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Abstract

In polarized committees, majority voting disenfranchises the mi-

nority. Allowing voters to spend freely a fixed budget of votes over

multiple issues restores some minority power. However, it also creates

a complex strategic scenario: a hide-and-seek game between majority

and minority voters that corresponds to a decentralized version of the

Colonel Blotto game. We offer theoretical results and bring the game to

the laboratory. The minority wins as frequently as theory predicts, de-

spite subjects deviating from equilibrium strategies. Because subjects

understand the logic of the game — minority voters must concentrate

votes unpredictably — the exact choices are of secondary importance,

a result that vouches for the robustness of the voting rule to strategic

mistakes.
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1 Introduction

How should political power be shared? Majoritarian democracy is desirable

under many criteria (Condorcet, 1785; May, 1952; Rae, 1969), but in po-

larized societies, where the same group is on the losing side on all essential

issues, it effectively disenfranchises the minority.1 Polarization can exist

in rich as well as poor countries, in old as well as new democracies, and

can predate the democratic institutions or be generated by the institutions

themselves.2 Referring to Northern Ireland, the Balkans, and other places

plagued by civil wars, Emerson (1998, 1999) claims that in such situations

majority rule is the problem, not a solution, and that more consensual rules

must be implemented.

In modern democracies, the main tool for power-sharing is representa-

tion. The complexity of the political agenda, which unfolds over time and

allows changing coalitions, logrolling, and compromises makes representa-

tion in Parliament valuable even to a minority. When group barriers are

permeable, the minority can occasionally belong to the winning side. But

when preferences are fully polarized and the power of a cohesive majority

bloc is secure — a scenario we refer to as a systematic minority — the mi-

nority remains disenfranchised. In some instances, therefore, power-sharing

is imposed directly, and the constitution grants executive positions to spe-

cific groups, typically on the basis of their ethnic or religious identity.3 The

problem is that constitutional provisions of this type are difficult to enforce

and heavy-handed, unsuited to changing realities. We argue that power-

1Political philosophy has long recognized that the tyranny of the majority poses a
fundamental challenge to the legitimacy of majority voting (Dahl, 1991).

2See Jacobson (2008); Fiorina et al. (2005) for the US case, or Reynal-Querol (2002);
Eifert et al. (2010); Kabre et al. (2013) for African cases.

3For example, in Lebanon (Picard, 1994; Winslow, 2012), in Mauritus (Bunwaree and
Kasenally, 2005), and occasionally elsewhere (Lijphart, 2004).
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sharing in polarized societies could be achieved in a more subtle and more

flexible manner via the design of appropriate voting rules.4

The Storable Votes mechanism (henceforth SV) does just that: it allows

the minority to prevail occasionally and yet is anonymous and treats every-

one identically (Casella, 2005). In a setting with a finite number of binary

issues, the SV mechanism grants a fixed number of total votes to each voter

with the freedom to divide them as wished over the different issues, knowing

that each issue will be decided by simple majority. SV can apply to direct

democracy in large electorates, or to smaller groups, possibly legislatures or

committees formed by voters’ representatives, as in the model we study in

this paper. In fact, our arguments apply to virtually any divided group: for

instance, SV could be used by the board of directors of a company.

Although easy to describe, SV poses a challenging strategic problem:

how should a voter best divide her votes over the different issues? Note a

central ingredient of the strategic environment: the hide-and-seek nature of

the game between majority and minority voters. If the majority spreads

its votes evenly, then the minority can win some issues by concentrating

its votes on them, but if the majority knows in advance which issues the

minority is targeting, then the majority can win those too.

Such strategic interaction is studied in the literature under the name of

Colonel Blotto game: in the original version of the game (Borel and Ville,

1938; Gross and Wagner, 1950), two opposite military leaders with given

army sizes must choose how many soldiers to deploy on each of several

battlefields. Each battlefield is won by the army with the larger number

of soldiers. Each colonel could win if he knew the opponent’s plan. At

equilibrium, choices must be random.

The SV’s model can be phrased as in the classical Colonel Blotto sce-

nario, with “issues” and “votes” instead of “battlefields” and “soldiers”.

The game is asymmetric — the majority has more votes — and thus recalls

4Note that neither vetoes or supermajority requirements, nor logrolling can overcome
the problem posed by a systematic minority. If on each issue there is a fixed majority
of, say, 60 percent, versus a fixed minority of 40 percent, then vetoes and supermajorities
stall all voting, and logrolling has no role because the majority is always winning.
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Colonel Blotto analyses that allow for heterogeneous armies.5 It differs how-

ever on one important dimension: it is a decentralized Blotto game. Each

voter, whether in the majority or in the minority, controls a number of votes,

to be allocated to the different issues. In its military analogue, it is as if

multiple, individual lieutenant colonels in each of the two armies controlled

their own battalions and chose how to distribute them over the different

battlefields. Again, each battlefield is won by the army that deploys more

soldiers.

To our knowledge, the decentralized Blotto game has not been studied

before. In this game, although the interests of all lieutenants within each

army are perfectly aligned, decentralizing the centralized solution is gener-

ally not possible: the centralized solution requires centralized randomization

and thus cannot be replicated unless the randomization can be communi-

cated, and communication is truthful and believed. The decentralized Blotto

game can be of independent interest, beyond the specific application to SV’s.

From lobbying to campaign spending, from patent races to fighting criminal

networks, traditional applications of the centralized Blotto games can be

extended profitably to situations where one or both sides consist of multiple

independent actors.

We start by studying the game in the absence of communication: we

develop theoretical results, in particular results that will be useful for the

experimental tests we describe in the second part of the paper. The game

has many equilibria but, reverting to SV terminology, if the difference in size

between the two groups is not too large, the minority is expected to win oc-

casionally in all equilibria. We identify a class of simple strategies, neutral

with respect to the issues and symmetric within each group, and charac-

terize conditions under which profiles constructed with such strategies are

equilibria. Strategies are such that each minority member concentrates her

votes on a subset of issues, randomly chosen, and again induce a positive

expected fraction of minority victories in equilibrium. In fact, the result

is stronger and holds off equilibrium too: if each minority member concen-

5As in Roberson (2006) if soldiers can be deployed continuously, or Hart (2008) if
soldiers are discrete.
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trates her votes and does so randomly, the minority can guarantee itself a

positive probability of victories, for any strategy by the majority, whether

coordinated or not, and regardless of whether or not the minority voters

all choose precisely the same strategy. When communication within each

group is possible, the equilibria of the non-communication game continue to

exist as chattering equilibria. However other equilibria exist, including the

equilibria of the centralized Blotto game in which each of the two groups,

the minority and the majority, acts as a single agent. Here we borrow from

Hart (2008)’s results on discrete Blotto games and identify equilibria of the

centralized Blotto game that hold for the parameter values we use in the

laboratory. Again the theoretical prediction is a positive fraction of minority

victories, in fact, interestingly, a very similar fraction to that predicted by

our simple equilibrium strategies in the absence of effective communication,

for the same parameter values.

We test the theoretical predictions in the laboratory in two treatments,

one without and one with communication. In both treatments, the essential

logic of the game — the minority needs to concentrate and randomize its

votes — is immediately clear to minority players in the lab. In contrast,

majority subjects appear to alternate between exploiting their size advan-

tage by covering all issues, and mimicking minority subjects. Be it with or

without communication, the strategies of both groups deviate from the pre-

cise predictions of the theoretical equilibria, and yet the fraction of minority

victories we observe is very close to equilibrium, varying from 25 percent in

treatments in which the minority is half the size of the majority, to 33 per-

cent, when the minority’s relative size increases to two thirds. We read these

findings as endorsement of the robustness of the voting rule to strategic mis-

takes. As in the off-equilibrium theoretical result described earlier, as long

as minority voters recognize the importance of concentrating and random-

izing their votes, their exact choices are of secondary importance: whether

votes are concentrated on two or on only one issue, whether they are split

equally or unequally, all this affects minority victories only marginally. This

conclusion is the main result of the paper.

The robustness of SV to strategic mistakes has been noted before (Casella
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et al., 2006, 2008). Previous models, however, studied environments where

the strategic problem faced by the voters is simpler. More precisely, existing

models assume that voters have private information about their cardinal

intensities of preferences, and that intensities are uncorrelated across voters.

In such a scenario, a voter’s optimal strategy is to cast more votes on issues

that she considers higher priorities (at a given state), and this behavior is

observed in the lab. But the intensity of one’s own preferences is instinctively

focal, and the question then arises whether the good performance of the

mechanism extends to more complicated settings.

If intensities are commonly known, or if it is known that intensities

are correlated across groups, the hide-and-seek nature of the game appears

and with it the minority’s need to randomize its strategy.6 In this paper,

we abstract from cardinal intensities and assume that each issue is judged

equally important by all. The assumption can be read literally, reflecting

a lack of clear priorities. But more generally, it is the modeling device we

employ to give full weight to the strategic complexity of the hide-and-seek

game. As a result of this modeling choice, one could argue that minority

victories are not justified on normative utilitarian terms. Such a perspective,

however, would be quite narrow: in the absence of different intensities, the

fairness requirement of some minority representation can be easily derived

from a social welfare function that is concave in individual utilities, with the

degree of concavity mirroring the strength of the social planner’s concern

with equality (Laslier, 2012; Koriyama et al., 2013).7

Our experimental results also bear comparison to a small recent exper-

imental literature on the asymmetric Colonel Blotto game. In line with

Avrahami and Kareev (2009) and Chowdhury et al. (2013), we observe that

the minority concedes some battlefields (some issues) in order to win oth-

ers. However, the key difference in our setting is the decentralization of

6In a related symmetric game, for example, Hortala-Vallve and Llorente-Saguer (2012)
show that when priorities are known, pure-strategy equilibria can exist only under very
restrictive conditions.

7As pointed out in these papers, a normative basis for fairness also arises from in-
dividual utility functions that are concave with respect to the individual frequency of
wins.
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decisions, which renders the game more complex. Rogers (2015) introduces

some decentralization in a related game, whose payoffs differ from classical

Blotto payoffs along several dimensions.8 One side consists of two players

fighting against a single opponent, a structure that we examine in one of

our treatments. Contrary to the conclusions of that paper, we observe that

decentralization need not be detrimental to the divided side.

Arad and Rubinstein (2012) identify several salient strategy dimensions

in the Colonel Blotto game and argue that subjects use multi-dimensional

hierarchical reasoning in deciding their behavior. Our environment with

multiple heterogeneous players is more complex, but our experimental re-

sults are in line with the idea of multi-dimensional reasoning: our minority

subjects, in particular, appear to identify easily the qualitative features of

the equilibrium–concentrate votes and be unpredictable–but show substan-

tial confusion on the exact number of votes cast on targeted issues.

The game we study can be seen as a “contest” between two teams.

Dechenaux et al. (2015) provides a comprehensive survey of the experimen-

tal literature on contests, and in particular on Colonel Blotto games, seen

as multi-battle contests. However, as recalled by Sheremeta (2015), the key

question addressed in this literature is the efficiency —or inefficiency— that

arises from the trade-off faced by participants between the cost of effort and

the incentive to cooperate within their group. In our case, the efficiency

question is moot because any outcome is Pareto optimal by design (con-

trary to Cason et al. (2012)), and there is neither an individual trade-off

between cooperation and effort, nor intra-group punishment (as in Abbink

et al. (2010)), nor the possibility of alliance between players with disjoint

interests (as in Kovenock and Roberson (2012)). Note also that our decen-

tralized game is conceptually different from team contests in which members

of opposite teams fight each other in pairwise battles (as in Arad (2012),

Rinott et al. (2012) or Fu et al. (2015)).

The paper is organized as follows. After the introduction, Section 2

8Some battlefields are easier to win for one side, some for the other side; a bonus is
added for the side winning a majority of battlefields; a bonus (resp. malus) is added for
each winning (resp. losing) battlefield according to the margin of victory (resp. defeat).
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presents the model. Section 3 discusses two preliminary remarks on the dis-

tinction between centralized and decentralized games. The theory for the

decentralized game is presented in Section 4. Section 5 describes the exper-

imental protocol, and Section 6 presents the experimental results. Section 7

concludes. All proofs are in the appendix (Section A). A supplementary ap-

pendix contains a discussion of the evolution of the experiment over time, an

analysis of the chat messages, and a copy of the experimental instructions.

2 The Model

A committee of N individuals must resolve K ≥ 2 binary issues: the com-

mittee must decide whether to pass or fail each of K independent proposals.

The set of issues is denoted by K = {1, . . . ,K}. The same M individuals

are in favor of all proposals, and the remaining N −M = m are opposed to

all, with m ≤M . We call M the majority group, and m the minority group,

and we use the symbol M (m) to denote both the group and the number of

individuals in the group. The specific direction of preferences is irrelevant,

what matters is that the two groups are fully cohesive and fully opposed.

We summarize these two features by calling m a systematic minority.

Each individual receives utility 1 from any issue resolved in her preferred

direction, and 0 otherwise. Thus each individual’s goal is to maximize the

fraction of issues resolved according to her — and her group’s — preferences.

Individuals are all endowed with K votes each, and each issue is decided

according to the majority of votes cast. If each voter is constrained to cast

one vote on each issue, M wins all proposals. This tyranny of the majority is

our point of departure: with simple majority voting, a systematic minority

is fully disenfranchised. The conclusion changes substantively if voters are

allowed to distribute their votes freely among the different issues. Each issue

is then again decided according to the majority of votes cast — which now,

crucially, can differ from the majority of voters. Voting on the K issues is

contemporaneous, and all individuals vote simultaneously. Ties are resolved

by a fair coin toss. The voting rule is then a specification of Storable Votes,
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with votes on all issues cast at the same time.9

A specific welfare criterion (a specific degree of concavity in the social

welfare function) will capture the society’s normative concern with minority

representation. If we call pm the expected fraction of minority victories,

such a concern will translate into an optimal p∗m(M,m). Here we do not

specify the welfare criterion and limit ourselves to measuring pm.

We suppose that the parameters of the game are common knowledge, in

particular each voter knows exactly the size of the two groups, and thus both

her own and everyone else’s preferences. Our framework is thus a one-stage,

full information game.

With undominated strategies voters vote sincerely: they never cast a

vote against their preferences. We simply assume that all m voters never

vote in favor of a proposal and all M voters never vote against. We focus

instead on each voter’s distribution of votes among the K issues.

The action space for each player is:

S(K) =

{
s = (s1, . . . , sK) ∈ NK

∣∣∣ K∑
k=1

sk = K

}
,

where sk is the number of votes cast on issue k. Let the minority players be

ordered from 1 to m. For each minority-profile s = (s1, . . . , sm) ∈ S(K)m,

where the bold font indicates a vector of allocations, the number of votes

allocated by the minority to issue k is denoted by:

vmk (s) =
m∑
i=1

sik.

We denote by vm(s) = (vmk (s))k∈K ∈ S(mK) the allocation of votes by the

minority side associated to the minority-profile s.

Similarly, let the majority players be ordered from 1 to M . Denoting

by t = (t1, . . . , tM ) ∈ S(K)M , the majority profile, the number of votes

9As in chapters 5 and 6 in Casella (2012). See also Hortala-Vallve (2012).
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allocated by the majority to issue k is denoted by:

vMk (t) =
M∑
i=1

tik,

and we denote by vM (t) = (vMk (t))k∈K ∈ S(MK) the allocation of votes by

the majority side associated to the majority-profile t.

For a given profile (s, t) ∈ S(K)m×S(K)M , the payoffs for each member

of the two groups, called gm and gM , are given by

gm(s, t) =
1

K

K∑
k=1

(
1{vmk (s)>vMk (t)} +

1

2
1{vmk (s)=vMk (t)}

)

gM (s, t) =
1

K

K∑
k=1

(
1{vMk (t)>vmk (s)} +

1

2
1{vMk (t)=vmk (s)}

)
= 1− gm(s, t),

where 1 is the indicator function.

Finally, we denote by Σ(K) = ∆ (S(K)) the set of all probability mea-

sures on S(K), i.e. the set of mixed strategies. Then the expected payoff

to the minority E [gm] equals pm, the expected fraction of minority victo-

ries, and is defined on Σ(K)m×Σ(K)M as the multi-linear extension of gm.

Two (mixed strategy) group profiles (σ, τ ) ∈ Σ(K)m × Σ(K)M naturally

define two probability measures (V m, VM ) on the minority and majority

allocations of votes (vm, vM ) ∈ S(mK)× S(MK). Then we will also write,

with abuse of notation, pm(V m, VM ). Our goal is to study this game, both

theoretically and experimentally. Formally, our scenario corresponds to a

decentralized Blotto (DB) game, in contrast to the traditional, centralized

Colonel Blotto (CB) game, in which the “minority colonel” directly chooses

vm ∈ S(mK), while the “majority colonel” chooses vM ∈ S(MK).

3 Two Preliminary Remarks

With incentives fully aligned within each group, a natural question is whether

the decentralized Blotto game actually differs from the centralized game. We
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provide a positive answer in our first remark. We say that an equilibrium

of the CB game is replicated in the DB game if there exists an equilibrium

of the DB game which induces the same distribution on the total minority

and majority allocations of votes (vm, vM ). The most complete characteri-

zation of equilibria of the CB game with discrete allocations is due to Hart

(2008).10

Remark 1 For any K and m, none of the equilibria of the CB game in

Hart (2008) can be replicated in the DB game if M is larger than a finite

threshold M(K).

The intuition is straightforward: with the exception of knife-edge cases,

equilibrium strategies in the centralized game must be such that the marginal

allocation of forces on any given battlefield follows a uniform distribution.

But the sum of independent variables cannot form a uniform distribution

in general: unless the randomization is centralized, the strategy cannot be

replicated.

In some applications, a precise description of the strategic environment

would include a communication phase before the game is played. With pre-

play communication, subjects can send costless and non-binding messages

(they are cheap talk), and a communication protocol describes who can send

a message to whom. For any communication protocol, the equilibria of the

decentralized game are still equilibria of the game with communication, but

new equilibria can arise.

One protocol deserves particular attention in our game. As the two

groups are fully opposed and fully cohesive, each may want to coordinate

its voting, without making that information public to the other group. We

call group-communication the protocol in which any subject can only send

messages to all members of her group. With group-communication, a proto-

col that we test in the experiment, the logic behind Remark 1 breaks down.

10Hart (2008) does not characterize optimal strategies for all parameter values. Rober-
son (2006) provides general results for the CB game with continuous allocations. In our
problem, we did not see obvious advantages from abandoning the more realistic case of
discrete votes.
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It then becomes possible, and advantageous, for each group to randomize

over the possible allocations at the central level, and then decentralize the

realized allocations.

Remark 2 With group-communication, the equilibria of the centralized Colonel

Blotto game can be replicated.

In the experimental part of this paper, we will use as theoretical bench-

mark of the treatment with group-communication the equilibria of the CB

game in Hart (2008).11

Before turning to the experiment, we derive theoretical results for the

decentralized Blotto game without communication, for which no analysis

exists in the literature. We will use such results as the theoretical reference

for the experimental treatment without communication.

4 Theory: the decentralized Blotto game without

communication

4.1 Equilibria

The game is a normal-form game with m + M players and finite strategy

spaces. Therefore, a Nash equilibrium always exists. In addition, it is easy

to see that the voting rule fulfills its fundamental purpose: if the size of the

two groups is not too different, the smaller one must win occasionally.

Theorem 1 If M < m + K, the expected share of minority victories is

strictly positive at any Nash equilibrium.

The coordination problem within each of the two groups results in many

equilibria. We do not aim to characterize them all; rather in this section we

11Other equilibria exist, including chattering equilibria in which communication is ig-
nored, or asymmetric equilibria in which communication is ignored by one group but
not by the other. The messages our subjects sent during the experiment, however, show
that communication was used to coordinate actions, in line with the equilibria of the CB
game. We discuss the experimental messages in the second part of the paper and in the
supplementary appendix.
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focus on equilibria that either stress the difference between the decentral-

ized and the centralized version of the game, or that have a simple enough

structure to provide a plausible theoretical reference for the experiment.

4.1.1 Equilibria in pure strategies

We begin by remarking that the condition in Theorem 1 is tight: if M ≥
m+K, the profile of strategies such that every player allocates one vote per

issue is an equilibrium, and the expected share of minority victories is zero.

This same profile of strategies is also an equilibrium if M = m, in which

case pm = 1/2. More generally, we establish the existence of an equilibrium

in pure strategies when the committee is large enough.

Proposition 1 If M ≥ m ≥ 2 and M + m ≥ (K + 1)2/K, a pure-strategy

equilibrium always exists.

This result clearly indicates that the DB game differs from the CB game,

in which pure-strategy equilibria generically fail to exist.12 The equilibria

we construct are such that the two groups target different issues: the ma-

jority only votes on a subset KM of issues, while the minority votes on the

remaining subset Km = K\KM . As each voter is small in a large commit-

tee, no voter can upset the outcome of any given issue, and thus gain from

deviating.

We note one surprising effect of decentralization: in these equilibria, it is

possible for the minority to win more frequently than the majority, whereas

no such outcome exists in the CB game.

Example 1 If m = 4, M = 5 and K = 3, there exists an equilibrium in

which the minority wins two of the three issues.

12In the CB game, the profile for which every player allocates one vote per issue is an
equilibrium only when M = m = 1 or M > mK. Beyond these special cases, if K > 2,
the CB game has no equilibria in pure strategies. A pure-strategy equilibrium may exist
in a non-zero sum variant in which the two sides attribute heterogeneous and asymmetric
values to the different issues (Hortala-Vallve and Llorente-Saguer, 2012).
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We also note that pure-strategy equilibria may not exist for small com-

mittees. The following example describes a parametrization we use in the

experiment.

Example 2 If m = 1, M = 2 and K = 4, there exists no pure-strategy

equilibrium.

The fact that, unexpectedly, pure strategy equilibria may exist is inter-

esting. How empirically plausible they are, however, is open to question.

The equilibria obtained in Proposition 1 require a large amount of coor-

dination, both within and across groups. In addition, not only in those

equilibria, but also in the “trivial” equilibrium with M ≥ m+K (where ev-

ery voter casts one vote on each issue and the minority loses all decisions),

each voter has only a weak incentive not to deviate. This seems particularly

problematic when M ≥ m+K: even non-strategic minority members seem

likely to realize that some concentration is called for.

4.1.2 Symmetric equilibria in mixed strategies

If several minority members concentrate votes on a given issue, the minority

may be able to win it. But only if the majority does not know which

specific issue is being targeted. Thus, minority members need not only to

concentrate their votes but also to randomly choose the issues on which the

votes are concentrated. Mixed strategies allow them to do so.

In this section, we focus on a family of simple strategies that treat each

issue symmetrically and we assume that all voters within the same group

play the same strategy. For any c factor of K, we define the strategy σc

(noted τ c for a majority player) as follows: choose randomly K/c issues,13

and allocate c votes to each of the selected issues. Suppose for example

K = 4, a value we will use in the experiment. Then σ4 corresponds to

casting all four votes on one single issue, chosen randomly; σ2 to casting

two votes each on two random issues; σ1 to casting one vote on each of the

four issues. Note that, in this family, the parameter c can be interpreted as

13I.e. choose each subset of K/c issues with equal probability 1/
(

K
K/c

)
.
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the degree of concentration of a player’s votes.14 We denote by σc (resp.

τ c) the group profile for which each minority (resp. majority) player plays

σc (resp. τ c).

Intuitively, we expect the minority to concentrate its votes, so as to

achieve at least some successes, and the majority to spread its votes, be-

cause its larger size allows it to cover, and win, a larger fraction of issues.

The intuition is confirmed by the following two propositions, characterizing

parameter values for which strategy profiles with such features and belonging

to the (σc, τ c) family are supported as Nash equilibria: when the difference

in size between the two groups is as small as possible — either nil or one

member — or when it is very large.

Proposition 2 Suppose K even and M odd. Then (σ2, τ 1) is an equilib-

rium if M ≤ m+ 1,15 with

pm =

{
1
2 if M = m
1
2 −

1
2m+1

(
m
m/2

)
if M = m+ 1.

What is remarkable in Proposition 2 is that when the difference in size

between the two groups is as small as possible — at most a single member —

equilibrium strategies for majority and minority voters can be quite different:

while each majority voter simply casts one vote on each issue, each minority

voter concentrates all votes on exactly half of the issues, chosen randomly,

and casts two on each. Numerically, the expected frequency of minority

victories is significant at this equilibrium, starting from 1/4 when (m,M) =

14Arad and Rubinstein (2012) suggest that subjects faced with the Colonel Blotto game
intuitively organize their strategy according to three dimensions, decided sequentially: (i)
the number of targeted issues (ii) the apportionment of votes on targeted issues (iii) the
choice of issues. The class of strategies (σc)c factor of K is particularly easy to describe with
respect to these three dimensions: (i) the number of targeted issues is K

c
(ii) the votes are

equally split on all targeted issues (iii) the choice of targeted issues is random, with equal
probability for each issue. This class of strategies has been independently introduced by
Grosser and Giertz (2014), who refer to them as pure balanced number strategies.

15The strategies in the proposition are also an equilibrium if M ≥ 2m+K − 1. This is
a trivial equilibrium in which the majority’s much larger size allows it to win all proposals
(pm = 0). For K ≥ 4 and M < 2m+K − 1, one can show that (σ2, τ1) is an equilibrium
if and only if M ≤ m+ 1.
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(2, 3) and converging to 1/2 for large m and M .

When the difference in size between the two groups increases, the equi-

librium breaks down because it becomes advantageous for minority voters

to concentrate their votes even further. Consider the strategic problem of

minority voter i, and suppose M = m + 1. If all other voters follow the

strategy in the proposition, a random issue will receive M majority votes

and, excluding i, a random even number of minority votes, between 0 and

2(m − 1).16 It is not difficult to verify that the most likely number of mi-

nority votes on any random issue, excluding i, is then either m or m − 2,

with equal probability, and thus the most likely difference in votes i wants to

counter is either M−m = 1, or M−m+2 = 3. Casting two votes on half of

the issues, chosen randomly, is then a best reply17 When M −m > 1, i can

increase the minority’s expected share of victories by cumulating more than

two votes on a smaller, random subset of targeted issues. If M −m = 3, for

example, casting three or four votes on individual issues, rather than two as

dictated by Proposition 2, is a profitable deviation.

It is not surprising to see that minority voters’ incentive to concentrate

votes increases with the difference in size between the two groups. Indeed,

as the next result shows, at large M/m there exist equilibria in which each

minority voter concentrates all of her votes on a single issue. Majority voters

continue to spread their votes.

Proposition 3 Suppose M is divisible by K. Then (σK , τ 1) is an equilib-

rium if and only if M ≥ mK
2 . In such an equilibrium:

pm =

{ ∑m
p=M/K+1

(
m
p

) (K−1)m−p

Km + 1
2

(
m

M/K

) (K−1)m−M/K

Km if M ≤ mK
0 if M > mK.

Predictably, the minimum ratio M/m at which the equilibrium is sup-

ported must increase with K: recall that K is both the number of proposals

16Given the strategies described in Proposition 2, the probability that the remaining
m− 1 minority voters cast 2x votes on any issue k is given by

(
m−1
x

)
(1/2)m−1.

17Casting four votes on a random quarter of the issues is also a best reply. But with
M = m+ 1 and M odd, it is not consistent with a simple equilibrium.
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and the number of votes with which each voter is endowed; with majority

voters spreading all their votes evenly, in equilibrium vkM = M for all k ∈ K,

and thus, for given M/m, a minority voter’s temptation to spread some of

the votes increases at higher K.

Propositions 2 and 3 characterize pm, the expected fraction of minority

victories. But does the minority always win at least one of the issues, i.e.

does it win at least one issue with probability one? And the majority? The

following remark provides the answers.

Remark 3 When the individuals use the equilibrium strategies identified in

Propositions 2 and 3:

• the minority may win no proposal

• the majority always wins at least one proposal.

4.2 Beyond equilibrium: positive minority payoff with con-

centration and randomization

The equilibrium strategies characterized in Propositions 2 and 3 combine

features that appear very intuitive (concentration and randomization for

minority voters; less concentration for majority voters) with others that are

most likely difficult for players to identify (the exact number of issues to

target, the exact division of votes over such issues), or to achieve in the

absence of communication (the symmetry of strategies within each group).

The question we ask in this section is how robust minority victories are to

deviations from equilibrium behavior in these last two categories.

We introduce a definition of neutrality of a strategy to capture the ran-

domization across issues. The notion of neutrality is appealing in this game

because the issues are identical ex-ante. For example the family of strategies

{σc} introduced in the previous section satisfies this property.

Definition 1 A strategy σ is said to be neutral if for any permutation of

the issues π and any allocation s ∈ S(K), we have: σ(s) = σ(sπ), where

sπ = (sπ(1), . . . , sπ(K)).
18

18Note that neutrality does not require that votes be cast in equal number on each issue.
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We assume that each minority voter concentrates her votes on a subset

of issues, chosen randomly and with equal probability. However, we do not

specify the precise number of issues targeted, do not require that votes be

divided equally over such issues, and do not impose symmetry within the

minority group. In addition, we evaluate the probability of minority victo-

ries by allowing for a worst-case-scenario in which the majority jointly best

responds. We find that the probability of minority victories is surprisingly

robust.

Proposition 4 For all M ≤ mK, there exists a number k ∈ {1, . . . ,K}
such that if every minority player’s strategy: (i) is neutral, and (ii) allocates

votes on no more than k issues with probability 1, then for any strategy profile

of the majority τ ,

pm(σ, τ ) > 0.

The result of Proposition 4 is important because it is very broad, and

its wide scope makes us more optimistic about the voting rule’s realistic

chances of protecting the minority. The game is complex, and, if appli-

cations are considered seriously, robustness to deviations from equilibrium

behavior should be part of the evaluation of the voting rule’s potential. The

result will indeed play a role in explaining our experimental data. In this

particular game, studying deviations from equilibrium is made easier by the

intuitive salience of some aspects of the strategic decision (concentration and

randomization), and the much more difficult fine-tuning required by optimal

strategies (how many issues? How many votes?).19

Proposition 4 allows us to conclude that with randomization and suffi-

cient concentration, the minority can expect to win some of the time, even

off equilibrium. But how frequently?

Clearly the answer depends on the rules followed by each minority and

majority voter. To assess the magnitude of minority payoffs off equilibrium,

consider the following numerical example. Suppose K = 4, M = 10, and

19Note, for comparison, that Proposition 4 holds under the identical condition M ≤ mK
for the centralized game (with both discrete and continuous allocations).
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m ∈ {1, .., 10}. Minority voters adopt the σc strategies described in the pre-

vious section, with c assuming one of two values: c = 2 (each minority voter

casts two votes each on half of the issues, chosen with equal probability),

and c = 4 (each minority voter casts all votes on a single issue, again cho-

sen randomly with equal probability). Consider two plausible rules for the

majority, corresponding to plausible bounds on the frequency of minority

victories: either each majority voter casts his votes randomly and indepen-

dently over all issues (an upper bound on pm) or all majority voters together

best respond to the minority rule (the lower bound).20 Figure 1 reports such

bounds for each value of m (on the horizontal axis) under minority rules σ2

(in blue) and σ4 (in green).

m

pm

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

rule σ2

rule σ4

Figure 1: Minority payoffs for two minority rules (M = 10)

As expected, pm increases with m. In addition, strategy σ4, allocating

all votes on a single issue, outperforms σ2 for all values of m < M . As

long as m > 2 (a threshold that corresponds to the condition M ≤ mK

in the proposition), σ4 always results into a positive frequency of minority

victories. Even for relatively large differences in size between the two groups,

the expected fraction of minority victories is significant: in a range between

0.14 and 0.21 when m = 6, and between 0.20 and 0.28 when m = 7 (that is,

20We compute pm when the majority jointly best responds by considering all possible
allocations of the MK majority votes, and then selecting the minimum pm.
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when the minority is either 60 or 70 percent of the majority).

Note that the condition M ≤ mK in Proposition 4 is tight. The remain-

ing case M > mK refers to a committee of extreme asymmetry, in which

the average number of votes of the majority per issue (M) is larger than the

total amount of votes of the minority (mK). In this case, it is natural for

majority players to spread their votes, and we should expect no minority

victories: for any minority-profile σ, pm(σ, τ 1) = 0.

5 The Experiment

5.1 Protocol

We designed the experiment to focus on two treatment variables: the size of

the two groups, m and M , and the possibility of communication within each

group. Each experimental session consisted of 20 rounds with fixed values

of m and M ; the first ten rounds without communication, and the second

ten with group-communication.

All sessions were run at the Columbia Experimental Laboratory for the

Social Sciences (CELSS) in April and May 2015, with Columbia University

students recruited from the whole campus through the laboratory’s Orsee

site (Greiner, 2015). No subject participated in more than one session.

In the laboratory, the students were seated randomly in booths separated

by partitions; the experimenter then read aloud the instructions, projected

views of the relevant computer screens, and answered all questions publicly.

Two unpaid practice rounds were run before starting data collection.

At the start of each session, each subject was assigned a color, either Blue

or Orange, corresponding to the two groups. Members of the two groups

were then randomly matched to form several committees, each composed

of m Orange members and M Blue members. Every committee played the

following game. Each subject entered a round endowed with K balls of her

own color. She was asked to distribute them as she saw fit among K urns,

depicted on the computer screen, knowing that she would earn 100 points

for each urn in her committee in which a majority of balls were of her color.
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In case of ties, the urn was allocated to either the Blue or the Orange group

with equal probability. Figure 2 reproduces the relevant computer screen in

one of our treatments for a Blue voter who has already cast one ball.

Figure 2: The Allocation screen

After all subjects had cast their balls, the results appeared on the screen

under each urn: the number of balls of each color in the urn, the tie-break

result if there was a tie, and the subject’s winnings from the urn (either

0 or 100). The session then proceeded to the next round. The first ten

rounds were all identical to the one just described. Subjects kept their color

across rounds, but committees were reshuffled randomly. After the first

round, subjects could consult the history of past decisions before casting

their balls. By clicking a History button, each subject accessed a screen

summarizing ball allocations and outcomes in previous rounds, by urn, in

the committee that in each round included her.

After ten rounds, the session paused and new instructions were read for

the second part. Parameters and choices remained unchanged and subjects

kept the same color, but now a chatting option was enabled: before cast-

ing their balls, subjects had two minutes to exchange messages with other

members of their committee who shared their color. They could consult the

history screen while chatting. The second part of the session again lasted

ten rounds, and again committees were reshuffled after each round but sub-
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jects kept the same color. Thus each subject belonged to the same group, m

or M , for the entire length of the session, a design choice we made to allow

for as much experience as possible with a given role.

In all sessions, we ran first the ten rounds without the chat option, to

prevent subjects from learning a coordinated strategy in the first part of the

session, and then trying to replicate it in the second, in the absence of com-

munication. As we discuss below, subjects used the chat option intensely,

with the explicit goal of coordinating their strategies.21 The order of the

treatments did not induce them to replicate the chattering equilibrium when

communication was made available.

Each session lasted about 75 minutes, and earnings ranged from $18 to

$44, with an average of $33 (including a $10 show-up fee). The experiment

was programmed in ZTree (Fischbacher, 2007), and a copy of the instruc-

tions for a representative treatment is reproduced in the third section of the

supplementary appendix.

We designed the experiment with two goals in mind. First, we wanted

to learn how substantive are minority victories in the lab and how well the

theory predicts subjects’ behavior. Second, we wanted to compare results

with and without communication. Does communication helps or hinders

the relative success of the minority? As summarized in Table 1, we ran the

experiment with and without the chat option for three sets of m, M values.

We have thus six treatments, denoted by mMNC without chat, and mMC

with chat.

5.2 Parameter values and theoretical predictions

We chose the values for m and M according to three criteria. First, given

the complexity of the game, we kept the size of the committee small enough

to maintain the possibility of conscious strategic choices by inexperienced

players. Second, we chose group sizes so as to have variation in the relative

minority size m/M , keeping constant the absolute difference M−m (sessions

21Subjects used the two minutes available for chatting fully, but we have no indication
that they found the time too short.
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Table 1: Experimental Design

Sessions m,M # Subjects # Committees # Rounds (no chat, chat)

s1, s2, s3 1, 2 12 × 3 4 × 3 10, 10

s4, s5, s6 2, 3 15 × 3 3 × 3 10, 10

s7, s8, s9 2, 4 18 × 3 3 × 3 10, 10

s1-s3 and s4-s6), and to have variation in the absolute difference M − m,

keeping constant the relative size m/M , (sessions s1-s3 and s7-s9). Finally,

we chose parameter values such that equilibria of the decentralized game

exist in the family of simple profiles (σc, τd), symmetric within groups, and

within this family are unique. We select such equilibria as theoretical refer-

ence for the experiment because of their intuitive simplicity. We know that

asymmetric equilibria exist for some of the experimental parameters, and we

do not rule out other symmetric equilibria with more complex mixing strate-

gies, but their emergence seems unlikely in our experimental environment,

with random rematching and inexperienced subjects.22

The theoretical predictions for our design are summarized in Table 2 and

Table 3. Table 2 refers to the decentralized game: in both treatments 12NC

and 23NC, (σ2, τ 1) is an equilibrium; in treatment 24NC, the symmetric

equilibrium is (σ4, τ 1).23 In all three treatments, the expected fraction of

minority victories is 1/4.

As we noticed in Remark 2, with group-communication, coordination

around the equilibria of the centralized Blotto game (the CB game) be-

comes possible. The equilibrium strategies chracterized by Hart (2008) pro-

vide the theoretical reference for the experimental treatments with group-

communication.

22Note that the pure-strategy equilibria identified in Proposition 1 do not appear in our
experimental treatments as (K + 1)2/K = 25/4 > 6.

23Proposition 2 applies to M odd, and thus does not cover treatment 12NC. However,
one can verify immediately that (σ2, τ1) is an equilibrium for treatment 12NC whenK = 4.
In fact, if K = 4, Proposition 2 extends to all M even.
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Table 2: Symmetric equilibria of the decentralized game

Treatment Simple symmetric equilibrium pm

12NC (σ2, τ 1) 1/4

23NC (σ2, τ 1) 1/4

24NC (σ4, τ 1) 1/4

As established by Hart, with discrete allocations the value of the CB

game (and thus pm at equilibrium) is unique, but the optimal strategies

are not, even in the special cases of our experimental parameters. And yet

such strategies share a common intuitive structure. The intuition is easier

to grasp if we start from the continuous CB game, where allocations need

not be integer numbers. In such a game, optimal strategies must be such

that the marginal distribution of forces allocated to any one battlefield is

uniform: M allocates to any urn a number drawn from a uniform distribu-

tion over [0, 2M ]; m allocates to any urn either no balls, with probability

(1 − m/M), or a number of balls drawn from the uniform distribution on

[0, 2M ] (Roberson, 2006). With integer numbers, the uniform requirement

cannot be matched exactly, but is approximated. Using Hart’s notation,

we define as Uµo the uniform distribution over odd numbers with mean µ

(i.e. over {1, 3, .., 2µ − 1}), Uµe the uniform distribution over even numbers

with mean µ (i.e. over {0, 2, .., 2µ}), and Uµo/e the convex hull of Uµo and

Uµe (i.e. the set λUµo + (1 − λ)Uµe , for all λ ∈ [0, 1]). Table 3 reports the

marginal allocations (on each urn) associated to Hart’s optimal strategies

for our experimental parameters, as well as pm.24

The strategies can be implemented in different ways, as long as the equal

probability restriction embodied by the marginal distribution is satisfied.

For example, the majority strategy in 23C must correspond to mixing uni-

24Note that the optimal strategies identified by Hart may not be unique. For example,
the strategies involving {2} in treatment 12C do not appear in Hart (2008) because they
are not optimal strategies of the General Lotto game. See the discussion in Hart (2008).
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Table 3: Equilibria of the centralized game

Treatment Optimal strategies: marginal allocations pm

12C
m : 1/2{0}+ 1/2(U2

o/e); 1/2{0}+ 1/2{2}; any combination

M : U2
o ; {2}; any combination

1/4

23C
m : 1/3{0}+ 2/3(U3

o/e)

M : U3
o

1/3

24C
m : 1/2{0}+ 1/2(U4

o/e)

M : U4
o

1/4

formly over {1, 3, 5} for each urn, satisfying the budget constraint: in terms

of specific allocations per urn, and keeping in mind that each urn is chosen

with equal probability, one such strategy is (1/3)(3, 3, 3, 3)+(2/3)(1, 1, 5, 5);

another is (2/3)(1, 3, 3, 5)+(1/3)(1, 1, 5, 5); in fact any combination of these

two strategies also satisfies the requirement. The important point of the

table is that optimal strategies are such that the marginal distributions on

the targeted urns must be uniform distributions or combinations of uniform

distributions, for both groups, a relatively easy requirement to check on the

experimental data.

6 Experimental Results

As we document in the first section of the supplementary appendix, we

observe little evidence of learning in the data, either in terms of strategies

or outcomes, and thus report the results below aggregating over all rounds

of the same treatment.

6.1 Minority victories

Is the minority able to exploit the opportunity provided by the voting sys-

tem? This is the main question of the paper, and thus we begin our analysis

of the experimental data by addressing it. Figure 3 plots the realized frac-
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tions of minority victories in the six treatments — the percentage of urns

won by an orange team. The orange columns correspond to the experimental

data, and the grey columns to the theoretical equilibrium predictions.
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Figure 3: Fractions of minority victories

Whether with or without communication, the fraction of minority vic-

tories in the data is non-negligible, ranging from a minimum of 0.24 (in

treatment 24NC) to a maximum of 0.33 (in treatment 23C). Even more

remarkable, realized values are very close to the theoretical predictions, al-

though the difference is more sizable in treatment 23NC.25

Are the experimental subjects really adopting the rather sophisticated

strategies suggested by the theory?

25The difference is not statistically significant. In treatment 23NC there is an asymmet-
ric equilibrium in which pm = 11/32 ≈ 0.34 (v/s 0.33 in the data): all m members play
σ4, one M member plays τ1, and two play τ2. However, we do not see this equilibrium in
the data. As mentioned above, random rematching at each round means that subjects in
general cannot coordinate on an asymmetric equilibrium.
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6.2 Strategies

6.2.1 No communication: ball allocations

In the absence of communication, equilibrium strategies are defined at the

individual level. Figure 4 reports the observed frequency of different ball

allocations, across individual subjects, in the treatments without communi-

cation. The horizontal axis lists all possible allocations — with four balls

and four urns there are five — and the vertical axis reports the frequency of

subjects choosing the corresponding allocation, over all rounds, committees,

and sessions of the relevant treatment.26 The panels are organized in two

rows, corresponding to the two groups, with the minority in orange in the

upper row, and the majority in blue in the lower row. The allocation denoted

in bold and surrounded by two stars, on the horizontal axis, corresponds to

the equilibrium strategy in Table 2.
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Figure 4: Frequency of individual ball allocations (no-chat treatments)

The figure teaches three main lessons. First, there is substantial devi-

26Thus, for example, the column corresponding to “0112” reports the frequency of
subjects casting two balls in one urn, and one ball each in two other urns.
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ation from equilibrium strategies: in all treatments and in both groups, at

least forty percent of all individual allocations do not correspond to equi-

librium strategies. However — and this is the second lesson — equilibrium

predictions have some explanatory power for minority subjects. In all treat-

ments, the most frequently observed allocation for minority subjects corre-

sponds to the equilibrium strategy, a particularly clear result in treatment

12NC and 24NC, where more than half of all observed allocations correspond

to the predictions.27 Equilibrium predictions are noticeably less useful for

majority subjects. We are not sure why. We can speculate that the differ-

ence may be due to the higher complexity of the majority members’ problem:

Should they spread their votes, or try to second-guess the minority?

Third, the theory’s qualitative predictions are mostly satisfied, both

across treatments and between the two groups. We have ordered the five pos-

sible ball allocations with concentration increasing progressively from left to

right. In all treatments, the distribution of minority allocations is shifted to

the right, relative to the majority distribution: predictably, and in line with

the theory, minority members tend to concentrate balls more than majority

members do. In all treatments, the fraction of minority subjects casting one

ball in each urn, the left-most column in each panel, is negligible: the need

to concentrate the number of balls cast is clear to all minority subjects since

the very beginning of the game. Similarly, the fraction of majority mem-

bers casting all balls in a single urn, the right-most column in each panel,

is negligible in treatments 12NC and 23NC, although it surprisingly rises

to 12 percent in treatment 24NC. Focusing on minority subjects, a shift to

the right in the distribution of allocations is also evident as we move from

treatment 12NC to 23NC, and finally to 24NC. The shift between 12NC, and

24NC is again in line with the theory, as the equilibrium strategy shifts from

σ2 to σ4; the distribution in 23NC appears intermediate between these two

cases. For majority subjects, on the other hand, the change in distribution

across treatments is difficult to rationalize on the basis of the theory.

27This need not be a best response, given the variability in the data and the more
random behavior of majority subjects.
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6.2.2 No communication: individual subjects

Our theoretical results establish that the minority can guarantee itself a pos-

itive expected fraction of victories, even when individual minority members

follow different strategies, as long as each concentrates her votes on a suffi-

ciently small subset of urns (not more than k, according to Proposition 4,

where k = 2 in all our experimental treatments) and casts them randomly.

We look in more detail at the subjects’ behavior in the lab, keeping this

result in mind.

Figure 5 plots individual subjects’ average ball allocations in the three

treatments with no communication. The vertical axis in the figure is the

largest number of balls cast in any one urn, a number that we denote by x4

and that ranges from 1 to 4; the horizontal axis is the second largest number,

denoted by x3 and ranging from 0 to 2. Each dot in the figure is a single

subject’s ball allocation averaged over the 10 rounds played, summarized

by the subject’s average x4 and x3.
28 Orange dots denote members of the

minority, and Blue dots members of the majority.

Figure 5: Individual subjects’ average ball allocations (no-chat treatments)

The vertices of each triangle in the figure correspond to three feasible

28For instance, if a subject played 0022 on half of the rounds, and 0004 on the other
half, her average allocation would be represented with x4 = 3 and x3 = 1.
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allocations: (0, 4), at the upper end, corresponds to casting all balls in a

single urn; (1, 1), at the lower end, corresponds to casting one ball in each

urn, and (2, 2), at the right end, corresponds to dividing the balls equally

over two urns.29 In all three panels, the equilibrium strategy for majority

subjects is the (1, 1) vertex (marked by the large blue circle); for minority

subjects it is the (2, 2) vertex in the first two panels and the (0, 4) one in

the third (marked by the large orange circle).

The upper edge of the triangle, uniting (0, 4) and (2, 2), is the line seg-

ment described by x4+ x3 = 4, conditional on x4 ≥ x3: all dots lying along

this line represent subjects who in every round divided their balls over at

most two urns. Dots lying to the interior of the line, on the other hand,

represent subjects who in at least some rounds cast balls in more than two

urns. The boundary between the two grey areas corresponds to the line

segment x4 + 2 x3 = 4, again conditional on x4 ≥ x3. Dots below that line

correspond to subjects who must have cast balls in all four urns in at least

some rounds.

Figure 5 can now be read at a glance and reveals several regularities.

First, in all three treatments, minority subjects almost unanimously con-

centrate balls in only two urns. Only 2 out of 12 minority subjects in treat-

ment 12NC, 2 out of 18 in 23NC, and 3 out of 18 in 24NC ever cast balls

in more than two urns, and in 4 of these 7 cases the dots are close to the

upper edge, implying that this occurred in a small number of rounds. Not

only do minority subjects follow the intuitive prescription of concentrating

balls in a subset of urns; they also target not more than two urns. Second,

there is much more variability in the number of target urns among majority

subjects. In all treatments, a non-negligible number of subjects casts balls

in all urns, but an equally large number casts balls in two or three urns only.

A possible reading is that majority subjects are divided between exploiting

their larger size by covering all urns (as equilibrium predicts), and second-

29The other two possible allocations, 0013 and 0112, correspond to points (1, 3) and
(1, 2) in the figure, and are, respectively, along the upper edge of the triangle, and along
the line dividing the dark and light grey areas. We have added a small amount of noise
to the data to reduce overlaying.
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guessing the minority, in the logic of the hide-and-seek game. The role of

this latter motivation is supported by the right-most panel in Figure 5, and

this is our third observation. Members of both groups tend to concentrate

their balls more in treatment 24NC: although again there is large variability,

especially among majority subjects, the dots in the third panel tend to be

shifted upward along the outer edge, relative to the dots in the first two

panels, indicating that, among the two targeted urns, one is receiving an

increasingly disproportionate share of balls. Minority members’ incentive to

concentrate their allocations more in treatment 24NC is intuitive and could

be the trigger for the majority subjects’ own more frequent concentration.

6.2.3 Communication

To what extent does communication influence the groups’ allocations? We

analyze the content of the experimental chats in the second section of the

supplementary appendix. We find that all subjects actively participate, and

the messages are very relevant: 91 percent of exchanges30 mention at least

one ball allocation, 36 percent refer to the opposite group, and 84 percent

include an explicit agreement.31 The messages indicate an explicit effort at

coordination and suggest that the equilibrium strategies of the CB game,

summarized in Table 3, are indeed the appropriate theoretical reference for

the experimental treatments with communication. Note that only group-

wide strategies are identified.

Figure 6 reports, for each treatment, the frequency of urns holding dif-

ferent numbers of Orange and Blue balls (in orange and blue in the figure),

30We call exchange the list of all messages within a group in a given committee at a
given round.

31For example, here is an edited but representative exchange between two minority
members in round 13 of session 6, treatment 23C (using italics to distinguish one indi-
vidual): “2200 for me. We can do 4400.”; “Or i could do 1030.”; “2200. So we can do
4400”; “And what the blues tend to be doing is just putting 3 in each.”; “i was checking
the history”; “2200”; “hi hi.” At the same time, the majority members in the same com-
mittee were saying: “So, even for now. lets see what happens. if they get smarter we will
change next round.”; “i think theyve figured out they needa concentrate their balls since
they have fewer players.” ; “do even distribution. orange members not smart enough to
do 2 urns 4 balls.” Indeed, in this round and group the minority group played 4400, the
majority played 3333, and the minority won two urns.
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averaged over all sessions, groups, and chat rounds of the same treatment.32

The figure includes in gray, as a matter of comparison, the same frequencies

computed for each of the no-chat treatments.
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Figure 6: Frequency of group marginal allocations of balls

As in the no-chat treatments, the minority does concentrate its balls on

a fraction of urns, and does so more than the majority. In all treatments

more than 40 percent of urns receive no minority balls, while less than 10

percent receive no majority balls. The intuitive observation that a small

budget demands concentration is again reflected in the data.

More precisely, in treatment 12C, the data are consistent with central-

ized equilibrium behavior. The minority targets 48 percent of the urns; it

casts two balls in two thirds of the targeted urns, and one or three balls

with very similar frequency, in line with the predictions of Table 3. Sim-

32In principle, urns can contain up to MK majority balls in each treatment. However,
by truncating the figure at mK balls (the upper bound for the minority), we still report
99 percent of all majority data (for chat and no-chat treatments), while making the figure
much more readable. Note that casting more than mK + 1 balls in one urn is a strictly
dominated strategy for the majority (and we observe it exactly once, out of a total of
1,200 urn allocations over the three chat treatments).
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ilar observations hold for the majority: the frequency of 2-ball urns is 71

percent and the frequency of 1 and 3-ball urns is very similar, again in line

with Table 3.33 Such consistency with equilibrium predictions, however, is

not observed in the other two treatments. In 23C and 24C, according to

the optimal strategies in Table 3, the majority should never cast an even

number of balls, while the minority should cast two, four, and six balls with

the same frequency. For both groups, on the other hand, the data show a

peak at four balls.

In fact, in all three treatments, the modal number of balls cast by either

group is 2m. This coincides with optimal strategies in 12C, but does not in

23C and 24C. One plausible conjecture is that the minority tends to target

two urns, and the majority mimics the minority. As we mentioned earlier,

although not always optimal, the strategy matches well the hide-and-seek

nature of the game.

6.3 Unpredictability and best replies

According to the theory, not only should the minority concentrate its balls

on a subset of urns, but the targeted urns should be unpredictable. In our

experimental design, with rematching groups, there are two complementary

sources of unpredictability. First, a group allocation can be made unpre-

dictable by the choices of its subjects if, at each round, they randomize

over their targeted urns. Second, the composition of the group itself is ran-

dom, and this reinforces the unpredictability of the group allocation. In

this section, rather than separating these two forces, we assess globally the

unpredictability of the observed allocations. We perform this analysis for

both no-chat and chat treatments.

As a preliminary remark, we note that the spatial distribution of balls

33Note that in this treatment, for both groups the individual equilibrium strategies of
the decentralized game add up to a team equilibrium strategy of the centralized game.
Thus the comparison to the no-chat results is instructive. Communication is relevant
only for the majority group, and the minority strategy remains mostly unchanged. For
the majority, however, communication brings a clear change: the team plays 2222 in 65
percent of all rounds (versus 13 percent with no-chat), and the frequency of 2-ball urns
more than doubles (from 32 to 71 percent).
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in the experiment is quite even: overall, each urn received between 24.4%

(urn 4) and 25.5% (urn 2) of the balls. For all treatments, each of the four

urns received between 20% and 30% of the balls. We see no systematic bias

in favor of, or against, any particular urn.

We evaluate the unpredictability of one’s group allocations (say, the

minority) over a session by assessing how much the opposite group (the

majority) could have extracted from the knowledge of the distribution of

these allocations. That is, we measure the payoff gains available to the

majority, had it best responded to the minority’s experimental actions. A

fully predictable minority strategy, for example, means that there exists a

majority best response that translates into zero minority victories.

Precisely, for treatment T and session S, we fix the observed distribution

of minority group’s allocations V m
T,S , distinguishing across urns (with one ob-

servation per group and per round): this is the “statistical strategy” of the

minority. Then, we compute the best reply of the majority BRM (V m
T,S) as-

suming that majority members could coordinate, again distinguishing across

urns. The corresponding guaranteed payoff pm(V m
T,S , BR

M (V m
T,S)) is the

minimal payoff that the minority could obtain by playing statistically as

in the experiment.34 We do the same exercise for both groups.

Figure 7 summarizes the results, reported in terms of pm. Because we

observe little variation across sessions, for each treatment the results in the

figure are averaged across sessions.

The different panels correspond to the different treatments; the red lines

indicate the observed average frequency of minority victories in the data,

and the blue traits the predicted equilibrium frequency. In each panel, the

arrow on the left side indicates the value of pm when the majority best

replies, and the arrow on the right side when the minority best replies.

How should the figure be read? Consider for example treatment 12NC,

with average pm = 0.26, slightly above the equilibrium prediction of 0.25.

34For example, the three observations {(2, 1, 1, 0), (2, 2, 0, 0), (2, 0, 2, 0)} in treatment 1, 2
would correspond to the following statistical strategy: urn 1: 2 balls with probability 1,
urn 2: 0,1, or 2 balls, each with probability 1/3; urn 3: 0,1, or 2 balls, each with probability
1/3; urn 4: 0 balls with probability 1. The majority’s best response is (3, 2, 2, 1), implying
pm = 1/12.
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Figure 7: Best-reply minority payoffs, computed for each group and treat-
ment, averaged across sessions

Given what the minority statistically played, pm could have been as low as

0.22, had the majority best replied. This means that the minority guaran-

teed itself a significant payoff, way above 0 and not far from the equilibrium

payoff of 0.25. Conversely, given what the majority statistically played, pm

could have been as high as 0.3035.

Reading the figure across all treatments, we are led to three main con-

clusions. First, in all treatments the minority was able to guarantee itself

a significant fraction of victories, ranging from a minimum of 0.16 in treat-

ment 24NC to a maximum of 0.28 in 23C. Note that this observation does

not depend on experimental majority allocations; rather, it reflects the fact

that the minority was able to make its actions sufficiently unpredictable.

The result is particularly remarkable for the no-chat treatments, in which

minority subjects cannot coordinate, and provides the experimental coun-

terpart of Proposition 4.

Second, the majority was also able to limit its losses, guaranteeing itself

an upper bound on pm that ranged between 0.43 in treatment 23NC to 0.29

in 12C. Taken together, these observations give us confidence on the robust-

ness of the payoffs found in the experiment: although, on the whole, subjects

35Alternatively, the length of a group’s arrow can be read as a measure of the distance
to the best reply. We see that the two groups were quite effective in maximizing their
payoffs, with each group falling short of its best achievable payoff by an amount of 0.04.
Note that when the two arrows collapse, the profile is an equilibrium of the centralized
game.
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did not play equilibrium strategies, both groups secured worst-case payoffs

that were close to actual payoffs.36 The similarity of experimental and the-

oretical payoffs observed in Figure 3 did not occur by chance: in precisely

defined payoff terms, experimental strategies were “close” to equilibrium.

Finally, for each minority and majority size, communication makes very

little difference not only to observed payoffs, but also to guaranteed payoffs.

In our experimental data, any difference between the two groups in the

ability to communicate effectively and coordinate is not reflected in payoffs.

7 Conclusions

We have investigated the ability of the SV mechanism to protect the minority

group in a fully polarized committee. Both in theory and in a laboratory

experiment, we find that the mechanism is effective: in line with equilibrium

predictions, the fraction of minority victories observed in the experiment

varied from 25 percent in treatments in which the minority is half the size

of the majority, to 33 percent, when the minority’s relative size increases to

two thirds. Allowing voters to communicate before casting their votes does

not alter our conclusions.

A surprising aspect of our results is that experimental outcomes closely

replicate the theoretical predictions even though subjects often deviate from

equilibrium strategies. The reason is that the fundamental logic of the game

— its hide-and-seek nature, requiring minority voters to concentrate their

votes and to do so unpredictably — seems to be immediately clear to the

experimental subjects. Whether minority subjects concentrate votes on the

correct number of target issues, and whether majority voters are able to

best-respond to minority strategies, these finer strategic points are of sec-

ondary importance. We see this in the experimental results, and we establish

it theoretically by studying the robustness of predicted outcomes to plau-

sible off-equilibrium behavior: as long as each minority voter concentrates

her votes sufficiently and randomizes the target issues, minority victories

36The largest difference appears for the majority in treatment 23NC, where pm = 0.33
but could have been 0.44, had the minority best replied.
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are guaranteed (in expectation). The conclusion holds even if the number

of target issues is not optimal, even if other minority voters choose different

degrees of concentration, and even if majority voters coordinate their strate-

gies and best-respond. We interpret this result as an encouraging check on

the robustness of the voting mechanism and on its potential to overcome

the tyranny of the majority in realistic applications. SV treat all individ-

uals equally, avoid the inertia and obstruction of supermajority rules and

vetoes, and yet ensure that the minority voice is heard, even in the difficult

strategic environment studied here.

From a theoretical perspective, this paper has contributed a new ver-

sion of the classic Colonel Blotto game: a decentralized game where the

allocation of resources is deferred to multiple individual lieutenants within

each army. Although incentives are perfectly aligned, in the absence of

communication the decentralized game cannot replicate the equilibria of

the centralized Blotto game (because randomization needs to be central-

ized). Thus the paper can be of interest beyond the specific application

to SV, and opens the study of different problems as decentralized Blotto

games. Possible applications include patent races with multiple intra-firm

research teams; campaign spending in the US, with aligned and opposed

political action committees (PAC’s); or the fight against terrorism, with

limited communication across terrorist cells and more or less coordination

among international police forces.

A Mathematical Appendix

A.1 Proof of Remark 1

With the parameters of our model, the number of votes of each group is

a multiple of the number of issues, K. In that case, optimal strategies for

the majority are identified in Hart (2008) if K is even and/or M is odd (by

combination of his Theorem 4 and Proposition 6). They are such that the

marginal distribution of majority votes on each issue is uniform over a set

of consecutive odd integers: ∀k ∈ K, VM
k ∼ U ({1, 3, . . . , 2M − 1}) .
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Let us assume that this strategy is replicated by M independent lieu-

tenants. We denote by Si the allocation of lieutenant i on issue 1. We

have:
M∑
i=1

Si = VM
1 ∼ U ({1, 3, . . . , 2M − 1}) .

As we have ∀i = 1 . . .M, 0 ≤ Si ≤ K and E[VM
1 ] = M , we obtain by

Hoeffding’s inequality (Hoeffding, 1963):

P
(
VM
1 −M ≥M − 1

)
=

1

M
≤ exp

(
−2(M − 1)2

MK2

)
.

This inequality can be written Me−
2(M−1)2

MK2 ≥ 1, which is equivalent to

K ≥
√

2(M − 1)√
M log(M)

:= K(M).

Hence, we get a contradiction if K < K(M). As we have ∂K
∂M > 0, the

function K is one-to-one, and we denote its inverse by M(K) := K
−1

(K).

As M is increasing, we have a contradiction if M > M(K). �

A.2 Proof of Theorem 1

Consider a profile of (possibly mixed) strategies such that the majority wins

all the decisions with probability one. Consider any pure-strategy profile

(s, t) played with positive probability. Consider any minority player i. For

each issue k ∈ K, let bk = vMk (t)− vmk (s) be the margin (bias) by which the

majority beats the minority on issue k, and let sik be the number of votes

allocated by i to issue k. As the average of the (bk)k∈K is M − m, while

the average of the (sik)k∈K is one, it follows that the average of the numbers

(bk + sik)k∈K is M −m+ 1. There must be an issue k′ ∈ K such that:

bk′ + sik′ ≤M −m+ 1.
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Subtracting K from both sides:

bk′ − (K − sik′) ≤M −m+ 1−K.

The term (K − sik′) captures the amount by which i’s votes on k′ fall short

of the maximum possible, K. The left-hand side of the inequality equals

the majority’s vote margin on k′ when i allocates all her votes to k′. But if

M < m+K, M −m+1−K ≤ 0 , and the majority cannot be winning with

probability one. Either sik′ = K, and we have obtained a contradiction. Or

sik′ < K, and i has a profitable deviation; but then the initial profile is not

an equilibrium. �

A.3 Proof of Proposition 1

Assume that M ≥ m ≥ 2 and M + m ≥ (K + 1)2/K. We construct a

pure-strategy equilibrium for the DB game, based on a partition of the set

of issues K = Km ∪KM . We note Km = #Km and KM = #KM = K−Km.

Step 1. There exists a partition of the set of issues K = Km ∪ KM
satisfying:

Km ∈
[
max

(
K −

⌊
MK

K + 1

⌋
, 1

)
,min

(⌊
mK

K + 1

⌋
,K − 1

)]
.

As M ≥ m ≥ 2, it is immediate that⌊
mK

K + 1

⌋
≥ 1 and K −

⌊
MK

K + 1

⌋
≤ K − 1.

As M +m ≥ (K + 1)2/K, we get
mK

K + 1
≥ K + 1− MK

K + 1
, and therefore

⌊
mK

K + 1

⌋
≥ K −

⌊
MK

K + 1

⌋
.
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Step 2. For any such partition, any pure-strategy profile (s, t) for which{
vmk (s) ≥

⌊
mK
Km

⌋
if k ∈ Km

vmk (s) = 0 otherwise

{
vMk (t) ≥

⌊
MK
KM

⌋
if k ∈ KM

vMk (t) = 0 otherwise

is an equilibrium. In such equilibria, pm = Km/K.

As Km ≤
⌊
mK
K+1

⌋
≤ mK

K+1 , we have K ≤ mK
Km
− 1, which leads to

K <

⌊
mK

Km

⌋
.

We conclude that a majority player cannot upset the outcome of an issue in

Km: she has no profitable deviation.

As Km ≥ K −
⌊
MK
K+1

⌋
, we have KM ≤

⌊
MK
K+1

⌋
. We conclude as before

that no minority player has a profitable deviation. �

A.4 Proof of Example 1

With K = 3 and (m,M) = (4, 5), we have

max

(
K −

⌊
MK

K + 1

⌋
, 1

)
= max

(
3−

⌊
15

4

⌋
, 1

)
= 1,

min

(⌊
mK

K + 1

⌋
,K − 1

)
= min

(⌊
12

4

⌋
, 2

)
= 2,

so that we can choose Km = 2 in the previous proof and obtain a pure

strategy equilibrium for which the minority wins two of the three issues

(with certainty).

A.5 Proof of Example 2

Note first that since 3 < 25/4, Proposition 1 does not apply. Consider an

arbitrary pure-strategy profile (s, t). For each issue k ∈ K, let bk = vMk (t)−
vmk (s), so that 1

4

∑4
k=1 bk = 1. Assume for simplicity that b1 ≤ b2 ≤ b3 ≤ b4.

We first remark that, if there is a tie, a majority player deviates. Assume

that for some issue k, bk = 0. Then, there must be some issue j for which
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bj ≥ 2. At least one majority player can withdraw a vote from issue j and

allocate it to issue k. This is a profitable deviation.

We distinguish four cases:

(a) pm = 0. The average number of majority votes per proposal is 2. Thus,

the minority player can win a decision by allocating all her votes to

an issue with no more than 2 majority votes. This is a profitable

deviation.

(b) pm = 1/4 and b1 ≤ −3. The average number of majority votes on is-

sues 2,3,4 is at most 8/3. Thus, one of these issues (say k = 2) receives

no more than 2 majority votes. The minority player can withdraw 2

votes from issue 1, and allocate them to issue 2 to obtain a tie. This

is a profitable deviation.

(c) pm = 1/4 and b1 ≥ −2. The average of the (bk)k=2...4 on the issues

won by the majority is at least 2. This means that one of the two

majority players can withdraw 2 votes from issues 2,3,4 at no cost. By

allocating these 2 votes on issue 1, she obtains at least a tie. This is a

profitable deviation.

(d) pm ≥ 1/2. The minority wins issues 1 and 2. The average of the

(bk)k=3...4 is at least 3. A majority player can withdraw 2 votes from

issues 3 and 4, and cast the 2 votes on the issue with the lowest number

of minority votes among 1 and 2. On this issue, there cannot be more

than 2 minority votes, so the majority player obtains at least a tie.

This is a profitable deviation. �

A.6 Proof of Proposition 2

Let K be even and M be odd.37 We consider potential individual deviations

from the profile (σ2, τ 1).

37We require K even, so that the strategy σ2 is well-defined. Moreover, the reasoning
we offer does not apply for M even. For instance, if M = m+ 1, the most likely difference
in votes a m-player wants to counter is M −m+ 1 = 2, and allocating 3 votes on a subset
of issues is a profitable deviation.
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Deviations for an M-player We consider the point of view of an M -

player, denoted by i. On each issue k ∈ K, the total number of votes cast by

the other M -players is vM−1k = M−1. The total number of votes cast by the

minority is denoted by vmk . The random variable vmk /2 follows a binomial

distribution of parameters m and 1
2 .

Let aik be the number of votes cast by voter i on issue k, and pik(a
i
k) the

payoff of i on this issue:38

pik(a
i
k) = P

(
vM−1k + aik > vmk

)
+

1

2
P
(
vM−1k + aik = vmk

)
.

In what follows, we omit to mention the subscript k in the computations, as

all the strategies are symmetric across decisions. As M is an odd number,

we have for all a ∈ {1, . . . ,K}:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a)

=
1

2
P
(
vm

2
=
M − 1

2
+
a

2

)
+

1

2
P
(
vm

2
=
M − 1

2
+
a− 1

2

)
=

1

2
P
(
vm

2
=
M − 1

2
+
⌊a

2

⌋)
=

1

2m+1

(
m

M−1
2 +

⌊
a
2

⌋)1{M−1
2

+ba2c≤m}.

For any a ∈ {1, . . . ,K}, we have M−1
2 +

⌊
a
2

⌋
≥ M−1

2 ≥ m
2 −

1
2 , this implies:(

m
M−1
2 +

⌊
a
2

⌋)1{M−1
2

+ba2c≤m} ≤
(

m
M−1
2

)
1{M−1

2
≤m}.

Therefore pi(a)− pi(a− 1) ≤ pi(1)− pi(0). It follows that τ1 is a best reply

for player i.

Deviations for an m-player. We consider a player j in team m. On a

given decision, the payoff of j, playing a ∈ {0, . . . ,K} is:

pj(a) = P
(
vm−1 + a > vM

)
+

1

2
P
(
vm−1 + a = vM

)
.

38By convention, the payoff on issue k can take values between 0 and 1, and the overall
payoff is the mean of the payoffs over all the issues.
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where vM = M and vm−1/2 is a random variable following a binomial dis-

tribution of parameters (m− 1) and 1
2 . As M is an odd number, we have:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
=

1

2
P
(
vm−1

2
=
M − 1

2
−
⌊
a− 1

2

⌋)
=

1

2m

(
m− 1

M−1
2 −

⌊
a−1
2

⌋)1{0≤M−1
2
−ba−1

2 c≤m−1}.

In particular, pj(2)− pj(1) = pj(1)− pj(0) = 1
2m

(m−1
M−1

2

)
1{M≤2m−1}.

As M ≤ m+ 1, for any a ∈ {3, . . . ,K}, we have M−1
2 −

⌊
a−1
2

⌋
≤ M−1

2 ≤
m−1
2 + 1

2 . Therefore, pj(a)− pj(a− 1) ≤ pj(2)− pj(1) = pj(1)− pj(0). As a

result, σ2 is a best reply for j. �

A.7 Proof of Proposition 3

Let M be divisible by K,39 and assume that M ≤ mK. This last assumption

is made without loss of generality as, if M > mK, the profile (σK , τ 1) is

trivially an equilibrium in which the majority wins all the decisions.

Deviations for an M-player We write, as before, for any a ∈ {0, . . . ,K}:

pi(a) = P (M − 1 + a > vm) +
1

2
P (M − 1 + a = vm) ,

where vm/K follows a binomial distribution of parameters m and 1/K. We

get:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a) .

As M is a multiple of K, it is the only one in the set {M−2, . . . ,M−1+K}.
39Note that the result is valid only when M is divisible by K. If M = aK + b with

2 ≤ b ≤ K−1, any given majority player is useless playing σ1 (any issue receives aK+b−1
votes from the other majority players, and a multiple of K votes from minority players),
and consolidating a subset of issues is a profitable deviation. If M = aK + 1, a minority
player i is decisive on an issue only when the other minority players allocate aK votes or
(a + 1)K votes. As the first case is much more probable than the second one, one can
show that i is better off playing σ1 or σ2, rather than σK .
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As vm must be a multiple of K, we obtain pi(2) − pi(1) = pi(1) − pi(0) =
1
2P (vm = M) and for all a ∈ {3, . . . ,K}, pi(a)− pi(a− 1) = 0. We conclude

that τ1 is a best reply for player i.

Deviations for an m-player We write as before, for a ∈ {0, . . . ,K}:

pj(a) = P
(
vm−1 + a > M

)
+

1

2
P
(
vm−1 + a = M

)
,

where vm−1/K follows a binomial distribution of parameters (m − 1) and

1/K. We get:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
.

There are two multiples of K in {M −K, . . . ,M}, namely M −K and M .

We obtain:

pj(1)− pj(0) =
1

2
P
(
vm−1 = M

)
∀a ∈ {2, . . . ,K − 1}, pj(a)− pj(a− 1) = 0

pj(K)− pj(K − 1) =
1

2
P
(
vm−1 = M −K

)
.

There are only two candidates for the best reply of voter j: playing one

vote on every issue or playing K votes on a single issue. It follows that the

strategy σK is a best reply for player j if and only if:

pj(K) + (K − 1)pj(0) ≥ Kpj(1) ⇔ pj(K)− pj(1) ≥ (K − 1)
(
pj(1)− pj(0)

)
⇔ P

(
vm−1 = M −K

)
≥ (K − 1)P

(
vm−1 = M

)
.

We know that vm−1 = M (resp vm−1 = M −K) if exactly M/K m-players

(resp. exactly M/K − 1 m-players) play K on the considered issue. Thus:

P
(
vm−1 = M

)
=

(
m− 1

M/K

)(
1

K

)M/K (
K − 1

K

)m−1−M/K

P
(
vm−1 = M −K

)
=

(
m− 1

M/K − 1

)(
1

K

)M/K−1(
K − 1

K

)m−M/K

.
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We obtain

P
(
vm−1 = M −K

)
(K − 1)P (vm−1 = M)

=
M/K

m−M/K
.

The strategy σK is a best reply for player j if and only if this ratio is larger

than or equal to 1, or equivalently M ≥ mK/2. �

A.8 Proof of Remark 3

Under the equilibrium of Proposition 2, when M = m + 1, we have by as-

sumption m even. As each minority player allocates 2 votes on any targeted

issue, and as the average number of votes of the minority group per issue

is m, the scenario in which the minority group allocates exactly m balls on

each issue realizes with positive probability. In this scenario, the minority

wins no decision.

Under the equilibrium of Proposition 3, the number of majority votes

per urn is equal to M , and it is divisible by K, the number of votes that

each minority player allocates on her chosen issue. As the total number of

votes of the majority exceeds the total number of votes of the minority, a

possible scenario is one where the minority and the majority are tied on a

given number of issues, while the other issues receive a majority of majority

votes. If all ties are resolved in favor of the majority, the minority wins no

decision.

As the majority group has a larger amount of votes than the minority,

there must always be an issue with more votes from the majority than from

the minority. Therefore, the minority can never win all decisions. �

A.9 Proof of Proposition 4

Assume that M ≤ mK, and define k ≡
⌊
Km
M

⌋
. Note that k ∈ {1, . . . ,K}.

Let σ be a minority profile satisfying the two conditions of the proposi-

tion. For each player, and each allocation played with positive probability,

there is at least one issue receiving at least K
k votes from this player. By

symmetry across issues, each player allocates with positive probability at
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least K
k votes on each issue. As a result, each issue receives at least mK

k

votes from the minority with positive probability.

Let τ be a majority profile and let vM be a majority allocation played

with positive probability. There exists at least an issue k receiving no more

than M votes from the majority. Since k ≤ Km
M , it follows that mK

k ≥ M .

Hence the minority wins the issue k with positive probability: pm(σ, τ ) > 0.

�
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Koriyama, Y., A. Macé, R. Treibich, and J.-F. Laslier (2013): “Op-

timal apportionment,” Journal of Political Economy, 121, 584–608.

48



Kovenock, D. and B. Roberson (2012): “Coalitional Colonel Blotto

games with application to the economics of alliances,” Journal of Public

Economic Theory, 14, 653–676.

Laslier, J.-F. (2012): “Why not proportional?” Mathematical Social Sci-

ences, 63, 90–93.

Lijphart, A. (2004): “Constitutional design for divided societies,” Journal

of democracy, 15, 96–109.

May, K. O. (1952): “A set of independent necessary and sufficient condi-

tions for simple majority decision,” Econometrica, 680–684.

Picard, E. (1994): “Les habits neufs du communautarisme libanais,” Cul-

tures et conflits, 49–70.

Rae, D. W. (1969): “Decision-rules and individual values in constitutional

choice,” American Political Science Review, 63, 40–56.

Reynal-Querol, M. (2002): “Ethnicity, political systems, and civil wars,”

Journal of Conflict Resolution, 46, 29–54.

Rinott, Y., M. Scarsini, and Y. Yu (2012): “A Colonel Blotto gladiator

game,” Mathematics of Operations Research, 37, 574–590.

Roberson, B. (2006): “The Colonel Blotto game,” Economic Theory, 29,

1–24.

Rogers, J. (2015): “An Experimental Investigation of Lobbying Strate-

gies,” Mimeo.

Sheremeta, R. M. (2015): “Behavior in group contests: A review of ex-

perimental research,” Mimeo.

Winslow, C. (2012): Lebanon: war and politics in a fragmented society,

Routledge.

49


	Introduction
	The Model
	Two Preliminary Remarks
	Theory: the decentralized Blotto game without communication
	Equilibria
	Equilibria in pure strategies
	Symmetric equilibria in mixed strategies

	Beyond equilibrium: positive minority payoff with concentration and randomization

	The Experiment
	Protocol
	Parameter values and theoretical predictions

	Experimental Results
	Minority victories
	Strategies
	No communication: ball allocations
	No communication: individual subjects
	Communication

	Unpredictability and best replies

	Conclusions
	Mathematical Appendix
	Proof of [rReplication]Remark 1
	Proof of [t]Theorem 1
	Proof of [pPureEq]Proposition 1
	Proof of [eMinWin]Example 1
	Proof of [eNoPure]Example 2
	Proof of [p2]Proposition 2
	Proof of [p3]Proposition 3
	Proof of [r3]Remark 3
	Proof of [pMin]Proposition 4


