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Abstract

I consider nuclear norm penalized quantile regression for large N and large T panel
data models with interactive fixed effects. The estimator solves a convex minimization
problem, not requiring pre-estimation of the (number of the) fixed effects. Uniform
rates are obtained for both the regression coefficients and the common component es-
timators. The rate of the latter is nearly optimal. To derive the rates, I also show new
results that establish uniform bounds related to random matrices of jump processes.
These results may have independent interest. Finally, I conduct Monte Carlo simula-
tions to illustrate the estimator’s finite sample performance.

Keywords: Quantile regression, interactive fixed effects, nuclear norm, regularized
regression, high-dimensional data.

1 Introduction

Panel data models are widely applied in economics and finance. Allowing for rich het-
erogeneity, interactive fixed effects are important components in such models in a lot of
applications. Since fixed effects may not only impact the conditional mean of the outcome
variable, but also have heterogeneous effects on its distribution, quantile regression would be
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handy in such cases. However, in contrast to the well-studied mean regression (e.g. Pesaran
(2006), Bai (2009) and Moon and Weidner (2015)), quantile regression for panel data with
interactive fixed effects only received attention recently (e.g. Harding and Lamarche (2014),
Ando and Bai (2019), Chen, Dolado and Gonzalo (2019) and Chen (2019)).

In this paper, I propose nuclear norm regularized quantile regression for panel data
models with interactive fixed effects. The estimator solves a convex problem, and I allow
the fixed effect structure to vary across quantiles. Meanwhile, I do not need to pre-estimate
the (number of the) fixed effects. To highlight the departure from the existing approaches,
let us think about a simple location shift model with exogenous regressors and i.i.d. data as
an illustration. Let Yit = X ′itβ

o
0 + F o′

t Λo
i + εit ≡ X ′itβ0(u) + F o′

t Λo
i + [qε(Uit) − qε(u)], where

F o
t and Λo

i contain r fixed effects (r < min{N, T}), qε(·) is the quantile function of εit, and
Uit ∼ Unif[0, 1]. In the papers mentioned above, though they all have different focuses, they
essentially estimate (β0(u), F o

t ,Λo
i ) by minimizing the check function: ∑i,t ρu(Yit − Xitβ −

F ′tΛi). To implement, r needs to be pre-estimated. As this objective function is nonconvex
in (β, Ft,Λi), we may end up with a local minimum.

To resolve the issue of nonconvexity, note that the check function is indeed convex in
(β, F ′tΛi). Hence, by treating the interactive fixed effects as single parameters instead, we
obtain a convex problem: min(β,{Lit})

∑
it ρu(Yit−X ′itβ−Lit).The minimizer of this problem is

trivially (0, {Yit}) if we do not regulate L. Denote Lo0 = F o′
t Λo

i . By construction, rank(Lo0) ≤
r < min{N, T}. The low-rankness of the true parameter thus motivates a penalty term
added to the check function that regularizes the rank of L.

The penalty function of choice is the nuclear norm of a matrix || · ||∗, i.e., the sum of
a matrix’s singular values. As all of them are nonnegative by definition, the nuclear norm
is equivalent to the `1 norm of the vector of the singular values. Recall that the rank of
a matrix is the number of nonzero singular values. Therefore, the nuclear norm penalty is
analogous to the LASSO penalty in high dimensional regression; as the latter is the tightest
convex relaxation of the number of the nonzero coefficients, the former is the counterpart
for the rank of a matrix.

The practical benefits of the nuclear norm regularized quantile regression are two-fold.
Unlike the existing methods mentioned earlier, it is unnecessary to know r so no pre-
estimation is needed. The rank of the estimated common component is partly determined
by the weight assigned to the penalty. Also, since the nuclear norm is convex too, the reg-
ularized minimization problem is still convex in (β, L). Hence, there is no concern of local
minima.

In this paper, I provide uniform rate of convergence for the estimator (β̂(u), L̂(u)) in
u ∈ U , a compact interval in the interior of [0, 1]. The rate of L̂(u) is nearly optimal but
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the rate of β̂(u) is slower than optimal due to the bias caused by regularization. To obtain
the rate, the subgradient matrix of the check function of the error processes plays a key
role. I prove new results that establish a uniform upper bound for the operator norm of
this matrix, and a uniform Hoeffding-type bound for its inner product with other matrices.
Also, I develop a new theoretical argument such that the conditional density of Yit only
needs to be away from 0 at the true parameter. This is standard in the classical quantile
regression literature but weaker than the conditions in Ando and Bai (2019) and Chen,
Dolado and Gonzalo (2019), where the density is assumed to be bounded away from 0 in
compact subsets of the support. These results may have independent interest. I also discuss
post-regularization procedures where a consistent estimator for r is provided as a by-product.

This paper adds to the literature of quantile regression for panel data. Since Koenker
(2004), panel data quantile regression began to draw increasing attention. Abrevaya and
Dahl (2008), Lamarche (2010), Canay (2011), Kato, Galvao Jr and Montes-Rojas (2012),
Galvao, Lamarche and Lima (2013) and Galvao and Kato (2016) study quantile regression
with one-way or two-way fixed effects. Harding and Lamarche (2014) considers interactive
fixed effects with endogenous regressors. They require F o

t to be pre-estimated or known.
Chen, Dolado and Gonzalo (2019) prospses a quantile factor model without the regres-
sors. They estimate the factors and the factor loadings via nonconvex minimizations. Pre-
estimation of the number of the factors is needed. Ando and Bai (2019) considers quantile
regression with heterogeneous coefficients. They propose both a frequentist and a Bayesian
estimation procedure. The number of the factors also needs to be estimated first, and the
minimization problem is noncovex. Chen (2019) proposes a two-step estimator: by assum-
ing the common factors are not quantile-dependent, they are estimated by the principal
component analysis in the first step, and the regression coefficients and the individual fixed
effects are estimated in the second step via smoothed quantile regression. Chao, Härdle and
Yuan (2019) considers nuclear norm penalized multi-task quantile regression where multiple
outcome variables are simultaneously considered and the coefficient matrix is low rank.

Another literature this paper speaks to is the nuclear norm regularized estimation. This
literature was initially motivated by low rank matrix completion or recovery in compressed
sensing and other applications in computer science, etc, for instance Candès and Recht
(2009), Ganesh et al. (2010), Zhou et al. (2010), Candès et al. (2011), Hsu, Kakade and
Zhang (2011), Negahban and Wainwright (2011), Agarwal, Negahban and Wainwright (2012)
and Negahban et al. (2012) among others. The main parameter of interest in this literature
is the low-rank matrix and they require the error terms to be either nonstochastic or to have
finite second moments. Bai and Feng (2019) allows the stochastic error to be non-sparse
and fat-tailed; the existence of its moments are not required. Nuclear norm regularized
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estimation and matrix completion related topics have also gained interest in econometrics
recently. Bai and Ng (2019a) considers using factor analysis to impute missing data and
counterfactuals. Bai and Ng (2019b) considers regularized estimation for approximate factor
models with singular values thresholding. Athey et al. (2018), Moon and Weidner (2019) and
Chernozhukov et al. (2019) consider mean regression with interactive fixed effects. In Moon
and Weidner (2019), they also briefly discuss nuclear norm regularized quantile regression
with a single regressor as an extension. The rate of convergence they obtain is pointwise,
and is almost the square root of the rate obtained here. Also their approach focuses on
the regression coefficients, but I obtain rates for both the coefficients and the common
component.

The rest of the paper is organized as follows. Section 2 introduces the model and the
estimator. Section 3 discusses the restricted set, an important theoretical device that is
useful to establish the main results. The main results are presented in Section 4. Section
5 shows a Monte Carlo simulation experiment. Section 6 concludes. The proofs of the
results in Sections 3 and 4 and the technical lemmas are collected in Appendices A, B and
C respectively.

Notation

Besides the nuclear norm || · ||∗, I will use four additional matrix norms. Let || · ||, || · ||F ,
|| · ||1, and || · ||∞ denote the operator norm, the Frobenius norm, the `1 norm and the
maximum norm. For two generic scalars, a∨b and a∧b return the max and the min between
a and b, respectively. For a generic random sample W1, ...,WNT and a function f , denote
the empirical process by GNT (f) ≡ GNT (f(Wit)) = 1√

NT

∑
i,t(f(Wi) − E(f(Wi))) where E

denotes the expectation operator. Finally, I use the notion "with high probability" when an
event occurs with probability arbitrarily close to 1 for large enough N and T .

2 The Model and the Estimator

I consider the following model for a panel dataset (Yit, Xit : i ∈ {1, ..., N}, t ∈ {1, ..., T}):

Yit = X ′itβ0(Uit) +
r̄∑

k=1
1k(Uit)Fkt(Uit)Λki(Uit), (2.1)

where Xit is a p× 1 vector of covariates, Uit ∼ Unif[0, 1] is unobservable, Ft(Uit) and Λi(Uit)
are latent fixed effects with the total number r̄ unknown. The interactive fixed effects part
is similar to that in Ando and Bai (2019) and Chen, Dolado and Gonzalo (2019). Both the
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fixed effects and the effective number of them are allowed to vary in Uit.
The key observation of model (2.1) is that the interactive fixed effects form a low-rank

N × T matrix at a fixed u if r̄ is small relative to N and T . To see this, let us rewrite
equation (2.1) as follows:

Yit =X ′itβ0(u) +
r̄∑

k=1
1k(u)Fkt(u)Λki(u)︸ ︷︷ ︸

≡L0,it(u)

+X ′it
(
β0(Uit)− β0(u)

)
+

r̄∑
k=1

(
1k(Uit)Fkt(Uit)Λki(Uit)− 1k(u)Fkt(u)Λki(u)

)
︸ ︷︷ ︸

≡Vit(u)

Or more compactly,

Y =
p∑
j=1

Xjβ0,j(u) + L0(u) + V (u) (2.2)

where rank(L0(u)) ≤ r(u) ≤ r̄ and Xj (N×T ) is the jth regressor. The number of regressors
p and the number of factors r̄ are fixed for simplicity but are potentially allowed to grow
with N and T . Denote the conditional quantile of Vit at u by qVit|Xit,Ft(u). I assume the
function X ′itβ(·) +∑r̄

k=1 1k(·)Fkt(·)Λkt(·) is strictly increasing, then we have qVit|Xit,Ft(u) = 0
by construction. The following are two models that admit the representations (2.1) and
(2.2).

Example 1 (Location Shift Model). This is the model we’ve seen in the introduction. Yit =
X ′itβ

o +F o′
t Λo

i + εit. Let qε(·) be the quantile function of ε, then Yit = X ′itβ
o +F o′

t Λo
i + qε(Uit).

At u, qε(u) is absorbed in the constant.

Example 2 (Location-Scale Model). Yit = X ′itβ
a
0 + F o′

t Λa
t + (X ′itβb + F o′

t Λb
i)εit. Let qε(·) be

the quantile function of ε, then we can rewrite the model as

Yit = X ′it[βa0 + βb0qε(u)] + F o′

t [Λa
i + Λb

iqε(u)]

where x′βb + φ′Λb
i > 0 for all i and all (x, φ) in the support set of Xit and Ft. In this model,

both the coefficients on the regressors and the individual fixed effects are functions of u. If
for some u, there are elements in Λa

i + Λb
iqε(u) equal to 0, then the number of the effective

fixed effects is smaller than that at other u. Hence, r(·) depends on u.

I estimate (β0(u), L0(u)) by the following regularized quantile regression:

(β̂(u), L̂(u)) ≡ arg min
β∈Rp,||L||∞≤α

1
NT

ρu(Y −
p∑
j=1

Xjβj − L) + λ||L||∗ (2.3)
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where for a generic matrix Z, ρu(Z) ≡ ∑
i,t ρu(Zit) ≡

∑
i,t Zit(u − 1Zit≤0) is the sum of the

check functions applied to each element in Z. λ→ 0 and α→∞ are two tuning parameters
that will be specified later.

3 The Restricted Set

To establish consistency, intuitively we hope that L̂(u) lies near the space containing
L0(u). In particular, the nuclear norm penalty is effective if projecting L̂(u) onto the space
of L0(u) obtains a residual matrix that has small nuclear norm. To formalize the idea, let
L0(u) = R(u)Σ(u)S(u)′ be a singular value decomposition for L0(u). Let Φ(u) be the space
of matrices defined by Φ(u) ≡ {M ∈ RN×T : ∃A ∈ Rr(u)×T and B ∈ RN×r(u) s.t. M =
R(u)A+BS(u)′}. The linear projection of a generic N × T matrix W onto this space is

PΦ(u)W = R(u)R(u)′W +WS(u)S(u)′ −R(u)R(u)′WS(u)S(u)′

Its orthogonal projection is PΦ⊥(u)W =
(
IN×N − R(u)R(u)′

)
W
(
IT×T − S(u)S(u)′

)
. In

principle, we hope PΦ(u)L̂(u) is sufficiently large in nuclear norm compared to L̂(u).
To formalize the idea, let ∆̂β(u) = β̂(u) − β0(u) and ∆̂L(u) = L̂(u) − L0(u). For some

C1, C2 > 0, define the restricted set as follows:

Ru ≡
{

(∆β,∆L) :
(
λ− C2

√
N ∨ T
NT

)
||PΦ⊥(u)∆L||∗

≤C1

√
p log(NT )

NT
||∆β||F +

(
λ+ C2

√
N ∨ T
NT

)
||PΦ(u)∆L||∗

}
(3.1)

For large enough λ, (∆̂β(u), ∆̂L(u)) ∈ Ru indeed implies that the estimation error ∆̂L(u)
projected to the orthogonal space Φ⊥(u) of L0(u) is at most of the same order of that
projected on to Φ(u). Similar notions of the restricted set can be also seen in such as
Negahban and Wainwright (2011) for low rank matrix recovery, Belloni and Chernozhukov
(2011) for high-dimensional quantile regression, and Chernozhukov et al. (2019) and Moon
and Weidner (2019) for mean regression with interactive fixed effects.

I now show that under the following assumption, (∆̂β(u), ∆̂L(u)) ∈ Ru.

Assumption 1. i) (Xit, Uit : i ∈ {1, ..., N}, t ∈ {1, ..., T}) are i.i.d. conditional on Ft. ii)
(Xit, Ft) ⊥⊥ Uit. iii) All the regressors have finite variances and E(XitX

′
it) is invertible.

In the paper I only consider the conditional i.i.d. case for simplicity. Potential serial
correlations are absorbed into Ft. I also assume the regressors are exogenous. Note the
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assumption implies that max1≤j≤p ||Xj||2F ≤ C · NT for some constant C > 0 with high
probability.

Lemma 1. Under Assumption 1, (∆̂β(u), ∆̂L(u)) ∈ Ru uniformly in u ∈ U with high prob-
ability.

Proof. See Appendix A.

It is worth noting that a similar inequality as in the definition of Ru (3.1) also holds
by replacing the nuclear norm with the Frobenius norm, following from the low-rankness
of L0(u). To see this, by the definition of PΦ(u), rank(PΦ(u)A) ≤ 3r(u) ≤ 3r̄ for a generic
N × T matrix A. Since ||A||F ≤ ||A||∗ ≤

√
rank(A)||A||F , the following holds for any

(∆β,∆L) ∈ Ru:

(
λ− C2

√
N ∨ T
NT

)
||PΦ⊥(u)∆L||F ≤ C1

√
p log(NT )

NT
||∆β||F +

√
3r̄
(
λ+ C2

√
N ∨ T
NT

)
||PΦ(u)∆L||F

Hence, if λ > C2
√
N∨T

NT
and the first term on the right hand side is dominated by the second,

the Frobenius norm of PΦ⊥(u)∆L has at most the same order as PΦ(u)∆L. Therefore, ∆L is
not "too far" from the space of L0 in the Frobenius norm as well, which is useful to show the
main results.

From now on, I set λ = 2C2
√
N∨T

NT
. Then the restricted set can be simplified as

Ru ≡
{

(∆β,∆L) : ||PΦ⊥(u)∆L||∗ ≤
C1

√
p log(NT )(N ∧ T )

C2
||∆β||F + 3||PΦ(u)∆L||∗

}
(3.2)

4 The Main Results

In this section I provide uniform rates for β̂(u) and L̂(u). I will also briefly discuss
post-regularization procedures. Let us begin by introducing the following assumptions.

Assumption 2 (Conditional Density). The conditional densities satisfy fVit(u)|Xit,Ft(0) ≥
f > 0 uniformly in u ∈ U almost surely. The derivative of the density is uniformly bounded
in absolute value by f̄ ′.

Assumption 3 (Bounds on Magnitude). ||L0(u)||∞ ≤ α and log(NT )√
N∧T ||Xit||F ≤ α2 a.s..

Assumption 4 (Smoothness). For any u′ 6= u ∈ U , there exist ζ1, ζ2 > 0 such that

||β0(u′)− β0(u)||F ≤ζ1|u′ − u|,
1√
NT
||L0(u′)− L0(u)||F ≤ ζ2|u′ − u| with high probability.
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Assumption 5 (Identification). Denote (PΦ(u)X)it =
(
(PΦ(u)X1)it, ..., (PΦ(u)Xp)it)′ and

(PΦ⊥(u)X)it =
(
(PΦ⊥(u)X1)it, ..., (PΦ⊥(u)Xp)it)′. Conditional on Ft, assume the following

holds uniformly in u ∈ U :

E
∑
it

(
(PΦ⊥(u)X)it(PΦ⊥(u)X)′it − (log(NT )r̄)(PΦ(u)X)it(PΦ(u)X)′it

)
is positive definite.

Assumptions 2 and 3 guarantee that the objective function can be bounded from below
by a quadratic function. Assumption 2 is standard in quantile regression. However, with
interactive fixed effects, a stronger assumption is often made requiring the conditional density
to be bounded away from 0 on compact intervals around 0 (e.g. Ando and Bai (2019) and
Chen, Dolado and Gonzalo (2019)). The stronger assumption is to overcome the theoretical
difficulty caused by estimating the N × T matrix L0(u) without sparsity. In this paper, I
develop a new argument under which the conditional density being bounded away from 0
at Vit(u) = 0 suffices. To apply the argument, I need to control the magnitude L0,it(u) and
||Xit||F by Assumption 3. Since I allow α→∞, these restrictions are mild in practice. I can
further relax them by allowing the conditions only hold with sufficiently large probabilities.
I maintain the stronger version for simplicity.

Assumption 4 is needed for uniformity. The first part is the same as in Belloni and
Chernozhukov (2011). The second part imposes smoothness on the common component
L0(·). Note that the condition rules out the case where r(u) changes on U . To see this,
suppose there exists u0 in the interior of U such that r(u) < r(u′) for any u < u0 ≤ u′.
Then 1

NT
||L0(u′)− L0(u)||F is bounded away from 0 uniformly in |u′ − u|. However, if r(u)

only has finite number of jump-points in [0, 1], uniformity on the union of compact interior
subsets between jump-points can be obtained.

Assumption 5 is used to bound the estimation errors ∆̂β(u) and ∆̂L(u) separately. With-
out it, I can only obtain the error bound for their weighted sum. This is a sufficient condition
in our context to the "restricted strong convexity" condition; variants of the condition are
widely assumed in the related literature (e.g. Negahban and Wainwright (2011, 2012), Agar-
wal, Negahban and Wainwright (2012), Negahban et al. (2012), Chernozhukov et al. (2019),
Moon and Weidner (2019), etc.). Assumption 5 says the covariates need to be sufficiently
far from the space of L0(u) uniformly in u ∈ U . Otherwise, for instance, suppose for some j,
Xj = L0(u), that is Xj = PΦ(u)(Xj), then β0,j(u) is not identified due to perfect collinearity.

Under these assumptions, we have the main theorem of this paper.

Theorem 1. Under Assumptions 1-5, there exists a constant C > 0 such that with high
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probability,

sup
u∈U

||∆̂β(u)||2F + 1
NT
||∆̂L(u)||2F ≤ C

α4f̄ ′4 log(NT )
f 8

(p log(NT )
NT

∨ r̄

N ∧ T
)

(4.1)

Proof. See Appendix B.

We see the rate of convergence depends on the rank of L0(u) (captured by r̄), the number
of regressors (p), and the magnitude of elements in L0(u) (α). Note that in the parentheses,
p
NT

would be the rate of convergence of the standard quantile regression estimator if L0(u)
were not present in the model. Meanwhile, r̄

N∧T is the minimax optimal rate of convergence
for the low rank matrix estimator using nuclear norm regularization (see Agarwal, Negahban
and Wainwright (2012) and Negahban and Wainwright (2012) for instance), and is identical
to the mean regression (Athey et al. (2018), Moon and Weidner (2019) and Chernozhukov
et al. (2019)). As the latter rate is much slower than the former (for fixed p), the rate of the
coefficient estimate is much slower than its optimal rate.

From Theorem 1 and the definition of the restricted set, it is straightforward to have the
following corollary.

Corollary 1. Under Assumptions 1-5, there exists a constant C ′ > 0 such that with high
probability,

sup
u∈U

1
N ∧ T

||∆̂L(u)||∗ ≤ C ′
α2f̄ ′2

√
log(NT )
f 4

(√p log(NT )
N ∧ T

∨

√
r̄(N ∨ T )
N ∧ T

)
(4.2)

To see why this is true, note that being in the restricted set, the rate in Theorem 1
implies that ||PΦ⊥(u)∆̂L(u)||∗ is bounded by ||PΦ(u)∆̂L(u)||∗, which is further bounded by
√

3r̄||PΦ(u)∆̂L(u)||F . The low rankness of L0(u) plays a key role here because only then
the error bound in the nuclear norm is of the same order of that in the Frobenius norm.
Corollary 1 implies that if the panel data matrix is not too "tall" or "fat", i.e., the order of
N and T are not too different, the average of the singular values of L0(u) can be uniformly
estimated.

From Theorem 1 and Corollary 1, we can consistently estimate the rank of L0(u) by
thresholding, similar to Moon and Weidner (2019) and Chernozhukov et al. (2019). Denote
the singular values of L̂(u) by σ̂1(u), · · · , σ̂N∧T (u) in descending order. By Weyl’s theorem
and Theorem 1, maxk |σ̂k(u) − σk(u)| is bounded by O(

√
N ∨ T ) up to a multiplicative

polynomial of log(NT ). Since σk(u) = 0 for all k > r(u), the singular values of L̂(u) are
well separated if Ft(u) are strong factors: they are either of the order of (N ∧ T ) ·

√
N ∨ T

(k ≤ r(u)), or
√
N ∨ T (k > r(u)). Therefore, by setting a threshold of any order in
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between, r(u) can be consistently estimated by simply counting the number of estimated
singular values that are above the threshold.

To correct the bias that regularization brings in and achieve the optimal rate for β̂(u),
I conjecture that one can follow similar post-regularization procedures proposed in Moon
and Weidner (2019) and Chernozhukov et al. (2019) to obtain an asymptotically normal
estimator for β0(u). Specifically, construct F̂t and Λ̂i by singular value decomposition with
only the largest r̂(u) singular values kept. Then iteratively minimize the standard quantile
regression objective function without penalty, similar to Ando and Bai (2019) but setting
β̂(u) as the initial guess.

5 Monte Carlo Simulations

In this section, I illustrate the finite sample performance of our estimator using a simu-
lation study. I consider the following data generating process adapted from Ando and Bai
(2019):

Yit = X ′itβ0(Uit) +
5∑

k=1
1k(Uit)FktΛki(Uit) + Vit(Uit)

where Uit ∼ Unif[0, 1]. Xit contains the following four regressors:

X1,it = W1,it + 0.02F 2
1,t + 0.02ζ2

1,i, X2,it = W2,it

X3,it = W3,it − 0.01F 2
3,t + 0.02ζ2

3,i, X4,it = W4,it − 0.01F 2
4t + 0.03ζ2

4,i,

where all Wk,it, ζk,i and the factors Fk,t are independently drawn from Unif[0, 2]. The factors
loading Λk,i(Uit) = ζk,i + 0.1Uit. For β0(Uit), β0,1(Uit) = β0,3(Uit) = β0,4(Uit) = −1 + 0.1Uit
and β0,2(Uit) = 1 + 0.1Uit. Finally, the indicator function satisfies:

1k(·) = 1, k = 1, 2, 3, 14(u) = 1(0.3 < u ≤ 0.7), 15(u) = 1(u > 0.7),

that is, the first three factors always affect Yit, while the fourth and the fifth factor only
affect Yit when Uit is between 0.3 and 0.7 and above 0.7, respectively. Finally, the error term
Vit(Uit) = G−1(Uit) where G is the cumulative distribution function of standard normal or
student-t distribution with degree of freedom 8.

For implementation, I set λ = 1√
N
; the order is suggested by the theory. I then itera-

tively update β(u) and L(u) until convergence. I update β(u) by pooled quantile regression
subtracting L(u) from Y . For L(u), I adapt the alternating directions method proposed in
Lin, Chen and Ma (2010) and Yuan and Yang (2013), which is also used in Candès et al.
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Table 1: Average Bias, Variance and RMSE of β̂(u) and β̂pooled

A. Normal Error
Bias2 Variance ||∆̂L(u)||2F/||L0(u)||2F

Penalized Pooled Penalized Pooled Penalized
u = 0.2 2.82 · 10−4 2.6 · 10−3 1.25 · 10−4 5.48 · 10−4 0.07
u = 0.5 7.40 · 10−6 2 · 10−3 1.46 · 10−4 5.72 · 10−4 0.07
u = 0.8 2.22 · 10−5 2.1 · 10−3 5.99 · 10−4 9.62 · 10−4 0.06

B. Student-t Error
Bias2 Variance ||∆̂L(u)||2F/||L0(u)||2F

Penalized Pooled Penalized Pooled Penalized
u = 0.2 2.82 · 10−4 2.6 · 10−3 1.45 · 10−4 5.40 · 10−4 0.08
u = 0.5 4.54 · 10−6 2 · 10−3 1.65 · 10−4 7.53 · 10−4 0.07
u = 0.8 2.06 · 10−5 2 · 10−3 7.17 · 10−4 1.1 · 10−3 0.06

(2011). In our notation, the algorithm was originally designed for u = 0.5. I modify it to
accommodate any other u ∈ (0, 1).

Table 1 presents the results based on 100 simulation replications. The squared biases
and the variances are the average of those of the four components in β̂(u). Column penalized
contains the results using our estimator. Column pooled are results obtained from quantile
regression ignoring the interactive fixed effects. Since the regularized regression is biased,
column pooled provides a reference to compare the biases that the nuclear norm penalty
introduces with the biases from endogeneity. From the results, we can see the squared biases
ignoring the interactive fixed effects are 10-1000 times than our estimator. The performance
of the estimated common component is relatively good too. The sum of squared estimation
error is between 6% and 8% of the magnitude of the true common component.

6 Concluding Remarks

In this paper, I propose the nuclear norm regularized quantile regression for panel data
models with interactive fixed effects. I derive the uniform rate of convergence for both
the coefficients of the regressors and the common component. The rate for the common
component is nearly optimal.

The results can be extended to models with heterogeneus effects. To see it, note that
in the error bound I derive, the number of coefficients can be as large as O(N ∨ T ), only
increasing the order of the bound by log(NT ). Therefore, almost the same rate could be
obtained if p is fixed but β0(u) is i- or t-dependent. Then the number of coefficients is
pN or pT , so that the rate for the coefficients becomes identical to that in Ando and Bai
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(2019) up to a polynomial factor of log(NT ). It is also possible to extend the results to
high dimensional regressors, i.e., p ≥ NT with an extra `1 norm penalty in the objective
function like Belloni and Chernozhukov (2011). Finally, as the penalty introduces bias,
post-regularization estimation procedures is needed to obtain the asymptotic distribution
and establish inference theory. This is left for future work.
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Appendix A Proof of Lemma 1

Let ∇ρu(·) be the subgradiant of ρu evaluated at ·, then by definition ∇ρu(V (u)) is an
N × T matrix of which the (i, t)-th element is

∇ρu(V )it = u1Vit>0 + (u− 1)1Vit<0.

Conditional on (X1, ..., Xp) and L0(u), ∇ρu(V ) is thus a random matrix with i.i.d. mean 0
entries bounded by u ∨ (1− u). We have the following lemma for ∇ρu(V ):

Lemma A1. Under Assumption 1, there exist two constants C1, C2 > 0 such that the fol-
lowing hold with high probabilities:

sup
u∈U

max
1≤j≤p

∣∣∣〈∇ρu(V (u)), Xj

〉∣∣∣ ≤ C1

√
NT log(NT ), (A.1)

sup
u∈U

max
1≤j≤p

||∇ρu(V (u))|| ≤ C2
√
N ∨ T (A.2)

Proof. See Appendix C.

In what follows, the derivation is under the event that equations (A.1) and (A.2) hold.
By the definition of (β̂(u), L̂(u)), the following holds uniformly in u ∈ U :

1
NT

[
ρu(Y −

p∑
j=1

Xjβ̂(u)− L̂(u))− ρu(Y −
p∑
j=1

Xjβ0(u)− L0(u))
]

+ λ
[
||L̂(u)||∗ − ||L0(u)||∗

]
≤ 0

=⇒ 1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆̂β,j(u)− ∆̂L(u)
)
− ρu(V (u))

]
+ λ

[
||L̂(u)||∗ − ||L0(u)||∗

]
≤ 0

Let us first consider 1
NT

[
ρu
(
V (u)−∑p

j=1Xj∆̂β,j(u)− ∆̂L(u)
)
− ρu(V (u))

]
. By the defi-

nition of the subgradient,

1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆̂β,j(u)− ∆̂L(u)
)
− ρu(V (u))

]

≥− 1
NT

∣∣∣〈∇ρu(V (u)),
p∑
j=1

Xj∆̂β,j(u) + ∆̂L(u)
〉∣∣∣

≥− 1
NT
||∆̂β(u)||1 max

1≤j≤p

∣∣∣〈∇ρu(V (u)), Xj〉
∣∣∣− 1

NT
||∇ρu(V (u))|| · ||∆̂L(u)||∗

≥− C1

√
log(NT )
NT

||∆̂β(u)||1 −
C2
√
N ∨ T
NT

||∆̂L(u)||∗

The first term in the third line is elementary. The second term is from Lemma 3.2 in Candès
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and Recht (2009) which says for any two matrices A and B of the same size, |〈A,B〉| ≤
||A|| · ||B||∗. The last inequality is from equations (A.1) and (A.2).

Next, consider λ
[
||L̂(u)||∗ − ||L0(u)||∗

]
. By construction, PΦ⊥(u)L0(u) = 0, so

||L̂(u)||∗ − ||L0(u)||∗ =||PΦ(u)L0(u) + PΦ(u)∆̂L(u)||∗ + ||PΦ⊥(u)∆̂L(u)||∗ − ||PΦ(u)L0(u)||∗
≥||PΦ⊥(u)∆̂L(u)||∗ − ||PΦ(u)∆̂L(u)||∗

Combining the two pieces with rearrangement, we have the following uniformly in u ∈ U :

(
λ−C2

√
N ∨ T
NT

)
||PΦ⊥(u)∆̂L(u)||∗ ≤ C1

√
p log(NT )

NT
||∆̂β(u)||F+

(
λ+C2

√
N ∨ T
NT

)
||PΦ(u)∆̂L(u)||∗

Appendix B Proof of Theorem 1

Throughout, I condition on the event that Assumption 4 holds and (∆̂β(u), ∆̂L(u)) ∈
Ru uniformly in u ∈ U . To prove the theorem, we want to show the following is impossible:

∃u ∈ U : ||∆̂β(u)||2F + 1
NT
||∆̂L(u)||2F ≥ t2

where t2 is the right hand side of inequality (4.1).
Under Assumption 3 and by the definition of the estimator, ||∆̂L(u)||∞ ≤ 2α a.s. by the

triangular inequality. Let D ≡ {(∆β,∆L) : ∆β ∈ Rp,∆L ∈ RN×T , ||∆L||∞ ≤ 2α}. Then by
convexity of the objective function and the definition of the estimator, the inequality above
implies that

0 ≥ min
(∆β ,∆L)∈Ru∩D

||∆β ||2F+ 1
NT
||∆L||2F≥t

2

1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]

+ λ
[
||L0(u) + ∆L||∗ − ||L0(u)||∗

]
The proof consists of two main steps. In the first step (Lemmas 2 and 3), I bound

the norm of ∑p
j=1Xj∆β,j + ∆L. In the second step (Lemma 4), I separate ∆β,j and ∆L by

invoking Assumption 5. The first step is adapted from the proofs of Theorem 2 in Belloni and
Chernozhukov (2011) and Theorem 3.2 in Chao, Härdle and Yuan (2019). A new theoretical
challenge arises in the minoration step (Lemma 2) because of the high dimensional object
∆L. I develop a new argument to handle it. Lemma 3 follows the two papers cited closely
where I only highlight the differences that ∆L brings into.

Since Ru is a cone and D is convex, by convexity of the objective function, the inequality
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sign in the constraint can be replaced with equality:

0 ≥ min
(∆β ,∆L)∈Ru∩D

||∆β ||2F+ 1
NT
||∆L||2F=t2

1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]

+ λ
[
||L0(u) + ∆L||∗ − ||L0||∗

]
Let us rewrite the minimand as follows:

1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]
+ λ

[
||L0(u) + ∆L||∗ − ||L0(u)||∗

]

= 1
NT

E
[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]
+ 1√

NT
GNT

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

)
+ λ

[
||L0(u) + ∆L||∗ − ||L0(u)||∗

]
The following lemmas provide bounds for the first two terms on the right hand side respec-
tively.

Lemma 2 (Minoration). Under Assumptions 1-3, there exists a constant c > 0 such that
the following holds uniformly in u.

1
NT

E
[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]
≥

cf 4

(ᾱf̄ ′)2NT
E||X ′it∆β + ∆L,it||2F (B.1)

To prove Lemma 2, I need the following result which will be used to handle the high
dimensional object ∆L.

Lemma A2. For all w1, w2 ∈ R and all κ ∈ (0, 1),
∫ w2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz ≥

∫ κw2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz ≥ 0

Proof. See Appendix C.

Proof of Lemma 2. By the Knight’s identity (Knight, 1998), for any two scalars w1 and w2,

ρu(w1 − w2)− ρu(w1) = −w2(u− 1w1≤0) +
∫ w2

0
(1w1≤s − 1w1≤0)ds

Let w1 = Vit(u) and w2 = X ′it∆β +∆L,it, then by construction E(−w2(u−1w1≤0)) = 0. Also,
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by Lemma A2, with probability 1,

∫ X′it∆β+∆L,it

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

≥
∫ κ(X′it∆β+∆L,it)

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

where κ ≡ 3f2

8αf̄ ′ ∈ (0, 1) for large N and T . Then by the law of iterated expectation and
mean value theorem,

E
∫ X′it∆β+∆L,it

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

≥E
∫ κ(X′it∆β+∆L,it)

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

≥E
∫ κ(X′it∆β+∆L,it)

0

(
FVit(u)|Xit,L0,it(s)− FVit(u)|Xit,L0,it(0))

)
ds

=E
∫ κ(X′it∆β+∆L,it)

0

(
sfVit(u)|Xit,L0,it(0) + s2

2 f
′
Vit(u)|Xit,L0,it

(s̃))
)
ds

≥
κ2f 2

4 E
(
X ′it∆β + ∆L,it

)2
+ E

[κ2f 2

4
(
X ′it∆β + ∆L,it

)2(
1− |2κf̄

′

3f 2 (X ′it∆β + ∆L,it|
)]

≥
κ2f 2

4 E
(
X ′it∆β + ∆L,it

)2

where the third line is from the law of iterated expectation. The last inequality holds because
under the choice of κ and t, 1− |2κf̄ ′3f2 (X ′it∆β + ∆L,it| > 0 a.s.

Remark 1. As mentioned, ∆L introduces new difficulties for minoration. Specifically, ||∆L||2F
can be greater than ∑i,t |∆L,it|3 even in the restricted set Ru. As a consequence, standard
argument fails because after Taylor expansion the higher order term may be greater than the
leading term, resulting in a negative lower bound for the expectation under investigation. I
overcome this difficulty by exploiting the monotonicity in the residual integral and impose
condition that directly restricts the tail behavior of Xj,it and L0,it.

Lemma 3 (Bound on the Empirical Process). Under Assumptions 1, 2 and 4, there exists
a constant C0 > 0 such that with high probability

sup
u∈U

(∆β ,∆L)∈Ru∩D
||∆β ||2F+ 1

NT
||∆L||2F=t2

∣∣∣GNT

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

)∣∣∣

≤C0
(√

p log(NT ) +
√
N ∨ T

√
r̄
)√

log(NT )t

Proof of Lemma 3. Note that the check function is a contraction. Hence, similar to Belloni
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and Chernozhukov (2011) and Chao, Härdle and Yuan (2019), there exists C > 0 such that

Var
(
GNT

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

))
≤ 1
NT

∑
i,t

E(X ′it∆β + ∆L,it)2

≤ 2
NT

∑
i,t

E(X ′it∆β)2 + 2
NT
||∆L||2F

≤C
(
||∆β||2F + 1

NT
||∆L||2F

)
≤Ct2

where the third inequality follows from E(X ′it∆β)2 = ∆′βE(XitX
′
it)∆β ≤ C ′σ2

max||∆β||2F for
some C ′ > 0, where σ2

max is the largest eigenvalue of .E(XitX
′
it).

Let A(t) denote the empirical process under investigation. Then by Lemma 2.3.7 in
van der Vaart and Wellner (1996), let s ≥ 4t, we have

P(A(t) > s) ≤ C ′′P(A0(t) > s

4)

for some C ′′ > 0 where A0(t) is the symmetrized version of A(t) by replacing GNT with the
symmetrized version G0

NT .
Consider the random variable ρu

(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u)):

ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u)) = u(X ′it∆β + ∆L,it) + δit

(
X ′it∆β + ∆L,it, u

)
where δit

(
X ′it∆β + ∆L,it, u

)
=
(
Vit(u)−X ′it∆β −∆L,it

)
−
−
(
Vit(u)

)
−
. Let

B0
1(t) ≡ sup

u∈U
(∆β ,∆L)∈Ru∩D
||∆β ||2F≤t

2

∣∣∣G0
(
X ′it∆β

)∣∣∣,

B0
2(t) ≡ sup

u∈U
(∆β ,∆L)∈Ru∩D

||∆β ||2F+ 1
NT
||∆L||2F≤t

2

∣∣∣G0
(
∆L,it

)∣∣∣,

and
C0(t) ≡ sup

u∈U
(∆β ,∆L)∈Ru∩D

||∆β ||2F+ 1
NT
||∆L||2F≤t

2

∣∣∣G0
(
δit
(
X ′it∆β + ∆L,it, u

))∣∣∣,

then A0(t) ≤ B0
1(t) + B0

2(t) + C0(t). Next I bound B0
1(t), B0

2(t) and C0(t) respectively.
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Bound on B0
1(t). Since B0

1(t) does not contain ∆L, the bound is identical to that in
Belloni and Chernozhukov (2011), i.e., B0

1(t) ≤ C1

√
p log(NT )t with high probability.

Bound on B0
2(t). Let (εit : i ∈ {1, .., N}, t ∈ {1, ..., T}) be the Rademacher sequence

in the symmetrized process. Let ε be the N × T matrix containing all the elements in the
sequence. Then

B0
2(t) ≤ 1√

NT
sup
u∈U

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

|
∑
it

εit∆L,it|

= 1√
NT

sup
(∆β ,∆L)∈Ru∩D

||∆β(u)||2F+ 1
NT
||∆L(y)||2F≤t

2

|〈ε,∆L〉|

≤ 1√
NT
||ε|| · sup

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

||∆L||∗

≤ 1√
NT
||ε|| · sup

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

(||PΦ(u)∆L||∗ + ||PΦ⊥(u)∆L||∗)

≤ 1√
NT
||ε|| · sup

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

(
C ′2

√
p(N ∧ T ) log(NT )||∆β||F + 4C3||∆L||∗

)

≤ 1√
NT
||ε|| ·

(
C ′2

√
p(N ∧ T ) log(NT ) + C4

√
NT r̄

)
t

where the second to the last inequality is from the definition of the restricted set Ru. Finally,
since elements in ε are i.i.d. mean 0 and uniformly bounded in magnitude by 1, the oper-
ator norm is bounded by C5

√
N ∨ T with high probability (Corollary 2.3.5 in Tao (2012)).

Therefore,
B0

2(t) ≤
(
C6

√
p log(NT ) + C7

√
N ∨ T

√
r̄
)
t

with high probability.
Bound on C0(t). The smoothness Assumption 3 allows us to follow similar ε-net argu-

ment in Belloni and Chernozhukov (2011). Since there is a new term ∆L in our case, I write
down the proof for completeness. Let Ul = {u1, ..., ul} be an ε-net in U where ε ≤ t. By the

18



triangular inequality, we have

C0(t) ≤ sup
u∈U ,|u−ul|<ε,ul∈Ul

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

∣∣∣G0
NT

(
δit[X ′it(∆β + β0(u)− β0(ul)) + ∆L + L0(u)− L0(ul)]), ul)

)∣∣∣

+ sup
u∈U ,|u−ul|<ε,ul∈Ul

(∆β ,∆L)∈Ru∩D
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤t

2

∣∣∣G0
NT

(
δit[X ′it(β0(u)− β0(ul)) + L0(u)− L0(ul), ul]

∣∣∣

≤2 · sup
ul∈Ul

(∆β ,∆L)∈R̄∩D̄
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤(ζ2

1 +ζ2
2 +1)t2

∣∣∣G0
NT

(
δit(X ′it∆β + ∆L, ul)

)∣∣∣

where the last inequality follows from Assumption 4 that sup|u−ul|<ε ||β0(u)−β0(ul)||F ≤ ζ1ε

and 1√
NT

sup|u−ul|<ε ||L0(u) − L0(ul)||F ≤ ζ2ε, and thus under the choice of ε, we can treat
∆β +β0(u)−β0(ul) and β0(u)−β0(ul) as new ∆β. Similarly, I treat ∆L+L0(u)−L0(ul) and
L0(u)−L0(ul) as new ∆L by adapting Ru and D. D̄ contains all ||∆L||∞ ≤ 4α. For R̄, note
that L0(ul) may not be in the space of L0(u), so it may be the case that L0(u)−L0(ul) 6∈ Ru.
However, since

rank(L0(u)− L0(ul)) ≤ r(u) + r(ul) ≤ 2r̄,

||L0(u) − L0(ul)||∗ ≤
√

2r̄||L0(u) − L0(ul)||F ≤
√

2r̄ζ2
√
NTt by Assumption 4. From the

derivation for the bound on B0
2(t), set R̄ = {∆L : ||L||∗ ≤ (C ′2

√
pNT log(NT ) + (C4 +

ζ2)
√
NT
√

2r̄)t}.
Now by Markov inequality,

P
(
C0(t) ≥

(
C8

√
p log(NT ) + C9

√
N ∨ T

√
r̄
)√

log(NT )t
)

≤min
τ≥0

e−τ(C8
√
p log(NT )+C9

√
N∨T

√
r̄) log(NT )tE[eτC0(t)]

By Theorem 4.12 of Ledoux and Talagrand (1991), the contractivity of δit(·) implies

E[eτC0(t)] ≤(1/ε) max
ul∈Ul

E
[

exp
(
2τ sup

(∆β ,∆L)∈R̄∩D̄
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤(1+ζ2+ζ2)t2

∣∣∣G0
NT

(
δit(X ′it∆β + ∆L,it, ul)

)∣∣∣)]

≤(1/ε)E
[

exp
(
4τ sup

(∆β ,∆L)∈R̄∩D̄
||∆β(u)||2F+ 1

NT
||∆L(y)||2F≤(1+ζ2+ζ2)t2

∣∣∣G0
NT

(
X ′it∆β + ∆L,it

)∣∣∣)]

≤(1/ε)E
[

exp
(
4τ sup

(∆β ,∆L)∈R̄∩D̄
||∆β(u)||2F≤(1+ζ2+ζ2)t2

∣∣∣G0
NT

(
X ′it∆β

)∣∣∣+ sup
(∆β ,∆L)∈R̄∩D̄

|| 1
NT
||∆L(y)||2F≤(1+ζ2+ζ2)t2

∣∣∣G0
NT∆L,it

)∣∣∣)]
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Following exactly the same argument for B0
1 and B0

2, we obtain

C0(t) ≤
(
C8

√
p log(NT ) + C9

√
N ∨ T

√
r̄
)√

log(NT )t

with high probability.

Finally consider the difference in the penalty. From the derivation of the bound on B0
2,

we have

λ
∣∣∣||L0(u) + ∆L||∗ − ||L0||∗

∣∣∣ ≤ λ||∆L||∗ ≤ λ
(
C ′2

√
p(N ∧ T ) log(NT ) + C4

√
NT r̄

)
t

By the choice of λ, the right hand side is (C10
√
p log(NT )√

NT
+ C11

r̄√
N∧T )t for some C10, C11 > 0.

Combining all the pieces together, we have

min
(∆β ,∆Ł)∈Ru∩D

||∆β ||2F+ 1
NT
||∆L||2F=t2

1
NT

[
ρu
(
V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))

]
+ λ

[
||L0(u) + ∆L||∗ − ||L0(u)||∗

]

≥
cf 4

(αf̄ ′)2NT
E||

p∑
j=1

X∆β,j + ∆L||2F − C̄
(√p log(NT )√

NT
+

√
r̄√

N ∧ T

)
log(NT )t

uniformly in u over U for some C̄ > 0.
To obtain the error bound in the claim of Theorem 1, I need to separate the two terms

in the the expectation. This is guaranteed by Assumption 5.

Lemma 4 (Separation). Under Assumption 1 and 5, for any (∆β,∆L) ∈ Ru such that
||∆β||2F + 1

NT
||∆L||2F = t2, there exists C > 0 such that

1
NT

E||
p∑
j=1

Xj∆β,j + ∆L||2F ≥ Ct2

Proof of Lemma 4. I prove the result conditional on Ft, and then by the law of iterated expec-
tation the desired result is obtained. In the following, all the expectations are implicitly con-
ditional on Ft. PΦ(u) and PΦ⊥u are then nonrandom operators. Given ||∆β||2F + 1

NT
||∆L||2F =

t2, let ||∆β||2F = γt2. Then 1
NT
||∆L||2F = (1 − γ)t2. I am to express the expectation in the

claim as a function of γ and show it is bounded away from a fixed fraction of t2 uniformly
in γ ∈ [0, 1] and Ft under Assumptions 1 and 5.

First consider E||∑p
j=1Xj∆β,j||2F . Let σ2

min denote the smallest eigenvalues of E(XitX
′
it).
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By Assumption 1, σ2
min > 0. Recall that σ2

max denote its largest eigenvalues. By i.i.d.,

E||
p∑
j=1

Xj∆β,j||2F = NT∆′βE(XitX
′
it)∆β ∈ [NTσ2

minγt
2, NTσ2

maxγt
2]

Hence, by Assumption 1, there exists a positive c0 bounded away from 0 uniformly in γ such
that E||∑p

j=1Xj∆β,j||2F = NTc0γt
2.

Meanwhile, by the Pythagoras theorem,

E||
p∑
j=1

Xj∆β,j||2F =E||PΦ(u)(
p∑
j=1

Xj∆β,j)||2F + E||PΦ⊥(u)(
p∑
j=1

Xj∆β,j)||2F

=∆′β
∑
i,t

E
(
(PΦ(u)X)it(PΦ(u)X)′it

)
∆β + ∆′β

∑
i,t

E
(
(PΦ⊥(u)X)it(PΦ⊥(u)X)′it

)
∆β

Let c1∆′β
∑
i,t E

(
(PΦ(u)X)it(PΦ(u)X)′it

)
∆β = ∆′β

∑
i,t E

(
(PΦ⊥(u)X)it(PΦ⊥(u)X)′it

)
∆β.

Next consider ∆L. Since it is in the restricted set, by the derivation in Section 3,

||PΦ⊥(u)∆L||F ≤
C1

√
p log(NT )(N ∧ T )

C2

√
γt+ 3

√
3r̄||PΦ(u)∆L||F

Let c2||PΦ(u)∆L||2F = ||PΦ⊥(u)∆L||2F , then by ||PΦ(u)∆L||2F + ||PΦ⊥(u)∆L||2F = NT (1− γ)t2, we
have √

c2

c2 + 1
√

1− γ ≤
C1

√
log(NT )

C2
√
N ∨ T

√
pγ + 3

√
3r̄
√

1− γ
c2 + 1 (A.3)
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Now let us consider the expectation under investigation.

E||
p∑
j=1

Xj∆β,j + ∆L||2F

=E||PΦ(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ(u)∆L||2F + 2E〈
p∑
j=1

PΦ(u)Xj∆β,j, PΦ(u)∆L〉

+ E||PΦ⊥(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ⊥(u)∆L||2F + 2E〈
p∑
j=1

PΦ⊥(u)Xj∆β,j, PΦ⊥(u)∆L〉

≥E||PΦ(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ(u)∆L||2F − 2E||
p∑
j=1

PΦ(u)Xj∆β,j||F ||PΦ(u)∆L||F

+ E||PΦ⊥(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ⊥(u)∆L||2F − 2E||
p∑
j=1

PΦ⊥(u)Xj∆β,j||F ||PΦ⊥(u)∆L||F

≥E||PΦ(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ(u)∆L||2F − 2
√√√√E||

p∑
j=1

PΦ(u)Xj∆β,j||2F ||PΦ(u)∆L||F

+ E||PΦ⊥(u)(
p∑
j=1

Xj∆β,j)||2F + ||PΦ⊥(u)∆L||2F − 2
√√√√E||

p∑
j=1

PΦ⊥(u)Xj∆β,j||2F ||PΦ⊥(u)∆L||F

=
(√√√√E||PΦ(u)(

p∑
j=1

Xj∆β,j)||2F − ||PΦ(u)∆L||F
)2

+
(√√√√E||PΦ⊥(u)(

p∑
j=1

Xj∆β,j)||2F − ||PΦ⊥(u)∆L||F
)2

=
[(√ c0γ

1 + c1
−
√

1− γ
1 + c2

)2
+
(√ c0c1γ

1 + c1
−
√
c2(1− γ)

1 + c2

)2]
NTt2

where the last inequality follows from convexity of || · ||2F and Jensen’s inequality.
Now let us show the term

[(√
c0γ

1+c1
−
√

1−γ
1+c2

)2
+
(√

c0c1γ
1+c1

−
√

c2(1−γ)
1+c2

)2]
has a positive

minimum.
First, fom equation (A.3), if C1

√
log(NT )

C2
√
N∨T

√
pγ dominates 3

√
3r̄
√

1−γ
c2+1 in order, then (1−γ) =

o(1), and both
√

1−γ
c2+1 and

√
c2
c2+1
√

1− γ are dominated by √pγ. Therefore, as long as there
exists some positive constant $ such that c1 > $, the second term in the bracket is greater
than c0$

2(1+$) for large enough N and T .

Now consider the case that 3
√

3r̄
√

1−γ
c2+1 weakly dominates C1

√
log(NT )

C2
√
N∨T

√
pγ. Then for large

enough N and T , c2 ≤ C0r̄ for some C0 > 0. We have

(√ c0γ

1 + c1
−
√

1− γ
1 + c2

)2
+
(√ c0c1γ

1 + c1
−
√
c2(1− γ)

1 + c2

)2

=c0γ + (1− γ)− 2
(√ 1

(1 + c1)(1 + c2) +
√

c1c2

(1 + c1)(1 + c2)
)√

c0γ(1− γ)
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It can be verified that the right hand side is bounded away from 0 if there exists a constant
η > 0 such that √

1
(1 + c1)(1 + c2) +

√
c1c2

(1 + c1)(1 + c2) < 1− η

The inequality holds if c1 − c2 > η′ for some η′ > 0. This is the case if c1 > C ′0r̄ for some
C ′0 > C0. By the definition of c1, it is equivalent to

∆′β
∑
i,t

E
(
(PΦ⊥(u)X)it(PΦ⊥(u)X)′it − C ′0r̄(PΦ(u)X)it(PΦ(u)X)′it

)
∆β > 0,

which is guaranteed by Assumption 5.

This completes the proof.

Appendix C Proof of Lemmas A1 and A2

Proof of Lemma A1. Under Assumption 1, there exists a constant C > 0 such that max1≤j≤p ||Xj||2F ≤
C
√
NT with high probability. In what follows, all probabilities and expectations are implic-

itly taken conditional on this event, {Xj} and L0(u).
Proof of Equation (A.1).
Let UK = (u1, u2, ..., uK) be an ε-net in U . Let ε = 1√

NT
. Then

sup
u∈U

∣∣∣〈∇ρu(V (u)), Xj

〉∣∣∣ ≤ max
uk∈UK

∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣+ sup
|u−uk|≤ε,uk∈UK

∣∣∣〈∇ρu(V (u))−∇ρuk(V (uk)), Xj

〉∣∣∣
For the first term, since the length of UK is no greater than 1,

P
(

max
uk∈UK

∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣ ≥ C1

√
NT log(NT )

)
≤1
ε

max
uk∈UK

P
(∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣ ≥ C1

√
NT log(NT )

)
≤2
ε

exp
(
− 2C2

1 log(NT )NT
||Xj||2F

)
≤2
ε

exp
(
− 2C2

1 log(NT )NT
CNT

)
≤ C ′1√

NT

where the second line is by Hoeffding’s inequality.
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For the second term, by definition, the (i, t)-th element in ∇ρu(V (u))−∇ρuk(V (uk)) is

u1Vit(u)>0 + (u− 1)1Vit(u)<0 − [uk1Vit(uk)>0 + (uk − 1)1Vit(uk)<0]

=(u− uk) + uk(1Vit(u)>0 − 1Vit(uk)>0) + (uk − 1)(1Vit(u)<0 − 1Vit(uk)<0)

The first term forms a constant matrix M1 such that ||M1||F =
√
NT (u − uk) ≤ ε

√
NT .

Therefore, by the Cauchy-Schwartz inequality,
∣∣∣〈M1, Xj〉

∣∣∣ ≤ ||M1||F ||Xj||F ≤ CNTε < C
√
NT log(NT )

For the remaining terms, let ξit(u, uk) = uk(1Vit(u)>0 − 1Vit(uk)>0) + (uk − 1)(1Vit(u)<0 −
1Vit(uk)<0) = 1Vit(uk)<0−1Vit(u)<0 = 1Uit<uk−1Uit<u where the last equality is from the defini-
tion of Vit(u). Therefore, if u < uk, 0 ≤ ξit(u, uk) ≤ ξ

(1)
it (uk) = 1Uit<uk−1Uit<uk−1 ≤ 1. If u ≥

uk, 0 ≥ ξit(u, uk) ≥ ξ
(2)
it (uk) = 1Uit<uk − 1Uit<uk+1 ≥ −1. Let M o

2 = (ξit(u, uk))1≤i≤N,1≤j≤T ,
M

(1)
2 ≡ (ξ(1)

it (uk))1≤i≤N,1≤j≤T , and M (2)
2 ≡ (ξ(2)

it (uk))1≤i≤N,1≤j≤T , we have

sup
|u−uk|≤ε,uk∈Uk

∣∣∣〈M o
2 , Xj〉

∣∣∣ ≤ sup
uk−ε≤u≤uk,uk∈Uk

∣∣∣〈M o
2 , Xj〉

∣∣∣+ sup
uk≤u≤uk+ε,uk∈Uk

∣∣∣〈M o
2 , Xj〉

∣∣∣
≤ sup

uk−ε≤u≤uk,uk∈Uk

∣∣∣〈M o
2 , |Xj|〉

∣∣∣+ sup
uk≤u≤uk+ε,uk∈Uk

∣∣∣〈M o
2 , |Xj|〉

∣∣∣
≤ max

uk∈Uk

∣∣∣〈M (1)
2 , |Xj|〉

∣∣∣+ max
uk∈Uk

∣∣∣〈M (2)
2 , |Xj|〉

∣∣∣
The first inequality holds because in each of the two cases, all the elements in M o

2 have the
same sign. So the inner product is maximized if the elements in Xj also have the same
sign. The second inequality then follows because now the magnitude of the inner product is
increasing in the magnitude of any elements in M o

2 .
I only consider maxuk∈Uk

∣∣∣〈M (1)
2 , |Xj|〉

∣∣∣ as the argument for maxuk∈Uk
∣∣∣〈M (2)

2 , |Xj|〉
∣∣∣ is iden-

tical. The expectation of a generic element in M (1)
2 satisfies µk ≡ E(ξ(1)

it (uk)) = P(uk − ε <
Uit ≤ uk) = ε. Let M̄ (1)

2 = (µk)1≤i≤N,1≤t≤T . Then we have

max
uk∈Uk

∣∣∣〈M (1)
2 , |Xj|〉

∣∣∣ ≤ max
uk∈Uk

∣∣∣〈M (1)
2 − M̄

(1)
2 , |Xj|〉

∣∣∣+ max
uk∈Uk

∣∣∣〈M̄ (1)
2 , |Xj|〉

∣∣∣
≤ max

uk∈Uk

∣∣∣〈M (1)
2 − M̄

(1)
2 , |Xj|〉

∣∣∣+ ε
√
NT ||Xj||F

≤ max
uk∈Uk

∣∣∣〈M (1)
2 − M̄

(1)
2 , |Xj|〉

∣∣∣+ C
√
NT

Finally, the first term is also bounded by C1

√
NT log(NT ) following exactly the same argu-

ment as for maxuk∈UK
∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣ because elements in (M (1)
2 −M̄

(1)
2 ) are i.i.d, mean

zero, and bounded in magnitude by 1. Therefore, as the bound does not depend on j and p
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is a constant, equation (A.1) follows.
Proof of Equation (A.2). The proof follows similar argument as for equation (A.1). Again,

let UK = (u1, u2, ..., uK) be an ε-net in U . Let ε = 1√
N∨T . Then

sup
u∈U
||∇ρu(V (u))|| ≤ max

uk∈UK
||∇ρuk(V (uk))||+ sup

|u−uk|≤ε,uk∈UK
||∇ρu(V (u))−∇ρuk(V (uk))||

For the first term,

P
(

max
uk∈UK

||∇ρuk(V (uk))|| > C2
√
N ∨ T

)
≤ max

uk∈UK
P
(
||∇ρuk(V (uk))|| > C2

√
N ∨ T

)
≤ C ′2

ε
exp(−C ′′2

√
NT )

= C ′′2
√
N ∨ T

exp(C ′′2
√
NT )

where the second line is from Corollary 2.3.5 in Tao (2012) (p.129) that bounds the operator
norm of a matrix with i.i.d., mean zero entries that are bounded in magnitude by 1.

For the second term, from the proof of equation (A.1),

sup
|u−uk|≤ε,uk∈UK

||∇ρu(V (u))−∇ρuk(V (uk))|| ≤ sup
|u−uk|≤ε,uk∈UK

(
||M1||+ ||M o

2 ||
)

where M1 and M o
2 are defined in the proof of equation (A.1). By definition, the operator

norm of a generic matrix A is sup||x||F=1 ||Ax||F where x is a vector of unit Euclidean norm.
When all the elements in A have the same sign, the supremum is achieved if all elements in
x also have the same sign. Therefore, sup||x||F=1 ||Ax||F ≤ sup||x||F=1 ||A · |x|||F . Then for a
matrix B such all elements in B also have the same sign and have weakly larger magnitude
than those in A, sup||x||F=1 ||A · |x|||F ≤ sup||x||F=1 ||B · |x|||F = sup||x||F=1 ||Bx||F = ||B||.
Hence,

sup
ε,uk∈UK

(
||M1||+ ||M o

2 ||
)
≤ sup

uk−ε≤u≤uk,uk∈Uk

(
||M1||+ ||M o

2 ||
)

+ sup
uk≤u≤uk+ε,uk∈Uk

(
||M1||+ ||M o

2 ||
)

≤ε||1N×T ||+ sup
uk−ε≤u≤uk,uk∈Uk

||M (1)
2 ||+ sup

uk≤u≤uk+ε,uk∈Uk
||M (2)

2 ||

=ε||1N×T ||+ max
uk∈Uk

||M (1)
2 ||+ max

uk∈Uk
||M (2)

2 ||

where 1N×T is a constant matrix of all ones. It comes from M1. M (1)
2 and M (2)

2 follow the
same definition in the proof of equation (A.1).
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Again, let us only consider maxuk∈Uk ||M
(1)
2 ||.

max
uk∈Uk

||M (1)
2 || ≤ max

uk∈Uk
||M (1)

2 − M̄
(1)
2 ||+ max

uk∈Uk
||M̄ (1)

2 ||

Note that elements in M (1)
2 − M̄

(1)
2 are again i.i.d., mean zero, and bounded in magnitude by

1, so it has the same upper bound as maxuk∈UK ||∇ρuk(V (uk))||. For the second term, by the
same argument as in the proof of equation (A.1), M̄1

2 = ε1N×T where 1N×T is anN×T matrix
of all ones whose operator norm is O(N ∨ T ). Therefore maxuk∈Uk ||M̄

(1)
2 || ≤ C ′′′2

√
N ∨ T by

the choice of ε. This completes the proof.

Proof of Lemma A2. For any w1 ∈ R, 1(w1 ≤ z) is weakly increasing in z. Therefore, if
w2 > 0, z ≥ 0, so 1(w1 ≤ z)− 1(w1 ≤ 0) ≥ 0, the second inequality thus holds. Similarly,

∫ w2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz −

∫ κw2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz

=
∫ w2

κw2

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz

Since κw2 < w1, the right hand side is nonnegative. Hence the first inequality holds.
When w2 ≤ 0, note that

∫ w2
0

(
1(w1 ≤ z)−1(w1 ≤ 0)

)
dz =

∫ 0
w2

(
1(w1 ≤ 0)−1(w1 ≤ z)

)
dz

and
∫ κw2

0

(
1(w1 ≤ z) − 1(w1 ≤ 0)

)
dz =

∫ 0
κw2

(
1(w1 ≤ 0) − 1(w1 ≤ z)

)
dz. Now that z ≤ 0,

1(w1 ≤ 0) − 1(w1 ≤ z) ≥ 0. Therefore, following the same argument in the previous case,
we obtain the desired result.
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