
The Behavioral Implications of Statistical Decision Theory

Bruno Furtado∗

Department of Economics, Columbia University

Job Market Paper
Latest version here

November 22, 2022

Abstract

Statistical decision theory (SDT), pioneered by Abraham Wald, models how decision makers use
data for decisions under uncertainty. Despite its prominence in information economics and econo-
metrics, SDT has not been given formal choice-theoretic or behavioral foundations. This paper
axiomatizes preferences over decision rules and experiments for a broad class of SDT models. The
axioms show how certain seemingly-natural decision rules are incompatible with this broad class of
SDT models. Using my representation result, I develop a methodology to translate axioms from
classical decision-theory, a la Anscombe and Aumann (1963), to the SDT framework. I illustrate its
usefulness by translating various classical axioms to refine my baseline SDT framework into more
specific SDT models, some of which are novel to SDT. I also discuss foundations for SDT under other
kinds of choice data.
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1 Introduction

Statistical decision theory (henceforth SDT) models decisions under uncertainty as an optimization
problem. Nature selects a true parameter, or state of the world. Meanwhile, the decision maker (DM)
chooses decision rules (strategies) and designs experiments (information structures) to maximize her
objective function, without knowing which parameter Nature chose. A signal is then drawn according to
a distribution determined by the parameter and the experiment. The DM observes the signal and takes
the action prescribed by the decision rule. The ultimate pay-off for the DM is based on the realised action
and Nature’s chosen parameter. Models of this kind are ubiquitous in information economics. A clear
example is the rational inattention literature, where a DM designs an experiment subject to constraints
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on its informativeness, simultaneously to choosing a decision rule. Moreover, many econometric problems
can be formulated in statistical decision theoretic terms.

Given their importance, surprisingly little is known about the behavioral assumptions implicit in
various statistical decision theoretic models. That is, there are no formal results describing which choices
over decision rules and experiments are consistent with the predictions of SDT models. The main goal
of this paper is to set SDT on a rigorous axiomatic — and behaviorally falsifiable — foundation. This
is done by axiomatically characterizing preferences over the choice objects of SDT: pairs of decision
rules and experiments. Formally, an experiment is a collection of probability distributions over signals,
indexed by the parameters, and a decision rule is a function assigning an action to each possible signal
arising from the experiment. The preferences over these objects, taken here as behavioral primitives, are
assumed to have been elicited by observing the DM’s choices from different feasible sets, following the
revealed preference principle.

Although much work has been done to behaviorally characterize various models of decisions under
uncertainty, existing results overwhelmingly focus on preferences (or choices) over acts – functions map-
ping the unknown states of the world directly to final consequences. This is the framework of Anscombe
and Aumann (1963) and Savage (1954). SDT differs from traditional decision theory under uncertainty
in that observable information – in the form of signals from experiments – is treated separately from the
parameters, which determine final outcomes. Therefore, unlike the traditional decision theoretic frame-
work, SDT considers information acquisition as an integral part of the model description. This makes it
a more natural setting to model situations in which the DM expects to receive partial information about
the parameter before making a decision.

To fix ideas, suppose our DM is a policymaker choosing whether to implement a costly social program
(action a1) or not (action a0). The program should be implemented if and only if its mean value, θ,
exceeds a known fixed cost c. Although the true value of the parameter θ is unknown, the DM can
observe a sample of size n from a randomized controlled trial designed to assess the effectiveness of
the program. Each sample is drawn independently from a normal distribution with mean θ and known
variance. The full set of n samples is the observed signal, and the experiment can be characterized by
a collection of random vectors, indexed by θ, having independent normally distributed components. An
example of a decision rule could be to take action a1 whenever the empirical mean of the signal is greater
than c, and action a0 otherwise. Suppose the DM can choose between two combinations of decision rules
and experiments. The first pairs a sample of size 50 with the decision rule previously described, based
on the empirical mean. The second pairs a sample of size 10 with a decision rule in which the policy is
not implemented for any signal. A preference relation between these pairs could be, for instance, that
the first combination is always chosen over the second one.

I impose axioms on the preference relation that fully characterize a DM who chooses as if using
a general SDT framework, which subsumes most models in applications. This establishes a tight link
between the predictions of such a model and behaviorally falsifiable constraints (axioms) on preferences,
which in turn allows us to tell what sets of choices are compatible with the SDT framework.

Preferences that abide by such a framework are characterized by a state-dependent utility function u

and a parameter aggregation functional I. The utility function u : A×Θ → R — where Θ and A are the
sets of parameters and actions respectively — determines the pay-offs of the actions at each parameter.
For example, if A and Θ are subsets of Rn, a common utility function is given by the negative of the
squared error : u(a, θ) = −∥a− θ∥2, where ∥ · ∥2 denotes the Euclidian norm.

Using u, one can calculate the agent’s risk functions, which define, for each parameter value, the
expected utility implied by a decision rule–experiment pair. Formally, given a decision rule δ : X → A

– where X is the signal space – and an experiment P = {Pθ : θ ∈ Θ}, I define the DM’s risk function
as the mapping θ 7→ ru(δ, P )(θ) ≡

∫
X
u(δ(x), θ)dPθ(x). Risk functions relate to lotteries, i.e., prospects
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involving objective probabilities. They represent taking the expected utility whenever the DM faces an
objective distribution, while remaining completely agnostic about the subjective uncertainty captured
by the parameters.

The second part of the representation, given by the aggregator I, summarizes the agent’s attitude
towards ambiguity, and can be viewed as an ordinal utility on the space of risk functions. It captures
the way in which DMs deal with subjective uncertainty, i.e., the fact that they do not know the true
parameter.

Formally, I characterize a DM who chooses decision rules and experiments to maximize the functional

V (δ, P ) = I(ru(δ, P )) = I

((∫
X

u(δ(x), θ)dPθ(x)

)
θ∈Θ

)
. (1)

The aggregator I is only required to be continuous and monotone – basic properties that are satisfied
by many models used in applications. Considering its particular form, I call this the monotone risk
aggregation (MRA) model. Specific objective functions are obtained by specifying particular functional
forms for I that satisfy these two properties.

Consider, for instance, two of the most well-known models in statistics and decision theory: the
subjective expected utility (SEU) and the maximin expected utility (MEU) models. An SEU agent is
assumed to have a prior belief π, which is a probability distribution on the set of parameters. Their
ex-ante utility from decision rule δ and experiment P is

∫
Θ

∫
X
u(δ(x), θ)dPθ(x)dπ(θ) =

∫
Θ
ru(δ, P )dπ.

In the language of the MRA framework, I is the expectation operator with respect to the prior be-
lief. On the other hand, an MEU agent maximizes the expected utility assuming the true parameter
is the worst possible one for whichever decision rule they choose. Their ex-ante utility is given by
minθ∈Θ

∫
X
u(δ(x), θ)dPθ(x) = minθ∈Θ ru(δ, P )(θ), that is, I(·) = minθ∈Θ(·). In both cases, I is mono-

tone and continuous, thus SEU and MEU specialize the MRA model. While SEU and MEU models
are widely applied in SDT, their exact behavioral implications were previously unknown. I provide
characterizations of these and other models in Section 5.

The model in (1) is characterized by a set of six axioms on preferences. Two of those axioms are
standard: they impose that preferences are rational (complete and transitive) and continuous. The
remaining axioms are specific to my setting. The Consequentialism axiom states that the DM ultimately
cares only about the parameter contingent probability distributions over actions induced by decision
rules and experiments, not about the rules and experiments themselves. Independence of Irrelevant
Parameters imposes that if one fixes the outcomes of two alternatives to be the same for every parameter
but one, then preferences are completely determined by conditioning on the single parameter where they
may differ. Taken together, these two axioms allow the ex-post utility u to be a function exclusively
of actions and parameters, rather than depend on the particular decision rule and experiment being
evaluated. Monotonicity says that if the DM prefers alternative 1 to alternative 2 conditional on any
parameter being the truth, then she prefers alternative 1 unconditionally as well. This guarantees that
the aggregator I is monotone. Finally, Conditional Mixture Independence requires that whenever the
DM knows the true parameter, she chooses as if maximizing expected utility.

To see how the axioms can help us empirically test whether preferences satisfy the MRA model,
recall the policymaker example above. For simplicity, suppose there are only two possible values of the
parameter, θ1 > c or θ0 < c. In principle, the DM can choose as her decision rule any signal-contingent
distribution over the two possible actions. Suppose the decision rule that is strictly preferred by the
DM is based on a likelihood ratio test: she specifies a significance level α and acts as if θ > c if, and
only if, she rejects the null hypothesis that θ < c. Consequently, she takes action a1 (implements the
program) whenever the null hypothesis is rejected, and takes action a0 otherwise. This is an example of

3



(a) δ∗1

P ∗
1 (a|θ) a0 a1
θ0 1− α1 α1

θ1 β1 1− β1

(b) δ∗2

P ∗
2 (a|θ) a0 a1
θ0 1− α2 α2

θ1 β2 1− β2

(c) δ̂1

P̂1(a|θ) a0 a1
θ0 1− α2 α2

θ1 β1 1− β1

(d) δ̂2

P̂2(a|θ) a0 a1
θ0 1− α1 α1

θ1 β2 1− β2

Table 1: Conditional action distributions under different decision rules

an inference-based decision rule – for further discussion of such rules, see Manski (2021). Furthermore,
the DM has different preferred significance levels αi for different sample sizes, perhaps feeling that more
informative experiments (larger n) permit more stringent standards for implementing the policy. Each
of these significance levels induce different decision rules δ∗i , which are assumed to be strictly preferred
to any other rule that could be paired with experiment i.

It is a priori unclear whether the apparently reasonable choice behavior just described is compatible
with any objective function in the mold of eq. (1). As it turns out, a simple argument shows that such
preferences violate the combination of Consequentialism and Independence of Irrelevant Parameters,
making them incompatible with the MRA model. Indeed, suppose we observe that the DM strictly
prefers significance level α1 for her likelihood ratio test when the sample size is n1, and α2 if it is n2.
Tables 1a and 1b show the conditional action distributions P ∗

i , for i = 1, 2, resulting from decision rules
δ∗i , where βi is the probability of type II error (i.e., the probability of wrongfully rejecting the policy). It
is straightforward to construct alternative (mixed) decision rules δ̂1 and δ̂2, for sample sizes n1 and n2

respectively, such that P ∗
i (·|θ1) = P̂i(·|θ1) and P ∗

i (·|θ0) = P̂−i(·|θ0), as shown in tables 1c and 1d.
Since δ∗i is the strictly preferred decision rule for experiment i, it is in particular strictly preferred to

δ̂i. Now note that the action distributions induced by each pair of decision rules, δ∗i and δ̂i, differ only
on parameter θ0. Moreover, the action distributions conditional on θ0 induced by δ∗1 and δ∗2 are mirror
images of each other. Therefore, either the DM cares about something other than parameter contingent
action distributions, or preferences conditional on θ0 depend on the action distribution at θ1. In other
words, if the DM satisfies Consequentialism, so that all that matters to her are the parameter contingent
action distributions, then she must violate Independence of Irrelevant Parameters. The fact that we can
not pinpoint exactly which of the axioms is violated in this example, is due to the fact that we only have
data on two choice problems, rather than the full preference relation.

To obtain the MRA representation, I first recover the DM’s utility function u from a particular
incomplete binary relation that is implied by the DM’s preferences. The aggregator I can then be
viewed as a standard utility function on the space of the risk functions defined by u. In fact, using a
direct analogy with consumer theory, risk functions can be interpreted as consumption bundles, with
different parameters representing the different goods. The expected utility of a risk function at parameter
θ ∈ Θ is analogous to the quantity of good θ in the bundle. Therefore, showing the existence of an
aggregator I is formally equivalent to proving the existence of a utility function in a generalized space
of consumption bundles. This allows one to draw an analogy between a preference for hedging – where
the DM intrinsically prefers risk functions that have a more balanced utility profile across parameters –
to the concept of complementarity between different goods.

SEU agents act as if they can quantify the uncertainty about parameters with a single probability
measure – in the terminology of Ellsberg (1961), they show no ambiguity aversion. Looking at it through
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the lens of consumer theory, they have additive utility across parameters, thus perceiving parameters
as perfect substitutes. At the opposite end of the spectrum, MEU agents act as if they have no reason
to believe one state is more likely than any other, and “play it safe” by planning for the worst case
scenario. They have maximal ambiguity aversion. In the language of consumer theory, MEU agents
have a parameter aggregator I that is similar to Leontieff preferences, implying perfect complements.
This underscores the analogy between complementarity and ambiguity aversion that will be formalized
in Section 4.

Characterizing the MRA model is an important step towards putting SDT on a sound axiomatic
foundation. However, applications are usually couched on more structured models, which impose further
constraints on DM’s preferences. Fortunately, the representation of the MRA model is a key piece of a
methodology that can be used to import representation results from the Anscombe-Aumann framework
to SDT. Indeed, eq. (1) indicates that one can interpret risk functions as acts (mappings from states of
the world to consequences), and that preferences over decision rule–experiment pairs induce a preference
relation over such acts. Therefore, once I have characterized the MRA model, obtaining a represen-
tation of preferences in the SDT setting reduces to obtaining an Anscombe-Aumann representation of
the corresponding preferences over risk functions. Using this technique, one can translate axioms on
preferences over acts into axioms on preferences over decision rules and experiments. Hence if a model
has a representation satisfying the analogue of eq. (1) in the Anscombe-Aumann setting (Cerreia-Vioglio
et al., 2011), I can easily obtain its corresponding SDT representation.

The second piece needed to establish this toolkit is Lemma 3, which connects properties of the risk
functionals ru to those of the decision rules and experiments that define them. The lemma contains three
separate statements. First, the risk function arising from a convex mixture of decision rules is the convex
mixture of the risk functions induced by each individual decision rule. Second, the lemma describes,
in terms of the decision rule and experiment that induces it, the risk function obtained by substituting
the value of one risk function, on a given set of parameters, by the corresponding values of another risk
function. Most axioms in the Anscombe-Aumann framework are stated in terms of these two operations
on acts. Finally, the lemma also characterizes the set of decision rule–experiment pairs yielding constant
risk functions. Constant acts also tend to be important ingredients for Anscombe-Aumann axioms. In
summary, Lemma 3 translates the main ingredients of Anscombe-Aumann representations into the SDT
framework.

From a purely technical perspective, Consequentialism transforms the problem of representing a pref-
erence over decision rules and experiments into representing a preference over parameter contingent
action distributions. Much like I did with risk functions, I can also identify such parameter contin-
gent distributions with Anscombe-Aumann acts. But while risk functions map parameters directly to
parameter-independent consequences (utility units), the utility of an action distribution itself depends
on the true parameter. Therefore, viewed through the lens of traditional decision theory, my methodol-
ogy assists in generating representations of state-dependent preferences (over action distributions) from
state-independent ones (over risk functions). This is a useful technique, because state-independent rep-
resentations have been studied much more thoroughly than their state-dependent counterparts. The
rationale behind developing such a methodology when studying SDT is that parameter-dependence is
often the whole point of statistical applications — e.g., when performing inference.

After establishing the formal connection between the two frameworks, I apply my methodology to
obtain behavioral characterizations in SDT, of some models for which axiomatizations already exist in
the Anscombe-Aumann setting. These applications illustrate how my main results provide powerful tools
than can be used to obtain the exact behavioral implications of a wide array of SDT models. Specifi-
cally, I provide characterizations of statistical decision theoretic versions of subjective expected utility
(Anscombe and Aumann, 1963); multiple priors and maximin expected utility (Gilboa and Schmeidler,
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1989; Stoye, 2011); and variational and multiplier preferences (Maccheroni et al., 2006; Hansen and
Sargent, 2001; Strzalecki, 2011).

In some applications, data on preferences over decision rule–experiment pairs is not forthcoming.
Hence, to expand the scope of my main results, I characterize the MRA model for two alternative types
of behavioral data.

First, I consider data in the form of parameter dependent stochastic choices. This consists of action
probabilities conditional on every parameter, and can be obtained by calculating action frequencies from
repeated observations of choices from different decision problems. Such data is commonplace in the
psychometric literature, and has recently received some attention in economics (Caplin and Martin,
2015; Caplin and Dean, 2015). I characterize when a parameter dependent stochastic choice function
can be rationalized by a preference on decision rule–experiment pairs satisfying the MRA representation.
This allows one to test whether choices are compatible with the MRA model without having to observe
preferences over decision rules and experiments. I also discuss the identification problem using such
data. That is, when can the particular decision rule and experiment chosen by the DM be recovered by
observing only parameter dependent stochastic choice data. This turns out to be a problem of statistical
identifiability of mixture models, for which answers are available in the econometrics literature.

Second, I examine the case where data comes in the form of two collections of preferences. One defines
a preference over decision rules for each fixed experiment. This describes a DM who takes the experiment
as given, and chooses the decision rule accordingly. The other collection consists of a preference over
experiments for each menu M of decision rules. This models an agent, whom I call the Experimenter,
who chooses an experiment, assuming that a decision rule will subsequently be chosen from M according
to some choice procedure known to her in advance. I separately characterize the MRA model for each
of these decision problems. These can be viewed as two separate DMs — one choosing the information
structure, the other choosing the decision rule — or as two cross sections of the same DM’s preferences
over decision rule–experiment pairs.

It turns out that the axioms characterizing the MRA model for the DM who chooses over decision rules
are closely related to those characterizing the same model for decision rule–experiment pairs. The same
is true for the Experimenter, apart from two extra axioms. Consistency implies that the Experimenter
is forward looking and correctly anticipates the decision rule that will be subsequently chosen from the
feasible menu. Optimism says that the Experimenter assumes that if multiple decision rules might be
chosen in the second stage of the decision process, the ultimate choice will be in her favor.

The remainder of the paper is structured as follows. Section 2 contextualizes the contributions of
the present paper within the existing literature. Section 3 presents the decision theoretical setting and
introduces some notation. Section 4 contains the main result: a representation of the MRA model.
Section 5 develops a methodology that can be used to apply existing behavioral foundations of classic
decision theory to SDT, and illustrates it with some applications. In Section 6 I characterize the MRA
model for alternative data sets. All proofs are in the appendix.

2 Related Literature

Statistical decision theory was pioneered by Abraham Wald, who first applied it to the optimal choice of
decision rules (Wald, 1939), and then to the design of experiments (Wald, 1947b). Wald himself framed
his theory as a particular case of John von Neumann’s theory of games, with Nature and the statistician
as the players. As such, in SDT the statistician is endowed with an utility function that maps actions
and unobserved parameters to ex-post pay-offs. Since the sampling distributions of experiments at every
parameter are assumed to be known in advance, the statistician uses the expected utility criterion when
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assessing the ex-ante payoff at each parameter. Payoff aggregation across the parameter space — on which
there is no objectively given probability distribution — can then be done in different ways. For example,
Wald favored the maximin criterion: maximizing utility conditional on the worst-case parameter.1

This canonical model of statistical decision making has since provided the conceptual framework for
many important results in mathematical statistics, such as David Blackwell’s equivalency result for the
economic comparison of experiments (Blackwell, 1953; Marschak and Miyasawa, 1968; Crémer, 1982),
and Wald’s complete class theorem (Wald, 1947a; Kuzmics, 2017). A comprehensive review of theoretical
results and applications of SDT to mathematical statistics can be found in Inoue (2009).

SDT has also become one of the preferred languages of information economics. Among the many
influential economics models couched in the SDT framework are the Bayesian persuasion literature initi-
ated by Gentzkow and Kamenica (2011), and the rational inattention and costly information acquisition
models studied by Sims (2003), Caplin and Dean (2015) and Matêjka and McKay (2015), among others.
As for other areas of economic inquiry, Manski (2021) argues for the application of SDT to econometrics,
provides a good summary of the relatively recent efforts in this direction, and outlines the remaining
obstacles to this approach.

As was mentioned in the Introduction, models in SDT make predictions in terms of choices over
decision rules and experiments. For example, Sims (2003) models a Bayesian agent who jointly chooses a
decision rule and an experiments, subject to a constraint on the mutual information between the chosen
experiment and the prior distribution over states of the world. The present paper characterizes the exact
behavioral implications of this and many other SDT models, by axiomatizing preferences over decision
rule–experiment pairs.

A different strand of the literature, which I will simply call decision theory, has sought to derive the
behavioral implications of models of choice under uncertainty, usually by axiomatizing a DM’s preferences
over acts, i.e., functions from states of the world to final consequences. The early results most relevant for
this paper were presented by Savage (1954) and Anscombe and Aumann (1963). Both characterize SEU
agents, but unlike Savage, Anscombe and Aumann assume that acts’ consequences consist of lotteries
with known probability distributions. This introduces both objective and subjective probabilities into
the model. In Section 5, I show that there is a natural formal connection between the SDT setting
and the Anscombe and Aumann framework of preferences over acts. I then leverage this connection to
develop a methodology that generates representation results in the SDT setting by importing analogous
results from the Anscombe and Aumann framework.

A large literature has sought to characterize different models of choice under uncertainty by modify-
ing the set of axioms put forth by Anscombe and Aumann (1963). I briefly cite a few that are specially
relevant in the context of this paper. Gilboa and Schmeidler (1989) characterize the multiple priors
expected utility (MPEU) model, where the DM has a set of prior beliefs over the states of the world, and
picks the act yielding the best outcome according to the worst prior in this set. Maccheroni et al. (2006)
generalize MPEU by characterizing preferences that can be represented by an elementary variational
problem. Strzalecki (2011) provides a representation theorem for the multiplier preferences model pro-
posed by Hansen and Sargent (2001). This is a special case of variational preferences, and can interpreted
as modelling a DM who cares about the robustness of choices to deviations from a prior distribution.
Cerreia-Vioglio et al. (2011) axiomatize a very general class of preferences, which subsumes all models
cited in this paragraph and can be viewed as a decision theoretic analogue of the MRA model.

Some decision theory papers have studied statistical models from the perspective of the Anscombe and
Aumann framework. One approach is to take the standard view that both signals and parameters of the
SDT framework are contained in the state space of decision theory, and then proceed by proving results

1When the objective is to minimize loss rather than maximize utility, as in Wald’s original formulation, maximin becomes
minimax, since loss is the negative of utility.
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in the Anscombe and Aumann setting. With this interpretation, any decision theoretic representation
can be directly applied to statistical decision problems. However, this leaves out an important feature
of SDT, which is the natural decomposition of the states into an informative but payoff irrelevant part
(signals) and a payoff relevant but unobservable component (parameters). Cerreia-Vioglio et al. (2020)
and Amarante (2009), for example, specifically use statistical applications to motivate representation
theorems in the Anscombe and Aumann setting.

A second approach, exemplified by Epstein and Seo (2010), Cerreia-Vioglio et al. (2013) and Al-
Najjar and De Castro (2014), also takes acts as primitives, and provides conditions on preferences under
which the DM can be thought as having a parametric representation of the state space. In SDT terms,
under such conditions preferences over acts can be used to elicit the DM’s subjective statistical model
(the experiment).

A different approach is taken by Stoye (2011, 2012), who characterizes versions of many widely
used SDT models by essentially taking risk functions (also called utility acts) as decision theoretic
primitives. As will become clear in Section 5, such an approach is complementary to the one I take in
the present paper, and can be combined with my results to obtain novel representation theorems in the
SDT framework.

Finally, the decision theory paper that comes closest to modelling choices between decision rules and
experiments as I do here, is due to Jakobsen (2021). In it, the author axiomatizes the decision problems
of two agents. The first chooses between experiments, knowing that for each realized signal an act will
later be chosen by the second agent. The preferences of each agent depend on both agents’ choices.
This is similar to the approach taken in Section 6.2, except that Jakobsen (2021) works with acts rather
than decision rules, focuses on Bayesian representations for both agents, and considers only the case of
state-independent utility.

After separately characterizing each agent, Jakobsen (2021) gives conditions under which the utility
functions and prior beliefs in the representations are identified. He also provides the conditions for
when both representations coincide, which can be interpreted as the two decision problems describing
the same agent. Such a case can thus be viewed as a DM who chooses an act-experiment pair, albeit
under the constraint that each experiment must always be paired with the act that is optimal for it.
By assuming richer observable data, I am able to characterize a single agent’s preferences over decision
rule–experiment pairs without any such constraints.

3 Setting and notation

Experiments. Consider a set Θ of parameters, assumed to be a separable topological space, with a
σ-algebra Σ that includes the singletons. The set of all experiments the decision maker may be asked to
choose from is denoted by P. Each element P ∈ P is a function θ 7→ Pθ from parameters to probability
distributions over a standard Borel signal space, i.e., a Polish space (separable complete metric space)
endowed with its Borel σ-algebra. This can be viewed as the parameter contingent distribution of a
random variable, denoted by XP . Since all signal spaces are standard Borel, there is no loss of generality
in assuming that all P ∈ P are defined on a common Polish sample space X, and I do so for the remainder
of the paper. To guarantee that the sample space is rich enough to incorporate signals from a variety of
distributions, I assume that X is uncountable.

For any Polish space Y with the usual topology, denote by ∆(Y ) the set of probability distributions
on its Borel σ-algebra Y. This is a convex space, with mixture operation defined by (αp+(1−α)q)(E) =

αp(E) + (1−α)q(E) for all E ∈ Y, p, q ∈ ∆(Y ) and α ∈ [0, 1]. I endow ∆(Y ) with the topology of weak
convergence of measures. That is, a sequence (pn)n≥1 ∈ ∆(Y ) converges to p if

∫
Y
fdpn →

∫
Y
fdp for
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every bounded continuous function f : Y → R. By Prokhorov’s theorem, this topology induces a metric
on ∆(Y ).

The class of all functions Θ ∋ θ 7→ Pθ ∈ ∆(Y ) will be denoted by ∆(Y )Θ. This is also a convex
space, with mixture operation defined point-wise on parameters. That is, for all P,Q ∈ ∆(Y )Θ and
α ∈ [0, 1], αP + (1 − α)Q = (αPθ + (1− α)Qθ)θ∈Θ ∈ ∆(Y )Θ. For any E ∈ Y and P ∈ ∆(Y )Θ,
denote P (E) = (Pθ(E))θ∈Θ. Convergence is also defined point-wise, equipping ∆(Y )Θ with the product
topology. When Θ is finite, this topology is equivalent to the one induced by Euclidean distance. I
assume that P is a convex subspace of ∆(X)Θ, in the sense that if P,Q ∈ P, then αP + (1 − α)Q ∈ P
for all α ∈ [0, 1].

Not knowing realized signal x ∈ X, conditional on θ ∈ Θ, is called risk, while lack of knowledge
about the parameter itself is referred to as ambiguity. The former is objectively quantifiable, since the
probabilities for a given θ ∈ Θ are deemed objectively given, while the latter is not. Assume throughout
that there exists at least one P ∗ ∈ P with the full information property : (suppPθ) ∩ (suppPθ′) = ∅
for all θ ̸= θ′.2 This experiment’s signal realizations perfectly reveal the true parameter, so call it the
fully informative experiment. On the other hand, I call any P 0 ∈ P uninformative if P 0

θ = P 0
θ′ for all

θ, θ′ ∈ Θ. Since the likelihood of different signals of an uninformative experiment does not depend on
the parameter, observing a signal from P 0 does not provide any information about the true parameter
value.

Decision rules. The decision maker observes a signal x ∈ X coming from some experiment P ∈ P and
then chooses an action from a set A. I assume (A,A) is a compact Polish space with its Borel σ-algebra
A. A decision rule ρ = {ρP }P∈P is a family of Markov kernels from X to A, indexed by the experiments.3

Decision rules can be viewed as mixed strategies, one for each experiment, assigning a distribution over
actions to each signal realization. Any decision rule defined by ρP (x, ·) = χdP (x)(·), where dP : X → A

for every P ∈ P and x ∈ X, and χa denotes the degenerate distribution with full mass on a ∈ A, is called
a pure decision rule. These are decision rules that assign each signal to a single action with certainty.
Denote by D the set of all decision rules, and by Dχ the set of all pure decision rules. I assume that D is
the class of all families of Markov kernels from X to A, indexed by the set P. In other words, I require
the DM to have preferences over all experiment- and signal-contingent distributions over actions.

A decision rule ρ ∈ D is called invariant if ρP = ρP ′ for all P, P ′ ∈ P. Examples of invariant
decision rules in statistics include the sample mean and the least squares estimators. On the other hand,
estimators which make use of the specification of the statistical model, such as maximum likelihood, are
not invariant. Let D be the set of all pure and invariant decision rules. Thus D ⊂ Dχ ⊂ D. When it is
clear from context, I slightly abuse notation and omit P subscripts from ρP . When it does not lead to
confusion, I may also call ρP , for a fixed P ∈ P, a decision rule.

Parameter contingent action distribution. For any ρ ∈ D, the parameter contingent action distri-
bution induced by ρ and P , ρP , is the mapping θ 7→ ρPθ ≡

∫
X
ρP (x, ·)dPθ(x). In particular, for δ ∈ Dχ,

we have that δP (F ) = (Pθ ◦ δ−1
P (F ))θ∈Θ are the (parameter contingent) pushforward measures of δP

acting on P . Let F ≡ ∆(A)Θ and note that ρP ∈ F for all ρ and P . For any function v : A → R and
ρ ∈ D, I denote by v(ρP ) : X → R its expectation under ρP , i.e., v(ρP (x)) =

∫
A
v(a)ρP (x,da) for each

x ∈ X.

Preferences. Let S = D × P be the set of all decision rule–experiment pairs, with typical element
σ ∈ S — which I simply call a pairing. I model the decision maker’s preferences as a binary relation

2For example, if Θ ⊆ X, then P ∗ such that P ∗
θ ({θ}) = 1 for every θ ∈ Θ is fully informative.

3That is, for every P ∈ P, the mapping ρP : X ×A → [0, 1] satisfies: (i) ρP (x, ·) is a probability for every x ∈ X; and
(ii) ρP (·, E) is measurable for every E ∈ A.
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≿ on S. As usual, ≻ and ∼ denote the asymmetric and the symmetric parts of ≿, respectively. The
relation ≿ is called trivial if σ ≻ σ′ for no σ, σ′ ∈ S. By taking a single preference relation as a primitive,
I am ruling out SDT models where preferences depend on the choice problem being considered. One
prominent such model is minimax regret.

Example 1 (Minimax Regret): Let Θ be compact and u : A × Θ → R be a continuous utility
function. The minimax regret choice criterion CR selects, for any choice problem D × Γ ⊆ S such that
{ρP ∈ F : ρ ∈ D, P ∈ Γ} is compact,

CR(D × Γ) = argmin
(ρ,P )∈D×Γ

max
θ∈Θ

[
max
a∈AD

u(a, θ)−
∫
X

u(ρ, θ)dPθ

]
,

where AD = {ρ(X) : ρ ∈ D}. In words, the DM chooses the alternative that minimizes, for the worst-case
scenario, the difference between the optimal choice with perfect information and the expected utility of
the pairing.

Clearly, the ranking of pairings under the minimax regret criterion may depend on the specific choice
problem being considered, hence can not be represented by a single preference relation ≿. ∥

Let f and g be functions defined on some set Y . For any E ⊆ Y , let f(E)g denote the function given
by f(E)g(y) = f(y) if y ∈ E and f(E)g(y) = g(y) if y ∈ Y \ E. Recalling the definition of the fully
informative experiment P ∗, denote Sθ = suppP ∗

θ and note that Sθ ∩ Sθ′ = ∅ for all θ ̸= θ′. Moreover,
define ST ≡

⋃
θ∈T Sθ, for any T ⊆ Θ. To economize on notation, let ρ(ST )τ ≡ ρT τ , for any ρ, τ ∈ D and

T ⊆ Θ. Also denote by 1E the indicator function of E ⊆ Y , that is, 1E(y) = 1 if y ∈ E and 1E(y) = 0

otherwise.

Risk functions. Given a utility function u : A × Θ → R which is continuous in the first argument,
define the risk function of the pairing (ρ, P ) ∈ S under u as the function ru(ρ, P ) : Θ → R given by

ru(ρ, P )(θ) =

∫
X

u(ρ, θ)dPθ for every θ ∈ Θ. (2)

In words, the risk function describes the parameter contingent expected utility of a pairing. Define
Ru ≡ {ru(ρ, P ) ∈ RΘ : (ρ, P ) ∈ S}, the set of all possible risk functions under u. Finally, a functional
I : Ru → R is called monotone if r(θ) ≥ r′(θ) for all θ ∈ Θ implies I(r) ≥ I(r′); it is called continuous
if it is continuous in the topology of point-wise convergence.

4 Main results

In this section, I present axioms that characterize a general model of statistical decisions. This will
provide a foundation to obtain representations of many models of interest, including SDT versions of
subjective expected utility (SEU), maximin expected utility (MEU) and multiplier preferences. We are
interested in models of the following form.

Definition 1 (Monotone Risk Aggregation Representation). A binary relation ≿ on S has a
monotone risk aggregation (MRA) representation (u, I) if there exists a utility function u : A×Θ → R,
continuous in the first argument, and a monotone and continuous functional I : Ru → R, such that for
all ρ, τ ∈ D and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒ I(ru(ρ, P )) ≥ I(ru(τ,Q)), (3)

where ru : S → RΘ is defined by eq. (2). ♢
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A decision maker whose preferences are compatible with the MRA model evaluates prospects ac-
cording to expected utility when probabilities are known, and aggregates unknown parameters in a way
that favors point-wise improvements of the risk function on the parameters. Importantly for statistical
applications, the ex-post utility u is allowed to be parameter-dependent. This is in contrast to most
of the decision theory under uncertainty literature, where the Bernoulli utility is defined on ultimate
consequences, and thus is assumed to be state-independent. In fact, the model of Definition 1 can be
viewed as a state-dependent, statistical version of the monotone, Bernoullian and Archimedean (MBA)
preferences studied by Cerreia-Vioglio et al. (2011).

Unsurprisingly given its generality, most objective functions commonly used in statistical decision
problems fit into this basic framework, differing only in the choice of utility function u and aggregator I.

Example 2 (Bayesian parameter estimation): A Bayesian statistician wants to estimate a param-
eter θ ∈ Θ with the least possible mean squared error. Assume she has a prior belief π ∈ ∆(Θ) over
possible parameter values. In terms of the MRA framework, we have A = Θ, and u(a, θ) = −(a − θ)2

and I(·) = Eπ(·). For a fixed experiment P , the statistician’s preference is given by (ρ, P ) ≿ (τ, P ) if,
and only if, Eπ(

∫
X
(ρ− θ)2dPθ) ≤ Eπ(

∫
X
(τ − θ)2dPθ). ∥

Example 3 (Ellsberg preferences): A decision maker is asked to place a bet on which color ball will
be drawn from an urn containing 30 blue and 60 green or yellow balls. We can model this decision problem
by setting Θ = {(ng, ny) : ng = 0, . . . , 60, ny = 60−ng}, X = {b, g, y} and A = {0, 1}. The interpretation
of an action a ∈ A is of receiving a dollars. Thus, the decision rule δP = (δP (b) = 1, δP (g) = 0, δP (y) = 1)

corresponds to betting on either a blue or a yellow ball being drawn from experiment P ∈ P.
Let P ∈ P be the experiment where the balls are drawn according to an uniform distribution.

Then Pθ(b) = 1/3 and Pθ(g) = θ/90 = 2/3 − Pθ(y). Typical Ellsberg choices for this decision prob-
lem imply ((1, 0, 0)P , P ) ≻ ((0, 1, 0)P , P ) and ((0, 1, 1)P , P ) ≻ ((1, 0, 1)P , P ), where (b, g, y)P denotes
any decision rule d ∈ Dχ such that δP = (b, g, y). Such choice data is not consistent with any ver-
sion of SEU preferences, but can be rationalized by MEU preferences: (δ, P ) ≿ (δ′, Q) if, and only if,
minθ∈Θ

∫
X
u(δ)dPθ ≥ minθ∈Θ

∫
X
u(δ′)dQθ for an increasing, state-independent utility function u. Here,

the aggregator I(·) corresponds to minθ∈Θ(·). ∥

First, I impose a basic rationality postulate on the preference relation.

Axiom 1 (Weak Order): The preference relation ≿ is complete and transitive.

The next axiom needed to characterize the MRA model captures a notion of the DM being a con-
sequentialist. It states that the decision maker’s preferences ultimately depend only on the parameter
contingent action distribution induced by the pairings, not on the particular decision rule and experiment
that generate this distribution.

Axiom 2 (Consequentialism): For all (ρ, P ), (τ,Q) ∈ S: if ρP = τQ, then (ρ, P ) ∼ (τ,Q).

Consequentialism is not a completely innocuous axiom. For instance, it may not hold in models
where choosing different experiments entail different subjective costs.

Example 4: Consider a rationally inattentive DM of the kind postulated by Matêjka and McKay (2015).
Suppose A = {−1, 1}, Θ = {−1, 0, 1} and X = {x−1, x0, x1}. The DM is a Bayesian, with a uniform
prior belief π ∈ ∆(Θ), and utility function u(a, θ) = θa. She also faces a cost to choosing experiment
P ∈ P given by

k(P ) =
∑
θ∈Θ

π(θ)
∑
x∈X

Pθ(x)

[
logPθ(x)− log

∑
θ∈Θ

π(θ)Pθ(x)

]
.
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The DM chooses a decision rule δ and experiment P to maximize

V (δ, P ) =
∑
θ∈Θ

∑
x∈X

u(δ(x), θ)Pθ(x)π(θ)− k(P ).

If the DM can obtain conclusive information about whether θ = −1, further telling θ = 0 apart from
θ = 1 is costly, but does not affect the optimal decision.

For instance, take the fully informative experiment P ∗
j (xj) = 1 for j = −1, 0, 1, and compare it to

P ′ such that P ′
−1(x−1) = 1 and P ′

0(x0) = P ′
1(x0) = P ′

0(x1) = P ′
1(x1) = 1/2. Then k(P ∗) > k(P ′). It

can be easily verified that if δ′ and δ∗ denote optimal decision rules given P ′ and P ∗ respectively, then
the DM strictly prefers (δ′, P ′) to (δ∗, P ∗), although they induce the same parameter contingent action
distributions.

If the DM had instead been modelled as in Sims (2003), where she faces a hard constraint on the
mutual information between the experiment and the prior and solves maxδ,P V (δ, P ) subject to k(P ) ≤ K,
K > 0, then Consequentialism would be satisfied. ∥

The sets of pairings with the same induced distribution partition S into equivalence classes. For
any σ ∈ S, denote by [σ] the equivalence class to which σ belongs, and let S/∗ be the set of all such
equivalence classes. The space of decision rules is rich enough that every equivalence class in S/∗
has a representative involving the fully informative experiment. When given any pairing, the DM can
mimic the parameter dependent action distribution arising from any garbling of the given experiment by
appropriately randomizing the decision rule. This allows the DM to achieve any parameter contingent
action distribution when given the fully informative experiment, since any any other experiment is a
garbling of it (Blackwell, 1951). This is stated formally as follows.

Lemma 1. For all [σ] ∈ S/∗, there exists ρσ ∈ D such that (ρσ, P ∗) ∈ [σ].

Axiom 2 guarantees that S/∗ is a refinement of S/∼, the quotient space of ∼. In other words, if two
pairings induce the same distribution, they are deemed indifferent, but the converse is not necessarily
true. Therefore, transitivity of ≿ implies that, to obtain a characterization of the full preference relation,
it suffices to characterize the restriction of ≿ to a single representative of each member of S/∗, since the
DM is indifferent between all pairings within the same equivalence class. Now, Lemma 1 states that any
parameter contingent distribution induced by an element of S can be achieved by some some decision
rule acting on P ∗. Therefore, in the presence of Axiom 2 and transitivity, ≿ is completely determined
by comparisons of pairings involving the fully informative experiment.

When the DM is provided the fully informative experiment P ∗, then there is effectively no uncertainty
about the parameter. Therefore, when comparing decision rules, she can focus on their induced actions
at each parameter separately. This suggests that two decision rules that coincide on Sc

θ should be ranked
in the same way, regardless of what specific actions each rule prescribes for this set of signals. This
intuitive notion is captured by the next axiom.

Axiom 3 (Independence of Irrelevant Parameters): For all θ ∈ Θ and ρ, τ, γ, γ′ ∈ D:

(ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) =⇒ (ρ{θ}γ
′, P ∗) ≿ (τ{θ}γ

′, P ∗).

In the presence of the fully informative experiment, Independence of Irrelevant Parameters (IIP)
allows us to interpret {ρ{θ}γ : ρ ∈ D}, for any γ ∈ D, as the set of decision rules conditional on θ, since it
implies that the ranking of such rules does not depend on what actions they prescribe on Sc

θ . Axiom 3 is
the SDT formulation of a weaker version of the “sure thing principle”, presented by Savage (1954). The
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main conceptual difference is that Savage’s postulate holds when conditioning the decision rules on any
subset T ∈ Σ, while IIP is only required to hold for singletons {θ} ∈ Σ.

The following is a monotonicity axiom: if one decision rule is preferred to another after conditioning
on every parameter, then it is preferred unconditionally.

Axiom 4 (Monotonicity): For all ρ, τ ∈ D: if (ρ{θ}γ, P ∗) ≿ (τ{θ}γ, P
∗) for every γ ∈ D and θ ∈ Θ,

then (ρ, P ∗) ≿ (τ, P ∗).

If the DM is choosing between decision rules to pair with the fully informative experiment, the problem
reduces to picking a terminal distribution over actions conditional on each parameter being the truth.
Now suppose the actions induced by the available decision rules coincide on every parameter except
one. Then only the objectively given probabilities, conditional on the relevant parameter, should matter.
Since this choice only involves quantifiable risk, modifying the distributions conditional on the relevant
parameter in the same way, for all decision rules under consideration, does not provide hedging value.
Therefore, such a modification should not change preferences. This gives an intuitive interpretation to
the following axiom.

Axiom 5 (Conditional Mixture Independence): For every ρ, τ ∈ D and θ ∈ Θ: if (ρ{θ}γ, P ∗) ≿

(τ{θ}γ, P
∗), then (αρ{θ}γ + (1−α)κ{θ}γ, P

∗) ≿ (ατ{θ}γ + (1−α)κ{θ}γ, P
∗) for all α ∈ (0, 1] and κ ∈ D.

Conditional Mixture Independence (CMI) implies that the DM views randomization of actions condi-
tional on a given parameter as objective risk. Therefore, she is able to evaluate distributions conditional
on each parameter via expected utility.

Finally, I impose a form of continuity on the preference relation. This guarantees that the preference
order is not reversed for pairings with arbitrarily similar induced distributions.

Axiom 6 (Continuity): The set {(ρP, τQ) ∈ F2 : (ρ, P ) ≿ (τ,Q)} is closed in F2.

Note that, while axioms 3 to 5 are essentially properties of preferences on decision rules alone, the other
axioms act on both decision rules and experiments. Therefore, choice data that includes simultaneous
variation of decision rules and experiments is needed to falsify axioms 1, 2 and 6. In Section 6, I show
how to characterize a dominance representation from preferences defined exclusively on either decision
rules or experiments.

For the remainder of this section, I show that if ≿ satisfies the axioms above, then one can describe
a sub-relation ≿̂⊆≿ which captures the decision maker’s ex-post utility function u. This in turn reveals
the set Ru of all risk functions available to the DM. The aggregator I in Definition 1 can then be viewed
as an ordinal utility on the space of risk functions.

4.1 The dominance sub-relation

The first step in obtaining an MRA representation is to characterize a behavioral version of the concept
of dominance, made precise in the following definition.

Definition 2 (Dominance Representation). A binary relation ≿ on S has a dominance representa-
tion if there exists a utility function u : A × Θ → R, continuous in the first argument, such that for all
ρ, τ ∈ D and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒
∫
X

u(ρ, θ)dPθ ≥
∫
X

u(τ, θ)dQθ for all θ ∈ Θ. (4)

If ≿ has a dominance representation, we call it a dominance relation. ♢
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When an (incomplete) preference has a dominance representation, a pairing is preferred to another
if and only if it yields higher expected utility for every parameter. If one views a statistical decision
problem as a game where Nature chooses the true unknown parameter, as in the tradition of Wald
(1949), then Definition 2 corresponds to (weak) dominance in mixed strategies. Furthermore, if one fixes
an experiment and looks at the corresponding preferences over decision rules induced by a dominance
representation, one obtains the statistical concept of admissibility.

Consider the following two axioms: one is the converse of Monotonicity, and the other is a weakening
of completeness.

Axiom 7 (Admissibility): For all ρ, τ ∈ D: (ρ, P ∗) ≿ (τ, P ∗) =⇒ (ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) for every
γ ∈ D and θ ∈ Θ.

Axiom 8 (Conditional Completeness): For all ρ, τ, γ ∈ D and θ ∈ Θ: (ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) or
(τ{θ}γ, P

∗) ≿ (ρ{θ}γ, P
∗).

The following result characterizes the dominance representation in terms of preferences, and presents
its uniqueness properties.

Theorem 1. A binary relation ≿ on S is a transitive and reflexive preference that satisfies Conse-
quentialism, Independence of Irrelevant Parameters, Monotonicity, Conditional Mixture Independence,
Continuity, Admissibility, and Conditional Completeness if, and only if, it has a dominance representa-
tion with utility function u : A×Θ → R.

Furthermore, u is parameter-wise cardinally unique: if u′ also represents ≿, then there exist {(bθ, cθ) :
θ ∈ Θ} with bθ > 0 and cθ ∈ R, such that u′(·, θ) = bθu(·, θ) + cθ for all θ ∈ Θ.

Dominance relations are of independent interest, as they behaviorally characterize the important
concepts of strategic dominance and admissibility. However, my main purpose in proving Theorem 1 is
to find a particular subrelation of the DM’s full preferences that is a dominance relation, and thus can
behaviorally elicit the DM’s utility, and consequently their risk functions.

I say that σ is unanimously preferred to σ′ if, conditional on each parameter, the outcome from σ is
deemed preferred to that of σ′. Formally:

Definition 3. Let σ, σ′ ∈ S and ≿ be a preference. Then σ is unanimously preferred to σ′, denoted by
σ ≿̂ σ′, if there exist (ρ, P ∗) ∈ [σ] and (τ, P ∗) ∈ [σ′] such that (ρ{θ}γ, P

∗) ≿ (τ{θ}γ, P
∗) for all θ ∈ Θ

and γ ∈ D. ♢

Let ≿ satisfy axioms 1 to 6. A straightforward consequence of Lemma 1 is that ≿̂ is reflexive, therefore
non-empty. It is also usually incomplete, but retains many of the properties of ≿.

Proposition 1. If ≿ satisfies axioms 1 to 6, the following statements hold:

1. If σ ≿̂ σ′, then σ ≿ σ′. Moreover, ≿̂ is transitive.

2. ≿̂ is a dominance relation and, for every other dominance sub-relation ≿′⊆≿, we have ≿′⊆≿̂.

3. ≿̂ satisfies the sure-thing principle: for all ρ, τ, γ, γ′ and T ∈ Σ,

(ρT γ, P
∗) ≿̂ (τT γ, P

∗) ⇐⇒ (ρT γ
′, P ∗) ≿̂ (τT γ

′, P ∗).

4. ≿̂ satisfies mixture independence: for all ρ, τ, γ ∈ D, P ∈ P and α ∈ (0, 1],

(ρ, P ) ≿̂ (τ, P ) ⇐⇒ (αρ+ (1− α)γ, P ) ≿̂ (ατ + (1− α)γ, P ).
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5. If ≿̂ is trivial, so is ≿.

The following result characterizes the unanimously preferred relation.

Lemma 2. Let ≿ satisfy axioms 1 to 6. Then the unanimously preferred relation ≿̂ has a dominance
representation with a utility u : A × Θ → R that is continuous in the first argument. Moreover, u is
parameter-wise cardinally unique.

In other words, the unanimously preferred relation ≿̂ allows us to elicit the DM’s risk functions. In
Section 4.2, I will use this fact to obtain a representation of the MRA model.

The representation in Lemma 2 also implies that, given the fully informative experiment, there exists
unambiguously best and worst decision rules. Fix aθ ∈ argmaxa∈A u(a, θ) and aθ ∈ argmina∈A u(a, θ),
and set ρ(x, ·) = χaθ

and ρ(x, ·) = χaθ
for all x ∈ Sθ, θ ∈ Θ. Then (ρ, P ∗) ≿̂ σ ≿̂ (ρ, P ∗), for all σ ∈ S.

I can then provide the following characterization, which will be useful going forward.

Definition 4. For any dominance relation ≿̂,

K(≿̂) =
{
σ ∈ S : σ ∼̂ (αρ+ (1− α)ρ, P ∗), α ∈ [0, 1]

}
(5)

defines its set of constant-risk-equivalent (CRE) pairings. ♢

The set K(≿̂) amounts to a behavioral characterization of constant-utility pairings, since members
of K(≿̂) are behaviorally equivalent to pairings with a constant risk function. With state-independent
utility, the role of K(≿̂) is played by pairings which induce parameter contingent distributions over
actions that are constant across parameters. Since I am working within the more general framework
of parameter-dependent utility, CRE pairings must be elicited from preferences. The interpretation of
eq. (5) as a characterization of constant-utility acts will be formalized in Section 5, Lemma 3.

4.2 Attitudes toward ambiguity

I now construct the decision maker’s risk functions from her preferences. Let ≿ satisfy axioms 1 to 6
and fix a utility function u that represents its unanimously preferred relation ≿̂. Consider the mapping
ru : S → RΘ, defined by eq. (2), and the corresponding set Ru. Define a preference ⪰u on Ru as follows:

∀r, r′ ∈ Ru : r ⪰u r′ ⇐⇒ ∃σ ≿ σ′ such that r = ru(σ) and r′ = ru(σ
′). (6)

Let ≃u and ≻u denote the symmetric and asymmetric parts of ⪰u, respectively. By construction, if
r ≥ r′, then r ⪰u r′, where ≥ denotes the usual order on RΘ. Further, since ≿ is complete, so is ⪰u.
Also note that σ′ ∈ [σ] implies ru(σ) = ru(σ

′).
The following is the main result of the paper.

Theorem 2. A preference ≿ satisfies Consequentialism, Weak Order, Independence of Irrelevant Param-
eters, Monotonicity, Conditional Mixture Independence and Continuity if, and only if, its unanimously
preferred relation ≿̂ has a dominance representation with utility u : A × Θ → R and there exists a
monotone, continuous functional I : Ru → R such that, for all σ, σ′ ∈ S,

ru(σ) ⪰u ru(σ
′) ⇐⇒ I(ru(σ)) ≥ I(ru(σ

′)). (7)

Therefore, ≿ has an MRA representation (u, I) if, and only if, it satisfies axioms 1 to 6. Moreover,
u is parameter-wise cardinally unique and there exists a representation (ũ, Ĩ) such that ũ(·, θ) is constant
for no θ ∈ Θ.
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Theorem 2 characterizes preferences that are compatible with the MRA model, and shows that the
functional I in Definition 2 is essentially a utility on the space of risk functions. Indeed, the proof boils
down to applying a general utility representation theorem, found in Herden (1989), to the preference ⪰u

on Ru.
Attitudes toward uncertainty can then be viewed as patterns of complementarity and substitutability

between risk under different parameters. Decision makers who want to hedge act as if risk is complemen-
tary across parameters: they favor pairings that yield more balanced pay-off profiles across parameters
over those that have a particularly large expected utility on any specific event T ∈ Σ, but not on others.
The following example formally illustrates this intuition.

Example 5 (Uncertainty attitudes as parameter complementarity): Take two preferences ≿1

and ≿2 such that ≿̂1=≿̂2=≿̂. Following Ghirardato and Marinacci (2002), I say that ≿1 is more averse
to ambiguity than ≿2 if for all κ ∈ K(≿̂), σ ≿1 κ implies σ ≿2 κ. In other words, whenever ≿1 prefers
an uncertain pairing σ to a CRE pairing κ, so does ≿2. This is a widely accepted way of comparing
preferences in terms of ambiguity aversion (Maccheroni et al., 2006; Cerreia-Vioglio et al., 2011).

Now consider a family of preferences {≿s: s ∈ R∪{−∞}} with the same unanimously preferred rela-
tion — i.e., ≿̂s=≿̂s′=≿̂ for all s, s′ ∈ R∪{−∞}. Without loss of generality, normalize the representations
{us} of {≿̂s} so that Rus = [0, 1]Θ for all s. Under this normalization, us = u for all s, and the risk
functions associated with members of K(≿̂) are constant. Assume that {≿s} has a representation (Is, u)

by a Dixit and Stiglitz (1977) constant elasticity of substitution (CES) function, with (full support)
shares µ ∈ ∆(Θ) and substitution parameter s:

Is(ru(σ)) =


(∫

Θ
ru(σ)

sdµ
) 1

s , s /∈ {0,−∞}

exp
(∫

Θ
ln ru(σ)dµ

)
, s = 0

infθ∈Θ ru(σ)(θ), s = −∞

for all σ ∈ S. The elasticity of substitution between any two goods (or parameters) of a CES utility
function is given by ε = 1/(1 − s). Thus, s = 1 corresponds to unbounded elasticity of substitution,
while s = −∞ implies perfect complementarity. Moreover, it can be shown that lims→s∗ Is = Is∗ for
s∗ ∈ {0,−∞}. CES utility is a particular case of second order expected utility, which was axiomatized
for the setting of Savage (1954) by Neilson (2010).

If t > s and t, s ̸= 0, we have, for all σ ∈ S,

It(ru(σ)) =

(∫
Θ

[ru(σ)
s]

t
s dµ

) s
ts

≤
(∫

Θ

ru(σ)
sdµ

) s
ts

t
s

= Is(ru(σ)),

where I have used Jensen’s inequality. Since for all κ ∈ K(≿̂) and t, s ∈ R ∪ {−∞}, we have It(ru(κ)) =

Is(ru(κ)), then σ ≿s κ implies σ ≿t κ ⇐⇒ Is(ru(σ)) ≥ It(ru(σ)) ⇐⇒ s ≤ t. Thus, ambiguity
aversion in inversely related to the elasticity of substitution. In particular, an SEU agent (s = 1) shows
no ambiguity aversion, treating parameters as perfect substitutes. On the other hand, an MEU agent
(s = −∞) has maximal ambiguity aversion, and thus perfect complementarity across parameters. ∥

5 Applications

In the Anscombe-Aumann framework, an act is a measurable function from some set Ω of states of
the world to a convex space of outcomes Y . We can thus identify each risk function of SDT with
an Anscombe-Aumann act from Θ ≡ Ω to Ru ≡ Y . The representation in Theorem 2 implies that
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if ≿ satisfies axioms 1 to 6, then ⪰u satisfies the following essential axioms of decision theory under
uncertainty:

• Weak Order: the preference ⪰u is complete and transitive.

• A-A Monotonicity: for all r, r′ ∈ Ru, if r ≥ r′, then r ⪰u r′.

• Risk Independence: for all constant risk functions r, r′, q ∈ Ru and α ∈ [0, 1], r ⪰u r′ implies
αr + (1− α)q ⪰u αr′ + (1− α)q.

• Mixture Continuity: the sets {α ∈ [0, 1] : αr+(1−α)r′ ⪰u q} and {α ∈ [0, 1] : q ⪰u αr+(1−α)r′}
are closed for all r, r′, q ∈ Ru.

Most models of complete preferences in the Anscombe-Aumann framework satisfy these same prop-
erties, and impose extra axioms to obtain more structure on I. Thus there is hope that, by relating
properties of ⪰u with the corresponding axioms on ≿, I can import many of the existing representations
from the Anscombe-Aumann framework to SDT. The following lemma is an important step towards
establishing this connection.

Lemma 3. Suppose ≿̂ has a dominance representation with utility function u. The following statements
hold:

1. ru(αρ+ (1− α)τ, P ) = αru(ρ, P ) + (1− α)ru(τ, P ) for all τ ∈ D and α ∈ [0, 1].

2. ru(ρT γ, P
∗) = ru(ρ, P

∗)(T )ru(γ, P
∗) for all ρ, γ ∈ D and T ∈ Σ.

3. There exists ũ also representing ≿̂ such that rũ(σ) is constant if, and only if, σ ∈ K(≿̂).

The usefulness of Lemma 3 stems from the fact that most axioms in the decision theory under
uncertainty paradigm are stated in terms of (i) mixture of acts, as in the first statement; (ii) combinations
of acts, i.e., substituting an act’s consequences on a set of parameters for the consequences of a different
act, as in statement 2; or (iii) properties of preferences over mixtures or combinations with constant-
utility acts, as characterized by K(≿̂).

Next, I illustrate this methodology by applying Lemma 3 to a variety of existing axiomatizations
of preferences in the Anscombe-Aumann framework, to obtain SDT versions of their representations.
Throughout this section, I maintain the assumption that every experiment in P is measurable with
respect to Σ, which makes every risk function also measurable.

5.1 Subjective expected utility

I begin by obtaining a SDT representation of the subjective expected utility (SEU) model. Recall
that, in the Anscombe-Aumann setting, state-independent SEU is characterized by preferences over
acts satisfying Weak Order, A-A Monotonicity, Mixture Continuity, and the following strengthening of
Risk-Independence (which I state here in terms of ⪰u):

• Independence: for all r, r′, q ∈ Ru, if r ⪰u r′, then αr + (1 − α)q ⪰u αr′ + (1 − α)q for all
α ∈ (0, 1).

These four axioms imply the existence of a representation by SEU with finitely additive prior proba-
bility. To guarantee that the prior is countably additive, one needs an additional postulate, due to Arrow
(1971).

• Monotone Continuity: if r, r′, q ∈ Ru, q is constant, {Tn}n≥1 ∈ Σ with T1 ⊇ T2 ⊇ · · · and⋂
n≥1 Tn = ∅, then r ≻u r′ implies that there exists n0 ≥ 1 such that q(Tn0 )

r ≻u r′.
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Given statement 1 in Lemma 3, it is straightforward to translate Independence of ⪰u into an axiom
on ≿:

Axiom 9 (Mixture Independence): For every ρ, τ, γ ∈ D and P ∈ P: if (ρ, P ) ≿ (τ, P ), then
(αρ+ (1− α)γ, P ) ≿ (ατ + (1− α)γ, P ) for all α ∈ (0, 1].

With the aid of Lemma 1 and statements 2 and 3 of Lemma 3, it is also easy to obtain Monotone
Continuity of ⪰u from preferences over pairings.

Axiom 10 (Monotone Continuity∗): If ρ, τ, κ ∈ D, with (κ, P ∗) ∈ K(≿̂), and {Tn}n≥1 ∈ Σ with
T1 ⊇ T2 ⊇ · · · and

⋂
n≥1 Tn = ∅, then (ρ, P ∗) ≻ (τ, P ∗) implies that there exists m ≥ 1 such that

(κTm
ρ, P ∗) ≻ (τ, P ∗).

We are ready to characterize SEU in the SDT framework. In what follows, we refer to axioms 1 to 6
as the MRA axioms.

Proposition 2 (SEU representation). A preference ≿ on S satisfies the MRA axioms, Mixture Inde-
pendence and Monotone Continuity∗ if, and only if, there exists a bounded utility function u : A×Θ → R,
continuous in the first argument, and a probability distribution π ∈ ∆(Θ) such that, for all ρ, τ ∈ D and
P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒
∫
Θ

∫
X

u(ρ(x), θ)dPθ(x)dπ(θ) ≥
∫
Θ

∫
X

u(τ(x), θ)dQθ(x)dπ(θ).

Moreover, u is parameter-wise cardinally unique and, for a given u, π is unique.

Preferences that satisfy SEU are also called Bayesian, since for any P ∈ P and ρ ∈ D, we have∫
Θ

∫
X

u(ρ(x), θ)dPθ(x)dπ(θ) =

∫
X

∫
Θ

u(ρ(x), θ)dπx(θ)dp(x),

where p =
∫
Θ
Pθdπ(θ) and πx ∈ ∆(Θ) is the posterior distribution, conditional on x ∈ X: πx(T ) =

Eπ[1T |XP = x] for all T ∈ Σ. When p(x) > 0, the posterior can be obtained via Bayes’ rule.

5.2 Maximin expected utility

Maximin expected utility (MEU) — along with its close cousin, multiple priors expected utility (MPEU)
— is perhaps the most thoroughly studied model of decision making under uncertainty, after SEU.
Gilboa and Schmeidler (1989) provided a characterization of MPEU for the Anscombe-Aumann setting
that relies on Weak Order, A-A Monotonicity, Mixture Continuity, and two extra axioms:

• Uncertainty Aversion: for all r, r′ ∈ Ru and α ∈ (0, 1), r ≃u r′ implies αr + (1− α)r′ ⪰u r.

• Certainty Independence: for all r, r′, q ∈ Ru, with constant q: if r ⪰u r′, then αr+(1−α)q ⪰u

αr′ + (1− α)q for all α ∈ (0, 1).

Uncertainty Aversion and Certainty Independence on the space of risk functions are induced by the
following axioms on our primitive ≿.

Axiom 11 (Hedging): For all ρ, τ ∈ D, P ∈ P and α ∈ (0, 1): if (ρ, P ) ∼ (τ, P ), then (αρ + (1 −
α)τ, P ) ≿ (ρ, P ).

Axiom 12 (CRE-Independence): For all ρ, τ, κ ∈ D and P ∈ P such that (κ, P ) ∈ K(≿̂): if (ρ, P ) ≿

(κ, P ), then (αρ+ (1− α)κ, P ) ≿ (ατ + (1− α)κ, P ) for all α ∈ (0, 1].
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Axiom 11 implies a preference for hedging: for any fixed experiment, the DM weakly prefers decision
rules that provide a more balanced pay-off profile across parameters. Axiom 12 states that for any two
pairings sharing the same experiment, mixing the decision rules with a third constant-risk-equivalent
pairing does not change preferences.

I can now state the SDT version of the MPEU representation:

Proposition 3 (MPEU representation). A preference ≿ on S satisfies the MRA axioms, Hedging,
and CRE-Independence if, and only if, there exists a bounded utility function u : A×Θ → R, continuous
in the first argument, and a convex family of probability distributions Π ⊆ ∆(Θ) such that, for all ρ, τ ∈ D
and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒ inf
π∈Π

∫
Θ

∫
X

u(ρ(x), θ)dPθ(x)dπ(θ) ≥ inf
π∈Π

∫
Θ

∫
X

u(τ(x), θ)dQθ(x)dπ(θ).

Moreover, u is parameter-wise cardinally unique and, for a given u, Π is unique.

An MPEU agent can be interpreted as a pessimist, or as extremely cautious. He acts as if whichever
pairing is chosen, the true parameter was drawn from the worst possible distribution among all the prior
distributions he considers plausible.

The MEU representation can be seen as the special case of MPEU when Π = ∆(Θ). Therefore, an
MEU agent is maximally pessimistic, since he always consider the worst case for any distribution of the
parameters. This model was axiomatized in the space of risk functions by Stoye (2012). The axiom
required for the representation is translated to the SDT setting below.

Axiom 13 (Symmetry): Let T, F ∈ Σ be such that T ∩ F = ∅, and consider ρ, τ, κ, γ ∈ D with
(κ, P ∗), (γ, P ∗) ∈ K(≿̂). If (ρTκF γ, P

∗) ≿ (τTκF γ, P
∗), then (ρT γFκ, P

∗) ≿ (τT γFκ, P
∗).

Axiom 13 requires that the DM considers all events T, F ∈ Σ as equally plausible: from an ex-
ante perspective, reallocating constant pay-offs of different magnitudes across events does not change
preferences. I can now state the following:

Proposition 4 (MEU representation). A preference ≿ on S has a MPEU representation and satis-
fies Symmetry if, and only if, there exists a bounded utility function u : A × Θ → R, continuous in the
first argument, such that for all ρ, τ ∈ D and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒ inf
θ∈Θ

∫
X

u(ρ, θ)dPθ ≥ inf
θ∈Θ

∫
X

u(τ, θ)dQθ.

Moreover, u is parameter-wise cardinally unique.

5.3 Variational and multiplier preferences

Variational preferences models, put forth by Maccheroni et al. (2006), have also received considerable
attention in the decision theoretic literature. In that setting, its characterization hinges on the same
axioms as the MPEU model, except with a weakened version of C-Independence, which I translate into
the SDT framework as follows:

Axiom 14 (Weak CRE-Independence): For all ρ, τ, κ, κ′ ∈ D and P ∈ P such that (κ, P ), (κ′, P ) ∈
K(≿̂): if (αρ+ (1− α)κ, P ) ≿ (ατ + (1− α)κ, P ), then (αρ+ (1− α)κ′, P ) ≿ (ατ + (1− α)κ′, P ) for all
α ∈ (0, 1].

Along with some previously defined axioms, Weak CRE-Independence suffices to characterize varia-
tional preferences in SDT. Before stating the result, we need the definition of a mathematical property:
a function c : ∆(Θ) → [0,∞) is said to be grounded if infπ∈∆(Θ) c(π) = 0.
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Proposition 5 (Variational representation). A preference ≿ on S satisfies the MRA axioms, Mono-
tone Continuity∗, Hedging and Weak CRE-Independence if, and only if, there exists a utility function
u : A×Θ → R, continuous in the first argument, a convex set of probabilities Π ⊆ ∆(Θ), and a grounded,
convex and lower semicontinuous function c : Π → [0,∞) such that, for all ρ, τ ∈ D and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒ inf
π∈Π

{Eπ[ru(ρ, P )] + c(π)} ≥ inf
π∈Π

{Eπ[ru(τ,Q)] + c(π)} .

A DM whose preferences have a variational representation entertains a set of possible prior beliefs,
but has different degrees of confidence in each of them, which is represented by the function c. Variational
preferences generalize the MPEU model, which in turn generalizes SEU. This can be readily seen from
the representation, by setting c(π) = 0 for all π ∈ Π to get MPEU, and setting Π = {π} to obtain SEU.
It can also be seen from the axioms, since Weak CRE-Independence is weaker than CRE-Independence,
which in turn is weaker than Mixture Independence.

A special case of this model, called multiplier preferences by Hansen and Sargent (2001), was char-
acterized by Strzalecki (2011). This is done by imposing Savage’s sure thing principle on a preference
that has a variational representation.

Axiom 15 (Sure Thing Principle): For all ρ, τ, γ, γ′ ∈ D and T ∈ Σ: (ρT γ, P
∗) ≿ (τT γ, P

∗) implies
(ρT γ

′, P ∗) ≿ (τT γ
′, P ∗).

Axiom 15 is clearly a stronger version of Independence of Irrelevant Parameters, and has a similar
interpretation. It states that once the DM conditions the decision rule on a particular event T ∈ Σ, the
action distributions on the remaining parameters θ ∈ T c are inconsequential.

For any π, µ ∈ ∆(Θ), let π ≪ µ denote that π is absolutely continuous of with respect to µ, i.e.,
µ(T ) = 0 implies π(T ) = 0 for all T ∈ Σ. One can now obtain a representation by multiplier preferences:

Proposition 6 (Multiplier representation). A preference ≿ on S has a variational representation
and satisfies the Sure Thing Principle if, and only if, there exists a utility function u : A × Θ → R,
continuous in the first argument, a probability distribution µ ∈ ∆(Θ), and k ∈ (0,∞] such that, for all
ρ, τ ∈ D and P,Q ∈ P,

(ρ, P ) ≿ (τ,Q) ⇐⇒ min
π∈∆(Θ)

{Eπ[ru(ρ, P )] + kD(π∥µ)} ≥ min
π∈∆(Θ)

{Eπ[ru(τ,Q)] + kD(π∥µ)} ,

where

D(π∥µ) =


∫
Θ
log dπ

dµdπ, if π ≪ µ

∞, otherwise

is the Kullback-Leibler divergence and dπ
dµ is the Radon-Nikodym derivative of π with respect to µ.

Multiplier preferences describe a Bayesian DM who is worried about misspecification of the prior
distribution. Though the DM’s best guess for the parameter distribution is µ, she also entertains other
specifications. Alternative candidates for the prior become less plausible as they diverge from the bench-
mark distribution µ. The degree of confidence in µ being correctly specified is regulated by the constant
k, with larger values of k indicating more confidence in the benchmark distribution.

6 Alternative data sets

The previous sections focused on preferences over pairings. This is the most appropriate choice environ-
ment if the goal is to better understand the behavior of agents in different SDT models. It is also often
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observable as empirical data. For example, an econometrician who writes down a statistical model and
chooses a particular estimator is ultimately revealing their choice of decision rule and experiment.

However, there are situations in which other types of choice data are forthcoming. In this section,
I explore the behavioral implications of the MRA model to three alternative data sets. In Section 6.1,
I consider state dependent stochastic choice data as assumed by Caplin and Martin (2015) and Caplin
and Dean (2015). This is the standard data set in much of the psychometric literature, and keeps track
of the probabilities of choosing each action conditional on the parameters.

In Section 6.2, I characterize the MRA model using choice data in the form of two different collections
of preferences, each of which can be viewed as a cross-section of ≿. The first describes, for each experiment
P ∈ P, a preference ≽P on the set of decision rules. This corresponds to a DM who takes the experiment
as given an chooses only among available decision rules. The second collection of preferences ascribes to
each compact menu of decision rules M ⊆ D, a preference ≽M on the set of all experiments. This models
a DM who chooses an experiment, assuming that in a second stage of the decision making process it will
be paired with a particular decision rule.

6.1 Parameter dependent stochastic choice

Recall that the grand set of all parameter contingent action distributions is given by F = ∆(A)Θ. Each
f ∈ F can be understood as a parameter dependent stochastic choice, i.e., the probability (or frequency)
of choosing each action a ∈ A for every parameter θ ∈ Θ. Consider a data set where one observes
the DM choosing parameter dependent stochastic choices for a finite collection of decision problems
Φ = {F1, . . . , Fn : Fi ⊆ F}. Each F ∈ Φ represents the set of parameter contingent action distributions
available to the DM in a particular choice situation. I call (F ,Φ) — where Φ consists of a finite collection
of closed subsets of F — a choice space.

Formally, parameter dependent stochastic choice data consists of a choice function c : Φ → F \ {∅}
such that c(F ) ∈ F for every F ∈ Φ. Although the formalism is given in terms of a single observed choice
for each feasible set, actual data is often better understood as repeatedly observing, for each decision
problem F ∈ Φ, the DM’s choice of action for every parameter, and calculating action frequencies. To
avoid questions of how to elicit multiple selections from the same decision problem in a setting where we
only ever observe randomized choices, I assume that c is a function rather than a correspondence.

Given a parameter dependent stochastic choice function c, the goal is to determine whether it can be
rationalized by a preference relation ≿ on S, in the following sense.

Definition 5. Given a choice space (F ,Φ), we say that a preference relation ≿ on S rationalizes
c : Φ → F \ {∅}, if the preference ⪰ on F defined, for all f, g ∈ F , by

f ⪰ g ⇐⇒ ∃(ρ, P ), (τ,Q) ∈ S such that f = ρP, g = τQ and (ρ, P ) ≿ (τ,Q), (8)

is such that for all F ∈ Φ,
c(F ) = {f ∈ F : f ⪰ g ∀g ∈ F}. ♢

Definition 5 has the interpretation that the DM is actually choosing between pairings, but we (the
modellers) only observe the induced parameter contingent action distributions. If c can be rationalized
by ≿, then c(F ) is the parameter contingent action distribution induced by the most preferred pairing
(according to ≿), among all pairings that can induce the distributions in F . Note that if the DM does not
satisfy Consequentialism, then there is no hope of deducing properties of the preferences over pairings
by observing only parameter dependent stochastic choices. Indeed, a failure of Consequentialism would
imply that the preference ⪰ on F given by (8) is not well defined.
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An alternative is directly revealed preferred to another if it is chosen from a decision problem where
the other is available. If there is a sequence of alternatives such that f1 is directly revealed preferred to
f2 and so on, until fk−1 is directly revealed preferred to fk, then I simply say that f1 is revealed preferred
to fk. This is formalized in the definition below.

Definition 6. For any f1, fk ∈ F , we say that f1 is revealed preferred to fk, and denote it by f1 ⊵ fk,
if there exist {F1, . . . , Fk−1} ⊆ Φ such that {fi, fi+1} ⊆ Fi and fi = c(Fi) for all i = 1, . . . , k − 1. ♢

Consider the following axioms on the parameter dependent stochastic choice data set c.

Axiom C1 (GARP): For all f, g ∈ F : if f ⊵ g, then g ̸= c(F ) for all F ∈ Φ such that f ∈ F .

The Generalized Axiom of Revealed Preference (GARP) is a basic rationality postulate, stating that
the revealed preference relation is acyclic. That is, the DM’s choices are required to be coherent, in the
sense that if f is revealed to be strictly preferred to g, then g can not be chosen when f is available.
This is the revealed preference analogue of Weak Order.

For each θ ∈ Θ, define a binary relation ▷θ on ∆(A) by f(θ) ▷θ g(θ) if, and only if, f ▷ g and
f(θ′) = g(θ′) for all θ′ ̸= θ. This can be interpreted it as a directly revealed preference conditional on θ,
since f(θ)▷θ g(θ) when f is chosen over g in a situation where the only relevant parameter is θ.

Let ⊵θ be the convex hull of the transitive closure of ▷θ. That is, p ⊵θ q if, and only if, there exist
{(rj , sj)}kj=1 ⊆ ∆(A)2 and {λj}kj=1 ⊆ R+ with

∑k
j=1 λj = 1, such that rj ▷θ sj for all j = 1, . . . , k,

p =
∑k

j=1 λjrj and q =
∑k

j=1 λjsj . In more intuitive terms, p ⊵θ q if p and q are convex combinations,
with the same weights, of {rj}kj=1 and {sj}kj=1 respectively, and moreover each rj is directly revealed
preferred to sj conditional on θ. Note that ⊵θ can be elicited from choice data, by first taking the
transitive closure and then the convex hull of ▷θ. This relation was first presented by Clark (1993), who
also formulated the following axiom.

Axiom C2 (C-LARP): For all f, g ∈ F , and θ ∈ Θ: f(θ) ⊵θ g(θ) implies g(θ) ⋫θ f(θ).

The conditional linear axiom of revealed preference (C-LARP) says that in situations where there is
a single relevant parameter, mixing action distributions on that parameter using the same weights does
not reverse their conditional preference ranking. Thus, it is a parameter dependent stochastic choice
analogue of Conditional Mixture Independence. Moreover, it implies that ▷θ is antisymmetric. That is,
if f(θ) ̸= g(θ) and f(θ)h ⊵ g(θ)h, then g(θ)h

′ ⊵ f(θ)h
′ does not hold for any h′ ∈ F . Therefore, C-LARP

also encodes a version of Independence of Irrelevant Parameters.

Axiom C3 (RP-Monotonicity): If f = c(F ) and g ∈ F \ {f}, then there exists θ ∈ Θ such that
g(θ) ⊵θ f(θ) does not hold.

RP-Monotonicity states that if f is directly revealed preferred to g, then there exists a parameter for
which g is not conditionally revealed preferred to f . It can be considered a revealed preference version
of Monotonicity.

Finally, we impose a continuity axiom on the conditional revealed preference relations.

Axiom C4 (Conditional Continuity): For all θ ∈ Θ, if (pn), (qn) ∈ ∆(A) are sequences such that
pn → p, qn → q and pn ⊵θ qn for all n ∈ N, then q ̸⊵θ p.

We can now state the main representation theorem of this section.

Theorem 3. The parameter dependent stochastic choice function c : Φ → F \ {∅} satisfies GARP, C-
LARP, RP-Monotonicity and Conditional Continuity if, and only if, there exists a preference ≿ on S
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which rationalizes c and satisfies Consequentialism, Weak Order, Independence of Irrelevant Parameters,
Monotonicity, Conditional Mixture Independence and Continuity.

Moreover, if Θ is countable, so that F is metrizable, then ≿ has an MRA representation (u, I) such
that, for all F ∈ Φ,

c(F ) =

{
ρP ∈ F : argmax

{(τ,Q)∈S:τQ∈F}
I(ru(τ,Q))

}
.

Theorem 3 characterizes when parameter dependent stochastic choice data can be rationalized by pos-
tulating that the DM is actually facing a statistical decision problem, and making choices that maximize
preferences compatible with the MRA framework. This kind of behavioral data differs from preferences
over pairings in two main ways. First, it does not assume that we observe experiments and decision rules,
only their final consequences — the induced parameter contingent action distributions. Second, it only
assumes that choices from a finite number of decision problems — rather than the whole array of pref-
erences — is observed. Therefore, Theorem 3 allows us to test whether the DM’s choices are compatible
with the MRA model using a data set that is often easier to obtain. It is thus natural to ask whether
this type of data set can also be used to identify preferences over pairings, at least partially. That is, can
the DM’s choices over pairings be recovered by only looking at parameter dependent stochastic choice
data? The following example shows that, at least under some conditions, this is indeed possible.

Example 6: Let A, Θ and X be finite, with |X| ≤ min{|Θ|, |A|}. The DM chooses pairings from an
array of decision problems Ψ = {S1, . . . , Sn : Sj ⊆ S} so as to maximize a preference ≿ on S. Assume
that the set of feasible decision rules remains fixed at some D ⊆ D for every S ∈ Ψ. Therefore, each
decision problem only differs by the set of experiments available to the DM.

We do not directly observe the DM’s choice of decision rule or experiment, only the realized action
frequencies for each parameter θ ∈ Θ and decision problem S ∈ Ψ. Let P(a|θ, S) denote the probability
of choosing action a ∈ A from decision problem S ∈ Ψ, when the parameter is θ ∈ Θ. Letting F (S) =

{ρP : (ρ, P ) ∈ S} denote the set of parameter contingent action distributions that can be induced by
members of S, we can express the parameter dependent stochastic choice data set as

c(F (S))(θ) =


P(a1|θ, S)

...
P(a|A||θ, S)

 for all θ ∈ Θ and S ∈ Ψ.

Given the DM’s postulated choice procedure, the realized action frequencies must satisfy

P(a|θ, Sj) =
∑
x∈X

ρj(x, a)P j
θ (x) for all θ ∈ Θ and j ∈ {1, . . . , n}, (9)

subject to (ρ, P j) ≿ (τ,Q) for all (τ,Q) ∈ Sj — where I write ρj ≡ ρP j to simplify notation. With
parameter dependent stochastic choice data, we only observe the left hand side of eq. (9): neither the
chosen (ρ, P j), nor the realized signals are deemed observable.

Note that for each Sj ∈ Ψ, varying the parameter changes the optimal signal distribution, P j
θ , but

leaves the decision rule unchanged. Thus, eq. (9) describes a finite mixture model where varying the
parameter shifts the mixture weights P j

θ (x), but leaves the mixture distributions ρ(x, ·) unchanged. If
the model in (9) is point identified in the statistical sense, it is possible to recover the chosen decision
rule and experiment from each S ∈ Ψ, given enough data.

Henry et al. (2014) thoroughly studied conditions on P j and ρj under which such models are par-
tially identified. Adams (2016) provides necessary and sufficient conditions, again on P j and ρj , for
point identification. Such results are of limited applicability, since P j and ρj are not directly observable.
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I have an ongoing research project (Furtado, 2022) where I present a sufficient condition on the observ-
able parameter dependent stochastic choice data P that guarantees point identification of such mixture
models. ∥

6.2 Cross sectional preferences

In sections 4 and 5, I focused on preferences ≿ over pairs of decision rules jointly with experiments.
However, some applications are not directly concerned with preferences over pairings, but rather with
one of two sets of preferences embedded in ≿. The first and most ubiquitous kind of application involves
finding an optimal decision rule for a given experiment. That is, given P ∈ P, one wishes to characterize
a preference ≽P defined by ρ ≽P τ if, and only if, (ρ, P ) ≿ (τ, P ).

The second type of application involves ranking experiments, assuming that each will be paired with
a decision rule that will be chosen in a second stage. Formally, given a menu of feasible decision rules
M ⊆ D and a collection of choices {CP (M) : P ∈ P} with CP (M) ⊆ M \ {∅}, I wish to characterize
the relation P ≽M Q defined by (ρP , P ) ≿ (ρQ, Q) for every P,Q ∈ P, assuming ρj ∈ Cj(M), j = P,Q.
This is the setting of the design of experiments literature.

In what follows, I will separately characterize the MRA model for these two collections of preferences.

6.2.1 Preferences over decision rules

Suppose choice data comes as a collection of preferences on decision rules ≽�= {≽P⊆ D2 : P ∈ P}, one
for each (fixed) experiment. In the Bayesian persuasion literature, an agent described by such choice
data is called a Receiver, since she draws inference from information received from a source beyond her
control. I will still call this agent a DM, since she has preferences over decision rules.

Before presenting a representation theorem with this alternative data set, I define conditional prefer-
ences. Given P ∗, the preference ≽θ conditional on θ is defined by ρ ≽θ τ if, and only if, ρ{θ}γ ≽P∗ τ{θ}γ

for all γ ∈ D. The following axiom imposes straightforward adaptations of axioms 1 to 6 for ≽�, with
similar interpretations:

Axiom D1: For every experiment P ∈ P and all decision rules ρ, τ ∈ D:

1 If ρ ≽P τ , ρ′P ′ = ρP and τ ′P ′ = τP , then ρ′ ≽P ′ τ ′.

2 ≽P is complete and transitive.

3 ρ{θ}γ ≽P∗ τ{θ}γ implies ρ{θ}γ
′ ≽P∗ τ{θ}γ

′, for all γ, γ′ ∈ D and θ ∈ Θ.

4 If ρ ≽θ τ for all θ ∈ Θ, then ρ ≽P∗ τ .

5 If ρ ≽θ τ , then αρ+ (1− α)γ ≽θ ατ + (1− α)γ for all α ∈ (0, 1] and γ ∈ D.

6 The set {(ρP, τP ) ∈ F2 : ρ ≽P τ} is closed.

I can now state the following representation theorem.

Theorem 4. The system of preferences ≽�= {≽P⊆ D2 : P ∈ P} satisfies Axiom D1 if, and only if, there
exists a utility function v : A × Θ → R, continuous in the first argument, and a monotone, continuous
functional J : Rv → R such that, for all P ∈ P and ρ, τ ∈ D,

ρ ≽P τ ⇐⇒ J(rv(ρ, P )) ≥ J(rv(τ, P )). (10)

We then say that ≽� has an MRA representation (v, J). Moreover, v is parameter-wise cardinally
unique.
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Theorem 4 characterizes the MRA model when behavioral data comes in the form of preferences over
decision rules, for experiments that are exogenous from the DM’s standpoint. This is useful because it
provides a method to verify whether choices are compatible with the SDT framework, without having to
vary decision rules and experiments simultaneously. For instance, in laboratory settings such data can
be elicited by exogenously varying the experiment and available actions, while keeping track of action
frequencies for each realized signal.

6.2.2 Preferences over experiments

Now turn to an agent who chooses an information structure for each menu M of available decision rules
knowing that, in a second stage, a decision rule will be chosen for her (and, potentially, by her) from M .
To differentiate this agent from the DM, who chooses decision rules, I call her the Experimenter.4

Formally, identify D with the space of measurable functions from X to ∆(A) and, as usual, endow
it with the topology of point-wise convergence. A menu M ∈ M is some closed (thus compact) subset
of D. I now assume that the primitive is a system of preferences ≽�= {≽M⊆ P2 : M ∈ M}. I want to
characterize which such preference systems are compatible with the MRA model.

Recall that a decision rule ρ ∈ D is called invariant if ρP = ρP ′ for all P, P ′ ∈ P. Denote by M
the class of all menus consisting only of invariant decision rules. Throughout this section, I assume that
P = ∆(X)Θ. When this is the case, appendix A.1 shows that there exists an invariant decision rule
δ∗ ∈ D such that for all (ρ, P ) ∈ S, we have δ∗P ′ = ρP for some P ′ ∈ P.

First I state some postulates involving only preferences over experiments. These are versions of
axioms 1 and 3 to 5 in such a space.

Axiom E1: For all menus M ∈ M, M ∈ M and experiments P,Q ∈ P:

1 Weak Order: ≽M is complete and transitive.

2 IIP: P(θ)R ≽M Q(θ)R implies P(θ)R
′ ≽M Q(θ)R

′, for all R,R′ ∈ P and θ ∈ Θ.

3 Monotonicity: if P(θ)R ≽M Q(θ)R for all θ ∈ Θ and R ∈ P, then P ≽M Q.

4 Experiment CMI: if Pθ′ = Qθ′ = Rθ′ for every θ′ ̸= θ ∈ Θ and P ≽M Q, then αP +(1−α)R ≽M

αQ+ (1− α)R for all α ∈ (0, 1].

5 Continuity: the set {(δP, δQ) ∈ F2 : P ≽{δ} Q} is closed for all δ ∈ D.

Now consider a family of choice correspondences C = {CP : P ∈ P}, where

CP : M → 2D \ {∅}

M 7→ CP (M) ⊆ M.
(11)

The inclusion ρ ∈ CP (M) means that, in a second stage, ρ is chosen from the menu M of feasible decision
rules, when the experiment is P . The following axiom requires that information structures be chosen
taking into account the decision rule selected by C, and that the Experimenter is a consequentialist,
caring only about induced action distributions.

Axiom E2 (Consistency): If P ≽M P ′, and for all ρ ∈ CP (M), ρ′ ∈ CP ′(M), τ ∈ CQ(N) and
τ ′ ∈ CQ′(N) we have ρP = τQ and ρ′P ′ = τ ′Q′, then Q ≽N Q′.

Axioms E1 and E2 are sufficient to characterize the Experimenter’s preferences given menus from
which a single decision rule is chosen by C for every experiment (for instance, singleton menus). For all

4In Bayesian persuasion literature, such an agent is called a Sender.
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other menus, we need to elicit the Experimenter’s tie-breaking rule from her choices. Since in this paper
I am mostly concerned a single sophisticated DM, it is natural to assume that indifference is decided
in favor of the Experimenter. The next axiom guarantees just that, but first I introduce another bit of
notation: for any M ∈ M and τ ∈ CP (M), let P τ ∈ P satisfy δ∗P τ = τP .

Axiom E3 (Optimism): If ρ ∈ CP (M) and P ρ ≽{δ∗} P γ for all γ ∈ CP (M), then P ≽M Q (Q ≽M P )
if, and only if, P ≽M̃ Q (Q ≽M̃ P ), where M̃ = {δ ∈ D : δP = ρP and ∀R ̸= P, ∃γ ∈ M s.t. δR = γR}.

Axiom E3 is conceptually straightforward. If decision rule τ induces an action distribution under P

which is deemed worse by the Experimenter than that induced by ρ, then effectively removing from the
menu the possibility of pairing τ with P does not change preferences. In other words, the Experimenter
is an optimist, who believes the decision rule chosen in the second stage will be the best possible one,
among the alternatives that are deemed “choosable” by C.

I can now characterize the Experimenter’s preferences.

Theorem 5. A system of preferences ≽�= {≽M⊆ P2 : M ∈ M} satisfies axioms E1 to E3 if, and only
if, there exists a utility function w : A × Θ → R, continuous in the first argument, and a monotone,
continuous functional H : Rw → R such that, for all P,Q ∈ P and M ∈ M,

P ≽M Q ⇐⇒ H(rw(ρ, P )) ≥ H(rw(τ,Q)) subject to ρ ∈ CP (M), τ ∈ CQ(M). (12)

We then say that ≽� has an MRA representation (w,H). Moreover, w is parameter-wise cardinally
unique.

Note that Theorem 5 makes no assumptions about the properties of the choice correspondence. In
particular, the decision rule that is ultimately chosen, for any given experiment, could differ from the
one the Experimenter would prefer. The Experimenter can thus be seen as a sophisticated, but possibly
dynamically inconsistent, agent. She correctly anticipates – but does not necessarily control – which
decision rule will be ultimately chosen, and designs the information structure accordingly. Of course, if
C takes the form

CP (M) = argmax
δ∈M

H(rw(δ, P )) ∀M ∈ M and P ∈ P, (13)

then the Experimenter’s problem is equivalent to her sequentially choosing an experiment and then a
decision rule for herself. To spell out sufficient conditions when (13) is true could be an interesting avenue
for future research, but is beyond the scope of the current paper.

7 Discussion and conclusion

In this paper, I have built an axiomatic foundation that can be used to obtain representation theorems
for many statistical decision theoretic models. These theorems provide the full behavioral implications of
said models, in terms of preferences over pairings of decision rules and experiments. Such representation
results serve two main purposes in positive economics. First, they provide applied theorists working
within the SDT framework with a deeper understanding of the behavior of agents in their models.
Second, they allow empiricists to gauge the extent to which observed choice behavior deviates from the
behavioral predictions of different SDT models. As SDT is the setting of much of information economics,
results of this kind may find many uses in the wider economics literature.

Representation theorems such as the ones presented in sections 4 and 5 also serve a normative purpose.
For instance, Manski (2021) advocates for the use of statistical decision theory in econometrics, but leaves
open the issue of what objective function the econometrician should use. In this context, axioms can
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serve as a guide for the econometrician’s choice of utility function and aggregator, when formulating an
SDT model. That is, the econometrician should choose a statistical decision theoretic objective function
that leads to desirable constraints on preferences, formalized as normatively appealing axioms.

For this paper, I have mainly focused on obtaining the behavioral implications of a canonical SDT
model in which the DM takes the expected utility conditional on each parameter, and aggregates across
parameters using a monotone functional. Therefore, although the methodology I presented in sections 4
and 5 is flexible enough to provide characterizations of a wide array of SDT models, it is by no means
exhaustive. There are at least three particularly interesting classes of models which can be considered
as belonging to the SDT family, but are ruled out by the approach taken here.

The first pertains to models in which not only choices, but DM’s preferences themselves, depend on
the menu of available options. The canonical example of this is regret-based preferences, as discussed in
example 1. Second, by maintaining the Consequentialism axiom throughout the analysis, I am precluding
models where the utility function depends not only on actions and parameters, but directly on decision
rules and experiments. As discussed in example 4, one such model is the classic rational inattention
framework with cognitive costs. A third class of SDT models not contemplated here is one in which,
when the true parameter is known, the DM evaluates prospects using a criterion other than maximizing
expected utility. For example, Manski and Tetenov (2014) evaluate the performance of a treatment
rule based on maximizing a utility quantile, rather than its expectation, conditional on each parameter.
Expanding the framework outlined here to any one of these classes of models presents a fruitful avenue
for future decision theoretic research.

Since there are situations in which data on preferences over pairings is not easy to come by, in Section 6
I expanded the scope of applicability of my main results by characterizing the MRA model assuming
other data sets. In Section 6.1, I considered a data set consisting of action probabilities conditional on
each parameter. This type of data is standard in psychometrics, and has recently received attention in
economics. I showed when such data can be rationalized by a preference over pairings that has an MRA
representation. Moreover, example 6 discusses sufficient conditions for preferences over decision rules and
experiments to be identifiable from parameter dependent stochastic choice. This opens the possibility of
extending the results of this paper to the case when the DM faces information costs, and thus building
on the work of Caplin and Dean (2015) by (i) not assuming the existence of a utility function in their
representations; and (ii) extending their results beyond Bayesian DMs.

Section 6.2 provides an MRA characterization for two systems of preferences. The first describes a
DM’s preferences over decision rules for each given experiment. The second describes a DM who correctly
anticipates which decision rule will be chosen from a menu and ranks experiments accordingly. These
preferences naturally arise in many applications, and can be viewed as two cross sections of the preference
over pairings. Another interesting topic for future research will be to provide sufficient conditions for the
MRA representations of these two systems of preferences to coincide, so that they can be interpreted as
modelling the same agent.

A Proofs

A.1 Proof of Lemma 1

We will prove the following, stronger result.

Lemma 4. For all [σ] ∈ S/∗,

1. There exists ρσ ∈ D such that (ρσ, P ∗) ∈ [σ].

2. If P = ∆(X)Θ, then there exists an invariant δ∗ ∈ D such that (δ∗, Pσ) ∈ [σ] for some Pσ ∈ P.
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Proof: Fix any σ = (ρ, P ) ∈ S. Recall that ρPθ(E) ≡
∫
X
ρP (x,E)dPθ(x) for all θ ∈ Θ and E ∈ A.

1. Construct ρσ by setting ρσP∗(x,E) = ρPθ(E) for all E ∈ A, θ ∈ Θ and x ∈ Sθ. Then,

ρσP ∗
θ (E) =

∫
X

ρσP∗(x,E)dP ∗
θ (x) =

∫
Sθ

ρPθ(E)dP ∗
θ (x) = ρPθ(E) ∀E ∈ A.

2. First assume that A is countable and take any surjective decision rule δ∗ ∈ D. For all a ∈ A,
let Fa = {x ∈ X : δ∗(x) = a}, and define Pσ

θ (Fa) = ρPθ({a}) for all θ ∈ Θ and a ∈ A. Then,
δ∗Pσ({a}) = Pσ(δ∗−1({a})) = Pσ

θ (Fa) = ρPθ({a}).

Now suppose A is uncountable. Since A is standard Borel, there exists a bijective measurable
δ∗ : X → A such that its inverse is also measurable. This implies that the σ-algebra generated by
δ∗ coincides with X , hence setting Pσ

θ (δ
∗−1(E)) = ρPθ(E), for all E ∈ A and θ ∈ Θ, defines an

experiment on X . By construction, δ∗Pσ = ρP . □

A.2 Proof of Theorem 1

From Axiom 2, we know that S/∗ is finer than S/∼. Therefore, in the presence of Axiom 2, providing
a representation of ≿⊆ S2 is equivalent to characterizing the preference ⪰ on F defined in eq. (8).
Denote the symmetric and asymmetric parts of ⪰ by ≃ and ≻, respectively. It is easy to see that if ≿
is transitive, so is ⪰. By Lemma 1, for all f ∈ F , there exists ρ ∈ D such that f = ρP ∗. Therefore,
completeness and reflexivity of ≿ imply that the same properties hold for ⪰.

Consider the following axioms on ⪰:

Axiom A3: For all f, g, h, h′ ∈ F and θ ∈ Θ: if f(θ)h ⪰ g(θ)h, then f(θ)h
′ ⪰ g(θ)h

′.

Axiom A4: For all f, g ∈ F , if f(θ)h ⪰ g(θ)h for every θ ∈ Θ and h ∈ F , then f ⪰ g.

Axiom A5: For all f, g, h ∈ F and θ ∈ Θ, if f(θ′) = g(θ′) = h(θ′) for all θ′ ̸= θ, then f ⪰ g implies
αf + (1− α)h ⪰ αg + (1− α)h for all α ∈ (0, 1].

Axiom A6: The set {(f, g) ∈ F2 : f ⪰ g} is closed.

Axiom A7: For any f, g ∈ F , f ⪰ g =⇒ f(θ)h ⪰ g(θ)h for every θ ∈ Θ and h ∈ F .

Axiom A8: For any f, g ∈ F and θ ∈ Θ, if f(θ′) = g(θ′) for all θ′ ̸= θ, then f ⪰ g or g ⪰ f .

We have the following result linking the axioms above to axioms 3 to 7.

Lemma 5. Let ≿⊆ S2 satisfy Consequentialism. Then, the following statements hold:

1. If ≿ satisfies Axiom 3, then ⪰ satisfies Axiom A3.

2. If ≿ satisfies Axiom 4, then ⪰ satisfies Axiom A4.

3. If ≿ satisfies Axiom 5, then ⪰ satisfies Axiom A5.

4. If ≿ satisfies Axiom 6, then ⪰ satisfies Axiom A6.

5. If ≿ satisfies Axiom 7, then ⪰ satisfies Axiom A7.

6. If ≿ satisfies Axiom 8, then ⪰ satisfies Axiom A8.

Proof:
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1. Take any f, g, h, h′ ∈ F such that f(θ)h ⪰ g(θ)h. By Lemma 1, there exists ρ, τ, γ, γ′ ∈ D such that
f = ρP ∗, g = τP ∗, h = γP ∗ and h′ = γ′P ∗. Fix any θ ∈ Θ. Then,

(ρ{θ}γ)P
∗
θ′(·) =

∫
Sθ′

ρ{θ}γP∗(x, ·)dP ∗
θ′(x) =

ρP ∗
θ (·), if θ′ = θ

γP ∗
θ′(·), if θ′ ̸= θ,

hence f(θ)h = (ρ{θ}γ)P
∗, and similarly for g(θ)h = (τ{θ}γ)P

∗, f(θ)h
′ = (ρ{θ}γ

′)P ∗, and g(θ)h
′ =

(τ{θ}γ
′)P ∗. By Consequentialism and f(θ)h ⪰ g(θ)h, we have (ρ{θ}γ, P

∗) ≿ (τ{θ}γ, P
∗). By Ax-

iom 3, this implies (ρ{θ}γ
′, P ∗) ≿ (τ{θ}γ

′, P ∗), and the definition of ⪰ gives us f(θ)h
′ ⪰ g(θ)h

′.

2. Let f, g ∈ F be such that f(θ)h ⪰ g(θ)h for all θ ∈ Θ and h ∈ F . Lemma 1 implies that for all
h ∈ F , there exists γ ∈ D such that h = γP ∗. Let ρP ∗ = f and τP ∗ = g. Now, an argument
analogous to the one in part 1 implies that, for all θ ∈ Θ and h ∈ F , there exists γ ∈ D with
f(θ)h = (ρ{θ}γ)P

∗ and g(θ)h = (τ{θ}γ)P
∗. Consequentialism and f(θ)h ⪰ g(θ)h for all h ∈ F now

imply that (ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) for all γ ∈ D. By Axiom 4, we have (ρ, P ∗) ≿ (τ, P ∗), hence
f ⪰ g.

3. Fix θ ∈ Θ and take any f, g, h ∈ F such that f(θ′) = g(θ′) = h(θ′) for all θ′ ̸= θ. Assume
f ⪰ g. By Lemma 1, there exists ρ, τ, γ, κ ∈ D such that f = (ρ{θ}κ)P

∗, g = (τ{θ}κ)P
∗ and

h = (γ{θ}κ)P
∗. By Consequentialism, f ⪰ g implies (ρ{θ}κ, P

∗) ≿ (τ{θ}κ, P
∗). Applying Axiom 5

we get (αρ{θ}κ + (1 − α)γ{θ}κ, P
∗) ≿ (ατ{θ}κ + (1 − α)γ{θ}κ, P

∗) for all α ∈ (0, 1]. The result
follows from how ρ, τ, γ and κ were defined.

4. This follows immediately from the definition of ⪰.

5. Take f, g ∈ F and suppose f ⪰ g. Then there exists ρ, τ ∈ D such that f = ρP ∗ and g = τP ∗. By
Axiom 2, (ρ, P ∗) ≿ (τ, P ∗), thus by Axiom 7, (ρ{θ}γ, P ∗) ≿ (τ{θ}γ, P

∗) for all θ ∈ Θ and γ ∈ D.
Lemma 1 and Axiom 2 then imply that f(θ)h ⪰ g(θ)h for every θ ∈ Θ and h ∈ F .

6. Fix any θ ∈ Θ and suppose f, g ∈ F are such that f(θ′) = g(θ′) for all θ′ ̸= θ. By a now familiar
argument, there exist ρ, τ, γ ∈ D such that f = (ρ{θ}γ)P

∗ and g = (τ{θ}γ)P
∗. Axiom 8 implies

that (ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) or (τ{θ}γ, P
∗) ≿ (ρ{θ}γ, P

∗). The result follows. □

We are now ready to prove Theorem 1. It is routine to check that the representation satisfies the
axioms, so we only prove sufficiency. Let ≿ be a reflexive and transitive preference satisfying axioms 2
to 8, and define ⪰ as in (8). If ≿ is trivial, it is clear that it has a dominance representation via a
constant utility function u, and we are done. So assume that there exists σ, σ′ ∈ S such that σ ≻ σ′. By
Lemma 5, ⪰ is reflexive, transitive and satisfies axioms A3 to A8.

For each θ ∈ Θ, define the conditional preference ⪰θ on ∆(A) as follows:

∀f(θ), g(θ) ∈ ∆(A), f(θ) ⪰θ g(θ) ⇐⇒ f ⪰ g and f(θ′) = g(θ′) ∀θ′ ̸= θ. (14)

Axiom A3, and reflexivity and transitivity of ⪰ guarantee that ⪰θ is well-defined, transitive and
reflexive for every θ ∈ Θ, while Axiom A8 implies that it is also complete. By Axiom A5, ⪰θ satisfies
Independence: if p ⪰θ q, then αp + (1 − α)s ⪰θ αq + (1 − α)s for any α ∈ (0, 1] and s ∈ ∆(A). Take
sequences (pn), (qn) ∈ ∆(A) such that pn → p, qn → q and pn ⪰θ qn for all n ≥ 1. Axiom A6 implies
that p, q ∈ ∆(A) and p ⪰θ q. Since ∆(A) is a metric space, this implies that {(p, q) ∈ ∆(A)2 : p ⪰θ q} is
closed. We can thus apply the classic expected utility representation theorem for compact prize spaces
– see, e.g., Kreps (2018, Chapter 5) – to find, for every θ ∈ Θ, a continuous utility function uθ : A → R
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such that, for all f(θ), g(θ) ∈ ∆(A),

f(θ) ⪰θ g(θ) ⇐⇒
∫
A

uθdf(θ) ≥
∫
A

uθdg(θ). (15)

Now take any f, g ∈ F such that f ⪰ g. By axioms A4 and A7, we must have f(θ) ⪰θ g(θ) for all
θ ∈ Θ. Considering the representations in (15), this implies that for all f, g ∈ F ,

f ⪰ g ⇐⇒
∫
A

uθdf(θ) ≥
∫
A

uθdg(θ) ∀θ ∈ Θ.

In view of (8) and Axiom 2, this implies that, for all (ρ, P ), (τ,Q) ∈ S,

(ρ, P ) ≿̂ (τ,Q) ⇐⇒
∫
A

uθdρPθ ≥
∫
A

uθdτQθ ∀θ ∈ Θ ⇐⇒
∫
X

uθ(ρ)dPθ ≥
∫
X

uθ(τ)dQθ ∀θ ∈ Θ.

The representation obtains by defining u(·, θ) = uθ for each θ ∈ Θ. Its uniqueness properties derive from
cardinal uniqueness of uθ for every θ ∈ Θ. That is, if u′

θ also represents ⪰θ, then there exist bθ > 0 and
cθ ∈ R such that u′

θ = bθuθ + cθ. This is guaranteed by the expected utility theorem.
Consider the following definition.

Definition 7. We call the parameters in ΘI ≡ {θ ∈ Θ : (ρ{θ}γ, P
∗) ∼̂ (τ{θ}γ, P

∗) ∀ρ, τ ∈ D} irrele-
vant. ♢

Irrelevant parameters get their name from the fact that changing the action distributions conditional on
ΘI does not affect the DM’s valuation of a pairing. For future reference, note that ⪰θ is trivial for all
θ ∈ ΘI . This then implies that any utility representation uθ of ⪰θ, with θ ∈ ΘI , is a constant function.

A.3 Proof of Lemma 2

Let ≿ be a preference satisfying axioms 1 to 6 and define its unanimously preferred sub-relation ≿̂ as in
Definition 3. We start by proving Proposition 1:

Proof of Proposition 1:

1. The inclusion ≿̂⊆≿ follows immediately. To prove transitivity, take σ ≿̂ σ′ and σ′ ≿̂ σ̃. Then
there exist ρ, τ, γ ∈ D, with (ρ, P ∗) ∈ [σ], (τ, P ∗) ∈ [σ′] and (γ, P ∗) ∈ [σ̃], such that (ρ{θ}κ, P

∗) ≿

(τ{θ}κ, P
∗) and (τ{θ}κ, P

∗) ≿ (γ{θ}κ, P
∗) for all κ ∈ D and θ ∈ Θ, . By transitivity of ≿, we have

(ρ{θ}κ, P
∗) ≿ (γ{θ}κ, P

∗), for every κ ∈ D and θ ∈ Θ. Thus, by definition, σ ≿̂ σ̃.

2. We want to show that ≿̂ satisfies axioms 2 to 8. First note that since ≿ satisfies axioms 3 and 4,
we have that ≿̂ is reflexive, thus non-empty. Axiom 2 follows directly from ≿̂⊆≿. Axioms 3 and 5
are implied by the Sure Thing Principle (STP) and Mixture Independence (MI) respectively, which
we show in parts 3 and 4, below.

Now, note that for any T ⊆ Θ and ρ, γ, γ′ ∈ D,

ρT γ{θ}γ
′ =

ρ{θ}γ
′, if θ ∈ T

γ{θ}γ
′, if θ ∈ Θ \ T.

(16)

In particular, since ≿ satisfies IIP, for any γ ∈ D and θ ∈ Θ, (ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗) implies
(ρ{θ}γ{θ′}γ

′, P ∗) ≿ (τ{θ}γ{θ′}γ
′, P ∗) for all γ′ ∈ D and θ′ ∈ Θ, and thus (ρ{θ}γ, P

∗) ≿̂ (τ{θ}γ, P
∗).

Since ≿̂⊆≿, we have that for all θ ∈ Θ and ρ, τ, γ ∈ D, (ρ{θ}γ, P ∗) ≿̂ (τ{θ}γ, P
∗) if, and only if,

(ρ{θ}γ, P
∗) ≿ (τ{θ}γ, P

∗). By Consequentialism, we also have that (ρ, P ∗) ≿̂ (τ, P ∗) if, and only
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if, (ρ{θ}γ, P ∗) ≿ (τ{θ}γ, P
∗) for all θ ∈ Θ and γ ∈ D. Taken together, these two facts facts imply

axioms 4 and 7.

Recalling the definition in (14) and since ∆(A) is a metric space, we have that {(f(θ), g(θ)) ∈
∆(A)2 : f(θ) ⪰θ g(θ)} is closed if, and only if, it is sequentially closed. Also recall from Ap-
pendix A.2 that (ρ, P ) ≿̂ (τ,Q) ⇐⇒ f(θ) ⪰θ g(θ) for all f = ρP , g = τQ and θ ∈ Θ. Therefore,
{(ρP, τQ) ∈ F2 : (ρ, P ) ≿̂ (τ,Q)} is closed if, and only if,

⋂
θ∈Θ{(f, g) ∈ F2 : f(θ) ⪰θ g(θ)}

is closed. So consider sequences {fn}n≥1 and {gn}n≥1 ∈ F such that fn → f , gn → g, and
fn(θ) ⪰θ gn(θ) for all θ ∈ Θ, n ≥ 1. Since ⪰θ is continuous by Appendix A.2, we have that
{(f, g) ∈ F2 : f(θ) ⪰θ g(θ)} is closed for every θ ∈ Θ. Therefore, the intersection is also closed,
which then implies continuity of ≿̂.

3. To prove that ≿̂ satisfies the Sure Thing Principle, first consider ρ, τ, γ ∈ D such that (ρT γ, P ∗) ≿̂

(τT γ, P
∗). Then, by eq. (16), (ρ{θ}κ, P

∗) ≿ (τ{θ}κ, P
∗) for all θ ∈ T and κ ∈ D, which by

Monotonicity of ≿, implies (ρT γ
′, P ∗) ≿ (τT γ

′, P ∗) for any γ′ ∈ D. Again using eq. (16) and the
fact that (ρ{θ}κ, P

∗) ≿ (τ{θ}κ, P
∗) for all θ ∈ T and κ ∈ D, gives us (ρT γ

′, P ∗) ≿̂ (τT γ
′, P ∗).

4. Take any P ∈ P and ρ, τ ∈ D with (ρ, P ) ≿̂ (τ, P ). Then, by definition, there exists ρ′, τ ′ ∈ D such
that ρ′P ∗ = ρP , τ ′P ∗ = τP and (ρ′{θ}γ, P

∗) ≿ (τ ′{θ}γ, P
∗) for all θ ∈ Θ and γ ∈ D. Now CMI

implies that (αρ′{θ}γ+(1−α)κ′
{θ}γ, P

∗) ≿ (ατ ′{θ}γ+(1−α)κ′
{θ}γ, P

∗) for all θ ∈ Θ, α ∈ (0, 1] and
κ′, γ ∈ D. By Lemma 1, for any κP ∈ F , there exists κ′ ∈ D such that κ′P ∗ = κP . Therefore, for
all κ ∈ D and α ∈ (0, 1], there exists κ′ ∈ D such that (αρ + (1 − α)κ)P = (αρ′ + (1 − α)κ′)P ∗,
(ατ+(1−α)κ)P = (ατ ′+(1−α)κ′)P ∗, and ((αρ′+(1−α)κ′){θ}γ, P

∗) ≿ ((ατ ′+(1−α)κ′){θ}γ, P
∗)

for all θ ∈ Θ and γ ∈ D. We conclude that ≿̂ satisfies Mixture Independence.

5. Suppose ≿ is non-trivial. Then, by completeness, there exists (ρ, P ) ≻ (τ,Q). Lemma 1 now
guarantees that there exists ρ′, τ ′ ∈ D with (ρ′, P ∗) ≻ (τ ′, P ∗). Let T = {θ ∈ Θ : (ρ′{θ}γ, P

∗) ≿

(τ ′{θ}γ, P
∗) ∀γ ∈ D}, and note that by IIP and Monotonicity, T ̸= ∅. Monotonicity now implies

that (ρ′T τ
′, P ∗) ≿ (ρ′, P ∗) ≻ (τ ′, P ∗), and by transitivity, (ρ′T τ

′, P ∗) ≻ (τ ′, P ∗). By construction of
T and eq. (16), (ρ′T τ

′, P ∗) ≿̂ (τ ′, P ∗). Again by Monotonicity, there exists θ ∈ T and γ ∈ D such
that (τ ′{θ}γ, P

∗) ̸≿ (ρ′T τ
′
{θ}γ, P

∗). Therefore (τ ′, P ∗) ̸≿̂ (ρ′T τ
′, P ∗), which concludes the proof. □

Now, from Proposition 1, we know that ≿̂ is a dominance relation. By Theorem 1, it has a dominance
representation by a parameter-wise cardinally unique utility function u : A×Θ → R.

A.4 Proof of Theorem 2

If ≿ is trivial, it can clearly be represented by any utility function u paired with a constant aggregator
functional I. So assume that ≿ is not trivial. Let ≿ satisfy axioms 1 to 6 and fix a utility function
u : A × Θ → R that represents its unanimously preferred sub-relation ≿̂. Consider the risk mapping
ru : S → RΘ under u defined by (2), and set Ru = {ru(σ) : σ ∈ S}. Note that, as a product
of (possibly degenerate) intervals, Ru is connected, and as a consequence of the Hewitt-Marczewski-
Pondiczery theorem (Hewitt, 1946), it is also separable.

Consider the preference relation ⪰u on Ru defined by (6). It is easy to see that ⪰u is transitive, since
ru(σ) ⪰u ru(σ

′) and ru(σ
′) ⪰u ru(σ̃) imply that σ ≿ σ′ and σ′ ≿ σ̃, hence σ ≿ σ̃ by transitivity of ≿,

which in turn implies ru(σ) ⪰u ru(σ̃). By definition, ⪰u is also complete on Ru.
Now we prove that ⪰u is continuous, i.e., that {(r, r′) ∈ R2

u : r ⪰u r′} is closed in the product
topology. First note that for every θ ∈ Θ, the functional ∆(A) ∋ f(θ) 7→

∫
A
u(a, θ)df(θ) is continuous
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in the topology of weak convergence. Thus, r̃u : F → RΘ, defined as

r̃u(f)(θ) =

∫
A

u(a, θ)df(θ) ∀f ∈ F , θ ∈ Θ, (17)

is continuous in the product topology on RΘ. Now note that {(ru(σ), ru(σ′)) ∈ R2
u : ru(σ) ⪰u ru(σ

′)} =

{(r̃u(ρP ), r̃u(τQ)) ∈ R2
u : (ρ, P ) ≿ (τ,Q)}. Let the map R̃u : F2 → R2

u be defined by R̃u(f, g) =

(r̃u(f), r̃u(g)). Then R̃u is continuous, as a product of continuous functions, and

R̃u({(ρP, τQ) ∈ F2 : (ρ, P ) ≿ (τ,Q)}) = {(r̃u(ρP ), r̃u(τQ)) ∈ R2
u : (ρ, P ) ≿ (τ,Q)}.

Since A is compact, so is ∆(A). Thus, by Tychonoff’s theorem, F is a compact Hausdorff space, and
so is F2. Then, by Continuity of ≿, {(ρP, τQ) ∈ F2 : (ρ, P ) ≿ (τ,Q)} is also compact, since it is a closed
subset of a compact space. This makes R̃u({(ρP, τQ) ∈ F2 : (ρ, P ) ≿ (τ,Q)}) compact as well – because
R̃u is continuous – hence closed, since R2

u is Hausdorff. We conclude that ⪰u is continuous.
Therefore, ⪰u is a continuous weak order on a connected and separable topological space. By Her-

den (1989, Corollary 3.2), there exists a continuous utility function I : Ru → R such that, for all
ru(σ), ru(σ

′) ∈ Ru, ru(σ) ⪰u ru(σ
′) ⇐⇒ I(ru(σ)) ≥ I(ru(σ

′)). By definition of ⪰u, we obtain, for all
σ, σ′ ∈ S,

σ ≿ σ′ ⇐⇒ ru(σ) ⪰u ru(σ
′) ⇐⇒ I(ru(σ)) ≥ I(ru(σ

′)).

Now we prove that ≿ has a representation with an ex-post utility function u : A×Θ → R such that
u(·, θ) is non-constant for all θ ∈ Θ. From Appendix A.2, for any dominance representation û of ≿̂,
û(·, θ) is constant for all θ ∈ ΘI . Let (û, Î) be an MRA representation of ≿ such that û(a, θ) = k ∈ R
for all a ∈ A and θ ∈ ΘI . Such a representation exists by the uniqueness properties of Theorem 1. Set
u(·, θ) = û(·, θ) for θ ∈ Θ \ ΘI , and let u(·, θ) be any non-constant function with k ∈ co(u(A, θ)) for
all θ ∈ ΘI , where co(·) denotes the convex hull of a set. Note that Rû ⊆ Ru, and let I : Ru → R
be given by I(r) = Î(r̂) if r(θ) = r̂(θ) for all θ ∈ Θ \ ΘI , where r ∈ Ru and r̂ ∈ Rû. Clearly
I(ru(σ)) ≥ I(ru(σ

′)) ⇐⇒ Î(ru(σ)(ΘI)k) ≥ Î(ru(σ
′)(ΘI)k), therefore (u, I) also represents ≿.

A.5 Proofs of results in Section 5

Let ≿ be a preference relation on S satisfying axioms 1 to 6, and take a utility function u that represents
≿̂. Consider the preference relation ⪰u on Ru defined by (6). We first formally state and prove a result
that was only alluded to in the main text.

Lemma 6. The preference ⪰u on Ru satisfies the basic A-A axioms

• Weak Order : the preference ⪰u is complete and transitive.

• A-A Monotonicity : for all r, r′ ∈ Ru, if r ≥ r′, then r ⪰u r′.

• Risk Independence: for all constant risk functions r, r′, q ∈ Ru and α ∈ [0, 1], r ⪰u r′ implies
αr + (1− α)q ⪰u αr′ + (1− α)q.

• Mixture Continuity: the sets {α ∈ [0, 1] : αr+(1−α)r′ ⪰u q} and {α ∈ [0, 1] : q ⪰u αr+(1−α)r′}
are closed for all r, r′, q ∈ Ru.

Proof: We showed in Appendix A.4 that ⪰u satisfies Weak Order and that {(r, r′) ∈ R2
u : r ⪰u

r′} is closed. Take any r, r′, q ∈ Ru and a sequence (αn)n≥1 ∈ [0, 1], with limn→∞ αn = α, such
that αnr + (1 − αn)r

′ ⪰u q for all n ≥ 1. Since {(r, r′) ∈ R2
u : r ⪰u r′} is closed, we have that

limn(αnr + (1 − αn)r
′) = αr + (1 − α)r′ ⪰u q. Hence {α ∈ [0, 1] : αr + (1 − α)r′ ⪰u q} is closed. An
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analogous argument proves that {α ∈ [0, 1] : q ⪰u αr + (1 − α)r′} is closed, thus ⪰u satisfies Mixture
Continuity.

A-A Monotonicity follows directly from Theorem 2, since I is monotone. To prove Risk Independence,
note that if r, r′ ∈ Ru are constant, then r ⪰u r′ if and only if r ≥ r′, by A-A Monotonicity. The result
follows immediately. □

Now we turn to Lemma 3.

Proof of Lemma 3: The proof of statement 1 consists of applying the definitions and doing simple
algebra, thus will be omitted. To prove statement 2, recall that for all ρ, γ ∈ D, T ∈ Σ and θ ∈ Θ,

ru(ρT γ, P
∗)(θ) =

∫
X

u(ρT γ, θ)dP
∗
θ =

∫
A

∫
X

u(a, θ)ρT γ(x, da)P
∗
θ (dx) =


∫
A
u(a, θ)dρP ∗

θ (a), if θ ∈ T∫
A
u(a, θ)dγP ∗

θ (a), if θ /∈ T.

Therefore, ru(ρT γ, P ∗)(θ) = ru(ρ, P
∗)(θ) for θ ∈ T , and ru(ρT γ, P

∗)(θ) = ru(γ, P
∗)(θ) for θ ∈ Θ \ T ,

which proves the statement.
Now take another MRA representation (ũ, Ĩ) of ≿, normalized in such a way that Rũ = [0, 1]Θ. It

is possible to do this because, by Theorem 2, ≿ has an MRA representation with parameter-wise non-
constant utility. Then, parameter-wise cardinal uniqueness of u allows us normalize this utility function
on each parameter. Note that rũ(ρ, P

∗)(θ) = 1 and rũ(ρ, P
∗)(θ) = 0 for all θ ∈ Θ.

If σ ∈ K(≿̂), Lemma 1 implies that there exists α ∈ [0, 1] such that σ ∈ [(αρ+(1−α)ρ, P ∗)], thus by
statement 1, rũ(σ)(θ) = α, for all θ ∈ Θ. Conversely, take rũ(τ, P ) ∈ Rũ such that rũ(τ, P )(θ) = α for
all θ ∈ Θ, and take ρP ∗ = τP . Since rũ(ρ, P

∗)({θ})rũ(γ, P
∗) = rũ(αρ + (1 − α)ρ, P ∗)({θ})rũ(γ, P

∗) for
any γ ∈ D and θ ∈ Θ, we may apply statement 2 and the definition of ⪰u to obtain rũ(ρ{θ}γ, P

∗) ≃u

rũ((αρ + (1 − α)ρ){θ}γ, P
∗) for all θ ∈ Θ. By definition of ≃u, (ρ{θ}γ, P ∗) ∼ ((αρ + (1 − α)ρ){θ}γ, P

∗)

for all θ ∈ Θ, and by IIP, (ρ, P ∗) ∼̂ (αρ + (1 − α)ρ, P ∗). Since τPθ = ρP ∗
θ for all θ ∈ Θ, we have

(τ, P ) ∈ K(≿̂), which finishes the proof. □

In view statement 3 of Lemma 3, for the remainder of this section we work with a representation
(u, I) of ≿ such that Ru = [0, 1]Θ, so that ru(σ) being constant implies σ ∈ K(≿̂). We start by proving
the lemmas which translate SDT axioms on ≿ to the corresponding Anscombe-Aumann axioms on ⪰u.

Lemma 7. If ≿ satisfies Mixture Independence, then ⪰u satisfies Independence.

Proof: Take r, r′, q ∈ Ru and assume ≿ satisfies Axiom 9. From Lemma 1 and the definition of ⪰u, there
exists ρ, τ, γ ∈ D and P ∈ P such that, r = ru(ρ, P ), r′ = ru(τ, P ), q = ru(γ, P ) and (ρ, P ) ≿ (τ, P ). By
Mixture Independence, we have (αρ + (1 − α)γ, P ) ≿ (ατ + (1 − α)γ, P ) for all α ∈ (0, 1]. Therefore,
from statement 1 of Lemma 3, we obtain αr + (1− α)q ⪰u αr′ + (1− α)q for all α ∈ (0, 1]. □

Lemma 8. If ≿ satisfies Monotone Continuity∗, then ⪰u satisfies Monotone Continuity.

Proof: Take any r, r′, q ∈ Ru with q constant, and let (Tn)n≥1 ∈ Σ be such that T1 ⊇ T2 ⊇ · · · and⋂
n≥1 Tn = ∅. Suppose r ≻u r′. By Lemma 1, there exist ρ, τ, κ ∈ D, with (κ, P ∗) ∈ K(≿̂), such that

r = ru(ρ, P
∗), r′ = ru(τ, P

∗) and q = ru(γ, P
∗). From the definition of ⪰u, (ρ, P ∗) ≻ (τ, P ∗). Then

Monotone Continuity∗ implies that there exists m ≥ 1 such that (κTm
ρ, P ∗) ≻ (τ, P ∗). The result then

follows from statement 2 of Lemma 3. □

Lemma 9. If ≿ satisfies Hedging, then ⪰u satisfies Uncertainty Aversion.

Proof: Let r, r′ ∈ Ru be such that r ≃u r′. By Lemma 1, there exists P ∈ P and ρ, τ ∈ D such that
r = ru(ρ, P ), r′ = ru(τ, P ) and (ρ, P ) ∼ (τ, P ). Then, by Hedging, (αρ + (1 − α)τ, P ) ≿ (ρ, P ) for all
α ∈ (0, 1). This implies that ru(αρ + (1 − α)τ, P ) ⪰u ru(ρ, P ), thus from statement 1 of Lemma 3, we
obtain αr + (1− α)r′ ⪰u r. □
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Lemma 10. If ≿ satisfies CRE-Independence, then ⪰u satisfies Certainty Independence.

Proof: Take any r, r′, q ∈ Ru with constant q, and assume r ⪰u r′. A now familiar argument implies
that there exists P ∈ P and ρ, τ, κ ∈ D such that r = ru(ρ, P ), r′ = ru(τ, P ), q = ru(κ, P ) and
(ρ, P ) ≿ (τ, P ). Since q is constant, Lemma 3 guarantees that (τ, P ) ∈ K(≿̂). By CRE-Independence,
(αρ + (1 − α)κ, P ) ≿ (ατ + (1 − α)κ, P ) for all α ∈ (0, 1]. Applying Lemma 3 once again, we obtain
αr + (1− α)q ⪰u αr′ + (1− α)q. □

Lemma 11. If ≿ satisfies symmetry, then ⪰u satisfies:

• Risk Symmetry : for all r, r′, q, k ∈ Ru, with q, k constant, and any T, F ∈ Σ such that T ∩ F = ∅,
r(T )q(F )k ⪰u r′(T )q(F )k implies r(T )k(F )q ⪰u r′(T )k(F )q.

Proof: Assume that r(T )q(F )k ⪰u r′(T )q(F )k, where r, r′, q, k ∈ Ru, with q, k constant, and T ∩ F =

∅. There exist ρ, τ ∈ D and (κ, P ∗), (γ, P ∗) ∈ K(≿̂) such that r = ru(ρ, P
∗), r′ = ru(τ, P

∗), q =

ru(κ, P
∗) and k = ru(γ, P

∗). Then, by Lemma 3, (ρTκF γ, P
∗) ≿ (τTκF γ, P

∗). From Axiom 13, we get
(ρT γFκ, P

∗) ≿ (τT γFκ, P
∗). Applying Lemma 3 once more, we obtain r(T )k(F )q ⪰u r′(T )k(F )q. □

Lemma 12. If ≿ satisfies Weak CRE-Independence, then ⪰u satisfies:

• Weak Certainty Independence: if r, r′, q ∈ Ru and q is constant, then αr+(1−α)q ⪰u αr′+(1−α)q

implies αr + (1− α)q′ ⪰u αr′ + (1− α)q′ for any α ∈ (0, 1) and constant q′ ∈ Ru.

Proof: Suppose αr + (1 − α)q ⪰u αr′ + (1 − α)q, where q is constant and α ∈ (0, 1). By a familiar
argument, there exist ρ, τ, κ ∈ D such that r = ru(ρ, P

∗), r′ = ru(τ, P
∗), q = ru(κ, P

∗) and α(ρ, P ∗) +

(1− α)(κ, P ∗) ≿ α(τ, P ∗) + (1− α)(κ, P ∗). Applying Weak CRE-Independence, we get α(ρ, P ∗) + (1−
α)(κ′, P ∗) ≿ α(τ, P ∗) + (1 − α)(κ′, P ∗) for all (κ′, P ∗) ∈ K(≿̂). Since any constant q′ ∈ Ru correspond
to ru(κ

′, P ∗) for some κ′ (by Lemma 1), we obtain αr + (1− α)q′ ⪰u αr′ + (1− α)q′ for any α ∈ (0, 1)

and constant q′ ∈ Ru. □

Lemma 13. If ≿ satisfies the Sure Thing Principle, then ⪰u satisfies:

• Savage’s STP: for all r, r′, q, q′ ∈ Ru and T ∈ Σ, if r(T )q ⪰u r′(T )q then r(T )q
′ ⪰u r′(T )q

′.

Proof: Take r, r′, q, q′ ∈ Ru and T ∈ Σ with r(T )q ⪰u r′(T )q. As usual, there exists ρ, τ, γ, γ′ ∈ D
such that r = ru(ρ, P

∗), r′ = ru(τ, P
∗), q = ru(γ, P

∗), q′ = ru(γ
′, P ∗) and, by Lemma 3, (ρT γ, P ∗) ≿

(τT γ, P
∗). The Sure Thing Principle then implies that (ρT γ

′, P ∗) ≿ (τT γ
′, P ∗), and applying Lemma 3

once again we obtain the result. □

Now we can proceed to the proofs of the propositions in Section 5. Again, I will show only sufficiency
of the axioms, since necessity is easily verifiable.

Proof of Proposition 2: Assume that ≿ satisfies axioms 1 to 4 and 6, Mixture Independence and
Monotone Continuity∗. Then ⪰u satisfies the basic A-A axioms, Independence and Monotone Continuity.
Applying the classic SEU representation theorem (see, e.g., Fishburn (1970, Theorem 13.3)),5 the axioms
on ⪰u are equivalent to the existence a cardinally unique linear function U : [0, 1] → R and a finitely
additive probability distribution π ∈ ∆(Θ) such that, for all r, r′ ∈ Ru,

r ⪰u r′ ⇐⇒
∫
Θ

U ◦ rdπ ≥
∫
Θ

U ◦ r′dπ.

5Although SEU theorems in the Anscombe-Aumann framework are usually stated in terms of acts mapping Θ to some
set ∆ of probability distributions, the same proofs also work when acts take values in Y , where Y is any convex set.
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Monotone Continuity then guarantees that π ∈ ∆(Θ) is countably additive (Arrow, 1971). From the
uniqueness properties of the representation and linearity, we can take U to be the identity function, thus
the result obtains. □

Denote by B(Σ) the set of bounded real-valued Σ-measurable functions on Θ. Let B(Σ)∗ be its
continuous dual space, i.e., the space of all linear functionals ϕ : B(Σ) → R that are continuous with
respect to the topology induced by the uniform norm ∥r∥∞ = supθ∈Θ |r(θ)|. A well known fact is that
B(Σ)∗ is isomorphic to the set ba(Σ) of finitely additive real-valued set functions on Σ which are bounded
in the total variation norm.

Recall that we assumed Ru was endowed with the product topology, rather than the uniform topology.
So denote by B(Σ)× the continuous dual space of B(Σ) in the product topology, and note that, since this
topology is coarser than the uniform topology, we have that B(Σ)× ⊆ B(Σ)∗ (because any functional
that is continuous in the former topology is also in the latter). For the same reason, any weak∗ compact
subset of B(Σ)∗ remains compact as a subset of B(Σ)×.

Proof of Proposition 3: In view of Lemmas 9 and 10, if ≿ satisfies axioms 1 to 4 and 6, Hedging
and CRE-Independence, then ⪰u satisfies the basic A-A axioms, Uncertainty Aversion and Certainty
Independence. Following the proof of the MPEU representation theorem from Gilboa and Schmeidler
(1989, Theorem 1 and Proposition 4.1), ⪰u satisfies these axioms if, and only if, there exists a convex
set Φ ⊆ B(Σ)× of monotone continuous linear functionals on B(Σ) such that, for all r, r′ ∈ Ru,

r ⪰u r′ ⇐⇒ inf
ϕ∈Φ

ϕ(r) ≥ inf
ϕ∈Φ

ϕ(r′).

Since B(Σ)∗ is isomorphic to ba(Σ) and B(Σ)× ⊆ B(Σ)∗, there also exists an isomorphism between
Φ and Π ⊆ ba(Σ). Monotonicity of each ϕ ∈ Φ implies that every π ∈ Π is a (finitely additive) measure.
Therefore, for all r, r′ ∈ Ru,

r ⪰u r′ ⇐⇒ inf
π∈Π

∫
Θ

rdπ ≥ inf
π∈Π

∫
Θ

r′dπ.

Lemma 3.3 in Gilboa and Schmeidler (1989) then guarantees that ϕ(1Θ) = 1 for all ϕ ∈ Φ, thus
π(Θ) = 1 for every π ∈ Π. Finally, since ≿ satisfies Monotone Continuity∗, then Monotone Continuity
of ⪰u guarantees that Π ⊆ ∆(Θ) (Chateauneuf et al., 2005, Theorem 1). □

Many models in the Anscombe-Aumann setting are characterized only for simple acts, i.e., acts that
have a finite range. To make use of such results, we first prove that the propositions in Section 5 hold
when restricted to the set R0

u ≡ {r ∈ Ru : r(Θ) ⊆ F, F finite} of all simple risk functions. Then
we use standard results and continuity of I to approximate each r ∈ Ru by a sequence of functions in
(r0n)n≥1 ∈ R0

u. This leads to the lemma below.

Lemma 14. Suppose ≿ has an MRA representation with utility function u, and I0 : R0
u → R represents

the restriction of ⪰u to R0
u. Then I0 has a unique continuous extension I : Ru → R and (u, I) represents

≿.

Proof: Since ≿ has an MRA representation, Theorem 2 applied to R0
u implies that I0 is monotone and

continuous. Because I0 represents the restriction of ⪰u to R0
u, there exists (u, I) representing ≿ such

that I0 is a restriction of I to R0
u. A well known result in functional analysis is that for any measurable

function r ∈ Ru, there exists a sequence (rn)n≥1 ∈ R0
u such that rn ≤ r for all n ≥ 1 and rn → r.

Therefore, R0
u is dense in Ru.

Take any two continuous extensions Î and Ĩ of I0. Fix an arbitrary r ∈ Ru \ R0
u and suppose that

Î(r) ̸= Ĩ(r). Since R is Hausdorff, there exist open neighborhoods N̂ of Î(r) and Ñ of Ĩ(r) such that
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N̂ ∩ Ñ = ∅. Since Î and Ĩ are continuous, Î−1(N̂) and Ĩ−1(Ñ) are open neighborhoods of r. However,
Î−1(N̂)∩ Ĩ−1(Ñ)∩R0

u = I−1
0 (N̂)∩ I−1

0 (Ñ)∩R0
u = I−1

0 (N̂ ∩ Ñ)∩R0
u = ∅, which is absurd. We conclude

that Î(r) = Ĩ(r) for all r ∈ Ru. Therefore, I is the unique continuous extension of I0 and (u, I) represents
≿. □

Proof of Proposition 4: Since ≿ has a MPEU representation, ⪰u satisfies the basic A-A axioms and
Uncertainty Aversion. By Stoye (2011, Theorem 1(iii)), the restriction of ⪰u to R0

u satisfies Risk Symme-
try if, and only if, it has a MEU representation. Using Lemma 14, we can then extend the representation
to Ru. □

Proof of Proposition 5: Suppose ≿ satisfies axioms 1 to 4, 6 and 10, Hedging and Weak CRE-
Independence. Then ⪰u satisfies the basic A-A axioms, Uncertainty Aversion and Weak Certainty
Independence, and so does the restriction of ⪰u to R0

u. According to Maccheroni et al. (2006, Appendix
B), this holds if, and only if, there exists a monotone functional I0 : R0

u → R that represents ⪰u on R0
u

and satisfies, for all r, q ∈ R0
u and α, k ∈ [0, 1],

(a) Translation Invariance: I0(αr + (1− α)k 1Θ) = I0(αr) + (1− α)k;

(b) Normalization: I0(k 1Θ) = k;

(c) Concavity: I0(αr + (1− α)q) ≥ αI0(r) + (1− α)I0(q).

Moreover, by Theorem 2 and the fact that, for a given u, I0 : R0
u → R is unique up to normalization, we

have that I0 is continuous in the topology of point-wise convergence.
Define I : Ru → R as the unique continuous extension of I0. By Lemma 14, (u, I) represents ≿.

Clearly, I satisfies (b). To see that it satisfies (a), let r ∈ Ru and take any (rn) ∈ R0
u such that

rn → r. Then I(αr + (1 − α)k 1Θ) = I(limn αrn + (1 − α)k 1Θ) = limn I0(αrn + (1 − α)k 1Θ) =

limn I0(αrn) + (1 − α)k = I(αr) + (1 − α)k, which implies that I is translation invariant. A similar
argument implies that I is concave.

Applying the Fenchel-Moreau theorem as in Cerreia-Vioglio et al. (2014, Section 5), we can iden-
tify I : Ru → R with its convex biconjugate I(r) = infϕ∈B(Σ)× {ϕ(r)− I∗(ϕ)}, where ϕ 7→ I∗(ϕ) =

infr∈Ru{ϕ(r) − I(r)} is concave, upper semicontinuous and supϕ∈B(Σ)× I∗(ϕ) = 0. Finally, recall that
B(Σ)× ⊆ B(Σ)∗, thus B(Σ)× is isomorphic to a subset Π0 ⊆ ba(Σ). Defining c∗ : Π0 → [0,∞] by
c∗(π) = − infr∈Ru{

∫
rdπ − I(r)}, we can thus write

I(r) = inf

{∫
rdπ + c∗(π) : π ∈ Π0

}
∀r ∈ Ru.

From Monotone Continuity and Normalization, we have c∗(π) = ∞ for all π ∈ Π0\∆(Θ) (see Maccheroni
et al. (2006, Lemma 30)). Letting Π = {π ∈ Π0 : c∗(π) < ∞} and defining c : Π → [0,∞) by the
restriction of c∗ to Π, we obtain the result. □

Proof of Proposition 6: Since ≿ has a variational representation and satisfies Axiom 15, then ⪰u

satisfies the basic A-A axioms, Uncertainty Aversion, Weak Certainty Independence and Savage’s STP.
Strzalecki (2011, Theorem 1) implies that the restriction of ⪰u to R0

u satisfies the aforementioned axioms
if, and only if, it has a multiplier representation (u, I0), where I0(r) = minπ∈∆(Θ)

{∫
Θ
rdπ + kD(π∥µ)

}
.

From the SEOU representation of I0 found in Strzalecki (2011), i.e., I0(r) =
∫
Θ
− exp(−k−1r)dµ for

k < ∞ and
∫
Θ
rdµ for k = ∞, it is easily checked that I0 is continuous in the topology of point-

wise convergence. We can thus extend I0 to I : Ru → R using the same technique as in the proof of
Proposition 5. □
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A.6 Proofs of results in Section 6

A.6.1 Proof of Theorem 3

If ≿⊆ S2 satisfies axioms 1 to 6, then Lemma 5 implies that the relation ⪰ defined by (8) is a weak order
that satisfies axioms A3 to A6. Then it is a straightforward exercise to check that the state dependent
stochastic choice function c : Φ → F \ {∅} given by c(F ) = {f ∈ F : f ⪰ g ∀g ∈ F} for all F ∈ Φ,
satisfies axioms C1 to C4.

Now assume c : Φ → F \ {∅} satisfies axioms C1 to C4. We want to construct a complete extension
⪰ of ⊵ that satisfies axioms A3 to A6, which will allow us to define a preference ≿ on S that rationalizes
c and satisfies axioms 1 to 6.

Because ⊵θ satisfies C-LARP and Conditional Continuity, we can apply Theorem 4 from Clark
(1993) and Theorem 3 from Clark (2000) to obtain a continuous total order (a complete, transitive and
antisymmetric preference) ⪰θ on ∆(A) that extends ⊵θ and satisfies Independence. That is, if p ⪰θ q,
then λp + (1 − λ)r ⪰θ λq + (1 − λ)r for all λ ∈ [0, 1] and r ∈ ∆(A). By RP-Monotonicity, f = c(F )

implies that for all g ∈ F with g ̸= f , there exists θ ∈ Θ such that p ̸⊵θ f(θ) for all p ∈ ∆(A) such that
g(θ) ⊵θ p. Therefore, a well-known argument (see, e.g., Ok and Riella (2021), Theorem 9.3) guarantees
that {⪰θ: θ ∈ Θ} can be constructed so that, if f = c(F ), g ∈ F and g ̸= f , there is a θ ∈ Θ such that
f(θ) ⪰θ g(θ).

Define, for all f, g ∈ F , f ⪰̂ g if, and only if, f(θ) ⪰θ g(θ) for every θ ∈ Θ. It is easily checked that,
by construction, ⪰̂ is a partial order that satisfies axioms A3 to A5, A7 and A8. Suppose Θ is countable,
so that F is metrizable. If (fm), (gm) ∈ F are such that fm → f , gm → g and fm ⪰̂ gm for all m ∈ N,
then fm(θ) → f(θ) and gm(θ) → g(θ) for all θ ∈ Θ, which by definition of ⪰̂ and the fact that ⪰θ is
closed for all θ ∈ Θ, implies that f ⪰̂ g. Therefore, ⪰̂ satisfies axiom A6.

From GARP and the fact that we are working with choice correspondences, if f1 ∈ c(F1) ∩ F2, f
2 ∈

c(F2) ∩ F3, . . . , f
k ∈ c(Fk) ∩ F1, then f1 = · · · = fk = f . Moreover, by construction, g(θ) ̸⪰̂ f(θ) for

any g ∈
⋃k

i=1 Fk \ {f}. In the language of Nishimura et al. (2017), ((F , ⪰̂),Φ) is a continuous choice
environment and c satisfies cyclical ⪰̂-consistency. Therefore, we can apply their Theorem 1 to obtain a
weak order ⪰ that extends ⪰̂ and, for all F ∈ Φ,

c(F ) = {f ∈ F : f ⪰ g ∀g ∈ F}.

Furthermore, since ⪰ extends ⪰̂, it is easy to see that it satisfies axioms A3 to A5.
Finally, define ≿ on S by

∀(ρ, P ), (τ,Q) ∈ S, (ρ, P ) ≿ (τ,Q) ⇐⇒ ρP ⪰ τQ.

Obviously, ≿ satisfies Consequentialism. It is easy to check, using arguments similar to the proof of
Lemma 5, that ≿ also satisfies axioms 1 and 3 to 6. Therefore, by Theorem 2, it has an MRA represen-
tation (u, I), which completes the proof.

A.6.2 Proof of Theorem 4

Suppose ≽� satisfies Axiom D1. Note that item 1 of Axiom D1 implies that each ≽P satisfies a version
of Consequentialism. Indeed, taking P = P ′ in the statement, we have that ρP = τP implies ρ ∼P τ .

Consider the following relation on D:

∀ρ, τ ∈ D : ρ ≽̂ τ ⇐⇒ ρ ≽θ τ for all θ ∈ Θ.

37



Since ≽P∗ is reflexive, ≽̂ is non-empty. Also define a preference relation ⪰̂ on F by

f ⪰̂ g ⇐⇒ ∃ρ, τ ∈ D such that ρ ≽̂ τ, ρP ∗ = f and τP ∗ = g.

Substituting ⪰̂ for ⪰ in the proof of Lemma 5, it can be seen that ⪰̂ is reflexive, transitive, and
satisfies axioms A3 to A8. Therefore, substituting ⪰̂ for ⪰ in the Proof of Theorem 1, we obtain a
dominance representation with utility index v : A×Θ → R, i.e., for all ρ, τ ∈ D,

ρ ≽̂ τ ⇐⇒
∫
X

v(ρ, θ)dP ∗
θ ≥

∫
X

v(τ, θ)dP ∗
θ ∀θ ∈ Θ.

Note that, due to Lemma 1, we have Rv = {rv(δ, P ∗) : δ ∈ D}. Define a preference ⪰∗ on Rv by

∀r, r′ ∈ Rv : r ⪰∗ r′ ⇐⇒ ∃ρ ≽P∗ τ such that r = rv(ρ, P
∗) and r′ = rv(τ, P

∗).

An argument entirely analogous to the Proof of Theorem 2 guarantees that ⪰∗ is a continuous and
monotone weak order. Therefore, there exists a monotone and continuous utility function J : Rv → R
such that, for all ρ, τ ∈ D,

rv(ρ, P
∗) ⪰∗ rv(τ, P

∗) ⇐⇒ J(rv(ρ, P
∗)) ≥ J(rv(τ, P

∗)) ⇐⇒ ρ ≽P∗ τ.

We now extend the representation to the collection ≽�= {≽P : P ∈ P}. Take any P ∈ P and ρ, τ ∈ D.
By Lemma 1, there exists ρ′, τ ′ ∈ D such that ρP = ρ′P ∗ and τP = τ ′P ∗. From item 1 of Axiom D1,
we obtain ρ ≽P τ ⇐⇒ ρ′ ≽P∗ τ ′. Therefore, ρ ≽P τ ⇐⇒ J(rv(ρ

′, P ∗)) ≥ J(rv(τ
′, P ∗)). Since

rv(ρ
′, P ∗) = rv(ρ, P ) and rv(τ

′, P ∗) = rv(τ, P ), we have

ρ ≽P τ ⇐⇒ J(rv(ρ, P )) ≥ J(rv(τ, P )),

for all ρ, τ ∈ D and P ∈ P.

A.6.3 Proof of Theorem 5

Assume ≽� satisfies axioms E1 to E3. By Lemma 4, there exists δ∗ ∈ D such that for any f ∈ F , there
is a P f ∈ ∆(X)Θ such that f = δ∗P f .

For any given f, h ∈ F , take P f , Ph ∈ P such that f = δ∗P f and g = δ∗Ph. Since δ∗ is invariant,
we have:

1. For all α ∈ [0, 1], δ∗(αP f + (1− α)Ph) = αδ∗P f + (1− α)δ∗Ph = αf + (1− α)h;

2. For all θ ∈ Θ, δ∗(P f
(θ)P

h) = δ∗P f
(θ)δ

∗Ph = f(θ)h.

Define the preference ⪰∗ on F by

f ⪰∗ h ⇐⇒ ∃P f , Ph ∈ P such that P f ≽{δ∗} Ph, δ∗P f = f and δ∗Ph = h.

Consistency guarantees that ⪰∗ is well-defined and reflexive, since by taking M = N = {δ∗}, Q = P ′

and P = Q′ in the statement of the axiom, we get that δ∗P = δ∗P ′ implies P ∼{δ∗} P ′. Item 1 of
Axiom E1 and Lemma 4 immediately imply that ⪰∗ is complete and transitive, whereas item 5 readily
implies that ⪰∗ satisfies Axiom A6. We now show that ⪰∗ satisfies axioms A3 to A6.

Indeed, take any f, g, h, h′ ∈ F and θ ∈ Θ such that f(θ)h ⪰∗ g(θ)h. Then, P f
(θ)P

h ≽{δ∗} P g
(θ)P

h

for some δ∗P f = f , δ∗Ph = h and δ∗P g = g. Item 2 of Axiom E1 then implies that P f
(θ)R ≽{δ∗} P g

(θ)R

for all R ∈ P, and thus f(θ)h
′ ⪰∗ g(θ)h

′, by Lemma 4. Thus ⪰∗ satisfies Axiom A3.
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Now fix any f, g, h ∈ F such that f(θ)h ⪰∗ g(θ)h for all θ ∈ Θ. This implies that there exist
P f , P g, Ph ∈ P, where δ∗P f = f , δ∗P g = g and δ∗Ph = h, such that P f

(θ)P
h ≽{δ∗} P g

(θ)P
h for all

θ ∈ Θ. By item 2 in Axiom E1, we have that P f
(θ)R ≽{δ∗} P g

(θ)R for all θ ∈ Θ and R ∈ P. From item
3, we obtain P f ≽{δ∗} P g, which implies f ⪰∗ g. Therefore, ⪰∗ satisfies Axiom A4.

Next fix any θ ∈ Θ and take any f, g, h ∈ F such that f(θ′) = g(θ′) = h(θ′) for all θ′ ̸= θ. Then
there exist P f , P g, Ph ∈ P such that P f

θ′ = P g
θ′ = Ph

θ′ for all θ′ ̸= θ, f = δ∗P f , g = δ∗P g and h = δ∗Ph.
Suppose f ⪰∗ g, implying P f ≽{δ∗} P g. By item 4 of Axiom E1, we have αP f + (1 − α)Ph ≽{δ∗}

αP g + (1 − α)Ph for all α ∈ (0, 1], and thus αf + (1 − α)h ⪰∗ αg + (1 − α)h. We conclude that ⪰∗

satisfies Axiom A5.
For each θ ∈ Θ, define the conditional preferences ⪰θ as in (14). Since ⪰∗ is complete, so are ⪰θ.

Appendix A.2 then shows that each ⪰θ has a representation given by (15). Fix one such representation
w : A × Θ → R and define its associated risk functional r̃w : F → RΘ as in eq. (17). Consider the
set of all such risk functions Rw = {r̃w(f) : f ∈ F} and define a preference relation ⪰w on Rw by
r ⪰w r′ ⇐⇒ ∃f, g ∈ F such that f ⪰∗ g, r = r̃w(f) and r′ = r̃w(g). Note that if f = δ∗P , for
any f ∈ F and P ∈ P, then r̃w(f) = rw(δ

∗, P ). A straightforward adaptation of the argument in
Appendix A.4 then implies that there exist w : A × Θ → R, continuous in the first argument, and a
monotone and continuous H : Rw → R, such that

P ≽{δ∗} Q ⇐⇒ H(rw(δ
∗, P )) ≥ H(rw(δ

∗, Q)).

Moreover, we clearly have CP ({δ∗}) = {δ∗} for all P ∈ P, hence ≽{δ∗} has the desired representation.
It remains to show that ≽M has such a representation for each M ∈ M, and that these representations

coincide. To that end, first consider any M ∈ M such that CP (M) is a singleton for all P ∈ P. Take
any P,Q ∈ P and let {ρ} = CP (M) and {τ} = CQ(M). By Lemma 4, there exist P ′, Q′ ∈ P such that
ρP = δ∗P ′ and τQ = δ∗Q′. Consistency then implies that P ≽M Q ⇐⇒ P ′ ≽{δ∗} Q′, and thus

P ≽M Q ⇐⇒ H(rw(δ
∗, P ′)) ≥ H(rw(δ

∗, Q′)) ⇐⇒ H(rw(ρ, P )) ≥ H(rw(τ,Q)).

We now extend the representation to menus M with |CP (M)| > 1 for some P ∈ P. Take any
M ∈ M and P ∈ P. By Lemma 4, for all ρ ∈ CP (M) there exists P ρ ∈ P such that ρP = δ∗P ρ.
Since ≽{δ∗} is complete and transitive, there exists ρ∗(P ) ∈ CP (M) such that P ρ∗(P ) ≽{δ∗} P ρ for all
ρ ∈ CP (M). Define a decision rule δ̄ by δ̄P = ρ∗(P )P for every P ∈ P and note that δ̄P = ρ∗(P )P .
Thus by Axiom E2, P ≽{δ̄} Q ⇐⇒ P ≽M̃(P,Q) Q for all P,Q ∈ P, where M̃(P,Q) = {δ ∈ D : δP =

ρ∗(P )P , δQ = ρ∗(Q)Q and ∀R ̸= P, ∃γ ∈ M s.t. δR = γR}. Applying Axiom E3 twice, we obtain the
following equivalences:

P ≽{δ̄} Q ⇐⇒ P ≽M̃(P,Q) Q ⇐⇒ P ≽M Q.

Finally, note that since rw(ρ
∗(P ), P ) = rw(δ̄, P ) for all P ∈ P and ≽{δ̄} can be represented by (w,H)

we get that for all P,Q ∈ P, P ≽M Q ⇐⇒ H(rw(ρ
∗(P ), P )) ≥ H(rw(ρ

∗(Q), Q)) subject to ρ∗(P ) ∈
CP (M), ρ∗(Q) ∈ CQ(M).
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