idea of Proposition 1 is that continuous-time incentive schemes with com-
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pound Poisson monitoring can replicate discrete-time ones in value. The intuition is

that mixing uninformative signals with informative monitoring does not expose addi-

tional information or create new incentive compatibility constraints, and such mixing

converges to compound Poisson monitoring at the continuous-time limit. Analogous

to Poisson monitoring, compound Poisson monitoring is a monitoring technology in

which Γ is a compound Poisson process of bounded frequency, and the filtered prob-

ability space is the augmented natural filtration of Γ and time t.

Lemma 1 (Poisson replication) For any discrete-time incentive scheme, there ex-

ists a continuous-time incentive scheme with compound Poisson monitoring that gives

strictly higher value.

The sufficiency of compound Poisson monitoring implies the sufficiency of Poisson

monitoring because a compound Poisson process is a convex combination of compen-

sated Poisson processes. This is the main reason for the continuous-time formulation

of the dynamic incentive provision problem.

I shall show that, with shorter time periods, the principal can increase her value

by mixing the uninformative signal with informative monitoring. For short period

length ∆t > 0, take a ∆t-incentive scheme at continuation value W . The principal

uses monitoring L and continuation value J to satisfy ∆t-IC (Figure 4a)

e−r∆tEL,J [(1− L)(J −W )] = (1− e−r∆t)k .

W

J ′

J

p, L

(a) Contract in ∆t.

W

J ′

W

J

p0, 1

(1− p0)p, L

(b) Mixing in uninforma-
tive signal in ∆t′.

W

J ′

W

J ′

· · ·

JJ

(c) Iteratively mixing in un-
informative signals in ∆t.

Figure 4: Replicating a incentive scheme’s value in shorter time periods.

19



Analogous to the continuous-time IC (1), the covariation between the likelihood ratio

and continuation value equals to the effort cost for the ∆t-period. Now, consider the

problem with the period length halved ∆t′ := ∆t/2. In each ∆t′-period, the effort cost

and derived revenue are also halved approximately.9 To half the incentive provision,

the principal can mix the uninformative signal (L ≡ 1, J ≡ W ) with probability

p0 ≈ 1/2, and conduct informative monitoring (L,J) only with probability 1 − p0

such that the ∆t′-IC binds10 (Figure 4b)

e−r∆t
′
(p0 × 0 + (1− p0)× EL,J [(1− L)(J −W )]) = (1− e−r∆t′)k .

With the effort cost and probability of reward/punishment J halved, the mixed incen-

tive scheme offers the same expected value to the agent. Due to common discounting,

the principal also gets the same expected value from effort and future continuations.

The monitoring cost decreases by more than half because the principal incurs the cost

only ∆t′ < ∆t before conditioning on the signals.

I show the sufficiency of compound Poisson monitoring by constructing a dynamic

incentive scheme with compound Poisson monitoring (Figure 4c). At any initial

continuation value W , the principal mixes the uninformative signal with informative

monitoring until the first informative signal arrives (Figure 4c). At new continuation

value J , the principal mixes again until an informative signal arrives. Because discrete

time is countable, the iteration constructs a dynamic incentive scheme for the shorter

period11 ∆t′. As ∆t′ → 0, this incentive scheme converges to a continuous-time

incentive scheme with compound Poisson monitoring because the probability of an

informative signal is proportional to the period length12 ∆t′.

Endogenous monitoring allows mixing with the uninformative signal which does

not expose payoff-relevant information, and thus increases the principal’s value with

shorter time periods. Despite the more frequent opportunities to deviate, the agent

9They are slightly more than half because of the convex exponential discounting.
10In fact, p0 < 1/2 because, conditional on an informative signal, continuation value J

arises sooner and thus provides a slightly stronger incentive.
11I show in the appendix that optimal monitoring in discrete time consists of finitely

many signals.
12The decrease in monitoring cost vanishes as ∆t → 0 so that the constructed scheme

can be approximated in discrete time.
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does not observe additional information. In other words, the possibility of uninfor-

mative signal in endogenous monitoring preserves the agent’s incentive constraint. In

contrast, under exogenous monitoring, Abreu, Milgrom, and Pearce (1991) find that

the value of a partnership game decreases with shorter time periods because players

observe more informative signals which create more incentive constraints.

3.4 Signal leading to immediate termination

I shall show that, in the optimal incentive scheme in discrete time, there exists a

positive-probability signal that leads to immediate termination. The intuition is that

the incentive scheme must adapt immediately to justify the costly monitoring and

information exposure; if not, the monitoring should be delayed.

Lemma 2 (Immediate reaction) In any optimal discrete-time incentive schemes,

there is a positive-probability signal that leads to immediate termination.

Although periods beyond the next can adapt to the current signal to provide incen-

tives, the optimal incentive scheme must react to some signal through immediate

termination.

To prove Lemma 2 by contradiction, I suppose, at some initial continuation value

W0, every possible first-period signal L1 leads to the corresponding W1 at which

the principal continues to employ the agent and acquires a second-period signal L2

that leads to W2 (Figure 5a). I shall construct an alternative incentive scheme that

yields strict higher value by delaying cost monitoring and information exposure. The

alternative scheme mixes two kinds of monitoring. With probability p0, the first is the

uninformative signal that leads to the same continuation value W0. With probability

1 − p0, the second is the reduced monitoring that aggregates across the two periods

such that signal L1L2 leads to W2 (Figure 5b). The compound reduction is possible

because the effort choice is the same across the two periods. Probability p0 is chosen

such that the agent’s continuation value remains the promised W0.

I show that the alternative incentive scheme is incentive compatible and offers

strictly higher value to the principal by decreasing the monitoring cost. Pooling the
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agent’s information at initial W0 and the intermediate W1’s, the alternative scheme

inherits incentive compatibility by removing the intermediate information exposure.

Due to common discounting, probability p0 implies that the principal also derives

the same revenue on expectation. The monitoring cost decreases for two reasons.

First, the reduced monitoring incurs weakly lower monitoring cost due to compound

reduction (Assumption 2). Second, the alternative scheme delays the first costly

signal L1 by one period on expectation. As shown in Figure 5c, the scheme acquires

the reduced signal L1L2 just one period, instead of two, before reacting to it at W2.

The delayed monitoring saves on the temporally discounted cost.

In contrast with exogenous monitoring, the optimal incentive scheme under en-

dogenous monitoring must react to some signal immediately to justify costly moni-

toring and information exposure. If no signal is precise enough to warrant immedi-

ate termination, the principal can increase the precision by reducing the monitoring

across time periods (and mixing in the uninformative signal to preserve incentives)

until some signal is precise enough. This will delay the costly monitoring and remove

information exposure to the agent in the intermediate periods. Under exogenous

monitoring, however, the exogenous signals may not be precise enough to warrant

reaction so that the principal can only accumulate these signals over time, exposing

W0

W ′
1

W ′′′
2

W ′′
2

W1

W ′
2

W2

p1, L1

p2, L2

(a) Incentive scheme with-
out immediate reaction.

W0

W ′′′
2

W ′′
2

W0

W ′
2

W2

(1−p0)p1p2,L1L2

(b) Compound reduction in
one period.

W0

W ′′′
2

W ′′
2

W0

W ′′′
2

W ′′
2

· · ·

W ′
2

W2

W ′
2

W2

(c) Compound reduction in
multiple periods.

Figure 5: Immediate reaction and compound reduction in dynamic incentive schemes.
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payoff-relevant information to the agent in the intermediate periods.

4 General effort recommendations

In contrast with no-shirking incentive schemes in the main model, I study an ex-

tension in which the principal can recommend either exerting effort or shirking. I show

that the minimal history dependence is robust, and decreasing turnover generalizes

to monotonic hazard rate of termination and tenure.

Under some parameter values, the optimal dynamic incentive scheme makes use

of stationary two-sided Poisson monitoring—a compound Poisson monitoring of two

possible arrivals, bad news and good news, with stationary frequencies and likelihood

ratios.

Theorem 2 Depending on model parameters, the optimal incentive scheme takes

one of four possible forms. All forms feature Poisson monitoring, the possibility of

tenure, and a trial period of deterministic duration. Over the trial period, the Poisson

monitoring becomes more precise and less frequent. The four forms can be categorized

into up-or-out schemes and eventually stationary schemes.

1. The first form is an up-or-out scheme in which the principal monitors with

Poisson bad news that leads to termination during the trial period and, absent

arrivals, the agent obtains tenure at the end.

2. The second form is an up-or-out incentive scheme in which the principal mon-

itors with Poisson good news that leads to tenure during the trial period and,

absent arrivals, the agent gets terminated at the end.

3. The third form is an eventually stationary incentive scheme in which the prin-

cipal monitors with Poisson bad news that leads to termination during the trial

period and switches to stationary two-sided Poisson monitoring—bad news leads

to termination and good news leads to tenure.

4. The fourth form is an eventually stationary incentive scheme in which the prin-

cipal monitors with Poisson good news that leads to tenure during the trial pe-
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riod and switches to stationary two-sided Poisson monitoring—bad news leads

to termination and good news leads to tenure.

All possible incentive schemes feature minimal history dependence (Figure 6).

T
u.

1 BN freq

BN LR

L λ

T
u.

1

GN freq

GN LR

L λ

0

u
Agent’s cont value

Time

(a) The first form.

0

u

Agent’s cont value

Time

(b) The second form.

T
u.

1

BN freq

BN LR

GN freq

GN LR

L λ

T
u.

1

GN freq

GN LR

BN freq
BN LR

L λ

0

u
Agent’s cont value

Time

(c) The third form.

0

u
Agent’s cont value

Time

(d) The fourth form.

Figure 6: The likelihood ratio (LR) and frequency (freq) over time in the four possible
forms of incentive schemes. I denote the duration of the trial period by T . The agent’s
continuation value jumps to 0 upon Poisson bad news (BN) and to u upon Poisson
good news (GN).
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The agent is tenured or terminated upon Poisson arrival and therefore, condition on

the principal monitoring the agent’s effort, the signal history must be an interval of

“no arrivals”. Minimal history dependence is optimal because information exposure

beyond the effort recommendation is costly to the principal.

During the trial period, the principal uses one of two types of monitoring, Poisson

bad news or Poisson good news, and the monitoring becomes more precise and less

frequent over time. In case of Poisson bad news, the agent’s continuation value is

increasing because a more punishing termination eases incentive provision, as in the

main model. The principal substitutes frequency by precision to reduce the cost of

information exposure. Symmetrically, in case of Poisson good news, the continuation

value is decreasing because a more rewarding tenure eases incentive provision, and

the principal substitutes frequency by precision.

In up-or-out schemes, the agent is either tenured or terminated by the end of

the trial period. This feature is observed in employment relationships in accounting,

consulting, and law firms and in academia. In the first form, the continuation value

increases absent bad news arrivals until it attains the maximum u, i.e., the agent

obtains tenure, at the end of the trial period (Figure 6a). The hazard rate of termi-

nation is decreasing over the trial period. In the second form, the continuation value

decreases absent good news arrivals until it attains the minimum 0, i.e., the agent

gets terminated, at the end of the trial period (Figure 6b). The hazard rate of tenure

is decreasing over the trial period.

In the eventually stationary schemes, the principal switches to stationary two-

sided Poisson monitoring at the end of the trial period. In the third form, the contin-

uation value increases absent bad news arrivals, until it reaches a threshold at which

Poisson good news monitoring becomes equally optimal (Figure 6c). When the prin-

cipal switches to stationary two-sided Poisson monitoring, the likelihood ratio of bad

news is continuous because of the continuous cost of information exposure, but the

frequency of bad news decreases discontinuously because the additional good news

monitoring supplements incentive provision. The stationarity can be interpreted as

chattering between bad news monitoring and good news monitoring. When the con-

tinuation value is below the threshold, the principal monitors with Poisson bad news

so that, absent arrivals, the continuation value increases above the threshold. Now
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that the continuation value is above the threshold, the principal monitors with Pois-

son good news so that, absent arrivals, the continuation value decreases below the

threshold. The chattering continues until one of the Poisson news arrives. The hazard

rate of termination is decreasing, continuously over the trial period and discontinu-

ously at the end, and the hazard rate of tenure is increasing discontinuously at the

end. The fourth form is analogous to the third form with Poisson good news instead

of bad news during the trial period so that the continuation value decreases (Fig-

ure 6d). The hazard rate of tenure is decreasing and the hazard rate of termination

is increasing.

The intuition for the optimal incentive schemes in the extension is analogous to the

main model. The sufficiency of Poisson monitoring follows from the same replication

of discrete-time schemes by continuous-time schemes with compound Poisson moni-

toring. The optimality of termination or tenure upon Poisson arrival follows because

the principal must react to some signal by either terminating or tenuring the agent

immediately. I narrow down the optimal dynamic scheme to the four possible forms

using the evolution of continuation value absent arrivals. If Poisson bad news mon-

itoring is initially optimal, the continuation value increases condition on no arrival.

It reaches either the maximum u at which the agent obtains tenure (the first form),

or a threshold at which Poisson good news monitoring and thus stationary two-sided

monitoring are equally optimal (the third form).13 Symmetrically, the second and

fourth form follow if Poisson good news monitoring is initially optimal.

5 Conclusion

This paper provides a dynamic incentive provision framework which allows flexible

monitoring design, and characterizes the optimal incentive scheme. My first contri-

bution is an optimization foundation for a simple class of monitoring technologies of

rare informative signals. My second contribution is to derive the optimal dynamic

incentive scheme using the optimality of immediate reaction. The optimal scheme

features minimal history dependence due to the cost of information exposure. The

13I show that the rate of increase is bounded from below.
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non-stationary scheme provides a moral hazard theory of the decreasing turnover

observed in employment relationships.
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A Proof of Theorem 1

The proof strategy for Theorem 1 follows four steps. First, I derive properties

of optimal discrete-time incentive schemes. Second, I establish an HJB equation by

replicating discrete-time incentive schemes with compound Poisson incentive schemes.

Third, I show the optimality of immediate reaction which implies that the continua-

tion value upon Poisson arrival is termination. Fourth, I derive the optimal incentive

scheme by explicitly constructing the value function and then verifying its optimality.

A.1 Discrete-time incentive provision

In this subsection, I define the discrete-time incentive provision problem and then

study the properties of the optimal incentive scheme. The key results are that a

canonical incentive scheme, that does not randomize and monitors with at most four

signals until the agent is terminated, is optimal (Lemma 13) and that the discrete-time

value functions converge at the continuous-time limit (Corollary 1).

A.1.1 Discrete-time problem

I define the discrete-time incentive provision problem because the principal’s cho-

sen continuous-time incentive scheme needs to be approximated by discrete-time in-

centive schemes in value.

For time unit ∆t > 0, the stage game of the dynamic incentive scheme follows the

timeline in Section 2 in each period n ∈ {1, 2, ...}.

A discrete-time incentive scheme consists of a complete filtered probability space

(Ω, {Fn}n,P) such that period n is adapted, predictable employment decision h and

effort recommendation a, and monitoring technology Γ which is a martingale with

Γ0 = 0. I write the monitoring in period n as Ln := Γn − Γn−1 + 1. Note that F0

represents public randomization in the first period.

The principal’s discrete-time problem is to offer a incentive scheme to maximize
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her value

Ea
[
∞∑
n=1

e−(n−1)r∆thn
((

1− e−r∆t
)
πan − C (Ln)

)]

subject to the agent’s incentive compatibility constraint

a ∈ max
a′

Ea′
[
∞∑
n=1

e−(n−1)r∆t
(
1− e−r∆t

)
hn (u− ka′n)

]
.

In the main model, the principal must incentivize effort when employing the agent,

i.e., hn = 1 =⇒ an = 1.

Following Spear and Srivastava (1987), I denote by V∆t(W ) the principal’s value

as a function of the agent’s continuation value

Wn := Ean−1

[
∞∑
m=n

e−(m−n)r∆thm
(
1− e−r∆t

)
(u− kam)

]
.

Without loss of optimality, I restrict attention to incentive schemes that do not mon-

itor the agent when the principal does not recommend effort, e.g., an = 0 =⇒ Ln =

δ1.

A.1.2 Simple upper and lower bound of value function

A first-best incentive scheme is a incentive scheme without the incentive compat-

ibility constraint. It can be shown that the value of first-best incentive schemes is

VFB(W ) = W
u−kπ for W ∈ [0, u− k] and that V∆t ≤ VFB.

I show the existence of discrete-time incentive schemes for all W0 ∈ (0, u− k) by

constructing the stationary incentive schemes. I restrict to sufficiently short periods

such that u− k > 2(1− e−r∆t)u.

For W0 = 0, define the trivial incentive scheme by the filtration generated by

period {n}, employment decision and recommended effort h = a ≡ 0, and no mon-

itoring Γ ≡ 0. It is incentive compatible and offers no value to the principal or the

agent.
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I define the stationary incentive scheme MST in which the principal employs the

agent, recommends effort, and monitors with a fixed binary experiment until the first

bad signal. For W0 ∈
[
2(1− e−r∆t)u, u− k

)
, let the probability of bad signal be p :=

1−e−r∆t
e−r∆t

u−k−W0

W0
∈ (0, 1), the likelihood ratio of bad signal Lb := 1 + k

u−k−W0
, and the

likelihood ratio of good news Lg := 1− p
1−p(Lb−1). Let (Ω, {Fn},P) be the augmented

filtration generated by a geometrically distributed stopping time τ , the arrival of the

bad signal, and period {n}. The employment decision and effort recommendations

are hn = an := 1n≤τ . The monitoring is Γn :=
∑n

m=1 1n<τ (Lg − 1) + 1n≥τ (Lb − 1).

The stationary incentive scheme gives the agent utilityW0 and is incentive compat-

ible due to the specified probability and likelihood ratio of the bad signal. The princi-

pal’s payoff is V∆t(MST ) = (1−e−r∆t)π−(pc(Lb)+(1−p)c(Lg))

1−(1−p)e−r∆t . It satisfies limW0↑u−k V∆t(MST ) =

π − 1
e−r∆t

k
u−kc

′(∞) and

lim
W0↑u−k

∂W0V∆t(MST ) = − lim c′(Lb)(Lb − 1)− c(Lb)
1− e−r∆t

= −∞ (4)

where the second equality follows from the Inada condition.

For W0 ∈ [0, 2(1−e−r∆t)u), the principal publicly randomize between the station-

ary incentive scheme for 2(1− e−∆t)u and the trivial incentive scheme.

A.1.3 Discrete-time value function

Lemma 3 The value function V∆t satisfies V∆t(W ) ≤ 1
u−k

(
π − c

(
u−k
u

))
W for W ∈

[0, u− k).

Proof. I prove the lemma by studying a relaxed incentive provision problem that

pools all incentive compatibility constraints.

Define the relaxed problem as a static incentive scheme with the following time

line.

1. The agent privately chooses effort a ∈ {0, 1}.

2. A public randomization is realized.
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3. The principal publicly chooses monitoring L ∈ ∆1(0,∞) on the private effort.

4. The principal publicly chooses whether to employ the agent h ∈ {0, 1}.

The agent’s vNM payoff is h(u− ka), and the principal’s πha− C(L). The problem

is parametrized by the agent’s continuation value W0 ∈ [0, u− k).

The relaxed problem differs from the dynamic incentive provision problem in two

ways. First, the agent chooses his private effort at only one information set so that

the incentive scheme is static. Second, the principal monitors and acquires the public

signal before employing the agent so that incentives are fully backloaded.

For any dynamic incentive scheme with the agent’s continuation value W0 and the

principal’s value V0 > −∞, I construct a static incentive scheme that pools all the

agent’s information sets. The static public randomization draws geometric random

variable n ∈ {1, 2, ...} parametrized by success probability 1−e−r∆t, and a realization

of public randomizations from the dynamic scheme. Conditional on n and public

randomizations, the principal monitors with the reduced monitoring L :=
∏n−1

m=1 Lm

from the first n − 1 monitoring in the dynamic incentive scheme, i.e., the one that

gives product likelihood ratio
∏n−1

m=1 Lm of the first n − 1 signals in the dynamic

incentive scheme. Employment decision h equals hn corresponding to the sequence

{Lm : m ≤ n− 1} in the dynamic scheme.

I compute the agent’s expected payoff and show incentive compatibility. For a = 1,

the agent’s expected payoff is

Ea=1 [h(u− ka)] =
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=1 [hn (u− kan) |n]

=Ea=1

[
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆thn (u− kan)

]
.

Note that the payoff in the static incentive scheme equals continuation utility W0 in
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the dynamic incentive scheme. The static incentive compatibility constraint is

Ea=1 [h(u− ka)] ≥Ea=0 [hu]
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=1 [hn (u− kan) |n] ≥
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=0 [uhn|n]

Ea=1

[
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆thn (u− kan)

]
≥Ea=0

[
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆thnu

]
.

The static incentive constraint is equivalent to a particular dynamic constraint in

the dynamic problem—the agent prefers to exert effort whenever recommended, than

never exerting any effort. Therefore, the static incentive scheme inherits incentive

compatibility from the dynamic incentive scheme.

I continue to show that the static incentive scheme offers the principal weakly

higher payoff. In the static incentive scheme, her expected payoff is

Ea=1[πha− C(L)] =
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=1 [πhnan − C(L)|n]

≤
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=1

[
πhnan −

n−1∑
m=1

C(Lm)|n

]

=
∞∑
n=1

e−(n−1)r∆tEa=1
[
(1− e−r∆t)πhnan − e−r∆tC(Ln)|n

]
≤
∞∑
n=1

e−(n−1)r∆tEa=1
[
(1− e−r∆t)πhnan − C(Ln)|n

]
=Ea=1

[
∞∑
n=1

e−(n−1)r∆t(1− e−r∆t)πhnan − C(Ln)

]

which is the principal’s payoff in the dynamic incentive scheme. The first inequal-

ity follows from compound reduction (Assumption 2), and the second equality from

the summation by parts and that V0 > −∞ implies the boundary term vanishes

limn→∞ e
−nr∆tEa=1 [

∑n
m=1C(Lm)] = 0.

Finally, I derive the value of the optimal static incentive scheme. Because the mon-

itoring cost is monotone in the Blackwell order, the revelation principle implies that it
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suffices to consider monitoring with binary support, for h = 0, 1, without public ran-

domization. The promise keeping and binding incentive compatibility constraints pin

down the optimal static incentive scheme. The optimal monitoring consists of good

signal Lg := u−k
u

with probability pg := W0

u−k and bad signal Lb := 1+ pg
1−pg (1−Lg) with

probability pb := 1−pg. The principal employs the agent and recommends effort upon

the good signal h(Lg) = a(Lg) = 1, and does not employ the agent upon the bad signal

h(Lb) = a(Lb) = 0. The value of the static problem is thus W0

u−k − (pgc(Lg) + pbc(Lb)).

It is concave with derivative at W = 0 given by 1
u−k

(
π − c

(
u−k
u

))
. The lemma then

follows from the concavity.

For ∆t > 0, I define four functional operators in order to write the Bellman

equation for the discrete-time problem. For function ṽ :
(
(1− e−r∆t)u, u− k

)
→ R, I

first define the randomization operator R by

Rv(W ) := sup
J∈∆[0,u−k)

E [ṽ(J)] (5)

s.t. E[J ] = W .

Second, for v : [0, u− k)→ R, I define the working operator A (for a = 1) by

Av(W ) := sup
(L,J)∈∆(R×[0,u−k))

(1− e−r∆t)π − E [c(L)] + e−r∆tE [v(J)] (6)

s.t.


E [L] = 1

(1− e−r∆t)(u− k) + e−r∆tE[J ] = W

e−r∆tE [(1− L)(J −W )] = (1− e−r∆t)k

where the supremum is taken as −∞ when the constraints are not feasible. I call

the constraints in order the Bayesian plausibility constraint, the promise keeping

constraint, and the incentive compatibility constraint. Third, I define the suspension

operator N (for no employment) by

Nv(W ) :=e−r∆tv
(
er∆tW

)
where v is taken as −∞ outside of its domain. Fourth and final, I define the maximum
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operator by

Mv(W ) := max{Av(W ), Nv(W )} . (7)

Lemma 4 The discrete-time value function V∆t is the unique bounded, continuous,

and concave solution to the functional equation v = R ◦Mv.

Proof. This lemma follows from the standard arguments for the recursive formu-

lation. The operator R ◦ M maps bounded, continuous, and concave functions to

bounded, continuous, and concave functions. The boundedness follows because, for

any ε > 0, Av(W ) > −∞ for W ∈
(
(1− e−r∆t)u+ ε, u− k

)
and Nv(W ) > −∞

for W ∈
[
0, e−r∆t(u− k)

)
and so Mv(W ) > −∞ for all W . The continuity follows

from the theorem of maximum. The concavity follows because the randomization

operator R is the concave envelope operator. In the space of bounded and continu-

ous functions on [0, u − k) with a finite limit at u − k equipped with the supremum

norm, the operator R is a weak contraction and M is a contraction with modulus

e−r∆t; therefore, R ◦M is a contraction with modulus e−r∆t. The operator R ◦M
thus admits a unique fixed point by the contraction mapping theorem, and the fixed

point inherits boundedness, continuity, and concavity as the limit. Moreover, the

fixed point satisfies the transversality condition because it is bounded. Therefore, it

equals the value function V∆t.

With abuse of notation, I refer to the maximization problem (6) with the set of fea-

sible control ∆ ((0,∞)× [0, u− k]) replaced with D ⊂ ∆ (R2), by the maximization

problem on D.

Lemma 5 For any bounded, continuous, and concave v, the maximization problem

on D0 := ∆ ((0,∞)× [0, u− k]), with extension v(u− k) := limW→u−k v(W ), admits

a maximizer supported on at most four points. Moreover, the maximum is Av(W ).

Proof. The limit limW→u−k v(W ) exists because v is concave and bounded.

For ε > 0, the maximization problem on Dε := ∆ ([ε, 1/ε]× [0, u− k]) admits

a maximizer supported on at most four points by Theorem 2.1 of Winkler (1988).

Because v is bounded, the maximum onDε converges to the supremum onD0 as ε→ 0.
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I claim that there exists ε > 0 such that the maximum on Dε equals the supremum on

D0. Suppose, for any ε > 0, there exists ε′ ∈ (0, ε) such that the maximum on Dε′ is

strictly higher than the maximum on Dε. Let {εn} be a decreasing sequence such that

εn → 0 and the maximum on Dεn is strictly increasing. Let {(pni , Lni , Jni ) : 1 ≤ i ≤ 4}
be a maximizer for the problem on Dεn , where pni is the probability of (Lni , J

n
i ).

Without loss of generality, I have pni > 0 by possibly splitting some probability mass.

Because (Jni )n ∈ [0, u−k]4, it converges to (Ji) := limn (Jni ) (along a subsequence).

As limL→0,∞ c(L) =∞ implied by the Inada condition, there exists i such that (pni , L
n
i )

also converges with pi := limn p
n
i > 0 and Li := limn L

n
i ∈ (0,∞). I claim that I

can choose such i with Ji ∈ (0, u − k). If not, all such i satisfied Ji ∈ {0, u − k}
and so the uniform continuity of v (continuous on compact set [0, u − k]) implies

limn

∑
i p

n
i v(Jni ) =

∑
i piv(Ji). The maximum on Dεn converges to the maximum

on ∆ ((0,∞)× {0, u− k}), which admits a maximizer supported on at most two

points. This contradicts the strictly increasing maxima along Dεn ’s. Therefore, I can

enumerate i = 1 such that p1 > 0, L1 ∈ (0,∞), and J1 ∈ (0, u− k).

Along a subsequence, there exists i such that Lni diverges to 0 or ∞. Enumerate

this as i = 2. Because limL→0,∞ c(L) =∞, the maximizer must satisfy limn p
n
2 = 0.

I first consider L2 → ∞. The optimality of the controls implies that a worse

signal leads to lower continuation value Jn2 < Jn1 . Take l > 1. For all n, I define a

control
{(
p̃ni , L̃

n
i , J̃

n
i

)
: 0 ≤ i ≤ 4

}
parametrized by L̃n2 as follows. I abbreviate all n

dependence for ease of notation. For i = 3, 4, define p̃i = pi, L̃i = Li, and J̃i = Ji. For

i = 0, 1, 2, I define
{(
p̃i, L̃i, J̃i

)}
i

parametrized by L̃i implicitly by the law of total

probability, Bayesian plausibility, promise keeping, binding incentive-compatibility

constraints, and L̃0 = lL1, J̃0 = J2, J̃2 = J2, and p̃2

(
1− L̃2

)
J̃2 = p2(1 − L2)J2.

Because the constraints are continuously differentiable, the implicit function theorem

implies such a control exists in the neighborhood of (p̃0 = 0, p̃1 = p1, L̃1 = L1, J̃1 =

J1, p̃2 = p2, L̃2 = L2). In that neighborhood, this control as a function of L̃2 is

39



differentiable with derivatives

dp̃0

dL̃2

=− dp̃1

dL̃2

=
p2

1− L2

1− L1

L1(1− l)
< 0

dL̃1

dL̃2

=0

dJ̃1

dL̃2

=
p2

1− L2

1

p1

1− lL1

L1(1− l)
(J1 − J2) < 0

dp̃2

dL̃2

=
p2

1− L2

< 0 .

Therefore, this control is feasible for sufficiently small dL̃2 = L̃2 − L2 < 0 and suffi-

ciently small ε. At the maximizer, the objective has directional derivative

d

dL̃2

(
(1− e−r∆t)π −

∑
i

p̃ic(L̃i) + e−r∆t
∑
i

p̃iv(J̃i)

)

=

(
c′(L2)(L2 − 1)− c(L2)

+ c(L1) + e−r∆t (v(J2)− v(J1))

+
(
c(L1)− c(lL1) + e−r∆t (v(J2)− v(J1))

) 1− L1

L1(1− l)

+ e−r∆t(J1 − J2)v′(J1)
1− lL1

L1(1− l)

)
p2

1− L2

.

As n→∞, the Inada condition implies that c′(L2)(L2)−c(L2) diverges to∞ because

L1 → ∞. Therefore, for some large enough n and then small enough dL̃2 < 0, this

control yields strictly higher objective than the maximizer, a contradiction.

The case of L2 → 0 is analogous, with l ∈ (0, 1) and dL̃2 > 0.

Because there exists ε > 0 such that the maximum on Dε equals the supremum

on D0, the maximization problem on D0 admits a maximizer supported on at most

four points. This maximizer can be approached in value in ∆ ((0,∞)× [0, u− k)) so

the maximum equals Av(W ).

Lemma 6 For any bounded, continuous, and concave v, the function Av is strictly

concave.
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Proof. For any W− < W+, let
{(
p±i , L

±
i , J

±
i

)
: 1 ≤ i ≤ 4

}
be the respective maxi-

mizer on ∆0 by Lemma 5. For any α ∈ (0, 1), let W0 := αW+ +(1−α)W−. It suffices

to construct a control at W0 that yields strictly more than αAv(W+)+(1−α)Av(W−).

For ε > 0, define η := W+−W−
(1−e−rdt)kε > 0. Construct a control with eight-point support

{(
αp+

i , (1−
ε

α
)
(
1 + (1− η)

(
L+
i − 1

))
, J+

i

)
,(

(1− α)p−i , (1 +
ε

1− α
)
(
1 + (1− η)

(
L−i − 1

))
, J−i

)
: 1 ≤ i ≤ 4

}
.

This control corresponds to the reduced monitoring of a sequence of two compound

monitoring. The first monitoring
{(
α, 1− ε

α
,W+

)
,
(
1− α, 1 + ε

1−α ,W
−)} is a binary

monitoring of weak informativeness L − 1 = O(ε). The good signal leads to W+

and the bad signal leads to W−. The second monitoring, conditional on the first

signal, reduces the informativeness of the maximizers at W±, i.e., L−1 is reduced by

factor η. It is straightforward to verify that this control satisfies Bayesian plausibility

and promise keeping constraints. It also satisfies the binding incentive compatibility

constraint due to the definition of η. The distribution of continuation value J for this

control is the convex combination of the maximizers at W± and so the expectation

E[v(J)] equals the convex combination of the expectations as well.

It remains to show that the monitoring cost of the constructed control is strictly

lower than the convex combination of the monitoring costs at W±. Because the

control corresponds to the reduced monitoring of two compound monitoring, it suf-

fices to consider the total cost of the compound monitoring by compound reduction
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(Assumption 2). The total cost of the compound monitoring is

αc
(

1− ε

α

)
+ (1− α)c

(
1 +

ε

1− α

)
+ α

∑
i

p+
i c
(
1 + (1− η)(L+

i − 1)
)

+ (1− α)
∑
i

p−i c
(
1 + (1− η)(L−i − 1)

)
=α
∑
i

p+
i

(
c(L+

i )− ηc′(L+
i )(L+

i − 1)
)

+ (1− α)
∑
i

p−i
(
c(L−i )− ηc′(L−i )(L−i − 1)

)
+ o(ε)

=α
∑
i

p+
i c(L

+
i ) + (1− α)

∑
i

p−i c(L
−
i )

− η

(
α
∑
i

p+
i c
′(L+

i )(L+
i − 1) + (1− α)

∑
i

p−i c
′(L−i )(L−i − 1)

)
+ o(ε) .

The first equality holds because c is differentiable and c′(1) = 0. The convexity of

c implies that c′(L)(L − 1) ≥ 0 with equality only if L = 1. Because neither L+
i or

L−i is identically one, α
∑

i p
+
i c
′(L+

i )(L+
i − 1) + (1− α)

∑
i p
−
i c
′(L−i )(L−i − 1) > 0 and

thus the compound monitoring incur strictly lower monitoring cost than the convex

combination of monitoring costs at W± for sufficiently small ε.

The value function V∆t may fail to be differentiable but it always admits one-sided

derivatives due to its concavity. Whenever I refer to a derivative without specifying

the direction, the claim applies to each one-sided derivative.

Lemma 7 The value function V∆t satisfies limW→u−k V∆t(W ) = limW→u−k AV∆t(W ) =

π − 1
e−r∆t

k
u−kc

′(∞) and limW→u−k V
′

∆t(W ) = −∞.

Proof. I prove the lemma in two steps. First, I show limW→u−k(Av)′(W ) = −∞
for all bounded, continuous, and concave v. Second, I show that, if bounded and

continuous ṽ is concave on (e−r∆t(u−k), u−k) and satisfies limW→u−k ṽ
′(W ) = −∞,

then Rṽ satisfies limW→u−k(Rṽ)′(W ) = −∞. The lemma then follows from the fixed-

point property of V∆t.

To show the first step, I bound the function Av. The objective of a particular
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control

(L, J) =


(

u−W
u−k−W , 0

)
with probability 1−e−r∆t

e−r∆t
u−k−W

W(
W−(1−e−r∆t)u

W−(1−e−r∆t)(u−k)
,W
)

with probability W−(1−e−r∆t)(u−k)
e−r∆tW

provides a lower bound for Av(W ). As W → u − k, this lower bound converges to

(1− e−r∆t)π − 1−e−r∆t
e−r∆t

k
u−kc

′(∞) + e−r∆t limW→u−k v(W ), and its derivative converges

to −∞ by the Inada condition.

With E [v(J)] replaced by v (E[J ]), the relaxed maximization problem

sup
(L,J)∈∆(R×[0,u−k])

(1− e−r∆t)π − E [c(L)] + e−r∆tv (E [J ])

s.t.


E [L] = 1

(1− e−r∆t)(u− k) + e−r∆tE[J ] = W

e−r∆tE [(1− L)J ] = (1− e−r∆t)k ,

where v(u − k) is defined by continuity, provides an upper bound of Av due to the

Jensen inequality because v is concave. As W → u − k, the upper bound converges

to (1− e−r∆t)π − 1−e−r∆t
e−r∆t

k
u−kc

′(∞) + e−r∆t limW→u−k v(W ).

Because the lower and upper bound converge to the same limit, Av also converges

to that limit by the sandwich theorem. Moreover, the derivative of the lower bound

diverges to −∞ and so the derivative of concave function Av also diverges to −∞.

To show the second step, I prove that Rṽ(W ) = ṽ(W ) for W sufficiently close

to u − k. Let W̃ := inf
{
W > 1+e−r∆t

2
(u− k) : ṽ′(W ) < − 4 sup |ṽ|

(1−e−r∆t)(u−k)

}
. For all

W > W̃ , consider the hyperplane passing through (W, ṽ(W )) with slope ṽ′(W ). It

dominates ṽ on W > e−r∆t(u − k) because ṽ is concave there. It dominates ṽ on

W ∈ [0, e−r∆t(u − k)] as well because of the upper bound on the slope. There-

fore, the randomization Rṽ(W ) coincides with ṽ(W ), and so limW→u−k(Rṽ)′(W ) =

limW→u−k ṽ
′(W ) = −∞.

Because Mv = Av on (e−r∆t(u − k), u − k), Lemma 8 implies that Mv is con-

cave there. Because V∆t is the fixed point of R ◦ M (Lemma 4), it follows that
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limW→u−k V
′

∆t(W ) = −∞. Moreover, the fixed point equation as W → u− k gives

lim
W→u−k

V∆t(W ) = lim
W→u−k

R ◦MV∆t(W )

= lim
W→u−k

AV∆t(W )

=(1− e−r∆t)π − 1− e−r∆t

e−r∆t
k

u− k
c′(∞) + e−r∆t lim

W→u−k
V∆t(W )

which implies limW→u−k V∆t(W ) = π − 1
e−r∆t

k
u−kc

′(∞).

Lemma 8 The value function V∆t is continuous and concave with V∆t(0) = 0.

Proof. V∆t is concave because R maps concave functions to concave functions. Con-

cavity implies continuity in the interior (0, u− k). Lemma 7 implies V∆t(0) = 0 and

lim supW→0 V∆t(0) = 0. For W0 ∈ (0, u− k), the fixed-point equation gives

V∆t(W0) =R ◦MV∆t(W0) ≥ u− k −W0

u− k
MV∆t(0) +

W0

u− k
lim

W→u−k
MV∆t(W ) =

W0

u− k
lim

W→u−k
V∆t(W )

which vanishes as W0 → 0. Therefore lim infW→0 V∆t(W ) = 0.

A.1.4 Optimal discrete-time incentive scheme

Lemma 9 For W ∈ [0, u− k), the maximization problem of the randomization oper-

ator (5) for ṽ = MV∆t admits a maximizer supported on at most two points.

Proof. Consider the maximization problem on ∆[0, u−k] with the continuous exten-

sion MV∆t(u− k) := π− 1
e−r∆t

k
u−kc

′(∞) (7). Because MV is continuous, the problem

admits a maximizer supported on at most two points by Theorem 2.1 of Winkler

(1988). Let {(pi, Ji) : i = 1, 2} be the maximizer, where pi is the probability of Ji. It

suffices to show that the maximizer is in ∆[0, u− k).

Suppose J1 = u−k and p1 > 0 without loss of generality. The promise keeping con-

straint implies J2 < u−k and p2 > 0. For ε > 0, define the control
{(
p̃i, J̃i

)
: i = 1, 2

}
by p̃1 := p1, p̃2 := p2, J̃1 := u − k − ε, and J̃2 := J2 + p1

p2
ε. This control decreases
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J1 from u − k by ε and increases J2 to maintain the promise keeping constraint. In

excess of the maximizer, this control yields

p̃1V∆t(J̃1) + p̃2V∆t(J̃2)− p1V∆t(J1)− p2V∆t(J2)

=p1

(
V∆t(u− k − ε)− V∆t(u− k)

ε
+ V ′∆t(J2)

)
ε+ o(ε) .

Because limW→u−k V
′

∆t(W ) = −∞, the control yields strictly higher objective than

the maximizer, a contradiction.

Lemma 10 For W ∈ ((1− e−r∆t)u, (u− k)), the maximization problem of the work

operator (6) for v = V∆t admits a maximizer supported on at most four points.

Proof. Lemma 7 and Lemma 8 shows that V∆t is bounded, continuous, and concave.

Therefore, Lemma 5 implies that a maximizer for v = V∆t exists on ∆ ((0,∞)× [0, u− k]),

and the maximizer is supported on at most four points. Let {(pi, Li, Ji) : 1 ≤ i ≤ 4}
with pi > 0 be the maximizer at W . Therefore, it suffices to show this maximizer is

on ∆ ((0,∞)× [0, u− k)).

Suppose otherwise, i.e. there exists i such that Ji = u−k. Because the monitoring

cost is monotonic in the Blackwell order, all i’s with Ji = u − k have the same Li.

I pool them together and enumerate it as i = 1. By the promise keeping constraint,

there exists i such that Ji < u− k. I enumerate it as i = 2.

For ε > 0, define the control
{(
p̃i, L̃i, J̃i

)
i

}
by
(
p̃i, L̃i, J̃i

)
:= (pi, Li, Ji) for i =

3, 4, and

p̃1 :=p1, p̃2 := p2

L̃1 :=L1 −
L2 − L1

J1 − J2 −
(

1 + p1

p2

)
ε
ε, L̃2 := L2 +

p1

p2

L2 − L1

J1 − J2 −
(

1 + p1

p2

)
ε
ε

J̃1 :=u− k − ε, J̃2 := J2 +
p1

p2

ε .

This control decreases J1 from u − k to u − k − ε and adjusts L1 and (p2, L2, J2) to

satisfy the constraints. It is feasible for sufficiently small ε.
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The change in objective compared to the maximizer is∑
i

(
p̃iV∆t(J̃i)− piV∆t(Ji)

)
−
∑
i

(
p̃ic(L̃i)− pic(Li)

)
=p1

(
V∆t(u− k − ε)− V∆t(u− k)

ε
+ V ′∆t(J2)− L2 − L1

J1 − J2

(c′(L1)− c′(L2))

)
ε+ o(ε) .

Because limW→u−k V
′

∆t(W ) = −∞, the control strictly dominates the maximizer for

sufficiently small ε, a contradiction.

Define the cutoff W∆t := max{W : V∆t(W ) = V ′∆t(0)W}. It exists because

limW→u−k V
′

∆t(W ) = −∞ (Lemma 7). I call W an extreme point if (W,V∆t(W )) is an

extreme point of the hypograph of V∆t. I call an extreme point W interior if W 6= 0.

Lemma 11 The cutoff is bounded by W∆t > (1− e−r∆t)u. Promised utility W is an

extreme point if and only if W = 0 or W ∈ [W∆t, u− k). For interior extreme point

W , work is strictly optimal over suspension, i.e., V∆t(W ) = AV∆t(W ) > NV∆t(W ).

Proof. I prove the lemma by showing that work is strictly optimal at W if it is

an interior extreme point, and that W is an interior extreme point for all W ∈
[W∆t, u− k).

I first show that work is optimal for interior extreme points. Let W be an interior

extreme point. The randomization operator R is increasing and so V∆t = RMV∆t ≥
MV∆t. Because W is an extreme point, I have V∆t(W ) = RMV∆t(W ) = MV∆t(W ).

Suppose suspension is optimal V∆t(W ) = NV∆t(W ). Because V∆t(0) = 0 (Lemma 8),

the optimality implies

V∆t(W ) = e−r∆tV∆t

(
er∆tW

)
= (1− e−r∆t)V∆t(0) + e−r∆tV∆t

(
er∆tW

)
which contradicts with the fact that W is an interior extreme point. Therefore,

V∆t(W ) = AV∆t(W ) > NV∆t(W ).

I continue to show that W is an interior extreme point for all W ∈ [W∆t, u− k).

By definition, W∆t is an extreme point. Suppose W∆t ≤ (1 − e−r∆t)u. Then either

W∆t > 0 is an interior extreme point or W∆t = 0 and so there exists a sequence

of interior extreme points Wn → 0. But working is infeasible and thus suboptimal
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AV∆t(W ) = −∞ for W ∈ [0, (1 − e−r∆t)u), a contradiction. Therefore, W∆t >

(1− e−r∆t)u and so it is an interior extreme point.

Because V∆t is concave and satisfies limW→u−k V
′

∆t(W ) = −∞, there exists a

sequence of interior extreme points Wn → u− k.

Therefore, for W ∈ (W∆t, u−k), there exists interior extreme points W1,W2 such

that W ∈ (W1,W2). Then W is an interior extreme point for all W ∈ (W1,W2) due

to the strict concavity of AV∆t (Lemma 6) and the monotonicity of R.

Lemma 12 Suppose work is optimal V∆t(W ) = AV∆t(W ) at W , and {(pi, Li, Ji) :

1 ≤ i ≤ 4} is a solution to the maximization problem (6). Then Ji is an extreme

point, i.e. Ji ∈ {0}
⋃

[W∆t, u− k), whenever pi > 0.

Proof. Suppose J1 is not an extreme point and p1 > 0. There exists J+
1 > J−1 and

α ∈ (0, 1) such that J1 = αJ+
1 +(1−α)J−1 and V∆t(J1) = αV∆t(J

+
1 )+(1−α)V∆t(J

−
1 ).

For ε > 0, let η :=
p1L1(J+

1 −J
−
1 )

1−e−r∆t
e−r∆t

k−ε(1−L1)(J+
1 −J

−
1 )
ε > 0. Define the control

{(
p±1 , L

±
1 , J

±
1

)
, (pi, L̃i, Ji) : 1 ≤ i ≤ 4

}
at W by

p+
1 :=αp1, p−2 := (1− α)p1

L+
1 :=

(
1− ε

α

)
(1 + (1− η)(L1 − 1)) , L−1 :=

(
1 +

ε

1− α

)
(1 + (1− η)(L1 − 1))

L̃i :=1 + (1− η)(Li − 1) for i = 2, 3, 4 .

This control corresponds to the reduced monitoring of two compound monitoring. The

first monitoring {(pi, 1 + (1− η)(Li − 1), Ji) : 1 ≤ i ≤ 4} is a less informative version

of the monitoring in the maximizer. The informativeness of each signal is reduced

by factor η. The continuation value jumps to Ji for each i as in the maximizer. The

second contingent monitoring is informative only upon the first signal i = 1 in the first

monitoring; it is the degenerate monitoring for the other signals i = 2, 3, 4. Upon the

first signal, it is a binary monitoring
{(
α, 1− ε

α
, J+

1

)
,
(
1− α, 1 + ε

1−α , J
−
1

)}
of weak

informativeness L− 1 = O(ε). The good signal leads to J+ and the bad signal leads

to J−. It is straightforward to verify that this control satisfies Bayesian plausibility

and promise keeping constraints. It also satisfies the binding incentive constraint due
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to the definition of η. Because V∆t(J1) = αV∆t(J
+
1 ) + (1 − α)V∆t(J

−
1 ), this control

gives the same expectation E [V∆t(J)] as the maximizer.

It remains to show that the monitoring cost of the constructed control is strictly

lower than the maximizer. Because the control corresponds to a reduced monitor-

ing, it suffices to consider the total cost of the compound monitoring by compound

reduction (Assumption 2). The total cost is∑
i

pic (1 + (1− η)(Li − 1)) + p1

(
α+c

(
1− ε/α+

)
+ α−c

(
1 + ε/α−

))
=
∑
i

pi (c(Li)− ηc′(Li)(Li − 1)) + o(ε)

=
∑
i

pic(Li)− η
∑
i

pic
′(Li)(Li − 1) + o(ε) .

The first equality holds because c is differentiable and c′(1) = 0. The convexity of c

implies that c′(L)(L−1) ≥ 0 with equality only if L = 1. Because Li is not identically

one,
∑

i pic
′(Li)(Li − 1) > 0 and thus the compound monitoring incurs strictly lower

monitoring cost than the optimal control for sufficiently small ε. This contradicts the

optimality of the maximizer.

For ∆t > 0 andW0 > W∆t, I define the canonical discrete-time incentive scheme at

continuation valueW0 iteratively. Let F0 be the trivial measure space. For n ≥ 1, take

an maximizer {(pi, Li, Ji) : 1 ≤ i ≤ 4} of AV∆t(Wn−1). Define (Fn,Pn) as the prod-

uct probability space of (Fn−1,Pn−1) augmented with n. Define the random variable

(Ln,Wn) according to the law of the maximizer (Li, Ji). Define hn ≡ an := 1Wn−1 6=0.

The complete probability space (Ω, {Fn},P) exists by the Kolmogorov extension the-

orem.

Lemma 13 The canonical incentive scheme is optimal.

Proof. It follows from Lemma 11 and Lemma 12 by the standard recursive argument.

Let N := inf{n : Wn = 0} ∈ N
⋃
{∞}. It follows from Lemma 12 that hn ≡ an =

1n≤N .
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A.1.5 Uniform convergence and limit

Lemma 14 lim∆t→0W∆t = 0.

Proof. Suppose otherwise, i.e. there exists a sequence ∆t → 0 such that W∆t ≥
W ∈ (0, u − k). I shall construct a incentive scheme that attains straightly higher

value for sufficiently small ∆t > 0.

Consider {(pi, Li, Ji) : i = 1, 2} defined by J1 := 0, J2 := W , and

p1 :=
W0 − (1− e−r∆t)(u− k)− e−r∆tJ2

e−r∆t(J1 − J2

p2 :=
W0 − (1− e−r∆t)(u− k)− e−r∆tJ1

e−r∆t(J2 − J1

L1 :=1− 1

p1

1− e−r∆t

e−r∆t
k

J1 − J2

L2 :=1− 1

p2

1− e−r∆t

e−r∆t
k

J2 − J1

.

It can be verified that this control satisfies Bayesian plausibility, promise keeping,

and binding incentive compatibility constraints.

The value of this control in excess of V∆t(W0) is

(1− e−r∆t)π − p1c(L1)− p2c(L2) + e−r∆t (p1V∆t(J1) + p2V∆t(J2))− V∆t(W0)

=(1− e−r∆t)π + e−r∆t (p1V
′

∆t(0)J1 + p2V
′

∆t(0)J2)− V ′∆t(0)W0 + o(1− e−r∆t)

=(1− e−r∆t)
(

π

u− k
− V ′∆t(0)

)
+ o(1− e−r∆t) .

The first equality follows from 1 − Li = O(1 − e−r∆t) and c′(1) = 0, and the second

from direct computation. Because V ′∆t(0) < π
u−k (Lemma 3), this control attains

strictly higher value for sufficiently small ∆t, contradicting the optimality of V∆t.

Lemma 15 The value increases when the period length shrinks, i.e. ∆t > ∆t′ > 0

implies V∆t′ ≥ V∆t.

Proof. To distinguish the operators for ∆t and ∆t′, I write explicitly A∆t and A∆t′
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for the operator A defined in Equation (6), and similarly for N and M . Note that

the randomization operator R does not depend on the period length.

Because R and M∆t′ are increasing operators and V∆t′ is the fixed point of RM∆t′ ,

it suffices to show that RM∆t′V∆t ≥ RM∆tV∆t.

I first show N∆t′V∆t(W ) ≥ N∆tV∆t(W ), or equivalently

(1− e−r∆t′)V∆t(0) + e−r∆t
′
V∆t(e

r∆t′W ) ≥ (1− e−r∆t)V∆t(0) + e−r∆tV∆t(e
r∆tW )

because V∆t(0) = 0. Observe that (1− e−r∆t′)δ0 + e−r∆t
′
δer∆t′W is a mean-preserving

contraction of (1− e−r∆t)δ0 + e−r∆tδer∆tW , where δ is the Dirac delta. Therefore, the

statement follows from the concavity of V∆t.

I first show RM∆t′V∆t(W ) ≥ RM∆tV∆t(W ) for W ∈ [W∆t, u− k). Lemma 11 and

Lemma 12 implies RM∆t(W ) = A∆tV∆t(W ). Because R and max are increasing, it

suffices to show A∆t′V∆t(W ) ≥ A∆tV∆t . Let {(pi, Li, Ji) : 1 ≤ i ≤ 4} be a maximizer

ofA∆t atW (Lemma 10). Define theA∆t′ control {(p0, L0 := 1, J0 := W ) , ((1− p0)pi, Li, Ji) : 1 ≤ i ≤ 4}
where p0 := 1− e−r(∆t−∆t′) 1−e−r∆t′

1−e−r∆t ∈ (0, 1). It is straightforward to verify that it sat-

isfies the Bayesian plausibility, promise keeping, and binding incentive compatibility

constraints of ∆t′ by the ∆t versions and the definition of p0. It attains value

(1− e−r∆t′)π − p0c(L0)− (1− p0)
∑
i

piV∆t(Ji) + e−r∆t
′

(
p0V∆t(W ) + (1− p0)

∑
i

piV∆t(Ji)

)

=(1− p0)e−r(∆t
′−∆t)

(
1− e−r∆t′

1− p0

e−r(∆t−∆t′)π − e−r(∆t−∆t′)
∑
i

pic(Li) + e−r∆t
∑
i

V∆t(Ji)

)
+ e−r∆t

′
p0V∆t(W )

≥(1− p0)e−r(∆t
′−∆t)

(
(1− e−r∆t)π −

∑
i

pic(Li) + e−r∆t
∑
i

piV∆t(Ji)

)
+ e−r∆t

′
p0V∆t(W )

=(1− p0)e−r(∆t
′−∆t)V (W ) + e−r∆t

′
p0V∆t(W )

=V∆t(W ) .

The inequality follows from the definition of p0 and e−r(∆t−∆t′) < 1. The second

equality follows from the optimality of the maximizer at ∆t.
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I continue to show RM∆t′V∆t(W ) ≥ RM∆tV∆t(W ) for W ∈ [0,W∆t). Note that

RM∆tV∆t(W ) = V∆t(W ) =
W∆t−W
W∆t

V∆t(0) + W
W∆t

V∆t(W∆t). Therefore, I have

RM∆t′V∆t(W ) ≥W∆t −W
W∆t

M∆t′V∆t(0) +
W

W∆t

M∆t′V∆t(W∆t)

≥W∆t −W
W∆t

N∆t′V∆t(0) +
W

W∆t

A∆t′V∆t(W∆t)

≥ W

W∆t

V∆t(W∆t) = V∆t(W ) .

The first inequality follows because this is a particular randomization, the second

from the definition of M∆t′ as the maximum, and the third from N∆t′V∆t(0) = 0 and

A∆t′V∆t ≥ A∆tV∆t. The last equality follows from the definition of W∆t.

Corollary 1 There exists continuous and concave function VDL such that V∆t → VDL

point-wise as ∆t→ 0.

Proof. Because V∆t(W ) is monotonic in ∆t and bounded from above by π
u−kW , it

converges to a limit VDL(W ). The limit VDL inherits concavity from V∆t, and is thus

continuous in the interior. It is also continuous at W = 0 because π
u−kW → 0 as

W → 0.

For ∆t > 0, take an ∆t-optimal canonical incentive scheme. Denote the filtered

probability space by (Ω, {Fn},P), employment decision by h, effort recommendation

by a, and monitoring technology by {Ln}.

A.2 Recursive formulation via Poisson incentive schemes

In this subsection, I establish a recursive formulation of the continuous-time incen-

tive provision problem by replicating discrete-time incentive schemes by compound

Poisson incentive schemes. The key results are Lemma 20 and Theorem 1. Lemma 20

strengthens Lemma 1. It states that compound Poisson incentive schemes are suffi-

cient to maximize the principal’s value. Theorem 1 makes use of the sufficiency to

establish an HJB equation of Poisson monitoring.
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A.2.1 Compound Poisson incentive schemes

Definition 1 A tuple (Ω,F,P,Γ, h, a) is a compound Poisson incentive scheme if

there exist discrete-time monitoring technology L := {Ln : supp |Ln| ≤ 4, n = 1, 2, ...}
with L0 := 1, L-stopping time N , and arrival times {τn : n = 0, 1, 2, ...} with τ0 := 0

of an independent Poisson process of frequency λ > 0 such that

� the cumulative excess likelihood ratio is a compound Poisson process

Γt =
Nt∧N∑
n=1

(Ln − 1)

where Nt := inf{n ≥ 0 : τn ≤ t};

� the filtration (Ω,F,P) is the augmented natural filtration of (t,Γ);

� the employment decision and effort recommendation follow a cutoff ht = at =

1t≤τN at τN ;

� the agent’s continuation value W satisfies the instantaneous incentive com-

patibility constraint for n ≤ N − 1

λEτn
[(

Γτn − Γτn+1

) (
Wτn+1 −Wτn

)]
= rk .

Note that Γ is a càdlàg local martingale, and h and a are left-continuous and thus

predictable. Moreover, Γ is a martingale if E
[∑∞

n=1 e
−(n−1) r

λC(Ln)
]
< ∞ because

c′(∞) <∞.

Denote ∆Wτn+1 := Wτn+1 −Wτn and ∆Γτn+1 := Γτn+1 − Γτn .

Lemma 16 A compound Poisson incentive scheme satisfies the intantaneous promise

keeping constraint for n ≤ N − 1

λEτn
[
Wτn+1 −Wτn

]
= r(Wτn − u+ k) .
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Proof. The law of iterated expectations yields

Wτn = Eτn
[∫ τn+1

τn

re−r(t−τn)(u− k)dt+ e−r(τn+1−τn)Wτn+1

]
.

Subtracting Wτn from both sides, I obtain

0 =Eτn
[∫ τn+1

τn

re−r(t−τn)(u− k −Wτn)dt+ e−r(τn+1−τn)∆Wτn+1

]
=

∫ ∞
τn

re−(λ+r)(t−τn)(u− k −Wτn)dt+

∫ ∞
τn

λe−(λ+r)(t−τn)Eτn
[
∆Wτn+1

]
dt

=
r

λ+ r
(u− k −Wτn) +

λ

r + λ
Eτn

[
∆Wτn+1

]
where the second equality follows because τn+1 arrives with frequency λ independent

of Wτn+1 .

I show that instantaneous incentive compatibility implies incentive compatibility.

Lemma 17 A compound Poisson incentive scheme is incentive compatible.

Proof. I first compute the Radon-Nikodym derivative of the change of measure for

any predictable a′

dPa′

dP

∣∣∣∣
Ft

= Za′

t =E
(∫ t

0

(1− a′s)dΓs

)
=

Nt∧N∏
n=1

(
1 +

(
1− a′τn

)
∆Γτn

)
where E is the stochastic exponential function and ∆Γs := Γs − Γs− is the jump in Γ

at s. The last equality follows because Γ and thus Za′ are pure jump processes.

I show that the agent’s continuation value is independent of his effort choice a′.

For n < N , the Itô lemma gives14

Ea′τn
[
e−r(τn+1−τn)Wt

]
=Wτn + Ea′τn

[∫ τn+1

τn

−re−r(s−τn)Ws−ds+ e−r(τn+1−τn)∆Wτn+1

]
.

14The integral
∫ y
x integrates over (x, y].
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Adding the flow payoffs, I obtain

Ea′τn

[∫ τn+1

τn

re−r(s−τn)hs(u− ka′s)ds+ e−r(τn+1−τn)Wτn+1

]
=Wτn + Ea′τn

[∫ τn+1

τn

re−r(s−τn) (u− ka′s −Ws−) ds+ e−r(τn+1−τn)∆Wτn+1

]
=Wτn + Eaτn

[ ∫ τn+1

τn

re−r(s−τn) (u− ka′s −Ws−) ds

+ e−r(τn+1−τn)∆Wτn+1

(
1 +

(
1− a′τn+1

)
∆Γτn+1

) ]
=Wτn + Eaτn

[ ∫ τn+1

τn

re−r(s−τn) (u− ka′s −Ws−) ds

+ Eaτn+1−
[
e−r(τn+1−τn)∆Wτn+1

(
1 +

(
1− a′τn+1

)
∆Γτn+1

)] ]
=Wτn + Eaτn

[ ∫ τn+1

τn

re−r(s−τn) (u− ka′s −Ws−) ds+ e−r(τn+1−τn)
(
Eaτn

[
∆Wτn+1

]
− r

λ
k1aτn+1=0

)]
=Wτn + Eaτn

[∫ ∞
0

e−(λ+r)(s−τn)
(
r (u− ka′s −Ws−) + λEτn

[
∆Wτn+1

]
− rk1a′s=0

)
ds

]
=Wτn + Eaτn

[∫ ∞
0

e−(λ+r)(s−τn)
(
r (u− k −Ws−) + λEτn

[
∆Wτn+1

])
ds

]
=Wτn .

The first equality follows from the Itô lemma, the second from the change of measure,

the third from the law of iterated expectations, the fourth from the instantaneous

incentive compatibility constraint, the fifth from the arrival rate of τn+1 being λ, the

sixth from algebra, and the seventh from the instantaneous promise keeping constraint

(Lemma 16).

From time 0, the agent’s continuation value is

Ea′0
[∫ t∧τN

0

re−rshs(u− ka′s)ds+ e−r(t∧τ)Wt∧τN

]
=W0 + Ea′0

[
Nt∧N−1∑
n=0

e−rτnEa′τn

[
−Wτn +

∫ τn+1

τn

re−r(s−τn)hs(u− ka′s)ds+ e−r(τn+1−τn)Wτn+1

]]
=W0 .
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The first equality follows from algebra and the second from applying the previous

deviation iteratively. Because the agent gets the same payoff for any effort plan a′,

the recommended effort a is incentive compatible.

Lemma 18 The monitoring cost of a compound Poisson incentive scheme is

Ct(Γ) =
Nt∑
n=1

C (1 + ∆Γτn) =
Nt∑
n=1

Eτn−1 [c (1 + ∆Γτn)] .

Proof. For partition P with ‖P‖ < 1
2

maxn≤Nt(τn − τn−1), the sum∑
(tm,tm+1]∈P

C
(
1 + Γtm+1 − Γtm

)
=

∑
(tm,tm+1]∈P

τn∈(tm,t+1]:n≤Nt

C
(
1 + Γtm+1 − Γtm

)

=
Nt∑
n=1

C
(
1 + Γtm+1 − Γtm

)
=

Nt∑
n=1

Eτn−1 [c (1 + ∆Γτn)] .

The first equality follows because the pure jump process satisfies Γtm+1 − Γtm = 0

if (tn, tn+1]
⋂
{τn} = ∅. The second equality follows because (tn, tn+1]

⋂
{τn} has at

most one element from the mesh of the partition. The third equality follows from

likelihood ratio separability (Assumption 1).

Lemma 19 The value of a compound Poisson incentive scheme is

E

[
N∑
n=1

(
λ

λ+ r

)n−1
r

λ+ r
π −

(
λ

λ+ r

)n
C(Ln)

]
.

Moreover, a compound Poisson incentive scheme can be approximated by discrete-time

schemes.

Proof. The value follows from Lemma 18 and direct computation.

I show the approximation from discrete time by construction. Define ∆t :=
1
r

log λ+r
r

> 0 so that e−r∆t = λ
λ+r

and 1 − e−r∆t = r
λ+r

. Consider the ∆t-canonical
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incentive scheme defined by {Ln} and N . It satisfies the one-shot deviation principle

by the definition of ∆t, and it is thus incentive compatible. Its value is

E

[
N∑
n=1

(
λ

λ+ r

)n−1
r

λ+ r
π −

(
λ

λ+ r

)n−1

C(Ln)

]
.

For ∆t′ ∈ (0,∆t), I construct a ∆t′-incentive scheme with value

E

[
N∑
n=1

(
λ

λ+ r

)n−1
r

λ+ r
π − e−r(∆t−∆t′)

(
λ

λ+ r

)n−1

C(Ln)

]
.

As ∆t′ → 0, the value of the ∆t′-scheme converges to the compound Poisson one,

establishing the approximation.

Let p0 := 1−e−r(∆t−∆t′)

1−e−r∆t ∈ (0, 1). Let {τm : m ∈ N} be a discrete-time Poisson

process with success probability 1 − p0 where τ0 := 0. Let Nn := max{m : τm ≤ n}
be the counting process and Nn− := max{m : τm ≤ n−1} be the predictable version.

I denote by P′ the product probability space of {τ} and P, and {F ′n} the product

measure space of {τ} and {Fn} augmented with period {n}. Define h′n := hNn− and

a′n := aNn− . Define Γ′n := ΓNn which is a martingale.

I first show W ′
n = WNn− for all n.

W ′
n =E′n−1

[
∞∑
m=n

(1− e−r∆t′)e−r(m−n)∆t′h′m(u− ka′m)

]

=E′n−1

 ∞∑
j=Nn−

τj∑
l=τj−1+1

(1− e−r∆t′)e−r(l−n)∆t′h′l(u− ka′l)


=E′n−1

 N∑
j=Nn−

(1− e−r∆t)e−r(j−Nn−)∆thj(u− kaj)


=ENn−−1

 N∑
j=Nn−

(1− e−r∆t)e−r(j−Nn−)∆thj(u− kaj)


=WNn− .
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In the second equality, I partition m by {τk}. The third equality follows from the

definition of p0. The fourth equality follows from the product structure of P′.

I show that the ∆t′-incentive scheme satisfies the one-shot deviation principle and

thus incentive compatibility. The one-shot IC in ∆t′

e−r∆t
′E′n−1

[
(1− L′n)(W ′

n+1 −W ′
n)
]

=(1− e−r∆t′)k

e−r∆t
′ (
p0 × 0 + (1− p0)ENn−−1

[
(1− LNn−)(WNn−+1 −WNn−)

])
=(1− e−r∆t′)k

follows from the one-shot IC in ∆t

e−r∆tENn−−1

[
(1− LNn−)(WNn−+1 −WNn−)

]
=(1− e−r∆t)k

due to the definition of p0.

Finally, I show that the constructed incentive scheme attains the specified value

E′
[
∞∑
n=1

e−r(n−1)∆t′h′n

(
(1− e−r∆t′)πa′n − C(L′n)

)]

=E′
[

N∑
m=1

(
τm∑

n=τm−1+1

e−r(n−1)∆t′(1− e−r∆t′)π − e−r(τm−1)∆t′C(L′n)

)]

=E

[
N∑
m=1

e−r(m−1)∆t
(

(1− e−r∆t)π − e−r(∆t−∆t′)C(Lm)
)]

=E

[
N∑
m=1

(
λ

λ+ r

)m−1
r

λ+ r
π − e−r(∆t−∆t′)

(
λ

λ+ r

)m−1

C(Lm)

]
.

In the first equality, I partition period n by {τm} and invoke C(L′n) = 0 for τm− 1 <

n < τm. The second equality follows from the definition of p0 and L′n. The third

equality follows from the definition of ∆t.

A.2.2 Proof of Lemma 1

I show in fact a stronger version of Lemma 1. Let VCP be the value function

of compound Poisson monitoring schemes. Recall that V is the value function of
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the continuous-time problem and VDL is the limit value function of discrete-time

problems.

Lemma 20 VDL = V = VCP .

Proof. I prove the lemma by showing VDL ≥ V , V ≥ VCP , and VCP ≥ VDL. The

first inequality, VDL ≥ V , follows because each continuous-time incentive schemes

can be approximated by discrete-time incentive schemes (see Remark 1). The supre-

mum over discrete-time schemes is therefore at least as large as the supremum over

continuous-time schemes. The second inequality, V ≥ VCP follows from inclusion be-

cause compound Poisson incentive schemes can be approximated from discrete time

(the second part of Lemma 19). The third inequality, VCP ≥ VDL follows because the

∆t-optimal discrete-time incentive scheme corresponds to a compound Poisson incen-

tive scheme with frequency λ := r e−r∆t

1−e−r∆t . The compound Poisson incentive scheme

attains strictly higher value as shown in the first part of Lemma 19.

A.2.3 Properties of value function

Lemma 21 V is strictly concave and continuous on [0, u− k).

Proof. Lemma 1 states that V = VDL, which is continuous and concave by Corol-

lary 1. I show strict concavity by constructing a compound Poisson incentive scheme

that gives value strictly above the convex combination.

For all W1,W2 ∈ [0, u− k) with W1 > W2 and α ∈ (0, 1), I construct a compound

Poisson incentive scheme parametrized by λ, ε > 0 for W := αW1 + (1 − α)W2. For

i = 1, 2, take compound Poisson incentive schemeMi such that V (Mi) > V (Wi)− ε.
The incentive scheme uses a binary compound Poisson monitoring with frequency λ >

0. Upon arrival, signal Li is generated with probability pi and the incentive scheme

continues according to Mi. The expected discounted duration before the arrival is∫∞
0
re−rte−λtdt = r

r+λ
. The monitoring must satisfy the law of total probability,
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Bayesian plausibility, promise keeping, and incentive compatibility constraints:

p1 + p2 = 1

p1(1− L1) + p2(1− L2) = 0

r
r+λ

(u− k) + λ
r+λ

(p1W1 + p2W2) = W

λp1(1− L1)(W1 −W ) + λp2(1− L2)(W2 −W ) = rk .

For sufficiently high frequency λ, the probabilities are positive and the constraints

admit a feasible solution 

p1 = (r+λ)W−r(u−k)−λW2

λ(W1−W2)

p2 = (r+λ)W−r(u−k)−λW1

λ(W2−W1)

L1 = 1− 1
p1

rk
λ(W1−W2)

L2 = 1− 1
p2

rk
λ(W2−W1)

.

In excess of the convex combination αV (W1)+(1−α)V (W2), this incentive scheme

offers value

r

r + λ
π − λ

r + λ
(p1c(L1) + p2c(L2)) +

λ

r + λ
(p1V (M1) + p2V (M2))

− (αV (W1) + (1− α)V (W2))

>
r

r + λ
π − λ

r + λ
(p1c(L1) + p2c(L2))− λ

r + λ
ε

+
W2 − u+ k

W1 −W2

V (W1) +
W1 − u+ k

W2 −W1

V (W2)

>
1

r + λ

(
rπ − λ (p1c(L1) + p2c(L2))− λε− r

(
π − c

(
u− k
u

)))
=

1

r + λ

(
rc

(
u− k
u

)
− λ (p1c(L1) + p2c(L2))− λε

)
.

In the first inequality, I invoke the ε-optimality of Mi. In the second inequality, I

use V (W2) − V (W1) ≤ π−c(u−ku )
u−k (W2 −W1) and V (W1) ≤ π−c(u−ku )

u−k W1 implied by

Lemma 3 and the concavity of V , and then simplify the expression.

Now take λ → ∞ and ε = o(λ−1) → 0. I note that the monitoring cost
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λ (p1c(L1) + p2c(L2)) = λO (λ−2) = O(λ−1) → 0 because c′(1) = 0 and c′′(1) > 0.

The error is λε = λo(λ−1) = o(1) by construction. Therefore, for sufficiently frequent

arrival and small error, the constructed incentive scheme offers strictly higher value

than the convex combination.

Corollary 2 V∆t → V uniformly on [0,W ] for all W ∈ (0, u− k).

Proof. The concavity of V∆t and continuity of V implies that the convergence is

uniform on compact subsets.

Lemma 22 For δ > 0 and any compound Poisson incentive scheme with initial

continuation W0, define the exit time ρ := inf{t : Wt /∈ (W0− δ,W0 + δ)}. There exist

θ, η > 0 such that any incentive scheme with E [1− e−rρ] < θ attains value at most

V (W0)− η/2.

Proof. Because V is strictly concave (Lemma 21), there exists η > 0 such that

V (W0) > (V (W0 − δ) + V (W0 + δ)) /2 + η. Let Zt := u− k− (u− k−W0)ert be the

expected continuation utility at time t. By continuity, there exists T > 0 such that

for all t ∈ [0, T ]

V (W0)− η > (W0 + δ)− Zt
2δ

V (W0 − δ) +
Zt − (W0 − δ)

2δ
V (W0 + δ) .

I first construct random variable Y from Wρ∧T by performing a mean-preserving

contraction for Wρ∧T ∈ (W0− δ,W0 + δ) such that P [Y ∈ (W0 − δ,W0 + δ)] = 0. The

Markov inequality implies P [Wρ∧T ∈ (W0 − δ,W0 + δ)] = P [ρ > T ] ≤ θ/(1 − e−rT ).

The expectations satisfy

E [V (Wρ∧T )] ≤ E [V (Y )] +
2 max |V |
1− e−rT

θ ≤ V (W0)− η +
2 max |V |
1− e−rT

θ

where the second inequality follows because V is concave and Y has mean E[Y ] ∈
[Z0, ZT ] with its support mutually exclusive from (W0 − δ,W0 + δ).
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The expected discounted continuation value thus satisfies

E
[
e−rρ∧TV (Wρ∧T )

]
≤E [V (Wτ∧T )] + max |V |E

[
1− e−rρ

]
≤V (W0)− η + θmax |V |

(
1 +

2

1− e−rT

)
.

Take θ := η/2

π+max |V |
(

1+ 2

1−e−rT

) . The value of the compound Poisson incentive scheme

is then bounded from above by

E
[∫ ρ∧T

0

re−rt (π − c(Lt)) dt+ e−rρ∧TV (Wτ∧T )

]
≤πE

[
1− e−rρ

]
+ V (W0)− η + θmax |V |

(
1 +

2

1− e−rT

)
≤V (W0)− η + θ

(
π + max |V |

(
1 +

2

1− e−rT

))
≤V (W0)− η/2 .

A.2.4 Compound Poisson HJB

Definition 2 (Viscosity solution to compound Poisson HJB) A concave con-

tinuous function V is a viscosity solution to the compound Poisson HJB

v(W ) = π+ sup
λ,pi,Li,Ji
|i|≤4

λ
∑
i

pi (v(Ji)− v(W )− c(Li))

s.t.



∑
i pi = 0∑
i pi(1− Li) = 0

λ
∑

i pi(Ji −W ) = W − u+ k

λ
∑

i pi(1− Li)(Ji −W ) = k

if and only if

1. it is a viscosity subsolution, i.e. any φ ∈ C2 with φ ≥ V and φ(W ) = V (W )
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satisfies

V (W ) ≤ π + supλ
∑
i

pi (φ(Ji)− V (W )− c(Li))

2. it is a viscosity supersolution, i.e. any φ ∈ C2 with φ ≤ V and φ(W ) = V (W )

satisfies

V (W ) ≥ π + supλ
∑
i

pi (φ(Ji)− V (W )− c(Li))

This definition of viscosity solution specializes that of general jump processes in Soner

(1988) to the compound Poisson processes.

Proposition 2 The value function V is a viscosity solution to the compound Poisson

HJB.

Proof. I first show that V is a subsolution. It suffices to consider φ being concave

because the Hamiltonian is the same for the concave envelope of φ.15

Suppose

φ(W ) > π + supλ
∑
i

pi (φ(Ji)− φ(W )− c(Li))

at W = W0 ∈ (0, u− k). I show that the strict inequality holds in a neighborhood of

W0.

Lemma 23 There exists δ > 0 such that

φ(W ) > π + supλ
∑
i

pi (φ(Ji)− φ(W )− c(Li))

for W ∈ [W0 − δ,W0 + δ].

15If φ(W ) is not on the concave envelope, then the RHS is infinity and so the inequality
is trivially satisfied.
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Proof. Suppose otherwise, i.e., there exists a sequence Wn → W0 such that

φ(Wn) ≤ π + supλ
∑
i

pi (φ(Ji)− φ(Wn)− c(Li)) .

I bound the RHS by

π + supλ
∑
i

pi (φ(Ji)− φ(Wn)− c(Li))

=π + (Wn − u+ k)φ′(Wn) + supλ
∑
i

pi (φ(Ji)− φ(Wn)− (Ji −Wn)φ′(Wn)− c(Li))

≤π + (Wn − u+ k)φ′(Wn) + sup
1

1− L
k

J −Wn

(φ(J)− φ(Wn)− (J −Wn)φ′(Wn)− c(L))

≤π + (Wn − u+ k)φ′(Wn) +
1

1− Ln
k

Jn −Wn

(φ(Jn)− φ(Wn)− (Jn −Wn)φ′(Wn)− c(Ln))

+ εn

where (L, J) ∈ maxi
(1−Li)(Ji−W )

−(φ(Ji)−V (W )−(Ji−W )φ′(W ))+c(Li)
is a maximizer of the benefit-cost

ratio among i’s, εn := 2−n, and (Ln, Jn) is a εn-maximizer. The equality follows from

the promise keeping constraint.

Without loss of generality, I take Ln as the unique maximizer conditional on Jn.

It is the solution to the first-order condition

c′(Ln)(Ln − 1)− c(Ln) = − (φ(Jn)− φ(Wn)− (Jn −Wn)φ′(Wn)) .

Because [0, u− k] is compact, Jn converges (in a subsequence) on [0, u− k].

First, consider the case where the sequence converges to J0 6= W0, u − k. Let L0

be the conditional maximizer of J0. Note that J0 6= W0 implies L0 6= 1. Because

φ, c ∈ C1 and εn → 0, the hypothesis implies the inequality at W0

φ(W0) ≤ π + (W0 − u+ k)φ′(W0) +
1

1− L0

k

J0 −W0

(φ(J0)− φ(W0)− (J0 −W0)φ′(W0)− c(L0)) .

I define compound Poisson control {λ, {pi, Li, Ji}i=1,2}, parametrized by λ > 0,
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by

p1 :=
1

λ

1

1− L0

k

J0 −W0

p2 :=1− 1

λ

1

1− L0

k

J0 −W0

L1 :=1− (1− L0)
J0 −W0

J0 −W0 − 1
λ

(
W0 − u+ k − k

1−L0

)
L2 :=1 +

1

λ

1

p2

k

J0 −W0 − 1
λ

(
W0 − u+ k − k

1−L0

)
J1 :=J0

J2 :=W0 +
1

λ

1

p2

(
W0 − u+ k − k

1− L0

)
.

It is straightforward to verify that this control satisfies the law of total probability,

Bayesian plausibility, promise keeping, and incentive compatibility constraints.

The flow value of this control is

π + λ
∑
i

pi (φ(Ji)− φ(W0)− c(Li))

=π +
1

1− L0

k

J0 −W0

(φ(J0)− φ(W0)− c(L0))

+

(
φ′(W0)(W0 − u+ k − k

1− L0

)− c′(1)λ(L2 − 1)

)
+ oλ(1)

=π + (W0 − u+ k)φ′(W0) +
1

1− L0

k

J0 −W0

(φ(J0)− φ(W0)− (J0 −W0)φ′(W0)− c(L0)) + oλ(1) .

The first equality follows from L1 → L0, λ(L2 − 1) → k
J0−W0

, and λ (J2 −W0) =

W0 − u + k − k
1−L0

. The second equality follows from c′(1) = 0. I take λ → ∞ to

obtain

π + supλ
∑
i

pi (φ(Ji)− φ(W )− c(Li))

≥π + (W0 − u+ k)φ′(W0) +
1

1− L0

k

J0 −W0

(φ(J0)− φ(W0)− (J0 −W0)φ′(W0)− c(L0))

≥φ(W0)
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which contradicts the subsolution inequality.

Second, consider the case where the sequence converges to u−k. Take J0 ↑ u−k. I

define compound Poisson control {λ, {pi, Li, Ji}i=1,2}, parametrized by J0 and λ > 0,

as in the first case. Because φ, c ∈ C1, the convergence in flow value is uniform in a

neighborhood of u− k. Therefore, I take (λ, J0)→ (∞, u− k) to arrive at the same

contradiction.

Third and last, consider the case where the sequence converges to W0. The first-

order condition gives

c′(Ln)(Ln − 1)− c(Ln) =− φ′′(Wn)(Jn −Wn)2 + o(|Jn −Wn|2)

1− Ln =

(
c′′(1)

−φ′′(Wn)

) 1
2

(Jn −Wn) + o(|Jn −Wn|) .

Substituting Ln into the flow value gives

π + (Wn − u+ k)φ′(Wn) +
1

1− Ln
k

Jn −Wn

(φ(Jn)− φ(Wn)− (Jn −Wn)φ′(Wn)− c(Ln)) + εn

=π + (Wn − u+ k)φ′(Wn) + k ((−φ′′(Wn)) c′′(1))
1
2 + o|Jn−Wn|(1) + εn .

Because φ, c ∈ C2 and εn → 0, I take n→∞ (and thus Jn −Wn → W0 −W0 = 0) to

obtain the inequality at W0

φ(W0) ≤ π + (W0 − u+ k)φ′(W0) + k ((−φ′′(W0)) c′′(1))
1
2 .
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I define compound Poisson control {λ, {pi, Li, Ji}i=1,2}, parametrized by L1, by

λ :=

(
c′′(1)

−φ′′(W0)

)1/2 W0 − u+ k + k
1−L1

1− L1

p1 :=
1

2

p2 :=
1

2

L2 :=2− L1

J1 :=W0 +

(
c′′(1)

−φ′′(W0)

)1/2

(1− L1)

J2 :=W0 − (J1 −W0)

(
1− 2(W0 − u+ k)

W0 − u+ k + k
1−L1

)
.

It is straightforward to verify that this control satisfies the law of total probability,

Bayesian plausibility, promise keeping, and incentive compatibility constraints.

The flow value of this control is

π + λ
∑
i

pi (φ(Ji)− φ(W0)− c(Li))

=π +
1

2
λ (φ(J1) + φ(W0 − (J1 −W0))− 2φ(W0) + φ(J2)− φ(W0 − (J1 −W0))− c(L1)− c(L2))

=π +
1

2
λ
(
φ′′(W0)(J1 −W0)2 + φ′(W0) (J2 −W0 − (J1 −W0))− c′′(1)(1− L1)2 + o((1− L1)2)

)
=π +

1

2
kφ′′(W0)

J1 −W0

1− L1

+ φ′(W0)(W0 − u+ k)− 1

2
kc′′(1)

1− L1

J1 −W0

+ o(1)

=π + (W0 − u+ k)φ′(W0) + k ((−φ′′(W0)) c′′(1))
1
2 + o(1) .

The second equality follows from (J2 −W0)2 − (J1 −W0)2 = o((1− L1)2). The third

equality follows from λ(1− L1)(J1 −W0)→ k. I take L1 → 1 to obtain

π + supλ
∑
i

pi (φ(Ji)− φ(W )− c(Li))

≥π +
1

2
kφ′′(W0)

J1 −W0

1− L1

+ φ′(W0)(W0 − u+ k)− 1

2
kc′′(1)

1− L1

J1 −W0

≥φ(W0)
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which contradicts the subsolution inequality.

Define exit time ρ as in Lemma 22. For any compound Poisson incentive scheme,

Itô lemma implies

E
[
e−rρφ(Wρ)

]
=φ(W0) + E

[∫ ρ

0

re−rt (−φ(Wt)) dt+
∑
t≤ρ

φ(Wt)− φ(Wt−)

]

=φ(W0) + E

[∫ ρ

0

re−rt

(
−φ(Wt) + λt

∑
i

pit (φ(Jit)− φ(Wt))

)
dt

]
.

The value of any compound Poisson incentive scheme with E [1− e−rρ] ≥ θ is thus

bounded by

E

[∫ ρ

0

re−rt

(
π − λt

∑
i

pitc(Lit)

)
dt+ e−rρφ(Wτ )

]

=φ(W0) + E

[∫ ρ

0

re−rt

(
−φ(Wt) + π + λt

∑
i

pit (φ(Jit)− φ(Wt)− c(Lit))

)
dt

]
<V (W0)

where the strict inequality follows from the strictly negative integrand over a set of

strictly positive measure. The strict inequality contradicts V as the value of com-

pound Poisson incentive schemes with E [1− e−rτ ] ≥ θ (Lemma 22).

I continue to show that V is a supersolution. Suppose there exist control λ, {(pi, Li, Ji)},
and ε > 0 such that

V (W ) <π + λ
∑
i

pi (φ(Ji)− V (W )− c(L))− ε

for W0 ∈ (0, u − k). Take r
2(r+λ)

ε-optimal compound Poisson incentive schemes Mi

at W = Ji for each i. Consider the compound Poisson incentive scheme that uses

control λ, {pi, Li, Ji} until the first arrival ρ, then switches to Mi for arrival i. The
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value of this incentive scheme is

E

[∫ ρ

0

re−rt

(
π − λ

∑
i

pic(Li)

)
dt+ e−rρ

∑
i

1Wρ=JiV (Mi)

]

≥E

[∫ ρ

0

re−rt

(
π − λ

∑
i

pic(Li)

)
dt+ e−rρ

∑
i

1Wρ=JiV (Ji)

]
− r

2 (r + λ)
ε

≥E

[∫ τ

0

re−rt

(
π − λ

∑
i

pic(Li)

)
dt+ e−rρ

∑
i

1Wρ=Jiφ(Ji)

]
− r

2 (r + λ)
ε

=φ(W0) + E

[∫ ρ

0

re−rt

(
−φ(W ) + π − λ

∑
i

pi (φ(Ji)− φ(W0)− c(Li))

)
dt

]
− r

2 (r + λ)
ε

≥φ(W0) +
r

r + λ
ε− r

2 (r + λ)
ε

=V (W0) +
r

2 (r + λ)
ε

where the first equality follows from Itô lemma. This incentive schemes V as the

value of compound Poisson incentive schemes.

A.2.5 Poisson HJB

Definition 3 (Viscosity solution to Poisson HJB) A concave continuous func-

tion V is a viscosity solution to the (simple) Poisson HJB

v(W ) =π + (W − u+ k)v′(W )

+ sup
L,J

1

1− L
k

J −W
(v(J)− v(W )− (J −W )v′(W )− c(L))

s.t. (1− L)(J −W ) > 0

if and only if

1. it is a viscosity subsolution, i.e. any φ ∈ C2 with φ ≥ V and φ(W ) = V (W )
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satisfies

V (W ) ≤π + (W − u+ k)φ′(W )

+ sup
1

1− L
k

J −W
(φ(J)− V (W )− (J −W )φ′(W )− c(L))

2. it is a viscosity supersolution, i.e. any φ ∈ C2 with φ ≤ V and φ(W ) = V (W )

satisfies

V (W ) ≥π + (W − u+ k)φ′(W )

+ sup
1

1− L
k

J −W
(φ(J)− V (W )− (J −W )φ′(W )− c(L))

Proof of Proposition 1. I first show that V is a viscosity subsolution to the

Poisson HJB. Take φ ∈ C2 with φ ≥ V and φ(W ) = V (W ). For any {λi, Li, Ji}, take

the maximizer of the benefit-cost ratio (L, J) ∈ maxi
(1−Li)(Ji−W )

−(φ(Ji)−V (W )−(Ji−W )φ′(W ))+c(Li)
.

The Hamiltonian then satisfies

π + λ
∑
i

pi (φ(Ji)− V (W )− c(Li))

=π + (W − u+ k)φ′(W ) + λ
∑
i

pi (φ(Ji)− V (W )− (Ji −W )φ′(W )− c(Li))

≤π + (W − u+ k)φ′(W ) +
1

1− L
k

J −W
(φ(J)− V (W )− (J −W )φ′(W )− c(L)) .

The equality follows from the promise keeping constraint. The inequality follows

from the maximizer (L, J) and the incentive compatibility constraint. Because (L, J)

is a feasible control (for the Poisson HJB), I conclude that V inherits the subsolu-

tion inequality for the Poisson HJB from the compound Poisson HJB by taking the

supremum.

I continue to show that V is a viscosity supersolution to the Poisson HJB by

contraposition. Suppose there exist φ ≤ V with φ(W ) = V (W ), feasible control
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(L, J), and ε > 0 such that

V (W ) <π + (W − u+ k)φ′(W )

+
1

1− L
k

J −W
(φ(J)− V (W )− (J −W )φ′(W )− c(L))− ε .

Because the Hamiltonian is continuous in L, I have W − u + k − k
1−L 6= 0 with-

out loss of generality. For α > 0, construct the parametrized (compound) control

λ, {pi, Li, Ji}i=1,2 defined by L1 =: L, J1 := J , and

λ :=
α

1− L
k

J −W
+

α

1− α
W − u+ k − αk

1−L

−(J −W )

p1 :=
1

λ

α

1− L
k

J −W

p2 :=
1

λ

α

1− α
W − u+ k − αk

1−L

−(J −W )

L2 :=1 +
λ1

λ2

(1− L1)

J2 :=W +
W − u+ k

λ2

− λ1

λ2

(J −W ) .

For
W−u+k− αk

1−L
−(J−W )

> 0, it can verified that the control is feasible for α > 1 and sufficiently

close to 1. Moreover, it satisfies λ ↑ ∞, p2 ↑ 1, λp1 → 1
1−L

k
J−W , L2 → 1, and J2 → W

as α ↓ 1. Similarly, for
W−u+k− αk

1−L
−(J−W )

< 0, the control is feasible for α < 1 and

sufficiently close to 1 with the same asymptotics.

As α→ 1 and λ2 →∞, I have

φ(J2)− V (W )− (J2 −W )φ′(W ) = (J2 −W )φ′(W ) + o(λ−1
2 )− (J2 −W )φ′(W ) = o(λ−1

2 )
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and c(L2) = o(λ−1
2 ). Therefore, the Hamiltonian of the compound control satisfies

π +
∑
i

λi (φ(Ji)− V (W )− c(Li))

=π + (W − u+ k)φ′(W ) +
∑
i

λi (φ(Ji)− V (W )− (Ji −W )φ′(W )− c(Li))

=π + (W − u+ k)φ′(W ) +
α

1− L
k

J −W
(φ(J)− V (W )− (J −W )φ′(W )− c(L)) + o(λ−1

2 )

>V (W ) + ε+ o(λ−1
2 )

where the first equality follows from the promise keeping constraint. Therefore, V

fails the supersolution inequality for the compound Poisson HJB for α sufficiently

close to 1, a contradiction.

A.2.6 Smoothness of value function

Lemma 24 The value function is continuously differentiable on [0, u− k).

Proof. At W = 0, V ′(0) exists because V is continuous and concave. The derivative

at 0 is finite because the first-best incentive scheme has finite derivative.

For W0 ∈ (0, u − k), it suffices to show there is no concave kinks because V is

concave. Suppose V ′(W−) > V ′(W+). Take q ∈ (V ′(W+), V ′(W−)).

Consider the Hamiltonian

π + (W0 − u+ k)q + sup
L,J

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)q − c(L)) .

Because V is right-differentiable at W0, the value function satisfies

V (J) = V (W0) + V ′(W+)(J −W0) + o(J −W0) .
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The FOC for L gives

c′(L)(L− 1)− c(L) = (q − V ′(W+)) (J −W0)

=⇒ 1− L =

(
q − V ′(W+)

c′′(L)

)1/2

(J −W0)1/2 + o
(
(J −W0)1/2

)
.

The supremum term therefore satisfies

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)q − c(L))

=

(
c′′(L)

q − V ′(W+)

)1/2
k

(J −W0)3/2

(
− (q − V ′(W0)) (J −W0)− 1

2
c′′(1)

q − V ′(W+)

c′′(1)
(J −W0)

)
+ o

(
(J −W0)−1/2

)
=− 1

2
kc′′(L)1/2 (q − V ′(W+))

1/2
(J −W0)−1/2 + o

(
(J −W0)−1/2

)
and diverges to −∞ as J ↓ W0. Similarly, the supremum term diverges to −∞ as

J ↑ W0. Therefore, there exists δ > 0 such that the supremum can be taken over

J ∈ [0,W0− δ]
⋃

[W0 + δ, u−k]. It is attained because the choice of J is compact and

the conditional maximizer L is continuous over J .

The kink implies there exists φ ≥ V with φ(W0) = V (W0) such that φ′(W0) = q.

Lemma 2.2 in Soner (1988) implies

V (W0) ≤π + (W0 − u+ k)q

+ max

{
sup

L,J∈(W0−δ,W0+δ)

1

1− L
k

J −W0

(φ(J)− φ(W0)− (J −W0)q − c(L))

sup
L,J∈[0,W0−δ]

⋃
[W0+δ,u−k]

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)q − c(L))

}
=π + (W0 − u+ k)q

+ max
L,J∈[0,W0−δ]

⋃
[W0+δ,u−k]

1

1− L
k

J −W
(V (J)− V (W )− (J −W )q − c(L))

Because [0,W0 − δ]
⋃

[W0 + δ, u − k] is compact and the conditional maximizer L is

continuous over J , the supremum is attained.

Because V is concave, there exists a sequence W ↓ W0 such that V ′(W ) exists
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and converges to V ′(W+). The differentiability implies the existence of φ ≤ V with

φ(W ) = V (W ).

V (W ) ≥π + (W − u+ k)V ′(W )

+ max

{
sup

L,J∈(W−δ,W+δ)

1

1− L
k

J −W
(φ(J)− φ(W )− (J −W )φ′(W )− c(L))

sup
L,J∈[0,W−δ]

⋃
[W+δ,u−k]

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L))

}
≥π + (W − u+ k)V ′(W )

+ max
L,J∈[0,W−δ]

⋃
[W+δ,u−k]

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L)) .

The first inequality follows from Lemma 2.2 in Soner (1988). The second inequality

follows from set inclusion. Because [W + δ, u − k] is compact and the conditional

maximizer L is continuous over J , the supremum is attained. Moreover, the strict

concavity of V implies the conditional maximizer L is bounded uniformly from away

1. The theorem of maximum thus applies

V (W0) ≥π + (W0 − u+ k)V ′(W+)

+ max
L,J∈[0,W−δ]

⋃
[W+δ,u−k]

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)V ′(W+)− c(L))

when W ↓ W0. The analogous argument from the left of W0 gives

V (W0) ≥π + (W0 − u+ k)V ′(W−)

+ max
L,J∈[0,W−δ]

⋃
[W+δ,u−k]

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)V ′(W−)− c(L)) .

I show that the Hamiltonian

H(q) :=π + (W0 − u+ k)q

+ max
L,J∈[0,W−δ]

⋃
[W+δ,u−k]

1

1− L
k

J −W0

(V (J)− V (W0)− (J −W0)q − c(L))

is strictly convex on [V ′(W+), V ′(W−)]. It is weakly convex because max is convex.
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Take q1 6= q2 and α ∈ (0, 1), and q3 := αq1 +(1−α)q2 as the convex combination. Let

(L3, J3) be the maximizer for q3, and define the conditional maximizer L̃i for i = 1, 2

by

c′(L̃i)(L̃i − 1)− c(L̃i) = − (V (J3)− V (W0)− (J3 −W0)qi) .

Note that L̃i 6= L3 because J3 6= W0 and qi 6= q3. The Hamiltonian is strictly convex:

H (q3)

=π + (W0 − u+ k)q3 +
1

1− L3

k

J3 −W0

(V (J3)− V (W0)− (J3 −W0)q3 − c(L3))

=α

(
π + (W0 − u+ k)q1 +

1

1− L3

k

J3 −W0

(V (J3)− V (W0)− (J3 −W0)q1 − c(L3))

)
+ (1− α)

(
π + (W0 − u+ k)q2 +

1

1− L3

k

J3 −W0

(V (J3)− V (W0)− (J3 −W0)q2 − c(L3))

)
<α

(
π + (W0 − u+ k)q1 +

1

1− L̃1

k

J3 −W0

(
V (J3)− V (W0)− (J3 −W0)q1 − c(L̃1)

))
+ (1− α)

(
π + (W0 − u+ k)q1 +

1

1− L̃2

k

J3 −W0

(
V (J3)− V (W0)− (J3 −W0)q1 − c(L̃2)

))
≤αH(q1) + (1− α)H(q2) .

The strict inequality follows from the uniqueness of the conditional maximizer L̃i.

The weak inequality follows from the definition of the Hamiltonian.

From the supersolution inequalities, I have V (W0) ≥ H(V ′(W+)) and V (W0) ≥
H(V ′(W−)). The strict convexity of H implies V (W0) > H(q), which contradicts

V (W0) ≤ H(q) from the subsolution inequality.

Corollary 3 For W ∈ (0, u − k) and J → W , the directional derivatives converge

V ′∆t(J±)→ V ′(W ).

Proof. I first claim that V ′∆t(W±)→ V ′(W ). For ε > 0, there exists h > 0 such that

V (W + h)− V (W )

h
> V ′(W )− ε .

Lemma 1 states that limV∆t(W ) = V (W ) so there exists δ > 0 such that dt < δ
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implies

V∆t(W + h)− V∆t(W )

h
> V ′(W )− ε .

The concavity of V∆t implies V ′∆t(W+) ≥ V∆t(W+h)−V∆t(W )
h

. Because ε is arbitrary, I

have lim inf V ′∆t(W+) ≥ V ′(W ). The analogous argument from the left gives lim supV ′∆t(W−) ≤
V ′(W ). The claim then follows from V ′∆t(W+) ≤ V ′∆t(W−).

The continuity of V ′ implies that, for ε > 0, there exists h > 0 such that V ′(W +

h) > V ′(W )− ε. Because J → W , the concavity of V∆t gives V ′∆t(J±) ≥ V ′∆t(W +h−)

and therefore lim inf V ′∆t(J+) ≥ lim inf V ′∆t(W + h−) = V ′(W + h) > V ′(W )− ε. The

analogous argument from the left gives lim supV ′∆t(J−) < V ′(W ) + ε. The result then

follows because ε is arbitrary.

A.3 Optimality of termination upon Poisson arrival

In this subsection, I show the optimality of immediate termination in discrete time

and then the same result for Poisson monitoring by continuity. The key results are

Lemma 2 and Proposition 3. Lemma 2 shows that the optimal discrete-time incentive

scheme must consist of a signal that leads to immediate termination. Proposition 3

establishes the optimality of immediate termination upon Poisson arrival by continu-

ity.

A.3.1 Proof of Lemma 2

For W0 ∈ (0, u− k), work is optimal V∆t(W0) = AV∆t(W0) for ∆t > 0 sufficiently

small by Lemma 11 and Lemma 14. Take such ∆t. At W0, the maximization (6)

admits a maximizer {(pi, Li, Ji) : 1 ≤ i ≤ 4} by Lemma 10. Without loss of generality,

pi > 0 for all i. All four continuation values {Ji} are extreme points of V∆t by

Lemma 12. Suppose none of the four points is termination, i.e. Ji 6= 0 for all i. At

each Ji, work is optimal V∆t(Ji) = AV∆t(Ji) again by Lemma 11. At each Ji, the

maximization (6) admits a maximizer {(pij, Lij, Jij) : 1 ≤ j ≤ 4} again by Lemma 10.

Without loss of generality, pij > 0 for all i.
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The ∆t-value function at W0 is thus

V∆t(W0)

=(1− e−r∆t)(u− k)−
∑
i

pic(Li) + e−r∆t
∑
i

piV∆t(Ji)

=(1− e−r∆t)(u− k)−
∑
i

pic(Li)

+ e−r∆t
∑
i

pi

(
(1− e−r∆t)(u− k)−

∑
j

pijc(Lij) + e−r∆t
∑
j

pijV∆t(Jij)

)
=(1 + e−r∆t)(1− e−r∆t)(u− k)−

∑
i

pic(Li)− e−r∆t
∑
i

pi
∑
j

pijc(Lij)

+ e−2r∆t
∑
i

pi
∑
j

pijV∆t(Jij) .

The second equality follows from the maximizers at Ji’s.

For p0 := 1
1+e−r∆t

, consider the control {(p0, 1,W0), ((1−p0)pipij, LiLij, Jij) : i, 1 ≤
j ≤ 4} at W0. I verify the three constraints. It satisfies the Bayesian plausibility

constraint

p0 × (1− 1) + (1− p0)
∑
i

pi
∑
j

pij(1− LiLij)

=(1− p0)
∑
i

pi
∑
j

pij(1− Li + Li − LiLij)

=(1− p0)
∑
i

pi(1− Li) + (1− p0)
∑
i

piLi
∑
j

(1− Lij)

=0 .

The final equality follows from the Bayesian plausibility of the maximizers at W0 and

Ji’s.

76



The control satisfies the promise keeping constraint

(1− e−r∆t)(u− k) + e−r∆t

(
p0W0 + (1− p0)

∑
i

pi
∑
j

pijJij

)
=(1− e−r∆t)(u− k) + e−r∆tp0W0 + (1− p0)

∑
i

pi
(
Ji − (1− e−r∆t)(u− k)

)
=p0(1− e−r∆t)(u− k) + e−r∆tp0W0 + (1− p0)

1

e−r∆t
(
W0 − (1− e−r∆t)(u− k)

)
=W0 .

The first equality follows from the promise keeping constraints of the maximizers at

Ji’s. The second equality follows from the promise keeping constraint of the maximizer

at W0. The third equality follows from the definition of p0.

The control satisfies the incentive compatibility constraint

e−r∆t(1− p0)
∑
i

pi
∑
ij

pij(1− LiLij)(Wij −W0)

=e−r∆t(1− p0)

(∑
i

pi(1− L1)
∑
ij

pij(Wij −W0) +
∑
i

piL1

∑
ij

pij(1− Lij)(Wij −W0)

)

=(1− p0)

(∑
i

pi(1− Li)
(
Wi − (1− e−r∆t)(u− k)

)
+
∑
i

piLi(1− e−r∆t)k

)

=(1− p0)

(
1− e−r∆t

e−r∆t
k + (1− e−r∆t)k

)
=(1− e−r∆t)k .

The second equality follows from the Bayesian plausibility constraint at W0, and

the promise keeping constraint and the incentive compatibility constraint at Ji’s.

The third equality follows from the Bayesian plausibility and incentive compatibility

constraint at W0.

Therefore, the constructed control is feasible and the ∆t-value function is greater
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than the value of this control

V∆t(W0) ≥(1− e−r∆t)(u− k)− (1− p0)
∑
i

pi
∑
j

pijc(LiLij)

+ e−r∆t

(
p0V∆t(W0) + (1− p0)

∑
i

pi
∑
j

pijV∆t(Jij)

)

≥(1− e−r∆t)(u− k)− (1− p0)

(∑
i

pic(Li) +
∑
i

pi
∑
j

pijc(Lij)

)

+ e−r∆t

(
p0V∆t(W0) + (1− p0)

∑
i

pi
∑
j

pijV∆t(Jij)

)

>(1− e−r∆t)(u− k)− (1− p0)

(∑
i

pic(Li) + e−r∆t
∑
i

pi
∑
j

pijc(Lij)

)

+ e−r∆t

(
p0V∆t(W0) + (1− p0)

∑
i

pi
∑
j

pijV∆t(Jij)

)
.

The second weak inequality follows from compound reduction (Assumption 2). The

strict inequality follows from e−r∆t < 1.

By induction, the ∆t-value function satisfies for N = 1, 2, 3, ...

V∆t(W0) >

[
(1− e−r∆t)(u− k)− (1− p0)

(∑
i

pic(Li) + e−r∆t
∑
i

pi
∑
j

pijc(Lij)

)

+ e−r∆t(1− p0)
∑
i

pi
∑
j

pijV∆t(Jij)

] N∑
n=0

(
e−r∆tp0

)n
+
(
e−r∆tp0

)N+1
V∆t(W0)

and the difference between the LHS and the RHS is increasing in N . The induction

follows by replacing V∆t(W0) on the RHS of induction inequality by the value of the
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constructed control. Therefore, it follows as N →∞ that

V∆t(W0)

>

[
(1− e−r∆t)(u− k)− (1− p0)

(∑
i

pic(Li) + e−r∆t
∑
i

pi
∑
j

pijc(Lij)

)

+ e−r∆t(1− p0)
∑
i

pi
∑
j

pijV∆t(Jij)

] ∞∑
n=0

(
e−r∆tp0

)n
=

[
(1− e−r∆t)(u− k)− (1− p0)

(∑
i

pic(Li) + e−r∆t
∑
i

pi
∑
j

pijc(Lij)

)

+ e−r∆t(1− p0)
∑
i

pi
∑
j

pijV∆t(Jij)

]
1

1− e−r∆tp0

=(1 + e−r∆t)(1− e−r∆t)(u− k)−

(∑
i

pic(Li) + e−r∆t
∑
i

pi
∑
j

pijc(Lij)

)
+ e−2r∆t

∑
i

pi
∑
j

pijV∆t(Jij)

where the second equality follows from the definition of p0. I obtain V∆t(W0) >

V∆t(W0), a contradiction.

A.3.2 Value function satisfies Termination HJB

Lemma 25 Suppose W ∈ (0, u − k). Let {pi, Li, Ji} be a maximizer of Equa-

tion (6) at W for ∆t > 0. Then (L, J) → (1,W ) in probability as ∆t → 0, i.e.,

lim∆t→0

∑
i pi1|(Li,Ji)−(1,W )|>ε = 0 for all ε > 0.

Proof. For ε > 0, the strict concavity (Lemma 21) and differentiability (Lemma 24)

of V implies that |J −W | > ε =⇒ V (J)− V (W )− V ′(W )(J −W ) < −η for some

η > 0. The analogous argument applies to c and thus |L−1| > ε =⇒ c(L) > η. The

promise keeping constraint implies J :=
∑

i piJi = W−(1−e−r∆t)(u−k)
e−r∆t

→ W as ∆t→ 0.

Corollary 3 states that the directional derivative satisfies V ′∆t(J)→ V ′(W ). Because

V∆t → V uniformly (Corollary 2), I have |J − W | > ε =⇒ V∆t(J) − V∆t(W ) −
V ′∆t(W )(J −W ) > η for sufficiently small ∆t.
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The maximizer attains the discrete-time value function

V∆t(W ) =(1− e−r∆t)π −
∑
i

pic(Li) + e−r∆t
∑
i

piV∆t(Ji)

(1− e−r∆t)V∆t(W ) =(1− e−r∆t)π + e−r∆t
(
V∆t(J)− V∆t(W )

)
−
∑
i

pic(Li)

+ e−r∆t
∑
i

pi
(
V∆t(Ji)− V∆t(J)− V ′∆t(J)(Ji − J)

)
≤(1− e−r∆t)π + e−r∆t

(
V∆t(J)− V∆t(W )

)
− η

∑
i

pi1|Li−1|>ε

− ηe−r∆t
∑
i

pi1|Ji−W |>ε .

The second equality follows from the definition of J . The inequality follows from the

convexity of c and the concavity of V∆t. By the uniform convergence of V∆t → V , I

take ∆t→ 0 to obtain

0 ≤ −η lim sup
∆t→0

P [|L− 1| > ε]− η lim sup
∆t→0

P [|J −W | > ε]

and therefore lim∆t→0

∑
i pi1|Li−1|>ε = lim∆t→0

∑
i pi1|Ji−W |>ε = 0.

Corollary 4 There exists i such that (pi, Li, Ji) converges (in a subsequence) to

(P,W0, 1) with probability P ≥ 1
4

as ∆t→ 0.

Lemma 26 For W ∈ (0, u−k), let L0 denote the solution to the first-order condition

(3) for termination J = 0. Then

(L0, 0) ∈ arg max
L,J

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L))

subject to (1− L)(J −W ) > 0.

Proof. Take ∆t→ 0 and let {pi, Li, Ji} denote maximizer of Equation (6) at W for

each ∆t. I omit the dependence on ∆t for east of notation. I enumerate the four

points such that (p1, L1, J1) → (P, 1,W ) for some P ≥ 1
4

as ∆t → 0 by Corollary 4,

and p2 > 0 and J2 = 0 by Lemma 2.
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Take L∗ and J∗ such that (1−L∗)(J∗−W ) > 0. For each ∆t, I construct a control

{(p̃i, L̃i, J̃i) : 1 ≤ i ≤ 5} parametrized by p̃5 ≥ 0. It coincides with the maximizer

(p̃i, L̃i, J̃i) = (pi, Li, Ji) for i = 3, 4. It fixes the likelihood ratio and continuation value

at (L̃2, J̃2) = (L2, J2) and (L̃5, J̃5) = (L∗, J∗) for i = 2, 5. Because the maximizer sat-

isfies the four constraints—the law of total probability, Bayesian plausibility, promise

keeping, and incentive compatibility constraints—the constructed control is required

to satisfy ∑
i

p̃i =
∑
i

pi∑
i

p̃i

(
1− L̃i

)
=
∑
i

pi (1− Li)∑
i

p̃iJ̃i =
∑
i

piJi∑
i

p̃i

(
1− L̃i

)(
J̃i −W

)
=
∑
i

pi(1− Li)(Ji −W )

where the summation is over 1 ≤ i ≤ 5 and I write (p5, L5, J5) := (0, L∗, J∗).

Because the maximizer satisfies the continuously differentiable constraints, the

implicit function theorem states that the system of constraints admits a solution

{(p̃i, L̃i, J̃i) : 1 ≤ i ≤ 5} continuously differentiable with respect to parameter p̃5 in a

neighborhood of 0 with derivatives

dp̃2

dp̃5

=− (L1 − L∗)(J∗ − J1)

(L1 − L2)(0− J1)

dp̃1

dp̃5

=
(L1 − L∗)(J∗ − J1)

(L1 − L2)(0− J1)
− 1

dL̃1

dp̃5

=− 1

p1

J∗ − 0

0− J1

(L1 − L∗)

dJ̃1

dp̃5

=
1

p1

L1 − L∗

L1 − L2

(J∗ − J1)− 1

p1

(J∗ − J1)

at p̃5 = 0.
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The marginal value of this control with respect to p̃5 is

d

dp̃5

(
−
∑
i

p̃ic(L̃i) + e−r∆t
∑
i

p̃iV∆t(J̃i)

)

=− dp̃1

dp̃5

c(L1)− p1c
′(L1)

dL̃1

dp̃5

− dp̃2

dp̃5

c(L2)− c(L∗)

+ e−r∆t

(
dp̃1

dp̃5

V∆t(J1) + p1V
′

∆t(J1)
dJ̃1

dp̃5

+
dp̃2

dp̃5

V∆t(0) + V∆t(J
∗)

)

=(L1 − L∗)
J∗ − J1

k

(
1

L1 − L∗
k

J∗ − J1

(
e−r∆t (V∆t(J

∗)− V∆t(J1)− (J∗ − J1)V ′∆t(J1))− c(L∗)
)

− 1

L1 − L2

k

0− J1

(
e−r∆t (V∆t(0)− V∆t(J1)− (0− J1)V ′∆t(J1))− c(L2)

))
− dp̃1

dp̃5

c(L1)− p1c
′(L1)

dL̃1

dp̃5

.

I claim that, as ∆t → 0, the likelihood ratio L2 converges to L0. Suppose other-

wise, i.e., there exists ε > 0 such that |L2−L0| > ε along a subsequence. Because L0

is the unique maximizer and c is convex, there exists η > 0 such that

1

1− L0

k

0−W
(V (0)− V (W )− V ′(W )(0−W )− c(L0))

>
1

1− L
k

0−W
(V (0)− V (W )− V ′(W )(0−W )− c(L)) + η

for all L such that |L − L2| > ε. Take L∗ = L0 and J∗ = 0. Recall that V∆t → V

uniformly on compact sets by Corollary 2, and V∆t(J1) → V ′(W ) by Corollary 3.

Because e−r∆t → 1, (L1, J1) → (1,W ), and c(1) = c′(1) = 0, the marginal value of

the constructed control with respect to p̃5 satisfies

d

dp̃5

(
−
∑
i

p̃ic(L̃i) + e−r∆t
∑
i

p̃iV∆t(J̃i)

)
≥(1− L0)

0−W
k

η

2
.

Therefore, the constructed control attains higher value than the maximizer for suffi-

ciently small p̃5 and ∆t, a contradiction.
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Now I consider general (L∗, J∗) such that (1−L∗)(J∗−W ) > 0. Because L2 → L0,

the marginal value of the constructed control converges to

lim
∆t→0

d

dp̃5

(
−
∑
i

p̃ic(L̃i) + e−r∆t
∑
i

p̃iV∆t(J̃i)

)

=(1− L∗)J
∗ −W
k

(
1

1− L∗
k

J∗ −W
(V (J∗)− V (W )− (J∗ − J1)V ′(W )− c(L∗))

− 1

1− L0

k

0−W
(V (0)− V (W )− (0−W )V ′(W )− c(L0))

)
.

By the optimality of the maximizer, the limit must be non-positive, which implies

the lemma.

Proposition 3 (Termination HJB) The value function V is a classical solution

to the termination HJB

v(W ) =π + (W − u+ k)v′(W )

+ max
L

1

1− L
k

0−W
(v(0)− v(W )− (0−W )v′(W )− c(L)) ∀W ∈ (0, u− k) .

Proof. Because V is concave, it is twice differentiable almost everywhere by the

Alexandrov theorem. Consider W ∈ (0, u− k) such that V ′′(W ) exists.

For ε > 0, take φ ≥ V with φ(W ) = V (W ) such that φ′′(W ) ∈ (V ′′(W ), V ′′(W ) +

ε). Such φ exists due to Stone-Weierstrass theorem. It also satisfies φ′(W ) = V ′(W )

because V is differentiable (Lemma 24). For any δ > 0, Lemma 2.2 in Soner (1988)

applied to the subsolution inequality for the Poisson HJB implies

V (W ) ≤π + (W − u+ k)V ′(W ) (8)

+ max

{
sup
L,J

|J−W |<δ

1

1− L
k

J −W
(φ(J)− V (W )− (J −W )V ′(W )− c(L)) ,

sup
L,J

|J−W |≥δ

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L))

}
.
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Because φ ∈ C2, the cost of information exposure is

φ(J)− V (W )− (J −W )φ′(W ) =
1

2
φ′′(W )(J −W )2 + o

(
(J −W )2

)
.

Therefore, the first-order condition for L gives

c′(L)(L− 1)− c(L) =− 1

2
φ′′(W )(J −W )2 + o

(
(J −W )2

)
1

2
c′′(1)(1− L)2 =− 1

2
φ′′(W )(J −W )2 + o

(
(J −W )2

)
(

1− L
J −W

)2

=
−φ′′(W )

c′′(1)
+ o(1) .

Substituting the FOC into the supremum, I have for |J −W | < δ

sup
L,J

|J−W |<δ

1

1− L
k

J −W
(φ(J)− V (W )− (J −W )V ′(W )− c(L))

= sup

(
c′′(1)

−φ′′(W )

) 1
2 k

(J −W )2

(
1

2
φ′′(W )(J −W )2 − 1

2
c′′(1)

−φ′′(W )

c′′(1)
+ o

(
(J −W )2

))
=k (c′′(1) (−φ′′(W )))

1
2 + oδ(1) .

The same operations on V gives

k (c′′(1) (−V ′′(W )))
1
2 = sup

L,J
|J−W |<δ

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L)) + oδ(1) .

Because φ′′(W ) ∈ (V ′′(W ), V ′′(W ) + ε), I have

sup
L,J

|J−W |<δ

1

1− L
k

J −W
(φ(J)− V (W )− (J −W )V ′(W )− c(L))

= sup
L,J

|J−W |<δ

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L)) +O(ε) + oδ(1) .
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Therefore, Equation (8) reads

V (W ) ≤π + (W − u+ k)V ′(W )

+ sup
L,J

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L)) +O(ε) + oδ(1)

≤π + (W − u+ k)V ′(W )

+ max
L

1

1− L
k

0−W
(V (0)− V (W )− (0−W )V ′(W )− c(L)) +O(ε) + oδ(1)

where the second inequality follows from Lemma 26. Because ε and δ are arbitrary,

I obtain

V (W ) ≤π + (W − u+ k)V ′(W )

+ max
L

1

1− L
k

0−W
(V (0)− V (W )− (0−W )V ′(W )− c(L)) .

Using the supersolution inequality and taking φ′′(W ) ∈ (V ′′(W ) − ε, V ′′(W )), I

obtain the reverse inequality similarly. Therefore, the value function V solves the

termination HJB whenever it is twice differentiable.

Because V ∈ C1 (Lemma 24), it also solves the termination HJB for all W ∈
(0, u− k) by continuity.

A.4 Verification by explicit construction

In this subsection, I construct the candidate value function and incentive scheme,

and then verify the scheme’s optimality. The argument is standard.

A.4.1 Candidate value function

I construct the candidate value function V ∗ by solving the termination HJB and

FOC (3) with boundary conditions v(0) = 0 and limW→u−k v
′(W ) = −∞.

I first derive an ODE of L as a function of W and study its solutions. By rewriting

the termination HJB (Proposition 3) and FOC (3), I obtain the value v and marginal
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value v′ as functions of L.v(W ) = 1
u−k

(
−(0−W )π −

(
W − u+ k + k

L−1

)
c′(L)(L− 1) + (W − u+ k)c(L)

)
v′(W ) = 1

u−k

(
π −

(
1 + 1

1−L
k

0−W

)
c′(L)(L− 1) + c(L)

)
(9)

Taking derivative of v with respect to W and equating it to v′, I obtain a first-order

ordinary differential equation of L as a function of W

L̇ = − k

0−W
c′(L)

c′′(L)

1

(L− 1)(W − u+ k) + k
. (10)

Taking derivative of v′ with respect to W and substituting L̇ with the ODE, I obtain

v′′ as a function of L

v′′(W ) = − k

(0−W )2
c′(L)

1

(W − u+ k) + k
L−1

. (11)

For the candidate value function to be strictly concave, the drift r
(
(W − u+ k) + k

L−1

)
must be positive. As a result, L̇ > 0.

Lemma 27 Consider the initial value problem of ODE (10) at (W0, L0) on the do-

main W0 ∈ (0, u− k], L0 > 1, and W − u+ k+ k
L−1

> 0. It admits a unique solution

on (0,W0] and the solution satisfies limW→0 L(W ) = 1.

Proof. The RHS of Equation (10) satisfies the Picard-Lindelöf conditions, i.e. con-

tinuous in W and Lipschitz continuous in L on all compact subsets of the domain, so

there exists a unique solution in the interior. Moreover, L̇ ∈ (0,∞) so the solution

also solves the initial value problem

Ẇ = L̇−1 = −0−W
k

c′′(L)

c′(L)
((L− 1)(W − u+ k) + k) (12)

with the same initial condition and domain.

Because the solution exists and is monotonic in the interior, it suffices to show the

solution approach the boundary of the domain only at (W = 0, L = 1).
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First, I consider (W1 > 0, L1 = 1). The function L(W ) = 1 on W ∈ [W1, u − k]

solves Equation (10) at (W1, L1). Because the ODE satisfies the Picard-Lindelöf

conditions in the neighborhood of (W1, L1), this solution is unique and cannot satisfy

the initial condition (W0, L0).

Second, I consider (W1 = 0, L1 > 1). The function W (L) = 0 on L ∈
[
L1,

u
u−k

]
solves Equation (12) at (W1, L1). Because the ODE satisfies the Picard-Lindelöf

conditions in the neighborhood of (W1, L1), this solution is unique and cannot satisfy

the initial condition (W0, L0).

Third, I consider (W1, L1) such thatW1−u+k+ k
L1−1

= 0. Suppose the solution ap-

proaches (W1, L1). Because Equation (12) satisfies the Picard-Lindelöf conditions in

the neighborhood of (W1, L1), the unique solution satisfies limL→L1 Ẇ (L) = Ẇ (L1) =

0. The curve W −u+k+ k
L−1

has strictly positive slope at L1, so the solution cannot

approach (W1, L1) from above, a contradiction.

Corollary 5 Suppose (W0, L0) satisfies W0 ∈ (0, u−k], L0 > 1, and W−u+k+ k
L−1

>

0. Then the initial value problem of ODE (10) at (W0, L0) is defined on (0,W0].

Moreover, suppose L1 and L2 are distinct solutions with different initial conditions.

Then either L1(W ) > L2(W ) or L1(W ) < L2(W ) for all W such that L1 and L2 are

defined.

Proof. Each solution is defined on (0,W0] due to Lemma 27. The solutions are

ordered because they are continuous on the interval and cannot intersect by the

uniqueness of solutions to ODE on the domain.

Now, I construct from the initial value problems the likelihood ratio function L∗

corresponding to the candidate value function V ∗.

For L0 ∈ (0,∞), denote L(·;L0) as the solution to Equation (10) and initial

condition (u− k, L0).

For W0 ∈ (0, u−k), define L0 := u−W
u−k−W . It thus holds that W0−u+k+ k

L0−1
= 0.

Equation (12) satisfies the Picard-Lindelöf conditions in a neighborhood of (W0, L0)

and thus admits a unique solution. It extends to L ∈ (1, L1) by Lemma 27 and

Ẇ ∈ (0,∞) in the interior. The solution is strictly monotonic and thus invertible. I

denote the inverse as L(·;W0).
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For ε > 0, consider the compact domain

{
(W,L) : W ∈ [ε, u− k − ε], L ∈ [L(W ; 2), L(W ;u− k − ε/2)]

}
.

For all L0 > 2, the function L(W ;L0) lies on the domain for all W ∈ [ε, u−k−ε]. It is

greater than the lower bound L(W ; 2) because of L(u−k;L0) = L0 > 2 = L(u−k; 2)

and Corollary 5. It is less than the upper bound L(W ;u − k − ε/2) because of

L(u− k − ε;u− k − ε/2) = k+ε/2
ε/2

> L(u− k − ε/2;L0) and Corollary 5.

For W ∈ [ε, u− k − ε], the function L(W ;L0) is bounded and increasing in L0 so

it admits a limit L∗(W ). Because the domain is compact and bounded away from

W = 0 and W − u+ k + k
L−1

= 0, the derivative L̇ is uniformly bounded. Therefore,

the functions {L(·;L0) : L0 > 2} are uniformly Lipschitz. The Arzelà-Ascoli theorem

implies that the limit L∗ is also uniformly Lipschitz. Therefore, L∗ is a solution to

Equation (10) by the uniqueness of the initial value problem.

The defintion of L∗ is consistent for all ε > 0 because its definition (for fixed W )

is the same. Because it is a solution to Equation (10) on [ε, u− k− ε] for all ε > 0, it

is a solution on (0, u− k).

From L∗, I construct the candidate value function V ∗ by Equation (9).

Lemma 28 The function L∗ satisfies limW→0 L
∗(W ) = 0 and limW→u−k L

∗(W ) =

∞. The corresponding V ∗ defined by Equation (9) is uniformly bounded and satisfies

limW→0 V
∗(W ) = 0 and limW→u−k(V

∗)′(W ) = −∞.

Proof. L∗ satisfies limW→0 L
∗(W ) = 0 by Lemma 27. Moreover, it satisfies limW→u−k L

∗(W ) =

∞ because L∗ ≥ L(·;L0) which attains L0 at u− k and is continuous for all L0 > 2.

Rewriting Equation (9), I obtain

V (W ) =
1

u− k
(πW − kc′(L)− (W − u+ k) (c′(L)(L− 1)− c(L)))

which converges to zero as W → 0 and thus L→ 1. Moreover, the function satisfies
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as W → u− k

V (W ) ≥ 1

u− k
(πW − kc′(L))→ π − k

u− k
c′(∞) > −∞ .

When W → u− k, I have L→∞ and

V ′(W ) =
1

u− k

(
π − (c′(L)(L− 1)− c(L))− k

W
c′(L)

)
→ 1

u− k

(
π − lim

L→∞
(c′(L)(L− 1)− c(L))− k

u− k
c′(∞)

)
= −∞ .

Therefore, limW→u−k V
′(W ) = −∞.

Because V ∗ is concave and bounded on the boundary, it is uniformly bounded.

Lemma 29 For given W0 ∈ (0, u − k), the monitoring cost 1
1−L(W )

k
0−W c(L(W )) is

uniformly bounded on [W0, u− k).

Proof. Because c is convex with c′(1) = 0, the function c(L)/(L− 1) is increasing in

L. As L→∞, its limit is

lim
L→∞

c(L)

L− 1
= lim

L→∞

∫ L
1
c′(l)dl

L− 1
= lim

L→∞

∫ 1

0

c′(1 + (L− 1)x)dx = c′(∞)

by the monotone convergence theorem. Therefore, the monitoring cost 1
1−L(W )

k
0−W c(L(W ))

is bounded uniformly by k
W0
c′(∞).

Lemma 30 The ODE dW
dt

= r
(
W − u+ k − k

1−L∗(W )

)
with initial condition W0 ∈

(0, u− k) at t = 0 admits a unique solution on t ≥ 0. Moreover, Wt ∈ (0, u− k) for

all t ≥ 0.

Proof. For any ε > 0, the ODE admits a unique solution on t ≥ 0 and W ∈
[ε, u− k − ε] by the Picard-Lindelöf theorem.
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Because W − u+ k − k
1−L∗(W )

is positive, W is increasing and thus Wt ≥ W0 > 0

for all t.

The time τ at which Wτ = u− k − ε is∫ τ

0

dt =

∫ L∗(u−k−ε)

L∗(W0)

dt

dW

dW

dL
dL

=

∫ L∗(u−k−ε)

L∗(W0)

1

r
(
W − u+ k + k

L−1

)W
k

c′′(L)

c′(L)
((L− 1)(W − u+ k) + k) dL

≥ W0

rkc′(∞)

∫ L∗(u−k−ε)

L∗(W0)

c′′(L)dL

=
W0

rkc′(∞)

(
(c′(L∗(u− k − ε))(L∗(u− k − ε)− 1)− c(L∗(u− k − ε)))

− (c′(L∗(W0))(L∗(W0)− 1)− c(L∗(W0)))
)
.

I have substituted the drift dW
dt

and the derivative dL
dW

in the second equality, W and

c′(L) in the inequality.

Because limε→0 L
∗(u− k − ε) =∞, the Inada condition implies τ →∞ as ε→ 0,

and thus Wt < u− k for all t ≥ 0.

A.4.2 Verification for Termination HJB

Fix W0 ∈ (0, u− k).

Define incentive scheme M∗ = (Ω∗,F∗,P∗,Γ∗, h∗, a∗) as follows. Define W ∗
t as in

Lemma 30, L∗t := L∗(W ∗
t ), and λ∗t := r

1−L∗t
k

0−W ∗t
. Let τ ∗ denote a random variable

with law P∗[τ > t] = e−
∫ t
0 λ
∗
sds. Define Γ∗t :=

∫ t∧τ∗
0

λ∗s(1 − L∗s)ds + 1τ∗≤t(L
∗
τ∗ − 1),

h∗t = a∗t := 1t≤τ∗ . Let (Ω∗,F∗,P∗) denote the augmented natural filtration of (Γ∗, t).

The cumulative excess likelihood ratio Γ is a càdlàg martingale, and employment

h and effort a are left-continuous and thus predictable. I verify that W ∗ is the agent’s

continuation value and that the incentive scheme is incentive compatible. For effort
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a′ and τ, T > t, the Itô lemma gives

E∗,a
′

t

[
e−r(T−t)W ∗

T

]
=W ∗

t + E∗,a
′

t

[∫ T∧τ∗

t

−re−r(s−t)W ∗
s ds− 1τ∗≤T e

−r(τ∗−t)W ∗
τ∗−

]
=W ∗

t + E∗t
[∫ T

t

− exp

(
−r(s− t)−

∫ s

t

λ∗(1 + (L∗ − 1)1a′=0)

)(
r + λ∗s(1 + (L∗s − 1)1a′s=0)

)
W ∗
s ds

]
.

The second equality follows from the probability law of τ and the change of measure.

I add the flow payoff to obtain

E∗,a
′

t

[∫ T

t

e−r(s−t)h∗s(u− ka′s)ds+ e−r(T−t)W ∗
T

]
=W ∗

t + E∗t
[ ∫ T

t

exp

(
−r(s− t)−

∫ s

t

λ∗(1 + (L∗ − 1)1a′=0)

)
(
−
(
r + λ∗s(1 + (L∗s − 1)1a′s=0)

)
W ∗
s + r(u− k1a′s=1)

)
ds

]
=W ∗

t + E∗t
[ ∫ T

t

−r exp

(
−r(s− t)−

∫ s

t

λ∗(1 + (L∗ − 1)1a′=0)

)
(
W ∗
s − u+ k − k

1− L∗s

)
ds

]
=W ∗

t .

The first equality follows from the definition of h∗ and the change of measure, the

second from the definition of λ∗, and the third from that of W ∗. Because W is

bounded and Wτ = 0 for τ < ∞, the dominated convergence theorem for T → ∞
gives

E∗,a
′

t

[∫ ∞
t

e−r(s−t)h∗s(u− ka∗s)ds
]

= W ∗
t .

Because the agent gets value W ∗
t for all effort a′, the incentive scheme is incentive

compatible and W ∗ is the agent’s continuation value.

Define incentive scheme M = (Ω,F,P,Γ, h, a) as follows. Define L(W ) by FOC

(3) and Wt by d
dt
W = r

(
W − u+ k − k

1−L(W )

)
and W0 = 0 as in Lemma 30. I write
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Lt := L(Wt) and define λt := r
1−Lt

k
0−Wt

. Let τ denote a random variable with law

P[τ > t] = e−
∫ t
0 λsds. Define Γt :=

∫ t∧τ
0

λs(1 − Ls)ds + 1τ≤t(Lτ − 1), ht ≡ at := 1t≤τ .

Let (Ω,F,P) denote the augmented natural filtration of (Γ, t).

It can be shown, analogous to M∗, that M is an incentive compatible incentive

scheme and W is the agent’s continuation value.

I showM∗ attains value V ∗(W0), which is higher than that ofM. Because V ∗ is

continuous and concave, I apply Itô formula for semimartingales (Proposition 8.19 in

Tankov (2003)) to obtain

E∗
[
e−rtV ∗(W ∗

t )
]

=V ∗(W ∗
0 ) + E∗

[∫ t∧τ∗

0

e−rs (−rV ∗ds+ (V ∗)′d(W ∗)c) + 1τ∗≤te
−rτ∗(V ∗(0)− V ∗(Wτ∗−))

]
=V ∗(W ∗

0 ) + E∗
[ ∫ t

0

re−rs−
∫ s
0 λ
∗
(
− V ∗ + (W ∗ − u+ k) (V ∗)′

+
1

1− L∗
k

0−W ∗ (V ∗(0)− V ∗(W ∗)− (0−W ∗)(V ∗)′)

)
ds

]
where (W ∗)c is the continuous part of W ∗.

Adding the flow payoffs, I obtain

E∗
[
e−rtV ∗(W ∗

t ) +

∫ t

0

re−rsh∗ (πa∗ − λ∗c(L∗)) ds
]

=V ∗(W ∗
0 ) + E∗

[ ∫ t

0

re−rs−
∫ s
0 λ
∗
(
− V ∗ + π + (W ∗ − u+ k) (V ∗)′

+
1

1− L∗
k

0−W ∗ (V ∗(0)− V ∗(W ∗)− (0−W ∗)(V ∗)′ − c(L∗))
)]

(13)

Because the integrand is zero by the construction of V ∗, I have

E∗
[
e−rtV ∗(W ∗

t ) +

∫ t

0

re−rsh∗ (πa∗ − λ∗c(L∗)) ds
]

= V ∗(W ∗
0 ) = V ∗(W0) .

Because the λ∗c(L∗) and V ∗ are uniformly bounded, the dominated convergence the-
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orem for t→∞ gives

E∗
[∫ ∞

0

re−rsh∗ (πa∗ − λ∗c(L∗))
]

= V ∗(W0) .

Applying the Itô lemma on M instead of M∗, I obtain an equation analogous to

Equation (13)

E
[
e−rtV ∗(Wt) +

∫ t

0

re−rsh (πa− λc(L)) ds

]
=V ∗(W0) + E

[ ∫ t

0

re−rs−
∫ s
0 λ

(
− V ∗ + π + (W − u+ k) (V ∗)′

+
1

1− L
k

0−W
(V (0)− V ∗(W )− (0−W )(V ∗)′ − c(L))

)]
.

The integrand is non-positive because it is zero at the maximizer L∗(W ).

Because V ∗ is bounded and the flow monitoring cost is nonnegative, the Fatou

lemma for t→∞ gives

V ∗(W0) ≥ E
[∫ ∞

0

re−rsh (πa− λc(L)) ds

]
.

The same analysis applied to V on M and then M∗ gives

E
[∫ ∞

0

re−rsh (πa− λc(L)) ds

]
= V (W0) ≥ E∗

[∫ ∞
0

re−rsh∗ (πa∗ − λ∗c(L∗))
]
.

Because V ∗(W0) ≥ V (W0) ≥ V ∗(W0), I have V ∗(W0) = V (W0). Because the FOC

(3) admits a unique solution for any W0 ∈ (0, u − k), the two incentive schemes M
and M∗ follow in fact the same law.

It remains to verify the discrete-time approachability of M = M∗. This follows

because V = VDL by Lemma 1.
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B Proof of Theorem 2

Similar to Theorem 1 in the main model, the proof strategy for Theorem 2 in

the extension follows four steps. First, I derive properties of optimal discrete-time

incentive schemes. Second, I establish an HJB equation by replicating discrete-time

incentive schemes with compound Poisson incentive schemes. Third, I show the opti-

mality of immediate reaction which implies that the continuation value upon Poisson

arrival is either termination or tenure. This differs from the optimality of termination

in the main model because the principal can react to signals by tenuring the agent

in addition to terminating him. Fourth, I derive the optimal incentive scheme by

studying the evolution of continuation value absent arrivals. This differs from the

explicit construction in the main model because I can no longer construct the value

function with two possible jumps.

For the first three steps, I shall comment on the modifications needed to adapt

the lemmata in the main model to the extension. I note here a general modification

that applies to all lemmata: the domain of continuation value in the extension is [0, u]

instead of [0, u − k) in the main model. For the fourth step of verification, I shall

provide a separate proof that takes advantage of the monotonic continuation value.

B.1 Discrete-time incentive provision

B.1.1 Discrete-time problem

The setup of the discrete-time problem is identical to the main model except that

the principal needs not incentivize effort when employing the agent, i.e., she may let

the agent shirk (hn = 1, an = 0).

B.1.2 Simple upper and lower bound of value function

With the extended domain and the possibility of shirking, the first-best value

function is VFB(W ) = W
u−kπ for W ∈ [0, u−k] and VFB(W ) = u−W

k
π for W ∈ (u−k, u].

Instead of the stationary incentive scheme, I bound V∆t from below by 0 noting
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that the principal can randomize between termination and tenure to provide any

continuation value W ∈ [0, u] and obtain value 0.

B.1.3 Discrete-time value function

In place of Lemma 3, I provide an implicit upper bound to the value function.

Lemma 31 There exists a concave function V satisfying V (W ) < VFB(W ) for W ∈
(0, u) with V (0) = VFB(0) and V (u) = VFB(u) such that V∆t ≤ V .

Proof. Analogous to Lemma 3, I prove Lemma 31 by studying a relaxed problem

that pools all incentive constraints. The main difference is that the principal can also

allow shirking.

1. The agent privately chooses effort a ∈ {0, 1}.

2. A public randomization is realized.

3. The principal publicly chooses monitoring L ∈ ∆1(0,∞) on the private effort.

4. The principal publicly chooses whether to employ the agent and recommend

effort (h = 1, ã = 1), employ the agent but not recommend effort (h = 1, ã = 0),

or not employ the agent (h = 0, ã = 0).

The agent’s vNM payoff is h(u−kãa), and the principal’s πhãa−C(L). The problem

is parametrized by the agent’s continuation value W0 ∈ [0, u].

The static incentive scheme follows the same construction except that the recom-

mended effort ã equals an corresponding to the sequence {Lm : m ≤ n − 1} in the

dynamic scheme. This is because the recommended effort is no longer determined by

employment decision hn.

I compute the agent’s expected payoff and show incentive compatibility. For a = 1,
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the agent’s expected payoff is

Ea=1 [h(u− kãa)] =
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆tEa=1 [hn (u− kan) |n]

=Ea=1

[
∞∑
n=1

(1− e−r∆t)e−(n−1)r∆th(u− kan)

]
.

Just as in Lemma 3, the payoff in the static incentive scheme equals continuation

utility W0 in the dynamic incentive scheme. Similarly, the static constraint is a

particular dynamic incentive constraint and thus is satisfied. The principal’s payoff

is weakly higher in the static problem, again, due to compound reduction.

I provide an implicit solution to the upper bound because the optimal static

scheme optimizes over three instead of two choice variables. The revelation principle

implies that it suffices to consider monitoring with ternary support without public

randomization. The Inada condition on the monitoring cost implies that an optimum

exists and it involves non-trivial monitoring if W ∈ (0, u). Let V (W ) denote the value

of the static scheme. The non-trivial monitoring is costly and thus V (W ) < VFB(W )

on (0, u). It attains value 0 at W = 0, u because the agent cannot be employed or

cannot exert effort. Function V is concave by public randomization.

The Bellman operators need to incorporate the possibility of shirking. In addition

to the working operator and the suspension operator, I define the shirking operator

for v : [0, u]→ R by

Sv(W ) := e−r∆tv
(
er∆t

(
W − (1− e−r∆t)u

))
where v is taken as −∞ outside its domain. Instead of Equation (7), the maximum

operator is defined by

Mv(W ) := max {Av(W ), Nv(W ), Sv(W )} .

Lemma 5, which shows a maximizer exists in the closure of the domain [0, u− k),

continues to hold in the extension because the domain [0, u] is already compact.

Lemma 7 is no longer needed because of the compact domain [0, u].
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I strengthen Lemma 8 which establishes the continuity and concavity of the value

function.

Lemma 32 The value function V∆t is continuous and concave with V∆t(0) = V∆t(u) =

0. Moreover, V ′∆t(0) ≤ π
u−k and V ′∆t(u) ≥ −π

k
.

Proof. Concavity and thus continuity in the interior follows from the fixed-point

property of the value function. Continuity and the values and marginal values at the

boundaries follows from VFB ≥ V∆t ≥ 0 and VFB(0) = VFB(u) = 0.

B.1.4 Optimal discrete-time incentive scheme

Lemma 9, which shows that the randomization operator admits a maximizer,

continues to hold but the proof no longer requires the analysis of J1 → u− k due to

the compact domain.

Lemma 10, which shows that the work operator admits a maximizer in the original

domain, is subsumed by the analog of Lemma 5 due to the compact domain.

Recall (lower) cutoff W∆t := max{W : V∆t(W ) = V ′∆t(0)W}. I define in addition

the upper cutoff W∆t := min{W : V∆t(W ) = V ′∆t(u)(W − u)}. Recall also that I

call W an extreme point if (W,V∆t(W )) is an extreme point of the hypograph of V∆t.

Now, I call an extreme point W interior if W 6= 0, u.

I adapt Lemma 11 to accommodate the upper cutoff that arises from the possibility

of shirking.

Lemma 33 The cutoffs are bounded by W∆t > (1 − e−r∆t)u and W∆t < e−r∆tu.

Promised utility W is an extreme point if and only if W = 0, u or W ∈ [W∆t,W∆t].

For interior extreme point W , work is strictly optimal over suspension and shirking,

i.e., V∆t(W ) = AV∆t(W ) > max{NV∆t(W ), SV∆t(W )}.

Proof. I prove the lemma by showing that work is strictly optimal at W if it is

an interior extreme point, and that W is an interior extreme point for all W ∈
[W∆t,W∆t].
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I first show that work is optimal for interior extreme points. Let W be an interior

extreme point. The randomization operator R is increasing and so V∆t = RMV∆t ≥
MV∆t. Because W is an extreme point, I have V∆t(W ) = RMV∆t(W ) = MV∆t(W ).

Suppose suspension is optimal V∆t(W ) = NV∆t(W ). Because V∆t(0) = 0, the opti-

mality implies

V∆t(W ) = e−r∆tV∆t

(
er∆tW

)
= (1− e−r∆t)V∆t(0) + e−r∆tV∆t

(
er∆tW

)
which contradicts with the fact that W is an interior extreme point. Suppose instead

shirking is optimal V∆t(W ) = SV∆t(W ). Because V∆t(u) = 0, the optimality implies

V∆t(W ) =e−r∆tV∆t

(
er∆t

(
W − (1− e−r∆t)u

))
=(1− e−r∆t)V∆t(u) + e−r∆tV∆t

(
er∆t

(
W − (1− e−r∆t)u

))
which contradicts with the fact that W is an interior extreme point. Therefore,

V∆t(W ) = AV∆t(W ) > max{NV∆t(W ), SV∆t(W )}.

I continue to show that W is an interior extreme point for all W ∈ [W∆t,W∆t].

By definition, W∆t is an extreme point. Suppose W∆t ≤ (1 − e−r∆t)u. Then either

W∆t > 0 is an interior extreme point or W∆t = 0 and so there exists a sequence

of interior extreme points Wn → 0. But working is infeasible and thus suboptimal

AV∆t(W ) = −∞ for W ∈ [0, (1 − e−r∆t)u), a contradiction. Therefore, W∆t > (1 −
e−r∆t)u and so it is an interior extreme point. Analogously, W∆t is an extreme point

by definition. Suppose W∆t ≥ e−r∆tu. Then either W∆t < u is an interior extreme

point or W∆t = 0 and so there exists a sequence of interior extreme points Wn → 0.

But working is infeasible and thus suboptimal AV∆t(W ) = −∞ for W ∈ [e−r∆tu, u],

a contradiction. Therefore, W∆t < e−r∆tu and so it is an interior extreme point.

Therefore, for W ∈ (W∆t,W∆t), there exists interior extreme points W1,W2 such

that W ∈ (W1,W2). Then W is an interior extreme point for all W ∈ (W1,W2) due

to the strict concavity of AV∆t (Lemma 6) and the monotonicity of R.

The definition of the canonical incentive scheme incorporates the possibility of

tenure W = u in addition to termination W = 0. For ∆t > 0 and W0 ∈ (W∆t,W∆t),

I define the canonical discrete-time incentive scheme at continuation value W0 it-
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eratively. Let F0 be the trivial measure space. For n ≥ 1, take an maximizer

{(pi, Li, Ji) : 1 ≤ i ≤ 4} of AV∆t(Wn−1). Define (Fn,Pn) as the product probability

space of (Fn−1,Pn−1) augmented with n. Define the random variable (Ln,Wn) accord-

ing to the law of the maximizer (Li, Ji). Define hn := 1Wn−1 6=0 and an := 1Wn−1 6=0,u.

The complete probability space (Ω, {Fn},P) exists by the Kolmogorov extension the-

orem.

The optimality of the canonical incentive scheme follows from Lemma 33 and the

analog of Lemma 12.

B.1.5 Uniform convergence and limit

Lemma 14, which shows the randomization region vanishes as period length shrinks,

generalizes to Lemma 34.

Lemma 34 lim∆t→0W∆t = 0 and lim∆t→0W∆t = u.

The proof is symmetric to Lemma 14 and is omitted.

I adapt Lemma 15, which shows the value increases when the period length shrinks,

to include the shirking operator and randomization on (W∆t, u). Note that the state-

ment of the lemma is identical.

Lemma 35 The value increases when the period length shrinks, i.e. ∆t > ∆t′ > 0

implies V∆t′ ≥ V∆t.

Proof. Because R and M∆t′ are increasing operators and V∆t′ is the fixed point of

RM∆t′ , it suffices to show that RM∆t′V∆t ≥ RM∆tV∆t.

The proof of N∆t′V∆t(W ) ≥ N∆tV∆t(W ) is identical to Lemma 15. The proof of

S∆t′V∆t(W ) ≥ S∆tV∆t(W ) is symmetric. The claim is equivalent to

(1− e−r∆t′)V∆t(u) + e−r∆t
′
V∆t(e

r∆t′
(
W − (1− e−r∆t′u)

)
) ≥ (1− e−r∆t)V∆t(u) + e−r∆tV∆t(e

r∆t
(
W − (1− e−r∆tu)

)
)

because V∆t(u) = 0. Observe that (1 − e−r∆t
′
)δu + e−r∆t

′
δer∆t′(W−(1−e−r∆t′ )u) is a

mean-preserving contraction of (1− e−r∆t)δ0 + e−r∆tδer∆t(W−(1−e−r∆tu)), where δ is the

Dirac delta. Therefore, the claim follows from the concavity of V∆t.
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The proofs of RM∆t′V∆t(W ) ≥ RM∆tV∆t(W ) for W ∈ [W∆t,W∆t] and for W ∈
[0,W∆t) are identical to Lemma 15. It remains to show the claim for W ∈ (W∆t, 0].

This is symmetric to the lower cutoff. Note thatRM∆tV∆t(W ) = V∆t(W ) = W−W∆t

u−W∆t
V∆t(u)+

u−W
u−W∆t

V∆t(W∆t). Therefore, I have

RM∆t′V∆t(W ) ≥W −W∆t

u−W∆t

M∆t′V∆t(u) +
u−W
u−W∆t

V∆t(W∆t)

≥W −W∆t

u−W∆t

S∆t′V∆t(u) +
u−W
u−W∆t

V∆t(W∆t)

≥ u−W
u−W∆t

V∆t(W∆t) = V∆t(W ) .

The first inequality follows because this is a particular randomization, the second

from the definition of M∆t′ as the maximum, and the third from S∆t′V∆t(0) = 0 and

A∆t′V∆t ≥ A∆tV∆t. The last equality follows from the definition of W∆t.

B.2 Recursive formulation via Poisson incentive schemes

I adapt Definition 1, which defines compound Poisson incentive schemes, to the

possibility of tenure in the canonical incentive scheme. The binary random variable

B ∈ {0, 1} distinguishes the end of monitoring due to termination B = 0 and due to

tenure B = 1.

Definition 4 A tuple (Ω,F,P,Γ, h, a) is a compound Poisson incentive scheme if

there exist discrete-time monitoring technology {Ln : supp |Ln| ≤ 4, n = 1, 2, ...} with

L0 := 1, Γ-stopping time N , ΓN -measurable random variable B, and arrival times

{τn : n = 0, 1, 2, ...} with τ0 := 0 of an independent Poisson process of frequency λ > 0

such that

� the cumulative excess likelihood ratio is a compound Poisson process

Γt =
Nt∧N∑
n=1

(Ln − 1)

where Nt := inf{n ≥ 0 : τn ≤ t};
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� the filtration (Ω,F,P) is the augmented natural filtration of (t,Γ);

� the employment decision is ht = 1 iff t ≤ τN or t > τN and B = 1; the

recommended effort is at = 1t≤τN ;

� the agent’s continuation value W satisfies the instantaneous incentive com-

patibility constraint for n ≤ N − 1

λEτn
[(

Γτn − Γτn+1

) (
Wτn+1 −Wτn

)]
= rk .

Lemma 19, which computes the value and show discrete-time approximation, con-

tinues to hold because the principal derives no revenue when the agent is terminated

or tenured.

B.2.1 Compound Poisson HJB

The only modification required is the domain [0, u].

B.2.2 Poisson HJB

The only modification required is the domain [0, u].

B.2.3 Smoothness of value function

The only modification required is the domain [0, u].

B.3 Optimality of termination or tenure upon Poisson arrival

B.3.1 Proof of Lemma 36

I adapt Lemma 2, which shows the optimality of termination in discrete time, to

the extension and show the optimality of termination or tenure.
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Lemma 36 (Immediate reaction) In any optimal discrete-time incentive schemes,

there is a positive-probability signal that leads to either immediate termination or im-

mediate tenure.

The negation of Lemma 36 is that none of the continuation values is termination or

tenure. The proof by contradiction is then identical to Lemma 2 which shows the

suboptimality of continuation for all possible signals.

B.3.2 Value function satisfies Termination-Tenure HJB

I adapt Lemma 26, which shows termination minimizes the cost-incentive ratio,

to Lemma 37 which shows either termination or tenure minimizes the ratio.

Lemma 37 For W ∈ (0, u), let L0 denote the solution to the first-order condition

(3) for termination J = 0, and Lu the solution for tenure J = u. Then

(L0, 0) or (Lu, u) ∈ arg max
L,J

1

1− L
k

J −W
(V (J)− V (W )− (J −W )V ′(W )− c(L))

where the maximization is subject to (1− L)(J −W ) > 0.

Proof. Lemma 36 implies either (1) there exists a subsequence ∆t→ 0 such that the

∆t-optimal incentive scheme all features a signal that leads to immediate termination

along the entire subsequence, or (2) there exists a subsequence ∆t→ 0 such that the

∆t-optimal incentive scheme all features a signal that leads to immediate tenure along

the entire subsequence.

In the first case, the proof of Lemma 26 applies and shows that termination

minimizes the cost-incentive ratio. In the second case, the symmetric argument shows

that tenure minimizes the ratio.

I adapt Proposition 3, which shows the value function satisfies the Termination

HJB, to Proposition 4 which shows the value function satisfies the Termination-Tenure

HJB.
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Proposition 4 (Termination-Tenure HJB) The value function V is a classical

solution to the termination HJB for W ∈ (0, u)

v(W ) =π + (W − u+ k)v′(W )

+ max

{
max
L>1

1

1− L
k

0−W
(v(0)− v(W )− (0−W )v′(W )− c(L)) ,

max
L<1

1

1− L
k

u−W
(v(u)− v(W )− (u−W )v′(W )− c(L))

}
.

The proof is almost identical to Proposition 3 except that I invoke Lemma 36 in place

of Lemma 26.

B.4 Verification by the evolution of continuation value ab-

sent arrivals

B.4.1 Sign and magnitude of drift

When J = u is optimal, I obtain the value v and marginal value v′ as functions

of L by rewriting the termination-tenure HJB and FOC (3)v(W ) = 1
k

(
(u−W )π +

(
W − u+ k + k

L−1

)
c′(L)(L− 1)− (W − u+ k)c(L)

)
v′(W ) = 1

k

(
−π +

(
1 + 1

1−L
k

0−W

)
c′(L)(L− 1)− c(L)

)
(14)

in place of Equation (9) when J = 0 is optimal. I take derivative of v with respect to

W and equating it to v′ to obtain a first-order ordinary differential equation of L as

a function of W

L̇ = − k

u−W
c′(L)

c′′(L)

1

(L− 1)(W − u+ k) + k
. (15)
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in place of Equation (10). I take derivative of v′ with respect to W and substituting

L̇ with the ODE to obtain

v′′(W ) = − k

(u−W )2
c′(L)

1

(W − u+ k) + k
L−1

. (16)

in place of Equation (11). For the value function to be strictly concave, the drift

r
(
(W − u+ k) + k

L−1

)
must be negative. As a result, L̇ < 0.

With abuse of notation, I write termination as a short hand for monitoring with

Poisson bad news that leads to immediate termination, and tenure short for monitor-

ing with Poisson good news that leads to immediate tenure.

Lemma 27 shows that the solution to ODE (10) is well-behaved for termination. I

also need to establish Lemma 38 which shows the solution to ODE (15) is well-behaved

for tenure.

Lemma 38 Consider the initial value problem of ODE (15) at (W̃ , L̃) on the domain

W ∈ [0, u) and L ∈ (0, 1). It admits a unique solution on [W̃ , u).

Proof. Note that the domain satisfies W − u+ k + k
L−1

< 0.

The RHS of Equation (15) satisfies the Picard-Lindelöf conditions, i.e. continuous

in W and Lipschitz continuous in L on all compact subsets of the domain, so there

exists a unique solution in the interior. Moreover, L̇ ∈ (0,∞) so the solution also

solves the initial value problem

Ẇ = L̇−1 = −u−W
k

c′′(L)

c′(L)
((L− 1)(W − u+ k) + k) (17)

with the same initial condition and domain.

Define L0 as a function of W ∈ (0, u) as the unique solution to the first-order

condition (3) with J = 0. Let λ0 := 1
1−L0

rk
0−W > 0 denote the corresponding frequency

for binding IC. Similarly, Lu is the unique solution with J = u and λu := 1
1−Lu

rk
u−W > 0

denotes the corresponding frequency.

Lemma 39 There exists uniform bound δ > 0 such that the drift from termination

W − u+ k + k
L0(W )−1

> δ for all W ∈ (0, u).
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Proof. Because the drift is nonnegative by the concavity of value function (Equa-

tion (11)), it suffices to show that L0(·) lies in a compact region strictly bounded

away from the curve W − u+ k + k
L(W )−1

= 0.

The region is defined by four constraints W ∈ [0, u], L ≥ 1, L(W ) ≤ L∗(W ), and

L ≤ Lmax where L∗ is the optimal likelihood ratio function in the main model, and

Lmax is the unique solution on (1,∞) to

c′(L)(L− 1)− c(L) = π + πmax

{
u

u− k
,
u

k

}
.

The first constraint is on the domain of continuation value, and the second constraint

follows from the IC constraint that bad news L > 1 follows termination J = 0 < W .

The third constraint provides a variable upper bound on the optimal likelihood ratio.

Observe from Equation (9) that v′(W ) is decreasing in L, and thus v(W ) is also

decreasing in L. Because the optimal incentive scheme in the main model is feasible

in the extension, the value in the extension is weakly higher and therefore the optimal

likelihood ratio is weakly lower. The fourth constraint provides a uninform upper

bound on the optimal likelihood ratio. It follows from the first-order condition and

the fact that the value function and its derivative are both uniformly bounded.

Lemma 40 There exists uniform bound δ > 0 such that the drift from tenure W −
u+ k + k

L0(W )−1
< −δ for all W ∈ (0, u).

Proof. Because the drift is nonnegative by the concavity of value function (Equa-

tion (16)), it suffices to show that Lu(·) lies in a compact region strictly bounded

away from the curve W − u+ k + k
L(W )−1

= 0.

The region is defined by W ∈ [0, u], L ≤ 1, and L ≥ Lmin where Lmin is the unique

solution on (0, 1) to

c′(L)(L− 1)− c(L) = π + πmax

{
u

u− k
,
u

k

}
.

The first constraint is on the domain of continuation value, and the second constraint

follows from the IC constraint that good news L > 1 follows tenure J = u < W . The

third constraint provides a uninform upper bound on the optimal likelihood ratio.
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It follows from the first-order condition and the fact that the value function and its

derivative are both uniformly bounded.

B.4.2 Four possible forms

Proof of Theorem 2. Let W0 ∈ arg maxW V (W ) denote the maximizer of the

value function. It is unique and it is in the interior W0 ∈ (0, u) because V is strictly

concave and V (0) = V (u) = 0. I show that the maximum value V (W0) is attained

by constructing incentive schemes of the four possible forms.

For W ∈ (0, u) such that termination and tenure are both optimal, define function

α by

α(W ) :=
−
(
W − u+ k + k

Lu(W )−1

)
(
W − u+ k + k

L0(W )−1

)
−
(
W − u+ k + k

Lu(W )−1

)
such that the drift is zero such that termination at frequency αλ0 and tenure at

frequency (1− α)λu yields zero drift for the continuation value

r (W − u+ k − αλ0(0−W )− (1− α)λu(u−W )) = 0 .

The function is a fraction α(W ) ∈ (0, 1) due to Lemma 39 and Lemma 40.

I consider five cases categorized by the optimality of termination and/or tenure.

The first case is that termination and tenure both are optimal at W0. The incentive

scheme is a special case of the third and fourth form in that the trial period is degener-

ate. The monitoring technology Γ is the sum of two stationary compensated Poisson

processes, the Poisson bad news with jump L0(W0) − 1 at frequency α(W0)λ0(W0)

and the Poisson good news with jump Lu(W0)− 1 at frequency (1− α(W0))λu(W0),

stopped at the first arrival τ . Bad news leads to immediate termination W = 0 and

good news leads to immediate tenure W = u.

I show that this incentive scheme gives the agent continuation value Wt = W0

conditional on no news. For t < τ and s > 0, the continuation value at t up to s
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satisfies

Et
[∫ s∧τ

t

re−r(q−t)(u− k)dq + e−r(s∧τ−t)Ws∧τ

]
=Wt + Et

[∫ s∧τ

t

e−r(q−t) (−rW + r(u− k) + αλ0(0−W ) + (1− α)λu(u−W )) dq

]
=Wt = W0 .

The first equality follows from the Itô lemma. The second equality follows from

the definition of α. Because s is arbitrary, I take the limit s → ∞ to obtain the

continuation value at t

Et
[∫ τ

t

re−r(q−t)(u− k)dq

]
= lim

s→∞
Et
[∫ s∧τ

t

re−r(q−t)(u− k)dq + e−r(s∧τ−t)Ws∧τ

]
= W0

where the first equality follows from uniform integrability.

I show that this incentive scheme is incentive compatible. For ease of exposition,

I only consider a′ that does not exert effort when the agent is tenured. It suffices to

show that the agent’s continuation value is independent of a′. For any such a′ and

t > 0, the continuation value at time 0 up to t is independent of a′

Ea′
[∫ t∧τ

0

re−rs(u− ka′)ds+ e−r(t∧τ)Wt∧τ

]
=W0 + E

[∫ t∧τ

0

e−rs
(
−rW + r(u− ka′) + αλ0L

1−a′
0 (0−W ) + (1− α)λuL

1−a′
u (u−W )

)
ds

]
=W0 + E

[∫ t∧τ

0

e−rs (−rW + r(u− k) + αλ0(0−W ) + (1− α)λu(u−W )) ds

]
=W0 .

The first equality follows from the Itô lemma and the change of measure from Pa′

to P. The second equality follows from the instantaneous IC. The third equality

follows from the definition of α. Because t is arbitrary, I take t → ∞ to obtain the

continuation value of a′
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Ea′
[∫ τ

0

re−rt(u− ka′)dt
]

= lim
t→∞

Ea′
[∫ t∧τ

0

re−rs(u− ka′)ds+ et∧τWt∧τ

]
= W0

where the first equality follows from uniform integrability.

I show that this incentive scheme attains value V (W0). It can therefore be approx-

imated by discrete-time incentive schemes because V (W0) = VDL(W0) by Lemma 20.

For t > 0, the principal’s value up to time t is

E
[∫ t∧τ

0

e−rs (rπds− dCs(Γ)) + e−rt∧τV (Wt∧τ )

]
=E

[∫ t∧τ

0

e−rs (rπ − αλ0c(L0)− (1− α)λuc(Lu)) ds+ e−rt∧τV (Wt∧τ )

]
=V (W0) + E

[ ∫ t∧τ

0

e−rs
(
− rV (Ws) + rπ − αλ0 (V (Ws) + c(L0))

− (1− α)λu (V (Ws) + c(Lu))

)
ds

]
=V (W0)

+ E
[ ∫ t∧τ

0

e−rs
(
− rV + rπ + r(W − u+ k)V ′ − αλ0 (V (0)− V − (0−W )V ′ − c(L0))

− (1− α)λu (V (u)− V − (u−W )V ′ − c(Lu))
)
ds

]
=V (W0) .

The first equality follows from the monitoring cost for jump processes. The second

equality follows from the Itô lemma. The third equality follows from algebra. The

fourth equality follows from the HJB equation because termination and tenure are

both optimal. Because t is arbitrary, I take t→∞ to obtain the principal’s value

E
[∫ τ

0

e−rs (rπds− dCs(Γ)) + e−rτV (Wτ )

]
= lim

t→∞
E
[∫ t∧τ

0

e−rs (rπds− dCs(Γ)) + e−rt∧τV (Wt∧τ )

]
=V (W0) .
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The first equality follows from uniform integrability.

The second case is that termination is strictly optimal on [W0, u). The incentive

scheme corresponds to the first form in Theorem 2. Recall L0(W ) is the unique

solution to the first-order condition (3) for J = 0, and λ0(W ) is the corresponding

frequency. Let W ∗
t denote the solution to dWt

dt
= r

(
Wt − u+ k + k

1−L0(Wt)

)
with

initial condition W ∗
0 = W0. Let T := inf{t : W ∗

t = u} denote the time at which W ∗

reaches u. It is finite because the derivative of W ∗ is bounded away from zero by

Lemma 39. The monitoring technology Γ is the non-stationary compensated Poisson

process with jump L0(W ∗
t )−1 at frequency λ0(W ∗

t ), stopped at the first arrival τ and

at T whichever is earlier. Bad news leads to immediate termination and no arrival

before T leads to tenure.

I show that the agent’s continuation value at time t ∈ [0, T ] is W ∗
t .

Et
[∫ T∧τ

t

re−r(s−t)(u− k)ds+ e−r(T∧τ−t)WT∧τ

]
=W ∗

t + Et
[∫ T∧τ

t

e−r(s−t)
(
−rW ∗ + r(u− k) + r

(
W ∗ − u+ k +

k

1− L0

)
+ λ0(0−W ∗)

)
ds

]
=W ∗

t .

The first equality follows from the Itô lemma and the second equality from the defi-

nition of L0 and λ0.

I show incentive compatibility. For ease of exposition, I only consider a′ that

does not exert effort when the agent is tenured. It suffices to show that the agent’s

continuation value is independent of a′

Ea′
[∫ T∧τ

0

re−rt(u− ka′)dt+ e−rT∧τWT∧τ

]
=W ∗

0 + E
[∫ T∧τ

0

e−rt
(
−rW ∗ + r(u− ka′) +

(
W ∗ − u+ k +

k

1− L0

)
+ λ0L

1−a′
0 (0−W ∗)

)
ds

]
=W ∗

0 + E
[∫ T∧τ

0

e−rt
(
−rW ∗ + r(u− k) +

(
W ∗ − u+ k +

k

1− L0

)
+ λ0(0−W ∗)

)
ds

]
=W ∗

0 .
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The first equality follows from the Itô lemma and the change of measure from Pa′

to P. The second equality follows from the instantaneous incentive constraint. The

third equality follows from the definitions of L0 and λ0.

I show the incentive scheme attains value V (W0). It can therefore be approximated

by discrete-time incentive schemes because V (W0) = VDL(W0) by Lemma 20. The

principal’s value is

E
[∫ T∧τ

0

e−rt (rπdt− dCt(Γ)) + erT∧τV (WT∧τ )

]
=E

[∫ T∧τ

0

e−rt (rπ − λ0c(L0)) ds+ erT∧τV (WT∧τ )

]
=V (W0) + E

[∫ T∧τ

0

e−rt (rπ + r(W − u+ k)V ′ + λ0 (V (0)− V − (0−W )V ′ − c(L0))) ds

]
=V (W0) .

The first equality follows from the monitoring cost for jump processes. The second

equality follows from the Itô lemma. The third equality follows from the HJB equation

by the optimality of termination.

The third case is that there exists W̃ ∈ (W0, u) such that termination is strictly

optimal on [W0, W̃ ] and termination and tenure are both optimal at W̃ . The optimal

incentive scheme corresponds to the third form in Theorem 2. Let W ∗
t denote the

solution to dWt

dt
= r

(
Wt − u+ k + k

1−L0(Wt)

)
with initial condition W ∗

0 = W0. Let

T := inf{t : W ∗
t = u} denote the time at which W ∗ reaches W̃ . It is finite because the

derivative of W ∗ is bounded away from zero by Lemma 39. The monitoring technol-

ogy Γ consists of the non-stationary Poisson bad news monitoring during trial period

[0, T ] and the stationary two-sided Poisson monitoring afterwards (T,∞), stopped

at the first arrival τ . During the trial period, it is the non-stationary compensated

Poisson process with jump L0(W ∗
t )− 1 at frequency λ0(W ∗

t ). Bad news leads to im-

mediate termination W = 0. After the trial period, it is the sum of two stationary

compensated Poisson processes, the Poisson bad news with jump L0(W̃ ) − 1 at fre-

quency α(W̃ )λ0(W̃ ) and the Poisson good news with jump Lu(W̃ ) − 1 at frequency

(1− α(W̃ ))λu(W̃ ). Bad news leads to immediate termination W = 0 and good news

leads to immediate tenure W = u.
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I show that the agent’s continuation value at time t is W ∗
t . For t ∈ [0, T ] and

s > T , the agent’s continuation value at time t up to s is

Et
[∫ s∧τ

t

re−r(q−t)(u− k)dq + e−r(q∧τ−t)Wq∧τ

]
=W ∗

t

+ Et
[ ∫ T∧τ

t

e−r(s−t)
(
−rW ∗ + r(u− k) + r

(
W ∗ − u+ k +

k

1− L0

)
+ λ0(0−W ∗)

)
ds

+

∫ s∧τ

T∧τ
e−r(s−t) (−rW ∗ + r(u− k) + αλ0(0−W ∗) + (1− α)λu(u−W ∗)) ds

]
=W ∗

t .

The first equality follows from the Itô lemma. The second equality follows from the

definitions of L0, λ0, and α. Because s is arbitrary, I take s → ∞ to obtain the

agent’s continuation value at t

Et
[∫ τ

t

re−r(s−t)(u− k)ds

]
= lim

s→∞
Et
[∫ s∧τ

t

re−r(q−t)(u− k)dq + e−r(q∧τ−t)Wq∧τ

]
= W ∗

t .

The first equality follows from uniform integrability. For t > T , the agent’s continu-

ation value is W ∗
t = W̃ . The derivation is identical to that of the first case with W0

replaced by W̃ because the continuation of the incentive scheme is the same.

I show incentive compatibility. For ease of exposition, I only consider a′ that

does not exert effort when the agent is tenured. It suffices to show that the agent’s

continuation value is independent of a′. For t > T , the agent’s continuation value of
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a′ at 0 up to t is

Ea′
[∫ t∧τ

0

re−rs(u− ka′)ds+ e−rt∧τWt∧τ

]
=W ∗

0

+ E
[ ∫ T∧τ

0

e−rs
(
−rW ∗ + r(u− ka′) + r

(
W ∗ − u+ k +

k

1− L0

)
+ λ0L

1−a′
0 (0−W ∗)

)
ds

+

∫ t∧τ

T∧τ
e−rs

(
−rW ∗ + r(u− ka′) + αλ0L

1−a′
0 (0−W ∗) + (1− α)λuL

1−a′
u (u−W ∗)

)
ds

]
=W ∗

0

+ E
[ ∫ T∧τ

0

e−rs
(
−rW ∗ + r(u− k) + r

(
W ∗ − u+ k +

k

1− L0

)
+ λ0(0−W ∗)

)
ds

+

∫ t∧τ

T∧τ
e−rs (−rW ∗ + r(u− k) + αλ0(0−W ∗) + (1− α)λu(u−W ∗)) ds

]
=W ∗

0 .

The first equality follows from the Itô lemma and the change of measure from Pa′

to P. The second equality follows from the instantaneous incentive constraint. The

third equality follows from the definitions of L0, λ0, and α. Because t is arbitrary, I

take t→∞ to obtain the agent’s continuation of a′

Ea′
[∫ τ

0

re−rt(u− ka′)ds
]

= lim
t→∞

Ea′
[∫ t∧τ

0

re−rs(u− ka′)ds+ e−rt∧τWt∧τ

]
= W ∗

0 .

The first equality follows from uniform integrability.

I show the incentive scheme attains value V (W0). It can therefore be approximated

by discrete-time incentive schemes because V (W0) = VDL(W0) by Lemma 20. For
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t > T , the principal’s value up to time t is

E
[∫ t∧τ

0

e−rs (rπds− dCs(Γ)) + ert∧τV (Wt∧τ )

]
=E

[∫ T∧τ

0

e−rs (rπds− dCs(Γ)) +

∫ t∧τ

T∧τ
e−rs (rπds− dCs(Γ)) + ert∧τV (Wt∧τ )

]
=E
[ ∫ T∧τ

0

e−rs (rπ − λ0c(L0)) ds+

∫ t∧τ

T∧τ
e−rs (rπ − (αλ0c(L0) + (1− α)λuc(Lu))) ds

+ ert∧τV (Wt∧τ )

]
=V (W0)

+ E
[ ∫ T∧τ

0

e−rt (rπ + r(W − u+ k)V ′ + λ0 (V (0)− V − (0−W )V ′ − c(L0))) ds

+

∫ t∧τ

T∧τ
e−rs

(
− rV + rπ + r(W − u+ k)V ′ − αλ0 (V (0)− V − (0−W )V ′ − c(L0))

− (1− α)λu (V (u)− V − (u−W )V ′ − c(Lu))
)
ds

]
=V (W0) .

The second equality follows from the monitoring cost for jump processes. The third

equality follows from the Itô lemma. The fourth equality follows from the HJB

equation by the optimality of termination during the trial period when W ∗
t ∈ [W0, W̃ ]

and the optimality of termination and tenure afterwards when W ∗
t = W̃ . Because t

is arbitrary, I take t→∞ to obtain the principal’s value

E
[∫ τ

0

e−rs (rπds− dCs(Γ)) + e−rτV (Wτ )

]
= lim

t→∞
E
[∫ t∧τ

0

e−rs (rπds− dCs(Γ)) + e−rt∧τV (Wt∧τ )

]
=V (W0) .

The first equality follows from uniform integrability.

The fourth case is that tenure is strictly optimal on (0,W0]. The incentive scheme

corresponds to the second form in Theorem 2. The construction and verification are

symmetric to the second case and thus omitted.
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The fifth case is that there exists W̃ ∈ (0,W0) such that tenure is strictly opti-

mal on [W̃ ,W0] and both termination and tenure are optimal at W̃ . The optimal

incentive scheme corresponds to the fourth form in Theorem 2. The construction and

verification are symmetric to the third case and thus omitted.
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