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Abstract

The Fair Labor Standards Act (FLSA) mandates overtime premium pay for most

U.S. workers, but a lack of variation in the rule has made it difficult to assess its im-

pact on hours worked. I use bunching observed at 40 hours in a new administrative

dataset of weekly paychecks to estimate this effect. To do so, I develop a framework in

which bunching at a choice-set kink is informative about causal effects in a way that is

robust across underlying structural models, generalizing previous approaches. Under

a non-parametric shape constraint on the distribution of hours and flexible assump-

tions on choice, a local average treatment effect among bunchers is partially identified.

The bounds are informative in the overtime context and suggest that covered hourly

workers in the U.S. work an average of at least half an hour less as a result of the FLSA

mandate, in weeks that they do work at least 40 hours. This delivers an estimate of the

wage elasticity of hours demand of −0.04.
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1 Introduction

Many countries require premium pay for long work hours. In the U.S., this takes the form
of the “time-and-a-half” rule: by the Fair Labor Standards Act (FLSA), workers must be
paid one and a half times their normal hourly wage for any hours they work in excess of
40 within a week. While some workers are exempt, the FLSA rule covers a majority of the
U.S. workforce, including nearly all of its 82 million hourly workers (U.S. Department of
Labor, 2019). Given the prevalence of longer workweeks in the U.S., the total number of
hours actually paid out as overtime is substantial. Workers in many industries average
several overtime hours per week, making overtime the largest form of supplemental pay
in the U.S. (Bishow, 2009).1

Nevertheless, only a small literature has addressed the effects of the federal overtime
rule on the U.S. labor market. This stands in marked contrast to the large literature on the
minimum wage, which was also introduced at the federal level by the FLSA in 1938. A
likely reason for this gap is that the overtime rule has varied little since then: the basic
parameters have remained throughout as time-and-a-half after 40 hours within a week.2

This lack of variation has afforded few opportunities to leverage research designs that
exploit policy changes over time to identify causal effects, particularly on hours worked.3

Unlike with the minimum wage, reforms to overtime policy have been rare and have left
the central parameters of the rule unchanged.

In this paper, I take a new approach to assessing the effect of the FLSA overtime rule on
hours by making use of variation within the rule itself: given a fixed hourly wage, hours
in excess of 40 within a week for a single worker are more expensive to the firm than those
below 40. Rather than attempt to explicitly control for confounding factors affecting hours
or exploit reforms to whom is covered by the rule, I leverage the sharp discontinuity in the
marginal cost of a worker-hour at 40 for identification. This methodology requires two in-
gredients that have so far been absent from the literature: first, high resolution data on the
hours of individual workers within a single given week, allowing me to observe the dis-

1Hart (2004) reports an average of 3 overtime hours per week among non-supervisory production work-
ers. See Table E.2 for new estimates by industry from my sample. From a separate representative survey I
estimate in Section 3 a grand average of about one overtime hour per week per worker, among all employed.

2While there are supplemental state overtime rules that vary somewhat by state (e.g. Minnesota has a 48
hour threshold), these rules bind for relatively few workers since the federal rules supersede the state rules.

3A notable exception is Hamermesh and Trejo (2003), who apply a difference-in-differences approach
over the expansion of a daily overtime rule in California to include men in 1980, estimating a price elasticity
of demand for overtime hours of roughly −0.5. Costa (2000) and Johnson (2003) also consider the impact
of federal overtime regulation on hours worked, studying the phase-in of the FLSA and a supreme court
decision clarifying the eligibility of public sector workers, respectively. Quach (2020) looks at recent reforms
to eligibility criteria for exemption from the FLSA, estimating effects of the change on employment and the
incomes of salaried workers.
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tribution of hours close to 40. I obtain this from a novel dataset of paycheck records from
a large payroll processing company that records the exact number of hours that a worker
was paid for in a given week. Second, my approach requires a way to translate features
of the observed hours distribution into credible causal estimates of the rule’s effect, given
reasonable assumptions about how weekly work hours are determined.

While wages change only occasionally in the data, I assume that firms are free to set
hours dynamically each week with the overtime rule introducing a convex kink in labor
costs. This leads a mass of paycheck observations to be located exactly at the kink at 40
hours, and the size of this mass is informative about the joint distribution of two counter-
factual choices: the number of hours the firm would choose for the worker if the worker’s
normal wage rate applied to all hours, and the hours that the firm would choose if all
hours were paid at the worker’s overtime rate. This generalizes a popular research de-
sign that has used bunching at kink points to identify elasticities, which I refer to as the
“bunching design”.4 The bunching design originated in public finance to assess the labor
supply effects of taxation (Saez 2010; Chetty et al. 2011), but variations have since been
applied in many other settings.5 In my context, the bunching design uncovers the effect
on hours of the wage variation induced by the FLSA overtime rule, providing an estimate
of its reduced form causal effect.

One of the main contributions of this paper is thus to extend and reinterpret the kink
bunching-design methodology, which has gained popularity with the increasing avail-
ability of administrative data and the ubiquity of policy thresholds at which incentives
change discontinuously. Here I make four main contributions. First, while bunching de-
signs are typically motivated by a choice model featuring an explicit functional form for
decision-makers’ utility, I require only convexity, both of the kink itself and agents’ pos-
sibly heterogeneous preferences. Secondly, I show that the bunching design can allow
for multiple (possibly unknown) underlying margins of choice, yielding a single outcome
variable observed to the researcher. Inference about counterfactual choices is thus robust
to a large class of choice models, though this robustness can make it difficult to isolate
a single structural interpretation of the estimates.6 This is turn makes a potential out-
comes framework a natural language for analyzing the bunching design. Third, I pro-

4This paper considers only the bunching design for kinks, and not the related method for bunching at
notches (e.g. Kleven and Waseem 2013). Bunching can also be used to overcome endogeneity in settings
where the variable exhibiting bunching is the treatment, as recently shown by Caetano et al. (2020).

5Examples include cell phone plan pricing (Huang, 2008), fuel economy standards (Ito and Sallee, 2017),
prescription drug spending (Einav et al., 2017) and Social Security (Gelber et al., 2020).

6This provides a response to the point made by Einav et al. (2017) that alternative models calibrated from
the bunching-design can yield very different predictions about counterfactuals. I define a particular type of
counterfactual question that can be answered robustly across a class of such models.
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pose a way to confront a challenge to identification in the bunching design leveled by
Blomquist and Newey (2017)—that it requires extrapolation of observed densities into a
region where they are not. To perform this extrapolation I impose a weak non-parametric
shape constraint— bi-log-concavity—that can be verified within the support of observa-
tions and allows the researcher to place bounds on a local average treatment effect among
individuals who locate at the kink. Finally, I show that these same restrictions are infor-
mative about policy counterfactuals, for example changing the location of the kink or how
“sharp” it is.

The empirical context of overtime pay involves an additional challenge that is not typ-
ical to the bunching design: the kink occurs at a location that may have independent
salience to firms and workers. Bunching in the hours distribution at 40 may arise in part
from factors other than the FLSA rule. I use two strategies to estimate the amount of
bunching at 40 that would exist absent the FLSA, to deliver clean estimates of the rule’s
causal effect. First, I use the fact that when hours are paid out as holidays, sick pay,
or paid-time off, they do not count towards a week’s 40 hours. This “moves” the loca-
tion of the kink in total hours paid during weeks when a worker is paid for non-work
hours. I outline assumptions under which this yields the bunching that would occur ab-
sent the overtime rule. Second, I present a strategy that assumes alternative explanations
for bunching are time-invariant to pin down the distinct contribution of the FLSA bunch-
ing at 40.

I find that the FLSA indeed has effects on hours worked, as predicted by labor demand
theory. My preferred estimate suggests that just one quarter of the bunching observed in
the sample (of hourly workers) at 40 is due to the FLSA, and employees working at least
40 hours work, on average, about 30 minutes less than they would absent the time-and-
a-half rule. While a detailed analysis of the employment effects of the FLSA is beyond
the scope of this paper, a back-of-the-envelope calculation using this estimate suggests
that FLSA regulation creates about 700,000 jobs. The implied effects are larger when I
use less conservative estimates of the contribution of the FLSA to the observed bunching,
and overall I estimate that the local wage elasticity of hours demand close to 40 falls in
the range −0.04 to −0.19. I also estimate that a reform from time-and-a-half to double
pay would introduce further hours effects of a similar magnitude to those from the cur-
rent FLSA, and that lowering the hours threshold from 40 to 35 would nearly eliminate
bunching due to the FLSA, in the short run.

These effects speak directly to the substitutability of hours of labor between workers.
The primary justifications for hours regulation have been to reduce excessively long work-
weeks, while encouraging hours to be distributed over more workers (Ehrenberg and
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Schumann, 1982). The potential of using hour reductions as a means to spread employ-
ment has taken on increased urgency during the coronavirus pandemic, with renewed
interest in policies such as work sharing programs that encourage firms to retain their
workers. How well these policies play out in practice hinges on how easily an hour of
work can be moved from one worker to another or across time, from the perspective of
the firm. The effects of federal overtime policy provide a potentially large body of rele-
vant evidence for this question, and my results suggest that hours demand is relatively
inelastic and that hours cannot be easily so reallocated.

The results are also relevant to ongoing efforts to expand coverage of the FLSA over-
time rule by increasing the earnings threshold at which some salaried workers are exempt,
which has resulted in one recent major reform. In particular, the salary threshold for em-
ployers to be free from overtime obligations for executive, administrative or professional
workers was increased substantially at the beginning of 2020. Quach (2020) studies this
change along with a previous attempt at an increase in 2016 that was never ultimately
executed.7 He finds evidence that salaries are moved up to the threshold and that some
workers are reclassified as hourly, accompanied by a modest reduction in employment.
This provides strong evidence that firms perceive coverage under the overtime rule as
imposing real costs, consistent with the methodology I employ in this paper.

The structure of the paper is as follows. Section 2 lays out a motivating conceptual
framework that draws on the existing theory and empirical literature on overtime. Sec-
tion 3 introduces the payroll data I use in the empirical analysis. In Section 4 I describe
the empirical strategy, with Appendix A developing some of the supporting formal re-
sults. Section 5 applies these results to obtain estimates of effect of the FLSA overtime
rule on hours worked, as well as the effects of hypothetical reforms to the FLSA. Section 6
discusses the empirical findings from the standpoint of policy objectives, and 7 concludes.

2 Conceptual framework

This section outlines a framework for thinking about the role of overtime policy in deter-
mining hours, which then motivates the bunching design identification strategy in Section
4. The framework is centered around two observations from the data in Section 3: weekly
hours vary considerably between pay periods for an individual hourly worker, and wages
tend to remain fixed with only infrequent adjustment.

7The rule, from the Obama Department of Labor, was to increase the threshold to $913 on December 1st,
2016, but was blocked by a federal judge just a week prior. Nevertheless, Quach (2020) finds that many
workers’ salaries had already adjusted to the new threshold, and that the effect persisted.
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I thus propose a conceptual model that views hour determination as a two stage-
process. First, workers are hired with an hourly wage set along with an anticipated num-
ber of hours they will work per week. Then, with that hourly wage fixed in the short-run,
actual scheduling of hours varies by week based on fluctuation in the firm’s demand for
labor from each worker.

Wages and anticipated hours set at hiring

A natural starting point for modeling the determination of hours is to recognize that both
firms and workers have preferences over the hours an employee works within a given
week, with or without an overtime premium. Workers sacrifice time spent in non-labor
activities while at work, and may insist on higher per-hour pay to work longer hours.
Firms derive revenue that depends on the hours worked by their employees, and may
face limits to their ability to costlessly reallocate those hours between workers.

I bring both sides of the market together through an ex-ante “wage-hours” posting
model, in which employment and compensation z∗ are jointly chosen by the firm on the
basis of an endogenous anticipated weekly hours per worker h∗. I spell out this model
explicitly in Appendix D. Each firm faces a labor supply curveN(z,h), indicating the labor
force N it can maintain if it offers total compensation z to each of its workers, when they
are each expected to work h hours per week.8 This function makes no explicit mention
of an hourly wage, motivated by the idea that both firms and workers care about is the
total compensation z transferred between them, including any overtime premium pay.
Nevertheless, there is a unique wage w for non-overtime hours wage associated with any
(z,h) pair, such that h hours at that rate yields earnings of z, given the FLSA overtime rule

ws(z,h) =
z

h+ 1(h > 40)0.5(h− 40) (1)

Compliance with the FLSA rule requires the firm to have some notion of the worker’s nor-
mal hourly rate of pay, so that the appropriate overtime premium pay can be computed.
I refer to this normal hourly rate of pay as the straight-time wage or simply straight wage.
I assume that upon hiring, a worker’s straight-time wage is set as w∗ = ws(z∗,h∗). The
bunching design outlined in Section 4 will itself only require that some straight-time wage
is agreed upon and is fixed in the short-run, a phenomenon that is indeed observed in the
data. However, assuming that hourly wages are set according to Equation (1) helps fix

8The function N(z,h) can be viewed as an equilibrium object that reflects both worker preferences over
income and leisure and the competitive environment for labor. In Supplemental Appendix 1, I endogenize
this function in a simple extension of the imperfectly competitive Burdett and Mortensen (1998) search
model.
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ideas, and will play a role in my overall evaluation of the FLSA.
When employment and straight time wages are set according to (1), the FLSA has no

effect on employment or total earnings, if workers are in fact ultimately paid for h∗ hours
each week (and provided that the implied ws(z∗,h∗) is above any applicable minimum
wage). Trejo (1991) calls this the fixed-job view of overtime: the job package (z,h) posted
by the firm is the same as the one that would exist absent the overtime rule, and only
the hourly wage rate is affected. In the absence of dynamics or uncertainty, straight-time
wages for a generic N(z,h) simply adjust to fully absorb the added cost of overtime pre-
mium pay, and hours are unchanged. In Appendix D I give a closed form expression
for (z∗,h∗) when both labor supply and production are iso-elastic: h∗ and z∗ are each in-
creasing in the elasticity of labor supply with respect to earnings, and decreasing in the
magnitude of the elasticity of labor supply with respect to pay.

The fixed-jobs view can be contrasted with what Trejo (1991) calls the fixed-wage view,
in which the firm faces an exogenous straight-time wage when determining hours.9 An
exogenous straight-time wage can arise from a N(z,h) reflecting perfect competition on
the straight-time wage. In Appendix D I show that in this case h∗ and z∗ are pinned
down by the concavity of production with respect to hours and the scale of fixed costs
(e.g. training) that do not depend on hours. The fixed-wage job makes the clear predic-
tion that the FLSA will cause a reduction in hours, and bunching at 40. I investigate this
prediction in detail in Section 4, while Figure 1 depicts the intuition. The overall effect on
employment is positive given plausible assumptions on the substitution between labor
and capital (Cahuc and Zylberberg, 2004), though the total number of labor-hours will
decrease (Hamermesh, 1996).

Trejo (1991) and Barkume (2010) investigate whether the fixed-job or fixed-wage model
better accords with the observed joint distribution of wages and hours. These studies find
evidence that wages do tend to be lower among jobs with overtime pay provisions and
more overtime hours. However these estimates could be driven by selection of lower
skilled workers into covered jobs with longer hours. In Appendix E, I conduct a novel
empirical test of Equation (1) that is instead based on assuming the conditional distribu-
tion of z is smooth across h = 40. Consistent with the previous findings, I find evidence
of adjustment in wages, but this adjustment is far from complete. Since my data records
hours at the paycheck level rather than average or typical hours for a worker, this partial
adjustment can be explained by straight wages tending to remain fixed in the short run,
while hours vary by week. I now turn to this phenomenon, which is indeed observed in

9Versions of this idea are considered in Brechling (1965), Rosen (1968), Ehrenberg (1971), Hamermesh
(1996), Hart (2004) and Cahuc and Zylberberg (2004).
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FIGURE 1: With a given worker’s wages fixed at w labor costs as a function of hours have a convex
kink at h = 40, given the overtime rule. A simple model of hours choice yields bunching when the
marginal product of an hour at 40 is between w and 1.5w for a mass of workers—see Section 4.1.

the data.

Dynamic adjustment to hours by week

While the previous section considers anticipated hours and earnings at hiring, empirically
the hours that workers are actually paid for vary considerably from week to week. The
anticipated hours h∗ that affect a worker’s wage rate through Equation (1) might place
little to no constraint on the hours actually scheduled in a given week.

There are many reasons why hours may vary from week to week throughout a worker’s
tenure at the firm. As time passes, shocks to product demand or productivity can change
the number of weekly hours that would be optimal that week from the firm’s perspec-
tive. For example, if demand for the firm’s products is seasonal or volatile, it may not
make sense to hire additional workers only to reduce employment later. Similarly, cross-
sectional variation in worker productivity may only become apparent to supervisors after
straight wages have been set. In this case, it might be worthwhile for the firm to ask partic-
ularly productive workers to work overtime, despite the need to pay their higher overtime
rate. Finally, workers may experience time-variation in their desire to work longer hours,
and take advantage of overtime premium pay.

I make two main assumptions regarding the choice of a worker i’s hours hit in a given
week t. The first is that hit is a flexible choice variable driven by the firm rather than
the worker, and the second is that the firm does not contemplate alternative straight-time
wages wit depending on alternative choices for hit. In line with the second assumption, in
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my sample straight-time wages do not change within worker with nearly the frequency
that hourly wages do, for my sample of hourly workers. This accords with the long lit-
erature on nominal wage rigidity (see e.g. Grigsby et al. 2020 for recent evidence from
payroll data). Mounting evidence that hourly wages are often standardized among work-
ers within a firm despite cross-sectional heterogeneity (Hjort et al., 2020), and bunched at
round numbers (Dube et al., 2020), also dovetails with this assumption.

My other main assumption is that the decision of a worker’s hours in a given week is
in most cases driven by the firm rather than the worker. We might thus view the typical
employment contract for an hourly worker as one in which rather than creating a spot
market for a given worker’s hours each week, scheduling rights are given to the firm at
an agreed-upon straight-time wage. This is supported by available survey evidence,10

and can be rationalized by a view in which workers generally have less bargaining power
when it comes to scheduling: if the worker and firm consistently fail to agree on a worker’s
hours, the worker’s outside option may be unemployment while the firm’s outside option
is having one less worker (Stole and Zwiebel, 1996).

In the empirical strategy presented in Section 4, I assume that in all cases a worker’s
hours are set unilaterally by their employer, which eases notation and emphasizes the
intuition behind my identification strategy. Appendix B presents a generalization in which
some fraction of workers choose their hours, along with intermediate cases in which the
firm and worker bargain over hours each week. If some workers have complete control
over their hours, the empirical approach described in Section 4 will only be informative
about effects of the FLSA among workers whose hours are chosen by the firm. However,
the fraction of such workers is small (see footnote 10), despite recent increases in flexible
work arrangements.

3 Data and descriptive patterns

The main dataset I use comes from a large payroll processing company. They provided
anonymized paychecks for the employees of 10,000 randomly sampled employers, for
all pay periods in the years 2016 and 2017. At the paycheck level, I observe the check
date, straight wage, and amount of pay and hours corresponding to itemized pay types,
including normal (“straight-time”) pay, overtime pay, sick leave, holiday pay, and paid
time off. The data also includes state and industry for each employer. Finally, for the

10For example, the 2017-2018 Job Flexibilities and Work Schedules Supplement of the American Time
Use Survey asks workers whether they have some input into their schedule, or whether their firm decides
it. Only 17% report that they have some input. In a survey of firms, about 10% report that most of their
employees have control over their shifts (Society for Human Resource Management, 2018).
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employees, the data include age, tenure, gender, state of residence, pay frequency and
their salary if one is stored in the system.

3.1 Sample description

I construct a final sample based on two desiderata: i) the ability to observe hours within
a single week; and ii) a sample only of workers who are non-exempt from the FLSA over-
time rule. For the purposes of i), I keep paychecks from workers who are paid on a weekly
basis (roughly half of the workers in the sample), and condition on paychecks that contain
a record of positive hours for work, vacation, holidays, or sick leave, totaling fewer than
80 hours in a week.11

To achieve ii) I focus on hourly workers, since nearly all workers who are paid hourly
are subject to FLSA regulation. However, while the data include a field for the employer
to input a salary, there is no guarantee that they use it. Therefore, I use a combination of
sampling restrictions to ensure I remove all non-hourly workers from the sample. First, I
drop workers that ever have a salary on file with the payroll system. Second, I only keep
workers at firms for whom some workers have a salary on file, reflecting an assumption
that employers either don’t use the feature at all or use it for all of their salaried employees.
I drop paychecks from workers for whom hours are recorded as 40 in every week in the
sample,12 as it is possible that these workers are simply coded as working 40 hours despite
being paid on a salary basis. I also drop workers who never receive overtime pay.

I drop observations from California, which has a daily overtime rule that is binding
for a significant number of workers, and could confound the effects of the weekly FLSA
rule. The final sample includes 630,217 paychecks for 12,488 workers across 566 firms.

Table 1 shows how the final sample compares to survey data that is constructed to be
representative of the U.S. labor force. Column (1) reports variable means in the sample
used in estimation. Column (3) reports means from the Current Population Survey (CPS)
for the same years 2016–2017, among those reporting hourly employment. The “has over-
time” variable for the CPS sample indicates that the worker usually receives overtime,
tips, or commissions.13 The fourth column reports means for 2016–2017 from the National
Compensation Survey (NCS), a representative establishment-level dataset accessed on a

11This final restriction removes about 2% of the sample after the other restrictions. While a genuine 80
hour workweek is possible, I consider these observations to likely correspond to two weeks of work despite
the worker’s pay frequency being coded as weekly.

12For the purposes of this drop, I count the “40 hours” event as occurring when either hours worked or
hours paid is equal to 40.

13The hourly wage variable for the CPS may mix straight-time and overtime rates, and is only present in
the outgoing rotation group sample. The tenure variable comes from the 2018 Job Tenure Supplement.
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restricted basis from the Bureau of Labor Statistics. The NCS uses administrative data
when available, and reports typical overtime worked at the quarterly level for each job
in an establishment. Columns (3) and (4) both lack some variables, as the CPS does not
specifically ask about number of overtime hours, while the NCS lacks worker-level infor-
mation such as tenure, age and sex.

(1) (2) (3) (4)
Estimation sample Initial sample CPS NCS

Tenure(yrs) 3.21 2.81 6.34 .
Age(yrs) 37.15 35.89 39.58 .
Female 0.23 0.46 0.50 .
Hours 38.92 27.28 36.31 35.70
Has overtime 1.00 0.37 0.17 0.52
(Straight-time) wage 16.16 22.17 18.09 23.31
Overtime Hrs 3.56 0.94 . 1.04
N 12488 149459 63404 228773

TABLE 1: Comparison at the worker level of the sample with representative surveys. Column
1 reports means from the administrative payroll sample used in estimation, Column 2 from the
Current Population Survey and Column 3 from the National Compensation Survey). Column 2
uses a larger sample from the payroll data, before sampling restrictions.

The sample I use is somewhat more male, earns lower straight-time wages, and works
more overtime than a typical U.S. worker. The NCS does not distinguish between hourly
and salaried workers, reporting only an average hourly rate that does not include over-
time pay. This effective straight-time wage thus includes many salaried workers, who are
on average paid more, likely explaining the higher value than the CPS and payroll sam-
ples. Column (2) in Table 1 also reveals that my sampling restrictions can explain why the
estimation sample tilts male and has higher overtime hours than the workforce as a whole.
In particular, conditioning on workers that are paid on a weekly basis oversamples indus-
tries that tend to have more men, and tend to pay somewhat lower wages. Appendix E
compares the industry and regional distributions of the estimation sample to the CPS.

3.2 Hours and wages

I turn now to the empirical inputs that I use in estimation. Figure 2 reports the empirical
distribution of weekly hours in the pooled sample of paychecks. The graphs indicate a
large mass of individuals who were paid for exactly 40 hours, amounting to about 11.6%
of the sample.14 Appendix Figure E.10 makes clear that overtime pay is present in nearly

14The second largest mass occurs at 32 hours, and is explained by paid-time-off, holiday, and sick pay
hours as discussed in Section 5.
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all weekly paychecks that report more than 40 hours, in line with the assumption that the
workers in my final sample are non-exempt from the FLSA.15

FIGURE 2: Empirical densities of hours worked pooling all paychecks in sample. The right panel
omits the points 40 and 32 to improve visibility elsewhere. Bins have a width of 1/8 of an hour,
based on the observed granularity of hours (see Appendix Figure 4 for details).

Recall from the conceptual framework of Section 2 that firms face a kink in labor costs
within a given pay period when there is short run wage rigidity, and that this mediates
the main causal effect of the FLSA on hours worked. Table 3 documents that while the
hours paid in 70% of all pay checks in the final estimation sample differ from those of
the last paycheck by at least one hour, just 4% of all paychecks record a different straight-
time wage than the previous paycheck for the same worker. This figure is unchanged if
I condition on the event of an hours change. Among the roughly 22,500 average wage
change events, the average change is about a 45 cent increase. When hours change the
magnitude is about 7 hours on average (see Supplemental Figure 5 for the distribution of
hours changes), with no average secular increase in hours over time.

Appendix Table E.5 reports a direct test of the Trejo (1991) model that straight-time
wages are related to hours according to Equation (1). In particular, I show that under
natural smoothness assumptions, the change in slopes of a regression function of straight
wages on hours at 40 identifies the proportion of checks around 40 that reflect the wage-
hours relationship described by Equation (1). This exercise suggests that about 25% of
checks near 40 hours satisfy this relationship, consistent with straight wages being ad-
justed in response to overtime pay obligations but being updated only intermittently.

15However, I cannot rule out that some of the overtime pay is based on voluntary firm overtime policies.
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Mean Std. dev. N

Indicator for hours changed from last period 0.84 0.37 630,217.00

Indicator for hours changed by at least 1 hour 0.70 0.46 630,217.00

Indicator for wage changed from last period 0.04 0.19 630,217.00

Indicator for wage changed, if hours changed 0.04 0.19 529,791.00

Difference in hours, if hours changed -0.02 10.69 529,791.00

Absolute value of hours difference, if hours changed 6.83 8.23 529,791.00

Difference in wage, if wage changed 0.45 26.46 22,501.00

FIGURE 3: Changes in hours paid or straight time wages between consecutive paychecks, within
worker.

I report some further details on the variation present in the data in Appendix E. Ap-
pendix Table E.3 regresses hours, overtime hours, and an indicator for bunching on worker
observables, and shows that after controlling for worker and date fixed effects bunching
and overtime hours are both predicted by recent hiring at the firm. This lends credibil-
ity to the assumption that shocks to labor demand drive variation in hours. Appendix
Table E.4 shows that overall, about 63% of variation in total hours can be explained by
worker and employer by date fixed effects. Appendix Figure E.2 documents heterogene-
ity in the prevalence of overtime pay across industry classifications. Industries with the
largest average overtime pay include Health Care and Social Assistance, Administrative
and Support, and Transportation and Warehousing.

4 Empirical strategy: a generalized kink bunching design

In this section I consider the firm facing a “kinked” choice set in the week-to-week choice
of hours for a given worker, as depicted in Figure 1. I show that under weak assumptions,
firms facing such a kink will make a choice that can be completely characterized by choices
they would make under two counterfactual choice sets that do not feature the kink, and
differ with respect to a single worker’s hourly wage. I then parlay the observable bunch-
ing at 40 hours into a statement about the joint distribution of these counterfactuals, which
can be interpreted in the language of treatment effects. Finally, I use these treatment effects
to estimate my main parameter of interest: the average effect of the FLSA on hours.

The identification results in this section hold in a much more general setting in which
a generic decision-maker faces a kinked choice set and has convex preferences. I present
this general model in Appendix A, and some of the formal assumptions are given there

13



rather than in the main text. Throughout this section I refer to a worker i in week t as
a unit: an observation of hit for unit it is thus the hours recorded on a single paycheck.
Probability statements are to be understood with respect to the pooled distribution of such
paychecks across the sample period.

4.1 A benchmark model: hours chosen from marginal productivity

Let us begin with the conceptual framework introduced in Section 2. With the wage fixed,
the firm in week t faces a kinked cost schedule in deciding hours hit for a given worker. If
the firm chooses less than 40 hours, they will pay w = wit for each hour, where wit is the
straight-time wage.16 If the firm chooses h > 40, then they will pay 40w for the first forty
hours and 1.5w(h− 40) for the remaining hours, giving the convex shape to Figure 1. Let
Bkit(h) = with+ .5wit1(h > 40)(h− 40) be the kinked pay schedule for unit it.

A natural view of weekly hours demand is that firms balance the cost Bkit(h) against
the value of h hours of the worker’s labor, in order to maximize profits. Consider a single
firm, and let Ft(h, h−i,t) denote production in dollars this week, where h are the hours
for worker i and h−i,t is the vector of hours for the other workers in the firm. Take F to
be strictly concave in the total hours profile of its workers h = (h, h−i,t), such that the
marginal product of an hour MPHit(h) =

∂
∂hFt(h, h−i,t) is declining as a function of h. If

firms maximize weekly profits, they will choose h < 40 when MPH equals the straight
time wage for some such value of h. This situation is depicted by the leftmost indifference
curve in Figure 1. By concavity of production, MPH declines with h. If the MPH is
still above 1.5w at h = 40, for a worker with wage w, then tangency with the budget
constraint Bkit(h) will occur for some h > 40 where MPH(h) = 1.5w. This is depicted by
the rightmost indifference curve in Figure 1. If the MPH at h = 40 is between w and 1.5w,
then the firm will choose to locate that worker at the corner solution h = 40.

These predictions may be summarized as follows, separating the cases based on the
marginal productivity of a worker’s hours at 40:

hit =


MPH−1

it (wit) if MPHit(40) < wit

40 if MPHit(40) ∈ [wit, 1.5wit]

MPH−1
it (1.5wit) if MPHit(40) > 1.5wit

(2)

Shocks to the function Ft, or to the hours h−i,t worked by i′s colleagues within the firm,
can be seen as determining which of the three types of outcome occurs in a given week.

16A unit’s straight-time wage wit is fixed with respect to the choice of hours this week, but may depend
on t due to e.g. occasional or automatic periodic raises.
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While Equation 2 provides fairly general intuition, it is useful to consider a simpler
context that ignores interdependencies between workers and assumes that heterogeneity
in hours is driven by a scalar productivity parameter: Ft(h, h−i,t) = ait · f(h) where f ′ > 0
and f ′′ < 0. Then MPHit(h) = ait · f ′(h), where the function f is common across firms,
workers, and time periods. If f(h) is furthermore iso-elastic, we arrive at the canonical
bunching-design approach from the literature (Saez, 2010; Chetty et al., 2011; Kleven,
2016).17 The iso-elastic case is illustrative, and I will focus on it as a benchmark, before
generalizing. In the iso-elastic model, firm profits take the form:

πit(z,h) = ait ·
h1+ 1

ε

1 + 1
ε

− z (3)

where ε < 0 is common across all units it, and c are labor costs for worker i in week
t. Under any linear pay schedule z = wh, the profit maximizing number of hours is(
w
ait

)ε
, so ε can be interpreted as the elasticity of hours demand to the wage. Define

ηit = ait/wit, the ratio of the current productivity factor to the straight-time wage. Then,
by Equation (2) hours are ranked across units by their value of ηit. Namely, hit = η−εit if
ηit < 40−1/ε, hit = 1.5ε · η−εit if ηit > 1.5 · 40−1/ε, and hit = 40 if ηit falls in the intermediate
region [40−1/ε, 1.5 · 40−1/ε]. If ηit is continuously distributed over a region containing this
interval, then the observed distribution of hit will feature a point mass at 40: “bunching”
– paired with a density elsewhere.

Now consider identifying the effect of the FLSA, in the context of this iso-elastic model.
Let h0it = η−εit be the hours it would work if their employer faced the straight-time wage
rate for all hours. I will refer to the difference hit − h0it as the effect of the kink—the effect
of the FLSA on unit it when ignoring changes to workers’ straight-time wage, or com-
plementaries between units (I account for effects on wages in Section 6). In the iso-elastic
model, the effect of the kink is

hit − h0it =


0 if hit < 40

40− h0it if hit = 40

hit · (1− 1.5−ε) if hit > 40

Given the value of ε, we could evaluate this effect for any paycheck recording overtime
hit > 40 using the worker’s observed hours. We could then easily estimate, for example,
the average treatment effect among paychecks having overtime hours.

17Alternatively, they may allow heterogeneous elasticities by taking the kink to be suitably “small”. My
approach allows us to relax both assumptions at the same time.
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Thus a natural starting place for evaluating the FLSA via the bunching design is to
estimate ε. Assume that we have access to a random sample of paychecks hit.18. If we
were willing to suppose ηit belongs to a parametric family, then the entire model could be
estimated by maximum likelihood (Bertanha et al., 2020). The method pioneered by Saez
(2010) is more local ε is related to the observable bunching probability B = P (hit = 40).
Figure 4 depicts the intuition, which is convenient to express in terms of the log-hours
distribution.

ln 40

lnh0

↓
lnh0 − |ε| ln 1.5

↓

B

Distribution of log hours

⇐⇒

ln 40 ln 40 + δ

B

δ = |ε| ln 1.5

Density of lnh0

FIGURE 4: The left panel depicts the distribution of observed log hours ln hit in the iso-elastic
model, while the right panel depicts the underlying full density of ln h0it. The full density is related
to the observed density by “sliding” the observed density for h > 40 out by the unknown distance
δ = |ε| ln 1.5. The density of h0it is not observed in the missing region between ln 40 and ln 40 + δ,
but the area total therein must equal the observed bunching mass B.

If the researcher unwilling to assume anything about the density of h0 in the missing
region of Figure 4, then the data are compatible with any finite ε < 0, a point empha-
sized by Blomquist and Newey (2017) and Bertanha et al. (2020). In particular, given the
integration constraint that B = P (ln h0it ∈ [ln 40, ln 40 + δ]), an arbitrarily small |ε| could
be rationalized by a density that spikes sufficiently high just to the right of 40, while an
arbitrarily large |ε| can be reconciled with the data by supposing that the density drops
quickly to some very small level throughout the missing region.

Standard methods from the literature use parametric assumptions to point-identify ε

in the iso-elastic model. The approach of Saez (2010) assumes that the density of h0it (not
in logs) is linear through the corresponding region [40, 40 · 1.5−ε]. The popular method of
Chetty et al. (2011) instead fits a global polynomial to the hours distribution. However,
neither of these approaches is suitable for the overtime context. The linear method of Saez

18The empirical implementation relaxes this and only assumes independent sampling at the level of firm.
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(2010) implies monotonicity of the density in the missing region, which is unlikely to hold
given that 40 appears to be near the mode of the latent hours distribution. The method of
Chetty et al. (2011) ignores the “shift” by δ in the right panel of Figure 4, which would be
problematic in this setting since the slope of the density is far from zero and the bunching
at 40 is exact, rather than diffuse.

My approach instead imposes a non-parametric shape constraint: bi-log-concavity, on
the distribution of h0it. Bi log-concavity (BLC) generalizes the familiar property of log-
concavity, and importantly allows for a peak within the missing region (Dümbgen et al.,
2017). I defer a detailed discussion of BLC to Section 4.3, after I generalize from the iso-
elastic model, and indeed more generally from a model in which hours are chosen on
the basis of productivity alone. The reason for this generalization is two-fold. First, its
weakens the assumptions under which the effect of the FLSA on hours can be identified.
Second, it enables a range of underlying models that might be used to rationalize the
results.

The robustness over structural models is important in the overtime context. The iso-
elastic model applied to the data described in Section 3 yields implausible values for ε,
when interpreted in the context of the hours production function from Equation (3). Ap-
pendix E.4 reports estimates of the identified set of values for ε compatible with the data
and BLC of h0. The bounds are narrow and suggest a value of about ε = −0.2, when all
of the bunching observed at 40 is attributed to the FLSA.19 This value would suggest that
revenue as a function of hours is proportional to f(h) = −1

4h
−4, a production function

with an unreasonable degree of concavity.20 Attributing just a portion of the observed
bunching at 40 to the FLSA further reduces the estimate of ε. The more general sepa-
rable model in which f(h) is arbitrary is also not much help here, since estimating the
iso-elastic model then identifies an averaged local inverse elasticity of f(h). In particular:
h1it − h0it = h0it (1.5ε̄it − 1) where ε̄it is a unit-specific weighted average of the inverse

elasticity of production between 1.5ηit and ηit: ε̄it :=
∫ 1.5η−1

it

η−1
it

w(m) · ε(g(m)) · dm where

ε(h) := f ′(h)
f ′′(h)h is the reciprocal of the local elasticity of production, g(m) := (f ′)−1(m)

yields the hours h at which f ′(h) = m, and w(m) = 1/m
ln 1.5 is a positive function integrating

to one.
19This estimate is from the pooled sample across all industries. Also reported Appendix E.4, estimation

by industry yields bounds on ε ranging from−0.26 to−0.06, which are similarly implausible as estimates of
concavity of production. The estimates are similar when applying the linear density assumption from Saez
(2010).

20Such a production function can be made positive for most values of h by adding a constant, for example
f(h) = −1

4h
−4 + 1

4 is positive for h > 1. But the functional form is still unreasonably concave: a worker
would in this case achieve more than 99% of their asymptotic limit of production after just two hours.
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Put simply, the observed bunching is too small to be reconciled with an iso-elastic re-
sponse in which ε parameterizes the concavity of production with respect to hours: it is
better interpreted as a reduced form elasticity of demand for hours. The next section for-
malizes this idea, by showing how identification in the bunching design generalizes to
a class of models that can include additional choice variables that may attenuate the ob-
served labor demand response to overtime pay, as well as incorporate multi-dimensional
heterogeneity.

4.2 Counterfactual choices in a larger class of choice models

The basic structure of what is observable in the bunching design is preserved when we
not only relax the constant-elasticity assumption, but also when we allow the firm to have
multiple choice-variables that may be responsive to the incentives created by the kink.
Additional margins of response can have the effect of diminishing the hours response
that would occur on the basis of production alone, which can explain the small elasticity
reported in the last section.

Begin by observing that in the model of the last section, units who work overtime
work the number of hours that they would work if their wage was 1.5 times their straight
time wage: c.f. Equation (2). This property holds quite generally. Let h1it be the hours
that would be chosen for it if their straight-time wage were instead equal to 1.5wit.21.
Appendix A presents a generic model of choice for the bunching design in which Equation
(2) can be seen as a special case of:

hit =


h0it if h0it < 40

40 if h1it ≤ 40 ≤ h0it

h1it if h1it > 40

(4)

This expression says that knowledge of the two counterfactual hours choices h0it and h1it

are sufficient to pin down the actual hours chosen for any given unit. The worker will
work h0it when h0it is less than 40, h1it when it is greater than 40, and be located at 40 if
and only if the two counterfactual outcomes “straddle” the kink, falling on either side.

Appendix Lemma 1 shows that Equation 4 holds quite generally when an exogenous
change to the hours-pay schedule would cause the firm to re-optimize on a vector x of
choice variables that includes hours of work h as a component, and firm preferences are

21Specifically, the counterfactuals h0it and h1it replace the cost schedule for this week’s hours with a linear
wage wit or 1.5wit, holding fixed both wit and the hours of other units. See Section 4.4 for more details.
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convex in the pair (z, x), where z are this period’s wage costs. To demonstrate the flexi-
bility of this framework, I present some examples beyond the baseline model of the last
section. These examples are illustrative, and each could apply to a different subset of units
in the population.22

Example 1: Substitution from bonus pay

Let the firm’s choice vector be x = (h, b)′, where b ≥ 0 indicates a bonus (or other
fringe benefit) paid to the worker. Firms may find it optimal to offer bonuses to im-
prove worker satisfaction and reduce turnover. Suppose firm preferences are: π(z,h, b) =
f(h) + g(z+ b− ν(h))− z− b, where z continues to denote wage compensation this week,
z + b− ν(h) is the worker’s utility with ν(h) a convex disutility from labor h, and g(·)
increasing and concave. In this model firms will choose the surplus maximizing choice of
hours hm := argmaxhf(h)− ν(h) regardless of the hourly wage, provided that the corre-
sponding optimal bonus is feasible (e.g. non-negative). Bonuses may thus fully adjust to
absorb the added costs of overtime pay, such that h0 = h1 = hm.

Example 2: Off-the-clock hours and paid breaks

Suppose firms choose a pair x = (h, o)′ with h hours worked and o hours worked “off-the-
clock”, such that y(x) = h− o are the hours for which the worker is paid. This model can
include some firms voluntarily offering paid breaks by allowing o to be negative. Evasion
is harder the larger o is, which we represent by firms facing a convex evasion cost φ(o), so
that firm utility is π(z,h, o) = f(h)− φ(o)− z. Note that the data observed in our sample
are of hours of work y(x) for which the worker is paid, when this differs from h. Ap-
pendix A describes how Equation 4 still holds, but for counterfactual values of hours paid
y = h− o rather than hours worked h. The bunching design lets us investigate treatment
effects on paid hours, without observing off-the-clock hours or break time o.

Example 3: Complementaries between workers or weeks

Suppose the firm simultaneously chooses the hours x = (h, g) of two workers according
to production that is iso-elastic in a CES aggregate of the two worker’s hours. I focus
on the hours h for the first worker (g could also denote planned hours next week for

the same worker): π(z,h, g) = a ·
(
(γhρ + gρ)1/ρ)1+ 1

ε − z, where γ > 0 reflects a relative
productivity shock for the first worker, and z are labor costs. Let g∗ denote the firm’s

22Appendix B discusses a further example in which the firm and worker bargain over this week’s hours.
This weekly bargaining can diminish the wage elasticity of hours since overtime pay gives the parties op-
posing incentives.
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optimal choice of hours for the second worker. The firm’s choice of h must maximize
π(z,h, g∗) subject to z = Bk(h), as if the firm faced a single-worker production function

of f(h) = a ·
(
(γhρ + g∗ρ)1/ρ)1+ 1

ε . This function is more elastic than the corresponding
single-worker iso-elastic production function with the same ε < 0 provided that ρ < 1 +
1/ε, since f ′′(h)h

f ′(h) = 1
ε −

1+1/ε−ρ
γ(h/g∗)ρ+1 , attenuating the response to an increase in w (with g∗

fixed) implied by a given ε, provided sufficient complementarity.23

4.3 Identifying treatment effects in the bunching design

Given the definitions in the last two sections, let ∆it = h0it − h1it. This is the difference
between the firm’s choice of hours for a given worker (this week) if they were paid at their
straight-time rate for all hours, versus their overtime rate for all hours. I refer to ∆it as it’s
treatment effect, interpreting h0 and h1 as potential outcomes. A unit’s treatment effect can
be contrasted with the “effect of the kink” quantity hit − h0it introduced earlier: the effect
of the kink is −∆it for those units working overtime.24

Beyond the iso-elastic model, ∆it rather than ε is the quantity of interest in causal anal-
ysis. In the iso-elastic model ∆it = h0it · (1 − 1.5ε); this model thus delivers treatment
effects in logs: ln h0it − ln h1it = |ε| · ln 1.5 that are constant across all units (see Figure 4).
In general we can expect ∆it to vary across units, and a reasonable parameter of interest is
some summary statistic of ∆it. To ease notation, let k = 40 denote the location of the kink.
We can see that bunching should be in some way informative about the distribution of ∆it
by using Equation (4) to write the bunching probability as:

B = P (h1it ≤ k ≤ h0it) = P (h0it ∈ [k, k+ ∆it]) = P (h1it ∈ [k− ∆it, k]) (5)

Units bunch when either of their counterfactual outcomes lie within their individual treat-
ment effect of the kink. Note that B = F1(k)− F0(k) provided that h0it and h1it are con-
tinuously distributed, where F0 and F1 are their cumulative distribution functions.

The existing literature on the bunching design contains few positive identification re-
sults that move beyond univariate heterogeneity and explicitly allow responsiveness to
vary by individual unit. Saez (2010) and Kleven (2016) consider a “small-kink” approxi-

23This expression overstates the degree of attenuation, since h1 and h0 maximize f(h) above for different
values g∗, which leads to a larger gap between h0 and h1 compared with a fixed g∗ by the Le Chatelier
principle (e.g. Milgrom and Roberts, 1996). However, given ρ < 1 + 1/ε, maintaining productivity of the
second worker gives the firm enough incentive against decreasing h that h1/h0 still increases on net.

24Both of these treatment effects are “partial equilibrium” in the sense that they hold the hours worked by
units other than it fixed at their actual values. Section 4.4 discusses this further when evaluating the FLSA.
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mation that allows one to estimate E[∆it|h0it = k], in the present notation.25 In the over-
time setting, a 50% increase in the hourly cost of labor is likely to produce large enough
effects that this approximation would be quite poor. Blomquist et al. (2019) allow multi-
dimensional heterogeneity in a labor supply model under taxation, by assuming the den-
sity of counterfactual choices at a kink is linear across tax rates. However this type of
assumption can be hard to motivate.

One type of heterogeneity that it is important to allow in the context of overtime is
some degree of non-responsiveness to the incentives introduced by the kink at 40 hours,
since 40 is a particularly salient hours choice. Let K∗it = 1 indicate a group of units such
that h0it = h1it = k. I refer to these units as “counterfactual bunchers”, since they would
locate at the kink even in the counterfactual outcome distributions. These units are not
of particular interest, but they complicate measurement of the bunching caused by kink
when there is a positive mass p := P (K∗it = 1) of counterfactual bunchers. In this section,
I treat p as known, and estimate it empirically in Section 5.1. Given p and the CDF F (h)
of the data, one can construct the conditional distribution for all other units (denoted by
K∗it = 0) by simply subtracting p from the observed bunching mass B and re-normalizing
the distribution, i.e. Fh|K∗=0(h) =

F (h)−p1(h≥k)
1−p .

I focus on partial identification of the average treatment effect among units who locate
at the kink and are not counterfactual bunchers, what I call the “buncher LATE”:

∆∗k = E[∆it|hit = k,K∗it = 0]

To simplify the discussion, suppose for now that there are no counterfactual bunchers, so
that ∆∗k = E[∆it|hit = k]. My approach to identifying bounds on ∆∗k is based on assuming
a weakened version of rank invariance between h0 and h1:

P (F0(h0it) = F1(h1it)) = 1. (6)

Equation (6) says that increasing each unit’s wage by 50% does not change the rank of
each unit’s hours: for example, a worker at the median of the h0 distribution also has
a median value of h1. This is satisfied by models in which there is perfect positive co-
dependence between the potential outcomes, such-as the benchmark model from Section

25In particular, the density of h0 is taken to be constant throughout the region [40, 40+ ∆it] conditional on
each value of ∆it, leading toE[∆it|h0i = 40] = B/ limh↑k f(h), with f(h) the density of observed hours (see
Appendix A for a derivation in my generalized framework). The uniform density assumption is hard to
justify except in the limit that the distribution of ∆it concentrates around zero. Lemma SMALL in Appendix
F makes this claim precise, while connecting the approach from Saez (2010) and Kleven (2016) to a non-
parametric treatment without point identification by Blomquist et al. (2015).
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4.1 with production ait · f(h). The left panel of Figure 6 shows an example.
Rank invariance allows us to translate statements about ∆it into statements about the

marginal distributions of h0it and h1it. In particular, under rank invariance the buncher
LATE is equal to the quantile treatment effectQ0(u)−Q1(u) averaged across all u between
F0(k) and F1(k) = F0(k) + B, with Qd the quantile function of hdit:

∆∗k =
1
B
∫ F1(k)

F0(k)
[Q0(u)−Q1(u)]du, (7)

so long as F0(y) and F1(y) are continuous and strictly increasing. To place bounds on the
buncher LATE, it is thus sufficient to place point-wise bounds on the quantile functions
Q0(u) and Q1(u) throughout the range u ∈ [F0(k),F1(k)], as depicted in Figure 5.

0 F0(k) F1(k) 1

k

k −∆∗
1

k + ∆∗
0

Q0(u)
Q1(u)

B ·∆∗
k

B

u

FIGURE 5: Extrapolating the quantile functions for h0 and h1 (blue and orange, respectively) to
place bounds on the buncher LATE. The observed portions of each quantile function are depicted
by thick curves, while the unobserved portions are indicated by thinner curves. The dashed curves
represent upper and lower bounds for this unobserved portion implied by bi-log-concavity (see
text below). The buncher LATE is equal to the area shaded in green, divided by the bunching
probability B. The quantities ∆∗0 and ∆∗1 are defined in Assumption RANK below.

I obtain such bounds by assuming that both h0 and h1 have bi-log-concave distributions.
Bi-log-concavity is a non-parametric shape constraint that generalizes log-concavity, a
property of many common parametric distributions:

Definition (BLC). A distribution function F is is bi-log-concave (BLC) if both lnF and ln(1−F )
are concave functions.

22



If F is BLC then it admits a strictly positive density that is itself differentiable with the
locally bounded derivative: −f(h)

2

1−F (h) ≤ f ′(h) ≤ f(h)2

F (h)
(Dümbgen et al., 2017). Intuitively,

this rules out cases in which the density of either h0 or h1 ever spikes or falls too quickly
on the interior of its support, leading to non-identification of the type discussed in Section
4.1.26 The family of BLC distributions includes uniform and linear densities (as assumed
by Saez 2010), as well as all globally log-concave distributions such as the normal.27 Im-
portantly, the BLC property is partially testable in the bunching design, since F0(y) is
identified for all h < k and F1(h) is identified for all h > k. Appendix Figure E.9 shows
that these observations in the data are indeed consistent with BLC. I will also refer to a
random variable as “BLC” if its distribution is BLC. For each d ∈ {0, 1}, assuming hdit is
BLC yields point-wise upper and lower bounds on the quantile function Qd(u) appearing
in Equation (7) that depend on Fd(k) and fd(k), with fd the density of hdit.28

Assuming that each of h0 and h1 are separately BLC thus allows me to move beyond
point-identification based on strong parametric assumptions while simultaneously ac-
commodating heterogeneous treatment effects, requiring only rank invariance. But while
rank invariance weakens the homogeneity assumptions typically made in the literature, it
is nevertheless a restrictive assumption in the overtime setting. Fortunately, a still weaker
assumption proves sufficient for the RHS of (7) to recover the buncher LATE:

Assumption RANK. There exist values ∆∗0 and ∆∗1 such that h0it ∈ [k, k+∆it] iff h0it ∈ [k, k+
∆∗0], and h1it ∈ [k− ∆it, k] iff h1it ∈ [k− ∆∗1, k].

Note that ∆∗0 and ∆∗1 are fixed numbers that do not vary by unit it. If treatment effects were
homogeneous with ∆it = ∆, we would have ∆∗0 = ∆∗1 = ∆, and Assumption RANK would
simply echo Equation 5. With heterogeneous effects however, RANK allows ranks to be
reshuffled by treatment among bunchers and on either side of the bunching region.29 For
example, suppose that a 50% increase in the wage of worker i would result in their hours
being reduced from h0it = 50 to h1it = 45. If another worker j’s hours are instead reduced
from h0jt = 48 to h1jt = 46 under a 50% wage increase, workers i and j will switch

26Bertanha et al. (2020) propose partial identification in an iso-elastic model by specifying a Lipschitz
constant on the density of ln ηit. This yields global rather than local bounds on f ′.

27BLC distributions can have multiple modes however, relaxing the unimodality property of log-concave
densities (Dümbgen et al., 2017). Note that any polynomial density with real roots is a log-concave function.

28It is worth noting that under rank invariance, assuming BLC of h1 and h0 is sufficient to calculate bounds
on the treatment effect Q1(u)−Q0(u) at any quantile u ∈ [0, 1]. However, these bounds quickly widen as
one moves away from the kink in either direction. The narrowest bounds for a single rank are obtained for
a “median” buncher roughly halfway between F0(k) and F1(k) when f0(k) ≈ f1(k). However, averaging
over a larger group is more useful for meaningful ex-post evaluation of the FLSA, and reduces the sensitivity
to departures from rank invariance (see Figure A.2). The buncher LATE balances these considerations.

29Given Equation (4), RANK is equivalent to the rank-similarity assumption of Chernozhukov and Hansen
(2005), where the conditioning variable Vi indicates which of the three cases of Equation (4) hold for the unit.
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ranks, without violating RANK. Note also that RANK is compatible with the existence of
counterfactual bunchers p > 0.
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An (h0, h1) distribution with rank invariance
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A generic distribution satisfying RANK

FIGURE 6: The joint distribution of (h0it,h1it), comparing an example satisfying rank invariance
(left) to a case satisfying Assumption RANK (right). RANK allows the support of the joint distri-
bution to “fan-out” from perfect co-dependence of h0 and h1, except when either outcome is equal
to k. The large red dot in the right panel indicates a possible mass p of counterfactual bunchers.
The observable data identifies the red portions of outcome’s marginal distribution (depicted along
the bottom and right edges), as well as the total mass B in the (shaded) south-east quadrant.

The right panel of Figure 6 shows an example of a distribution satisfying RANK. When
RANK is not perfectly satisfied (e.g. when the support of (h0,h1) doesn’t quite narrow to
a point at each hd = k), ∆∗k can still be interpreted as an averaged quantile treatment
effect across [F0(k),F1(k)]. Appendix Figure A.2 explains that this will then represent
a lower bound on the true buncher LATE. Appendix Figure B.3 depicts a case in which
some workers choose their hours, resulting in mass in the north-west quadrant.

Theorem 1 gives sharp bounds on the buncher LATE given RANK and bi-log-concavity.
It requires two further assumptions that have so far been implicit: hours can be perfectly
manipulated by firms, and firms’ preferences are convex over available choice variables.
Appendix A gives a formulation of these assumptions for more general kink settings, and
shows that bunching still has limited identifying power without convexity of preferences.

Assumption CHOICE. The outcomes h0it, h1it and hit reflect choices the firm would make under
counterfactual cost constraints z ≥ B(h), with B(h) given by B0it(h) = with, B1it(h) =

1.5with− 20wit, or Bkit = max{B0it(h),B1it(h)} respectively.

Assumption CONVEX. Firm choices maximize some πit(z, x), where πit is strictly quasiconcave
in (z, x) and decreasing in z. Hours h are a continuous deterministic function of x.
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Note that the importance of firms being the decision-maker for a unit enters in the as-
sumption that utility π is decreasing, rather than increasing, in z. Appendix B relaxes this
to allow some workers to set their hours. The second term in the definition of h1it keeps
the firm indifferent between B1 and B0 at h = 40, and is only necessary for Equation 4
(and the subsequent analysis) to hold when preferences π are not quasi-linear in z.30 Since
quasi-linearity with respect to costs is implied by firms maximizing profits, h1it can be
thought of as hours under the simple pay schedule 1.5with.

Theorem 1 (bi-log-concavity bounds on the buncher LATE). Assume CHOICE, CONVEX,
RANK and that h0it and h1it are both bi-log concave conditional on K∗it = 0. Then:

1. Each of F (h), F0(h) and F1(h) are continuously differentiable for h 6= k. When p > 0,
define the density fd(y) of hdit at y = k to be fd(k) = limh→k fd(h), for each d ∈ {0, 1}.

2. The buncher LATE ∆∗k ∈
[
∆Lk , ∆Uk

]
, where:

∆Lk := g(F0(k)− p, f0(k),B − p) + g (1− F1(k), f1(k),B − p)

and
∆Uk := −g(1− F0(k), f0(k), p−B)− g (F1(k)− p, f1(k), p−B)

with g(a, b,x) = a
bx (a+ x) ln

(
1 + x

a

)
− a

b , and the bounds are sharp.

Proof. See Appendix F.

Let f(h) be the density of the data for h 6= k. Given p, the remaining quantities in Theorem
1 are identified: F0(k) = limh↑k F (h) + p, F1(k) = F (k), f0(k) = limh↑k f(h) and f1(k) =

limh↓k f(h).31

Inspection of the expressions appearing in Theorem 1 reveals that the bounds become
wider the larger the net bunching probability B − p. A second-order approximation to
ln(1 + x

a ) shows that when this probability is small, ∆∗k ≈ B−p
2f0(k)

+ B−p
2f1(k)

. This delivers a
“small-bunching” approximation similar to one that has appeared in the literature (e.g.
Kleven, 2016), and corresponds to the “excess mass” quantity in Chetty et al., 2011. When
f0(k) ≈ f1(k) and p = 0, the bounds will tend to be narrower when F0(k) is closer to
(1−B)/2, i.e. the kink is close to the median of the latent hours distribution.

30This reflects the well-known observation that the bunching design yields a combination of compensated
and uncompensated elasticities (Blomquist et al., 2015; Kleven, 2016).

31Since the bounds depend only on the CDFs at k and data local to k, point masses elsewhere in the
distributions of h0 and h1 can be safely ignored provided that they are well-separated from the kink.
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4.4 Estimating policy relevant parameters

The buncher LATE yields an internally-valid answer to a particular causal question, among
a well-defined subgroup of the population. Namely: how would hours among bunched
units be affected by a counterfactual change from linear pay at the worker’s straight-time
wage to linear pay at their overtime rate? This section discusses how I use an estimate of
this buncher LATE to both evaluate the overall ex-post effect of the FLSA on hours, as well
as forecast the impacts of hypothetical changes to the FLSA. This requires some additional
assumptions, which I continue to approach from a partial identification perspective.

4.4.1 From the buncher LATE to the ex-post hours effect of the FLSA

To consider the overall ex-post hours effect of the FLSA among covered workers, I pro-
ceed in two steps. I first relate the buncher LATE to the average effect of introducing the
overtime kink on all units, holding fixed the distributions of counterfactual hours h0it and
h1it. Then, I allow straight-time wages to be affected by the FLSA, using the buncher LATE
again to bound the additional effect of these wage changes on hours.

To motivate this strategy, let us first define the parameter of interest to be the difference
in average weekly hours with and without the FLSA: θ := E[hit] − E∗[h∗it], where h∗it
indicates the hours unit it would work absent the FLSA, and the second expectation E∗

is over the population of observational units of workers that would exist in the no-FLSA
counterfactual–but would be eligible were it introduced.32 I assume that the hours among
workers who are hired because of the FLSA are not systematically different from those
who would have existed anyways, so that we may rewrite θ as an average over individual-
level effects in the actual population given the FLSA: θ = E[hit − h∗it].

Next, I decompose this average effect as:

θ = E[hit(wit, h−i,t)− h0it(w
∗
it, h∗−i,t)] = E[hit(wit, h−i,t)− h0it(wit, h−i,t)︸ ︷︷ ︸

“effect of the kink”

]

+E[h0it(wit, h−i,t)− h0it(w
∗
it, h−i,t)︸ ︷︷ ︸

“wage effects”

] +E[h0it(w
∗
it, h−i,t)− h0it(w

∗
it, h∗−i,t)︸ ︷︷ ︸

“interdependencies”

], (8)

where the notation makes explicit the dependence of h and h0 on the worker’s straight-
time wage wit, and possibly the hours h−i of other workers in their firm. In the notation of
the last section: hit = hit(wit, h−i,t), h0it = h0it(wit, h−i,t) and h1it = h1it(wit, h−i,t); since

32Since the FLSA may itself change the population of workers who are covered by it (for instance, by en-
couraging the hiring of new covered workers), I first define θ as this difference in two population quantities.
Note that h∗it in this section differs from the “anticipated” hours quantity h∗ in Section 2.
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pay is linear in hours in the no-FLSA counterfactual h∗it = h0it(w∗it, h∗−i,t).
The first term in Equation (8) reflects the “effect of the kink” quantity hit − h0it exam-

ined in Section 4.1, and is the primary object of interest. The second term reflects that
straight-time wages wit may differ from those that workers would face without the FLSA,
denoted by w∗it. The third term is zero when each worker’s hours are chosen to solve a
separate optimization problem, as in the benchmark model from Section 4.1 with linearly
separable production. More generally however, it will capture interdependencies in hours
across units, for instance due to non-separability in production. In Appendix C I provide
evidence that such effects do not play a large role in θ, and I do not attempt to account for
them explicitly in estimation.

Turning first to the “effect of the kink” term, note that with straight-wages and the
hours of other units fixed, the kink only has direct effects on those units working at least
k = 40 hours:

hit − h0it =


0 if hit < k

k− h0it if hit = k

−∆it if hit > k

(9)

and thus E[hit − h0it] = B ·E[k− h0it|hit = k]− P (hit > k)E[∆it|hit > k]. To identify this
quantity we must extrapolate from the buncher LATE to obtain an estimate of E[∆it|hit >
k], the average effect for units who work overtime. To do this, I assume that ∆it of units
working more than 40 hours are at least as large on average as those who work 40, but that
the (reduced-form) elasticity of their response is no greater than that of the bunchers. The
logic is that assuming a constant percentage change between h0 and h1 over units would
imply responses that grow in proportion to h1, eventually becoming implausibly large.
On the other hand, it would be an underestimate to assume high-hours workers, say at 60
hours, have the same effect in levels h0 − h1 as those closer to 40.33 To put bounds on the
average effect of the kink among bunchers E[k − h0it|hit = k], I use the bi-log-concavity
assumptions from Section 4.3. Details are provided in Supplemental Appendix 4.7.

The “wage effects” term in Equation (8) arises because the straight-time wages ob-
served in the data may reflect some adjustment to the FLSA, as we would expect on the
basis of the conceptual framework in Section 2. While the “effect of the kink” term is
expected to be negative, this second term will be positive if FLSA causes a reduction in
the straight-time wages set at hiring on the basis of expected hours. However, both terms
ultimately depend on the same thing: responsiveness of hours to the cost of an hour of
work. I thus use the buncher LATE to compute an approximate upper bound on wage ef-

33In the benchmark model, constant treatment effects in levels corresponds to exponential production:
f(h) = γ(1− e−h/γ) where γ > 0 and h0it − h1it = γ ln(1.5) for all units.
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fects by assuming that all straight-time wages are adjusted according to Equation (1) with
anticipated hours approximated by hit, and an iso-elastic response. A lower bound on
the “wage effects” term is zero. Supplemental Appendix 4.7 gives the explicit formulas
and provides a visual depiction of these definitions. Section 5 also reports results with
and without this wage effect. The size of the wage effect E[h0it − h∗0it] is appreciable but
still small in comparison with E[hit − h0it]. This is because the average percentage wage
change according to Equation (1) is fairly small near 40, where most of the mass is.

4.4.2 Forecasting the effects of policy changes

Apart from ex-post evaluation of the overtime rule, policymakers may also be interested
in predicting what would happen if the parameters of overtime regulation were modi-
fied. Reforms that have been discussed in the U.S. include decreasing “standard hours”
k at which overtime pay begins from 40 hours to 35 hours,34 or increasing the overtime
premium from time-and-a-half to “double-time” (Brown and Hamermesh, 2019).

I begin by considering changes to standard hours k. For now, I hold the distributions
of h0 and h1 fixed across the policy change, and return to changes to the latent hours
distributions at the end of this section. Inspection of Equation 4 reveals that as the kink
is moved upwards, say from k = 40 hours to k′ = 44 hours, some workers who were
previously bunching at k now work h0it hours: namely those for whom h0it ∈ [k, k′]. By
the same token, some individuals with values of h1it ∈ [k, k′] now bunch at k′. Some
individuals who were bunching at k may now bunch at k′—namely those workers for
whom h1it ≤ k and h0it ≥ k′. I assume that the mass of counterfactual bunchers p remains
at k = 40 after the shift.35 In the case of a reduction in overtime hours, say to k′ = 35 this
logic is reversed: some workers now work h1it ∈ [k′, k], while workers with h0it ∈ [k′, k]
now bunch at k′. Figure 8 depicts both of these cases.

Quantitatively assessing a change to double-time pay requires us to move beyond the
two counterfactual choices h0it and h1it: hours that would be worked under straight-wage
and time-and-a-half. Let hit(ρ) be the hours that it would work if their employer faced
a linear pay schedule at rate ρ · wit (with both the straight-wage wit and hours of other
units fixed at their realized levels). In this notation, h0it = hit(1) and h0it = hit(1.5). Now
consider a new overtime policy in which a premium pay factor of ρ1 is required for hours

34Several countries have implemented changes to standard hours; Brown and Hamermesh (2019) pro-
vides a review of the evidence.

35It is conceivable that some or all counterfactual bunchers locate at 40 because it is the FLSA threshold,
while still being non-responsive to the incentives introduced there by the kink. In this case, we might
imagine that they would all coordinate on k′ after the change. The effects here should thus be seen as
short-run effects before that occurs.
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FIGURE 7: The left panel depicts a shift of the kink point downwards from k to k′, while right
panel depicts a shift of the kink point upwards. See text for details.

in excess of k, e.g. ρ1 = 2 for a “double-time” policy. Let h[k,ρ1]
it denote realized hours

under this overtime policy, and let B[k,ρ1] := P (h
[k,ρ1]
it = k) the observable bunching that

would occur.
Theorem 2 allows me to discuss the effects of small changes to k or ρ1. Results for the

effect of changing standard hours k make use of an explicit assumption that firm prefer-
ences are quasi-linear with respect to costs:

Assumption SEPARABLE. πit(z, x) is additively separable and linear in z.

I continue to assume that counterfactual bunchers K∗it = 1 stay at k∗ := 40, regardless of ρ
and k. Let p(k) = p · 1(k = k∗) denote the possible mass of counterfactual bunchers as a
function of k.

Theorem 2 (marginal comparative statics in the bunching design). Under Assumptions
CHOICE, CONVEX, SEPARABLE and SMOOTH:

1. ∂k
{
B[k,ρ1] − p(k)

}
= f1(k)− f0(k)

2. ∂kE[h
[k,ρ1]
it ] = B[k,ρ1] − p(k)

3. ∂ρ1E[h
[k,ρ1]
it ] = −

∫∞
k fρ1(h)E

[
dhit(ρ1)
dρ

∣∣∣ hit(ρ1) = h
]
dh

Proof. See Appendix A.
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Assumption SMOOTH is a set of regularity conditions which imply that hit(ρ) admits a
density fρ(h) for all ρ – see Appendix A for details. Theorem 2 also makes use of a stronger
version of CHOICE that applies to all ρ, described therein.

Beginning from the actual FLSA policy of k = 40, ρ1 = 1.5, the RHS of the first two
objects above are point identified from the data, provided that p is known. Item 1 says that
if the location of the kink is changed marginally, the bunching probability will change ac-
cording to the difference between the densities of h1i and h0i at k∗, which are in turn equal
to the left and right limits of the observed density f(h) at the kink. This result is intuitive:
given continuity of each potential outcome’s density, a small increase in k will result in a
mass proportional to f1(k) being “swept in” to the mass point at the kink, while a mass
proportional to f0(k) is left behind. Item 2 aggregates this change in bunching with the
changes to non-bunchers as k is increased. The f0(k) and f1(k) terms from the change
in bunching end up being canceled, and the first- order effect of changing k is simply to
transport the mass of inframarginal bunchers to the new value of k.36 Making use of The-
orem 2 for a discrete policy change like reducing standard hours to 35 requires integrating
across the actual range of hypothesized policy variation. We lose point identification, but
can use bi-log concavity of the marginal distributions of h0 and h1 to retain bounds, as
depicted by Figure 8.

Now consider the effect of moving from time-and-a-half to double time on average
hours worked, in light of item 3. This scenario, similar to ex-post evaluation of the effect
of the kink, requires making assumptions about the response of individuals who may
locate far from the kink, and for whom the buncher LATE is less directly informative.
Note that integrating item 3 over ρ we can write the average effect on hours from a move
to double-time in terms of local average elasticities of response:

E[h
[k,ρ1]
it − h[k,ρ̄1]

it ] =
∫ ρ̄1

ρ1
d ln ρ

∫ ∞
k

fρ(h)h ·E
[
d ln hit(ρ)
d ln ρ

∣∣∣∣ hit(ρ) = h

]
dh

Recall from the iso-elastic model that when the elasticity d lnhit(ρ)
d ln ρ = dhit(ρ)

dρ
ρ

hit(ρ)
is constant

across ρ and across units, it is partially identified. Just as an iso-elastic response is likely
to overstate responsiveness at large hit(ρ), I argue it is likely to understate responsiveness
to larger values of ρ, thus yielding a lower bound on the effect of moving to double-
time. For an upper bound on the magnitude of the effect, I assume rather that in levels
E[hit(ρ1) − hit(ρ̄1)|h1it > k] is at least as large as E[h0it − h1it|h1it > k], and that the

36Intuitively, in the limit of a small change in k bunchers who would choose exactly k under one of the
two cost functions B0 or B1 cease to “bunch” as k moves to some k′ > k, but they also do not change their
realized value of h since the counterfactual hours choice that characterizes their new choice is equal to k.
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increase in bunching from a change of ρ1 to ρ̄1 is as large as the increase from ρ0 to ρ1. I
provide additional details in Supplemental Appendix 4.7.

In these calculations, I have held fixed the distributions of h0 and h1, which can be seen
as describing the short-run before adjustment to straight-time wages or other factors that
influence these latent hours distributions. In the empirical implementation I account for
possible changes to straight wages when considering the average effects of policy changes
on hours, as we saw with the ex-post effect of the FLSA. The effect of such corrections for
the impact of changing k on the bunching probability is discussed in Section 6.

5 Implementation and Results

This section implements the empirical strategy described in the last section with the sam-
ple of administrative payroll data described in Section 3.

5.1 Identifying counterfactual bunching at 40 hours

Section 2 has argued that with wages fixed, the overtime kink should lead to bunching
at 40 hours a week, while Section 4 has shown that this bunching is useful in identifying
treatment effects and the impact of policy changes. However, there are other reasons to
expect bunching at 40 hours. For one, 40 may be considered a status-quo choice by firms
and/or workers, and it may be chosen even when it is not cost minimizing for the firm. It
can also be important for firms to synchronize hours across workers, and thus have them
coordinate on some number h∗ of hours. Finally, for any salaried workers who were not
successfully removed from the sample, firms may record the number of hours in a pay
period as 40 even as actual hours worked vary.

In terms of the empirical strategy from Section A.2, all of these alternative explanations
manifest in the same way: a point mass p at 40 in the distribution of hours that would
occur even if workers were paid their straight-time wages for all hours. In the notation
introduced in Section 4.3, these “counterfactual bunchers” are demarcated by K∗it = 1; I
refer to the K∗it = 0 individuals who also locate at the kink as “active bunchers”. The
mass of active bunchers is B − p. Theorem 1 shows that we can still partially identify the
buncher LATE in the presence of counterfactual bunchers, so long as we know how many
of the total bunchers are active and how many are counterfactual.

I leverage two strategies to provide plausible estimates for the mass of counterfactual
bunchers p. My preferred estimate uses of the fact that when an employee is paid for hours
that are not actually worked—including sick time, paid time off (PTO) and holidays—
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these hours do not contribute to the 40 hour overtime threshold of the FLSA. For example,
if a worker applies PTO to miss a six hour shift, then they are not required to be paid
overtime premium until they reach 46 total paid hours in that week, corresponding to 40
hours worked. These non-work hours thus shift the position of the kink in paid-hours.

The identifying assumption that I rely on is that individuals who still work 40 hours
a week, even when they are paid for a positive number of non-work hours, are all active
bunchers, and would not locate at forty hours in the counterfactuals h0it and h1it. This
assumption reflects the idea that alternative reasons for bunching at 40 hours besides the
overtime kink operate at the level of hours paid, rather than hours worked. Let nit in-
dicate non-worked hours for worker i in week t. Specifically, I make the following two
assumptions:

1. P (hit = 40|nit > 0) = P (hit = 40 and K∗it = 0|nit > 0)

2. P (hit = 40 and K∗it = 0|nit > 0) = P (hit = 40 and K∗it = 0|nit = 0)

The first item states that all of the individuals who locate at the kink, despite having a
positive number of non-work hours are indeed active bunchers. I thus know the mass of
active bunchers in the nit > 0 conditional distribution of hours. The second item says that
the nit > 0 distribution is representative of the unconditional distribution, in the sense that
the conditional mass of active bunchers does not vary based on whether non-work hours
are positive or zero. Together, these two assumptions imply that P (K∗it = 0 and hit =

40) = P (hit = 40|ηit > 0) and hence that p = P (K∗it = 1 and hit = 40) = B − P (hit =
40|ηit > 0).

I focus on paid time off as nit because it is generally planned in advance, and has
somewhat idiosyncratic timing. By contrast sick pay is often unanticipated, so the firm
may not be able to re-optimize total hours within a week in which a worker calls in sick.
Holiday pay is known in advance, holidays are unlikely to be representative in terms of
product demand and other factors important for hours determination, threatening the
second assumption.

Figure 8 shows the conditional distribution of hours paid for work when the paycheck
contains a positive number of PTO hours (nit > 0). The figure reveals that when moving
from the unconditional (left panel) to positive-PTO conditional (right panel) distribution,
most of the point mass at 40 hours moves away, largely concentrating now at 32 hours
(corresponding to the PTO covering a single eight hour shift). Of the total bunching of
B ≈ 11.6% in the unconditional distribution, I estimate that only about P (hit = 40|nit >
0) ≈ 2.7% are active bunchers, leaving p ≈ 8.9%. Roughly three quarters of the individuals
at 40 hours are counterfactual rather than active bunchers.
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FIGURE 8: The right panel shows a histogram of hours worked when paid time off hours are
positive. The left panel shows the unconditional distribution. Bin width is 1/8 hour.

As a secondary strategy, I estimate an upper bound for p by using the assumption that
the potential outcomes of counterfactual bunchers are relatively immobile over time. The
idea is that counterfactual bunchers have behavioral or administrative reasons for being at
40 hours, rather than 40 hours maximizing short run profits. I assume that these external
considerations are fairly static over time, preventing latent hours h0it from changing much
between adjacent pay periods. In particular, assume that in a given period t nearly all of
the counterfactual bunchers are also non-movers from t− 1, i.e.

p = P (h0it = 40) ≈ P (h0it = h0it−1 = 40) ≤ P (hit = hi,t−1 = 40)

where the inequality follows from h0it = 40 =⇒ hit = 40 by Lemma 1. The probability
P (hit = hi,t−1 = 40) can be directly estimated from the data, yielding p ≤ 6%.

5.2 Estimation and inference

Estimating bounds on the buncher LATE requires estimates of the CDF and density of
hours worked, and in particular right and left limits of these objects at the kink. I use the
local polynomial density estimator of Cattaneo, Jansson and Ma (2020) (CJM), which is
well suited to estimating a CDF and its derivatives at boundary points. I work with the
pooled distribution of paychecks over the full study period. The CJM estimator provides
a smoothed estimate of the left limit of the CDF and density at k as:

(F̂−(k), f̂−(k)) = argmin
(b1,b2)

∑
i:hit<k

(Fn(hit)− b1 − b2hit)2 ·K
(
hit − k
h

)
(10)
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where Fn(y) = 1
n ∑it 1(hit ≤ y) is the empirical CDF function, K(·) is a kernel function,

and h is a bandwidth. I use a triangular kernel, and choose h as follows: first, I use CJM’s
mean-squared error minimizing bandwidth selector to produce a bandwidth choice using
the data on either side of k = 40 (for the left and right limits, respectively). I then average
the two bandwidths, and use this as the bandwidth in the final calculation of both the right
and left limits, to mitigate any dependence of the estimates on a differential bandwidth
choice for each side. In the full sample, the bandwidth chosen by this procedure is about
1.7 hours, and is somewhat larger for subsamples that condition on a single industry.

To construct confidence intervals for parameters that are partially identified (e.g. the
buncher LATE), I use the adaptive critical values proposed by Imbens and Manski (2004)
and Stoye (2009) that are valid for the underlying parameter. In all cases, estimators of
bounds or point identified quantities are functions of inputs that are

√
n-asymptotically

normal.37 To easily incorporate sampling uncertainty in both (F̂−(k), f̂−(k), F̂+(k), f̂+(k))
and in p̂, I estimate the variances by a cluster non-parametric bootstrap that resamples at
the firm level. This allows arbitrary autocorrelation in hours across pay periods for a
single worker, and between workers within a firm. All standard errors use 500 bootstrap
replications.

5.3 Results of the bunching estimator

Table 2 reports treatment effect estimates h0it − h1it, in a sample that pools across all in-
dustries, when p is either assumed zero or estimated by one of the two methods described
in Section 5.1. The first row yields an estimate of the net bunching probability B− p, while
the second row reports the bounds on the buncher LATE E[h0it − h1it|hit = k] based on
bi-log concavity. Within a fixed estimate of p, the bounds on the buncher LATE are quite
informative: the upper and lower bounds are always close to each other and precisely
estimated. Appendix E reports estimates based on alternative shape constraints and as-
sumptions about effect heterogeneity, which deliver similar results.38

The PTO-based estimate of p provides the most conservative treatment effect estimates,
attributing roughly one quarter of the observed bunching to active rather than counter-
factual bunchers. Nevertheless, this estimate still yields a highly statistically significant

37For the effect of changing the kink point, I censor CDF estimates at zero and one. In principle, this could
undermine asymptotic normality, but these constraints are not typically binding so I ignore this issue.

38In particular, I present a point estimate based on Appendix Proposition 1, which assumes that treatment
effects are constant and that the density is linear in the missing region, as well as results under a weaker
assumption that the density is monotonic in the missing region. Monotonicity is not likely to hold in the
overtime context, since the kink appears to be located at the mode of both the h0 and h1 distributions.
Nevertheless, the bounds based on monotonicity do not deliver vastly different results.
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buncher LATE of about 2/3 of an hour, or 40 minutes. This estimate says that individuals
who in fact work 40 hours given the overtime kink in a given pay period would work
about 40 minutes more that week in a world in which they were paid their straight-time
wage for all hours, compared with a world in which they were paid 1.5 times this wage
for all hours. On the other side of the spectrum, if all of the observed bunching mass is
attributed to active bunchers, corresponding to p = 0, then the estimated buncher LATE
suggests a difference of at least 2.6 hours. The next section expresses these estimates as
elasticities, by making the bi-log-concavity assumption on the distribution of log hours
rather than hours.39 In Appendix Table E.5 I report estimates of the buncher LATE for
each of the largest industries in the sample, and also present estimates as a function of the
assumed mass p of counterfactual bunchers at 40 hours.

p=0 p from non-changers p from PTO

Net bunching: 0.116 0.057 0.027

[0.112, 0.120] [0.055, 0.058] [0.024, 0.030]

Buncher LATE [2.614, 3.054] [1.324, 1.435] [0.640, 0.666]

[2.493, 3.205] [1.264, 1.501] [0.574, 0.736]

———————–

Num observations 630217 630217 630217

Num clusters 566 566 566

TABLE 2: Estimates of net bunching B− p and the buncher LATE: ∆∗k = E[h0it−h1it|hit = k,K∗it =
0], across various strategies to estimate counterfactual bunching p = P (K∗it = 1). Unit of analysis
is a paycheck, and 95% bootstrap confidence intervals (in gray) are clustered by firm.

5.4 Estimates of policy effects

I now use estimates of the buncher LATE to estimate the overall causal effect of the FLSA
overtime rule, as well as simulate changes based on modifying standard hours or the
premium pay factor. Table 3 reports an estimate of the buncher LATE expressed as a
reduced form elasticity,40 which I use as an input in these calculations. The next two rows

39Appendix Table E.11 also shows estimates based on constant treatment effects in logs and monotonicity
or linear interpolation.

40 This is ∆̂∗k/(40 ln(1.5)) where ∆̂k is the estimate of the buncher LATE presented in Table 2, which
is numerically equivalent to the elasticity implied by the buncher LATE in logs E[ln h0it − ln h1it|hit =
k,K∗it = 0]/(ln 1.5) estimated under assumption that ln h0 and ln h1 are BLC.
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report bounds on E[hit − h∗it] and E[hit − h∗it|h1it ≥ 40,K∗it = 0], respectively. The first of
these is the overall ex-post effect of the FLSA on hours, averaged over both workers and
pay periods, while the second conditions on paychecks for which the FLSA premium has
a direct effect (those reporting at least 40 hours aside from counterfactual bunchers). The
final row reports an estimate of the effect of moving to double-time pay, also including a
correction term to account for possible wage changes. I provide details of the calculations
in Supplemental Appendix 4.7.

Taking the PTO-based estimate of p as a lower bound on responsiveness, the esti-
mates suggest that FLSA eligible workers work at least 1/5 of an hour less in any given
week than they would absent overtime regulation: about one third the magnitude of the
buncher LATE in levels. When I focus on those eligible workers that are directly affected
in a given week, the figure is about twice as high: roughly 30 minutes. I estimate that a
move to double-time pay would introduce a further reduction that may be comparable to
the existing overall ex-post effect, but with substantially wider bounds. These estimates
include the effects of possible adjustments to straight-time wages, which tend to attenuate
the effects of the policy change. Appendix Table E.12 replicates Table 3 neglecting these
wage adjustments, which might be viewed as a short-run response to the FLSA before
wages have time to adjust.

p=0 p from non-changers p from PTO

Buncher LATE as elasticity [-0.188,-0.161] [-0.088,-0.082] [-0.041,-0.039]
[-0.198,-0.154] [-0.093,-0.078] [-0.045,-0.035]

———————–
Average effect of FLSA on hours [-1.466, -1.026] [-0.727, -0.486] [-0.347, -0.227]

[-1.535, -0.977] [-0.762, -0.463] [-0.384, -0.203]
———————–
Avg. effect among directly affected [-2.620, -1.833] [-1.453, -0.972] [-0.738, -0.483]

[-2.733, -1.750] [-1.518, -0.929] [-0.812, -0.434]
———————–
Double-time, average effect on hours [-2.604, -0.569] [-1.239, -0.314] [-0.580, -0.159]

[-2.707, -0.547] [-1.285, -0.300] [-0.638, -0.143]

TABLE 3: Estimates of the buncher LATE expressed as an elasticity, the average ex-post effect of
the FLSA E[hit − h∗it],40 the effect among directly affected units E[hit − h∗it|hit ≥ k] and predicted
effects of a change to double-time. 95% bootstrap confidence intervals in gray, clustered by firm.

Figure 9 breaks down estimates of the ex-post effect of the kink by major industry,
revealing considerable heterogeneity between industries. The estimates suggest that the
industries Real Estate & Rental and Leasing as well as Wholesale Trade see the highest
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average reduction in hours. The least-affected industries are Health Care and Social As-
sistance and Professional Scientific and Technical, with the average worker working just
about 6 minutes less per week. Appendix Figure E.8 compares the hours distribution for
Real Estate & Rental and Leasing with the distribution for of Professional Scientific and
Technical, showing that the difference in their effects can be explained by B − p being
larger for Real Estate & Rental and Leasing, while the density of hours close to the kink
is smaller. Appendix Table E.6 reports numerical values as well as estimates based on
assuming all of the bunching is due to the FLSA. Appendix E reports estimates broken
down by gender, finding that the FLSA has considerably higher effects on the hours of
men.

FIGURE 9: 95% confidence intervals for the effect of the FLSA on hours by industry, using PTO-
based estimates of p for each. Dots are point estimates of the upper and lower bounds. The number
to the right of each range is the point estimate of the net bunching B − p for that industry.

Figure 10 looks at the effect of changing the threshold for overtime hours k from 40 to
alternative values k′. The left panel reports estimates of the identified bounds on B[k′,ρ1]

as well as point-wise 95% confidence intervals (gray) across values of k′ between 35 and
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45, for each of the three approaches to estimating p. In all cases, the upper bound on
bunching approaches zero as k′ is moved farther from 40. This is sensible if the h0 and
h1 distributions are roughly unimodal with modes around 40: straddling of potential out-
comes becomes less and less likely as one moves away from where most of the mass is.
Appendix E.11 shows these bounds as k′ ranges all the way from 0 to 80, for the p = 0 case.
Since these estimates do not account for adjustment to straight-time wages, they should
be viewed as short-run responses.

When p is estimated using PTO or non-changers between periods, we see that the
upper bound of the identified set for B[k′,ρ1] in fact reaches zero quite quickly. Moving
standard errors to k′ = 35 is predicted to completely eliminate bunching due to the over-
time kink in the short run, before any adjustment to latent hours (e.g. through changes to
straight-time wages). The right panel of Figure 10 shows estimates for the average effect
on hours of changing k, inclusive of wage effects (see Appendix F for details). Increases
to k cause an increase in hours, as overtime policy becomes less stringent, and reductions
to k reduce hours. The actual size of these effects ais not well-identified for changes larger
than a couple of hours, however the range of statistically significant effects depends on p.
Even for the preferred estimate of p from PTO, increasing the overtime threshold as high
as 43 hours is estimated to increase average working hours by an amount distinguishable
from zero.

6 Implications of the estimates for overtime policy

The estimates from the preceding section suggest that FLSA regulation indeed has real
effects on hours worked, in line with labor demand theory when wages do not fully ad-
just to absorb the added cost of overtime hours. When averaged over affected workers
and across pay periods, I find that hourly workers in my sample work at least 30 minutes
less per week than they would without the overtime rule. A less conservative estimate
of the bunching caused by the FLSA suggests the effect is between 1 and 1.5 hours. My
preferred estimate of about half an hour is broadly comparable to the few causal estimates
that exist in the literature, including Hamermesh and Trejo (2003) who assess the effects of
expanding California’s daily overtime rule to cover men in 1980, and Brown and Hamer-
mesh (2019) who use the erosion of the real value of FLSA exemption thresholds over the
last several decades.41 By contrast, my estimates carry the strengths of an approach to

41Hamermesh and Trejo (2003) and Brown and Hamermesh (2019) report estimates of −0.5 and −0.18 for
the elasticity of overtime hours with respect to the overtime rate. My preferred estimate of −0.04 for the
buncher LATE as an elasticity is the elasticity of total hours, including the first 40. An elasticity of overtime
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Bunching at new kink Average effect on hours

FIGURE 10: Bounds for the bunching that would exist at standard hours k if it were changed from
40 (left panel), as well as for the impact on average hours (right panel). Bounds of the effect on
hours are clipped to the interval [−0.5, 0.5] for visibility. Pointwise bootstrapped 95% confidence
intervals, cluster bootstrapped by firm, are shaded gray.

hours can be computed by multiplying this by the ratio of mean hours to mean overtime hours in the
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identification that does not require a natural experiment, and use much more recent data.
From the perspective of a typical worker, a decrease in working hours of 30 minutes

per week may seem modest, but the overall effect of the policy could be quite large. The
data suggest that at least about 3% and as many as about 11% of workers’ hours are ad-
justed to the threshold introduced by the policy, indicating that the policy may have sig-
nificant distortionary impacts. But the policy may also have quite substantial effects on
unemployment. While a full assessment of the employment effects of the FLSA overtime
rule is beyond the scope of this paper, the hours effects estimated here can be used to
construct some back-of-the-envelope calculations.

If the average FLSA eligible worker works approximately 1/3 of an hour less per week
because of the rule, hours per worker are reduced by just under 1% on average. If we
ignore scale effects of the overtime rule on the total number of labor hours in FLSA-
eligible jobs, this would suggest that employment among such jobs is 1% higher than
it would be without the overtime premium. This serves as an upper bound, since over-
all hours worked may decrease due to overtime regulation. Hamermesh (1996) proposes
a simple adjustment, based on assuming a value for the rate at which firms substitute
labor for capital based on their relative prices, and the possibility of offsetting labor sup-
ply effects. In particular, the adjustment assumes the percentage change in employment
is ∆ lnE|EH − η · ∆ lnLC · η

α−η where η is a constant-output demand elasticity for labor
(rather than capital), α is a labor supply elasticity, and ∆ lnLC is the percentage change in
total labor costs from the introduction of the FLSA. Here ∆ lnE|EH is the quantity implied
by my estimates: the percentage change in employment that would occur were the total
number of worker-hours EH unchanged.

Using plausible values from Hamermesh (1996) for the remaining parameters yields
0.17 percentage points for the substitution term η ·∆ lnLC · η

α−η , suggesting that the effect
of the FLSA is attenuated from roughly 0.87 percentage points to about a 0.70 percentage
point net increase in employment. This would represent about 700,000 jobs, assuming 100
million FLSA eligible workers. A reasonable range of parameter values rules out negative
overall employment effects from the FLSA.42 I can also put an overall upper bound on
the size of employment effects, by attributing all of the bunching at 40 to the FLSA and
assuming the total number of worker-hours is not reduced at all. By this estimate the
FLSA increases employment by at most 3 million jobs, or 3% among covered workers.

This paper has also considered the likely effects of adjusting the two parameters that

sample, resulting in an estimate of roughly −0.45.
42These “best-guess” values are η = −0.3, α = 0.1, and ∆ lnLC calibrated assuming 80% of labor costs

come from wages with overtime representing 2% of total hours. Generating a negative overall employment
response by assuming higher substitution to capital requires η = −1.25, well outside of empirical estimates.
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characterize the FLSA overtime rule: standard hours and the overtime premium factor.
The effect of moving to double-pay for overtime is not as precisely identified as the ex-
post effect of the FLSA, but estimates suggest an average additional effect on hours that
is at least as large as the effect of the current FLSA regulation. I also find that moving
time-and-a-half overtime pay to begin at 35 rather than 40 hours would nearly eliminate
bunching due to the FLSA, given workers’ current wages.43 While my short run predic-
tion under this policy counterfactual assumes away changes to straight-time wages, the
reduction in bunching is likely to remain after allowing such adjustment over time. With
35 already to the left of the mode of the latent hours distributions h0i and h1i, it would
become even further from the mode as these distributions move rightward due to lower
wages. Moving the overtime premium away from the mode of the distribution of these
latent hours choices may thus lead to efficiency benefits that are persistent over time.

7 Conclusion

This paper has analyzed the effects of U.S. overtime policy on hours worked by adapting
the method of using bunching at kinks to address itself to questions of causal inference.
In particular, I have seen that the assumptions needed for identification in the bunching
design are considerably weaker than has been previously shown in the literature. While
structural models of choice can help interpret estimates that use bunching at a kink, the
basic identifying power of the bunching design for counterfactuals is robust to a variety of
structural models and underlying functional form assumptions. Across such choices, the
identified parameter of interest is a reduced form treatment effect for two appropriately-
defined potential outcomes.

By leveraging these insights with a new payroll dataset recording exact weekly hours
paid at the individual level, I estimate that U.S. workers subject to the FLSA indeed work
shorter hours due to the overtime rule, which may lead to substantial employment effects.
A move to double time would introduce substantial further reductions, while reducing the
standard workweek from 40 to 35 hours would eliminate bunching due to overtime in the
short run. Given the large amount of within-worker variation in hours observed in the
data, the modest size of the FLSA effects estimated in this paper suggest that firms face
significant incentives to maintain longer working hours, countervailing against the ones
introduced by policies such as the time-and-a-half rule intended to reduce such hours.

43Estimates of the average hours effect for changes to standard hours are consistent with estimates by
Costa (2000), that hours fell by 0.2-0.4 on average during the phased introduction of the FLSA in which
standard hours declined by 2 hours in 1939 and 1940.
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A Identification in a generalized bunching design

This section develops the formal results used in the paper. While the FLSA will provide
a running example throughout, I largely abstract from the overtime context to emphasize
the wide applicability of the results. To facilitate comparison with the existing literature on
bunching at kinks – which has mostly considered cross-sectional data – I throughout this
section suppress time indices and use the single index i to refer to each unit of observation
(a paycheck in the overtime case).

Further, the “running variable” of the bunching design is denoted throughout this
section by Y rather than h. This is done to emphasize the link to the treatment effects
literature, while allowing a distinction that can is in some cases necessary (e.g. a model
where hours of pay for work differ from actual hours of work).

A.1 A generalized bunching-design model

Consider decision-makers i who choose a point (z, x) in some space X ⊆ Rd+1 where z is
a scalar and x a vector of d components, subject to a constraint of the form:

z ≥ max{B0i(x),B1i(x)} (A.1)
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We require that B0i(x) and B1i(x) are continuous and weakly convex functions of the
vector x, and that there exist continuous scalar functions yi(x) and a scalar k such that:

B0i(x) > B1i(x) whenever yi(x) < k and B0i(x) < B1i(x) whenever yi(x) > k

The value k is taken to be common to all units i, and is assumed to be known by the re-
searcher.44 In the overtime setting, yi(x) represents the hours of work for which a worker
is paid in a given week, and k = 40. Let Xi be i’s realized outcome of x, and Yi = yi(Xi).
I assume that Yi is observed by the econometrician, but not that Xi is.

In a typical example, the functions B0i, B1i will represent a schedule of some kind of
“cost” as a function of the choice vector x, with two regimes of costs that are separated by
the condition yi(x) = k, characterizing the locus of points at which the two cost functions
cross. Let Bki(x) := max{B0i(x),B1i(x)}. Budget constraints like Eq. z ≥ Bki(x) are
typically “kinked” because while the function Bki(x) is continuous, it will generally be
non-differentiable at the x for which yi(x) = k.45 While the functions B0, B1 and y can all
depend on i, I will often suppress this dependency for clarity of notation.

In the most common cases from the literature, x is assumed to be the scalar yi(x) = x,
i.e. there is no distinction between the “kink variable” y and underlying choice variables
x. For example, the seminal bunching design papers Saez (2010) and Chetty et al. (2011)
considered progressive taxation with z being tax liability (or credits), both y = x corre-
sponding to taxable income, and B0 and B1 linear tax functions on either side of a thresh-
old y between two adjacent tax/benefit brackets. However, even when the functions B0

and B1 only depend on x through yi(x), the bunching design is compatible with models
in which multiple margins of choice respond to the incentives provided by the kink.46 In
fact, the econometrician may be agnostic as to even what the full set of components of x
are, with y(·), B0(·) or B1(·) depending only on various subsets of them. The next sec-
tion will discuss how the bunching design allows us to conduct causal inference on the
variable Yi, but not directly on the underlying choice variables Xi.

44This comes at little cost of generality since with heterogeneous ki this could be subsumed as a constant
into the function yi(x), so long as the ki are observed by the researcher.

45In particular, the subgradient of max{B0i(x),B1i(x)}will depend on whether one approaches from the
yi(x) > k or the yi(x) < k side. For example with a scalar x and linear B0 and B1, the derivative of Bki(x)
discontinuously rises when yi(x) = k.

46An example from the literature in which a distinction between y and x cannot be avoided is Best et
al. (2015), discussed in further detail in Supplemental Appendix Section 2.4. These authors study firms in
Pakistan, who pay either a tax on output or a tax on profit, whichever is higher. The two tax schedules cross
when the ratio of profits to output crosses a certain threshold that is pinned down by the two respective tax
rates. In this case, the variable y depends both on production and on reported costs, leading to two margins
of response to the kink: one from choosing the scale of production and the other from choosing whether
and how much to misreport costs.
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In the overtime context, z corresponds to the cost of a single-worker’s labor in a single
week, and:

B0i(y) := wity and B1i(y) := 1.5wiy− 20wi (A.2)

The functions B0 and B1 are depicted in Figure A.1 for a single worker with wage wi = w.
B0 describes a setting in which the worker is paid at their straight-time wage w for all
hours, regardless of whether they work more or less than 40. B1 describes a setting in
which the worker is instead paid at their overtime rate 1.5w for all hours, but the firm is
given a subsidy that keeps them indifferent between the two cost schedules at y = 40.
With these definitions, we can see that the actual labor cost to the firm of any number of
hours h is Bki(y) := max{B0i(y),B1i(y)} for worker i. Supplemental Appendix Section
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FIGURE A.1: Definition of counterfactual cost functions B0 and B1 that firms could have faced,
absent the overtime kink. Dashed lines show the rest of actual cost function in comparison to the
counterfactual as a solid line.

2.4 discusses how two examples from the literature fit into the framework presented here:
the classic example of labor supply subject to a marginal tax rate increase, and Best et al.
(2015), who study a feature of corporate taxation in Pakistan.

A.2 Potential outcomes as counterfactual choices

To introduce a notion of treatment effects in the bunching design, I define a pair of poten-
tial outcomes as what would occur if the decision-maker faced either of the functions B0

or B1 globally, without the kink:

Definition (potential outcomes). Let Y0i be the value of yi(x) that would occur for agent i if
they faced the constraint z ≥ B0(x), and let Y1i be the value that would occur under the constraint
z ≥ B1(x).
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The above definition requires outcomes y and costs z to be definable at the individual
level, but does not require the no-interference condition of the stable unit treatment values
assumption (SUTVA). Nevertheless, the interpretation of the treatment effects identified
by the bunching design is most straightforward when SUTVA holds. This assumption is
standard in the bunching design, though it may be a restrictive one in overtime context
where a single firm chooses the hours of multiple workers.47 I discuss this further in the
overtime setting in Section 4.4 and Appendix C.

To relate these counterfactual outcomes to choices of the decision-maker, we make
explicit the assumption that they control the value of yi(x). For any function B let YBi
be the outcome that would occur under the choice constraint z ≥ B(x), with Y0i and Y1i

shorthands for YB0ii and YB0ii, respectively.48

Assumption CHOICE (perfect manipulation of y). For any function B(x), YBi = yi(xBi),
where (zBi, xBi) is the choice that i would make under the constraint z ≥ B(x).

Assumption CHOICE rules out for example optimization error, which could limit the
decision-maker’s ability to exactly manipulate values of x and hence y. It also takes for
granted that counterfactual choices are unique, and rules out some kinds of extensive mar-
gin effects in which a decision-maker would not choose any value of Y at all under B1 or
B0. Assumption CHOICE may be relaxed somewhat while still allowing for meaningful
causal inference, but I maintain this assumption throughout (however the decision-maker
need not always be the firm only; see Appendix B). Note that CHOICE here differs from
the version given in the main text in that it applies to all functions B, not just B0, B1 and
Bk (this is useful for Theorem 2).

The central behavioral assumption that allows us to reason about the counterfactuals
Y0 and Y1 is that decision-makers have convex preferences over (c, x) and dislike costs z:

Assumption CONVEX (strictly convex preferences, monotonic in z). For each agent i
and function B(x), choice is (zBi, xBi) = argmaxz,x{ui(z, x) : z ≥ B(x)} where ui(z, x) is
continuous and strictly quasi-concave in (z, x), and strictly decreasing in z.

Note that in the overtime setting with firms choosing hours, ui(z, x) corresponds to the
firm’s profit function π as a function of the hours of a particular worker (in a particular
period), and costs this week for that worker.

47However I note that SUTVA issues could also occur in canonical bunching designs: for example if
spouses choose their labor supply jointly, the introduction of a tax kink may cause one spouse to increase
labor supply while the other decreases theirs.

48Note that in this notation Assumption CHOICE implies that the actual outcome Yi observed by the
econometrician is equal to YBkii.
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A weaker assumption than convexity that will still have identifying power is simply
that agents’ choices do not violate the weak axiom of revealed preference:

Assumption WARP (rationalizable choices). Consider two budget functions B and B′ and
any agent i. If their choice under B′ is feasible under B, i.e. zB′i ≥ B(xB′i), then (zBi, xBi) =

(zB′i, xB′i).

I make the stronger assumption CONVEX for most of the identification results, but As-
sumption WARP still allows a version of many of them in which equalities become weak
inequalities, indicating a degree of robustness with respect to departures from convexity.
Note that the monotonicity assumption in CONVEX implies that choices will always sat-
isfy z = B(x), i.e. agents’ choices will lay on their cost functions (despite Eq. A.1 being an
inequality, indicating “free-disposal”).

In the overtime application, the potential outcomes Y0i and Y1i are the hours that the
firm would choose, respectively, in a situation a) in which there was no overtime premium
and the firm always had to pay wi for each hour; and b) a situation in which the firm
were to pay 1.5wi for all hours of labor, but receive a subsidy of 20wi that keeps the firm
indifferent between B0 and B1 when h = 40 (cf. Eq. A.2). When firm preferences are
quasilinear with respect to wage costs, the choice of hours Y1 will be the same as what the
firm would have chosen without the subsidy of 20w.

Further notes on the general model

I conclude this section with some further remarks on the generality of Eq. (A.1) given
the above assumptions. The first is that the budget functions B0 and B1 can depend on a
subset of the variables that enter into the function for y, and vice versa. In the former case,
this is because the only restriction on the Bdi(x) for d ∈ {0, 1} is that they are continuous
and weakly convex in all components of x; thus, having zero dependence on a compo-
nent of x is permissible. This is of particular interest because while the variables entering
into the budget functions are generally known from the empirical context generating the
kink, the model can allow additional choice variables to enter into the threshold-crossing
variable y, that may not even be known to the econometrician. Section 4.2 provides some
examples of this in the overtime setting.

Suppose that Bdi(x) = Bdi(x̄), where x̄ is a sub-vector of the first m components of
x, but yi(x) is still a function of all m+ l components of x. The values of the remaining
l components affect the decision-maker’s optimizing choice of y, because they affect the
value of y and hence which regime ofBdi the decision-maker’s choice is in. Thus, observed
bunching in y can reflect a response along any of these l additional margins, even though
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they correspond to variables that are unobserved are even unknown to the researcher.
This can complicate identification of specific structural elasticities, but does not challenge
the credibility of causal inference about y.

A.3 Observables in the kink bunching design

Lemma 1 outlines the core consequence of convexity of preferences for the relationship
between observed Yi and the potential outcomes introduced in the last section:

Lemma 1 (realized choices as truncated potential outcomes). Under Assumptions CON-
VEX and CHOICE:

Yi =


Y0i if Y0i < k

k if Y1i ≤ k ≤ Y0i

Y1i if Y1i > k

Proof. See Appendix F.

Lemma 1 says that the pair of counterfactual outcomes (Y0i,Y1i) is sufficient to pin down
actual choice Yi, which can in fact can be seen as an observation of one or the other po-
tential outcome depending on how they relate to the kink point k. When the Y0i potential
outcome is greater than k but the Y1i potential outcome is below – when the potential out-
comes “straddle” the kink – the agent will locate choose the corner solution of locating
exactly the kink.49

Lemma 1 differs from existing approaches to the bunching design in a basic way by
expressing the condition for locating at Yi = k in terms of the counterfactual choices Y0i

and Y1i, rather than primitives of the underlying utility functions ui(c, x). The typical ap-
proach in the literature has been to assume a particular parametric functional form for
ui(c, x), then derive an expression for B in terms of such parameters (typically an elastic-
ity parameter). Instead, I treat the underlying utility function ui(c, x) as an intermediate
step, only requiring the nonparametric restrictions of convexity and monotonicity. By ex-
pressing the bunching event in terms of the “reduced-form” quantity yi(x), we need only
believe that there exists an underlying model of utility satisfying CONVEX, and do not
need to know its form explicitly.

Consider a random sample of observations of Yi. Under i.i.d. sampling of Yi, the
distribution F (y) of Yi is identified. Let B := P (Yi = k) be the observable probability that
the agent chooses to locate exactly at Y = k. By Lemma 1, this is equal to the probability

49The opposite situation of Y0i ≤ k ≤ Y1i, what we might call “reverse straddling”, is ruled out by WARP
when it occurs by at least one strict inequality.
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of the event Y1i ≤ k ≤ Y0i. With convex preferences, a point mass B > 0 in the distribution
of Yi occurs when the straddling event occurs with positive probability.

Let ∆i = Y0i − Y1i. This can be thought of as the treatment effect of a counterfactual
change from the choice set under B1 to the choice set under B0. The straddling event can
be expressed in terms of ∆i as Y0i ∈ [k, k+ ∆i]. This forms the basic link between the
observable quantity B and treatment effects. Proposition 3 states the general result.

Theorem 3 (relation between bunching and straddling). a) Under CONVEX and CHOICE:
B = P (Y0i ∈ [k, k+ ∆i]); b) under WARP and CHOICE: B ≤ P (Y0i ∈ [k, k+ ∆i]).

Proof. See Appendix F.

Let F1(y) = P (Y0i ≤ y) be the distribution function of the random variable Y0, and F1(y)

the distribution function of Y1. From Lemma 1 it follows immediately that F0(y) = F (y)

for all y < k, and F1(y) = F (y) for Y > k. Thus observations of Yi are also informative
about the marginal distributions of Y0i and Y1i. A weaker version of this also holds under
WARP rather than CONVEX:

Corollary (identification of truncated densities). Suppose that F0 and F1 are continuously
differentiable with derivatives f0 and f1, and that F admits a derivative function f(y) for y 6= k.
Under WARP and CHOICE: f0(y) ≤ f(y) for y < k and f0(k) ≤ limy↑k f(y), while f1(y) ≤
f(y) for y > k and f1(k) ≤ limy↓k f(y), with equalities under CONVEX.

Proof. See Appendix F.

Discussion of treatment effects vs. structural parameters:

The treatment effects ∆i are “reduced form” in the sense that when the decision-maker
has multiple margins of response x to the incentives introduced by the kink, these may be
bundled together in the treatment effect ∆i. This clarifies a limitation sometimes levied
against the bunching design, while also revealing a perhaps under-appreciated strength.
On the one hand, it is not always clear “which elasticity” is elicited by bunching at a kink,
complicating efforts to identify a elasticity parameter having a firm structural interpreta-
tion.

On the other hand, the bunching design can be useful for ex-post policy evaluation
and even forecasting effects of small policy changes (as described in Section 4.4), without
committing to a tightly parameterized underlying model of choice. The “trick” of Lemma
1 is to express the observable data in terms of counterfactual choices, rather than of prim-
itives of the utility function. The econometrician need not even know the full vector x
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of choice variables underlying agents’ value of y, they simply need to believe that pref-
erences are convex in them, and verify that B0 and B1 are convex in a subset of them.
This greatly increases the robustness of the method to potential misspecification of the
underlying choice model. Appendix A further elucidates some of these issues through an
example from the literature.

A.4 Additional identification results for the bunching design

Supplemental Appendix 2 presents several identification results that are not used in this
paper, which can be considered alternatives to Theorem 1. This includes re-expressing
various results in the general framework of this section, including the linear interpolation
approach of Saez (2010), the polynomial approach of Chetty et al. (2011) and a “small-
kink” approximation appearing in Saez (2010) and Kleven (2016). The Supplemental Ap-
pendix also outlines alternative shape constraints to bi-log-concavity, including mono-
tonicity of densities. I also give there a result in which a lower bound to a local average
treatment effect is identified under WARP, without requiring convexity of preferences.

A.5 The buncher LATE when Assumption RANK fails

This section picks up from the discussion in Section 4.3, which introduces the buncher
LATE ∆∗k parameter and Assumption RANK, but continues with the notation of this Ap-
pendix. When RANK fails (and p = 0 for simplicity), the bounds from Theorem 1 are still
valid for the averaged quantile treatment effect:

1
B
∫ F1(k)

F0(k)
Q0(u)−Q1(u) = E[Y0i|Y0i ∈ [k, k+ ∆∗0]]−E[Y1i|Y1i ∈ [k− ∆∗1, k]] (A.3)

under BLC of Y0 and Y1, where we define ∆∗0 := Q0(F1(k))−Q1(F1(k)) = Q0(F1(k))− k
and ∆∗1 := Q0(F0(k)) −Q1(F0(k)) = k −Q1(F0(k)). This can be seen to yield a lower
bound on the buncher LATE, as described in Figure A.2 below.
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FIGURE A.2: When Assumption RANK fails, the average E[Y0i|Y0i ∈ [k, k + ∆∗0]] will include
the mass in the region S0, who are not bunchers (blue, NE lines) but will be missing the mass in
the region A0 (green, NW lines) who are. This causes an under-estimate of the desired quantity
E[Y0i|Y1i ≤ k ≤ Y0i]. Similarly, E[Y1i|Y1i ∈ [k− ∆∗1, k]] will include the mass in the region S1, who
are not bunchers but will be missing the mass in A1, who are. This causes an over-estimate of the
desired quantity E[Y1i|Y1i ≤ k ≤ Y0i].

A.6 Policy changes in the bunching-design

Consider a bunching design in which the cost functions B0 and B1 can be viewed as
members of family Bi(x; ρ, k) parameterized by a continuum of scalars ρ and k, where
B0i(x) = Bi(x; ρ0, k∗) and B1i(x) = Bi(x; ρ1, k∗) for some ρ1 > ρ0 and value k∗ of k. In
the overtime setting ρ represents a wage-scaling factor, with ρ = 1 for straight-time and
ρ = 1.5 for overtime:

Bi(y; ρ, k) = ρwiy− kwi(ρ− 1) (A.4)

where work hours y may continue to be a function y(x) of a vector of choice variables to
the firm. Here ρ represents an arbitrary wage-scaling factor, while k controls the size of a
lump-sum subsidy that keeps Bi(k; ρ, k) invariant across ρ.

Assume that ρ takes values in a convex subset of R containing ρ0 and ρ1, and that for
any k and ρ′ > ρ the cost functions Bi(x; ρ, k) and Bi(x; ρ′, k) satisfy the conditions of
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the bunching design framework from Section 4, with the function yi(x) fixed across all
such values. That is, Bi(x; ρ′, k) > Bi(x; ρ, k) iff yi(x) > k with equality when yi(x) = k,
the functions Bi(·; ρ, k) are weakly convex and continuous, and yi(·) is continuous. It is
readily verified that Equation (A.4) satisfies these requirements with yi(h) = h.50

For any value of ρ, let Yi(ρ, k) be agent i’s realized value of yi(x) when a choice of (z, x)
is made under the constraint c ≥ Bi(x; ρ, k). A natural restriction in the overtime setting
that is that the function Yi(ρ, k) does not depend on k, and some of the results below will
require this. A sufficient condition for Yi(ρ, k) = Yi(ρ) is a family of cost functions that
are linearly separable in k, as we have in Equation (A.4), along with quasi-linearity of
preferences:

Assumption SEPARABLE (invariance of potential outcomes with respect to k). For all
i, ρ and k, Bi(x; ρ, k) is additively separable between k and x (e.g. bi(x, ρ) + φi(ρ, k) for some
functions bi and φi), and for all i ui(z, x) can be chosen to be additively separable and linear in z.

Quasilinearity of preferences is a property of profit-maximizing firms when c represents a
cost, thus it is a natural assumption in the overtime setting. However, additive separabil-
ity ofB(x; ρ, k) in k may be context specific: in the example from Best et al. (2015) described
in Appendix A, quasi-linearity of preferences is not sufficient since the cost functions are
not additively separable in k. To maintain clarity of exposition, I will keep k implicit in
Yi(ρ) throughout the foregoing discussion, but the proofs make it clear when SEPARABLE
is being used.

Below I state two intermediate results that allow us to derive expressions for the effects
of marginal changes to ρ1 or k on hours. Lemma 2 generalizes an existing result from
Blomquist et al. (2019), and makes use of a regularity condition I introduce in the proof
as Assumption SMOOTH.51 Counterfactual bunchers K∗i = 1 are assumed to stay at k∗,
regardless of ρ and k. Let p(k) = p · 1(k = k∗) denote the possible counterfactual mass
at the kink as a function of k. Let fρ(y) be the density of Yi(ρ), which exists by SMOOTH
and is defined for y = k∗ as a limit (see proof).

Lemma 2 (bunching from marginal responsiveness). Assume CHOICE, SMOOTH and
WARP. Then:

B − p(k) ≤
∫ ρ1

ρ0
fρ(k)E

[
−dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

50As an alternative example, I construct in Appendix A functions Bi(x; ρ, k) for the bunching design
setting from Best et al. (2015). In that case, ρ parameterizes a smooth transition between an output and a
profit tax, where k enters into the rate applied to the tax base for that value of ρ.

51Blomquist et al. (2019) derive the special case of Lemma 2 with CONVEX and p = 0, in the context of
a more restricted model of labor supply under taxation. I establish it here for the general bunching design
model where in particular, the Yi(ρ) may depend on an underlying vector x which are not observed by the
econometrician. I also use different regularity conditions.
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with equality under CONVEX.

Proof. See Appendix F.

Lemma 2 is particularly useful when combined with a result from Kasy (2017), which
considers how the distribution of a generic outcome variable changes as heterogeneous
units flow to different values of that variable in response to marginal policy changes.

Lemma 3 (flows under a small change to ρ). Under SMOOTH:

∂ρfρ(y) = ∂y

{
fρ(y)E

[
−dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = y,K∗i = 0
]}

Proof. See Appendix F.

The intuition behind Lemma 3 comes from fluid dynamics. When ρ changes, a mass of
units will “flow” out of a small neighborhood around any y, and this mass is proportional
to the density at y and to the average rate at which units move in response to the change.
When the magnitude of this net flow varies with y, the change to ρ will lead to a change
in the density there.

With ρ0 fixed at some value, let us index observed Yi and bunching B with the su-
perscript [k, ρ1] when they occur in a kinked policy environment with cost functions
Bi(·; ρ0, k) and Bi(·; ρ1, k). Lemmas 2 and 3 together imply Theorem 2, which I repeat
here:

Theorem 2 (marginal comparative statics in the bunching design). Under Assumptions
CHOICE, CONVEX, SMOOTH, and SEPARABLE:

1. ∂k
{
B[k,ρ1] − p(k)

}
= f1(k)− f0(k)

2. ∂kE[Y
[k,ρ1]
i ] = B[k,ρ1] − p(k)

3. ∂ρ1E[Y
[k,ρ1]
i ] = −

∫∞
k fρ1(y)E

[
dYi(ρ1)
dρ

∣∣∣ Yi(ρ1) = y
]
dy

Proof. See Appendix F.

Assumption SEPARABLE is only necessary for Items 1-2 in Theorem 2, Item 3 holds with-
out it and with ∂Yi(ρ,k)

∂ρ replacing dYi(ρ)
dρ .
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B Incorporating workers that set their own hours

This section considers the robustness of the empirical strategy from Section 4 to a case
where some workers are able to choose their own hours. In this case, a simple extension
of the model leads to the bounds on the buncher LATE remaining valid, but it is only
directly informative about the effects of the FLSA among workers who have their hours
chosen by the firm. In this section I follow the notation from the main text where hit

indicate the hours of worker i in week t.
Suppose that some workers are able to choose their hours each week without restric-

tion (“worker-choosers"), and that for the remaining workers (“firm-choosers”) their em-
ployers set their hours. In general we can allow who chooses hours for a given worker to
depend on the period, so let Wit = 1 indicate that i is a worker-chooser in period t. Ad-
ditionally, we continue to allow conterfactual bunchers for whom counterfactual hours
satisfy h0it = h1it = 40, regardless of who chooses them. This setup is general enough
to also allow a stylized bargaining-inspired model in which choices maximize a weighted
sum of quasilinear worker and firm utilities.52

I replace Assumption CONVEX from Section 4 allow agents to either dislike pay (firm-
choosers), or like pay (worker-choosers):

Assumption CONVEX* (convex preferences, monotonic in either direction). For each
i, t and function B(x), choice is (cBi, xBi) = argmaxc,x{ui(c, x) : c ≥ B(x)} where ui(c, x) is
continuous and strictly quasi-concave in (c, x), and

• strictly increasing in c, if Wit = 1

• strictly decreasing in c, if Wit = 0

In this generalized model, bunching is prima-facie evidence that firm-choosers exist,
because there is no prediction of bunching among worker-choosers provided that poten-

52In particular, suppose that for any pay schedule B(h):

h = argmax
h

β (f(h)− c) + (1− β)(c− ν(h)) with c = B(h) (B.5)

where f(h)− c is firm profits with concave production f , c− ν(h) is worker utility with a convex disutility
of labor ν(h), and β ∈ [0, 1] governs the weight of each party in the negotiation (this corresponds to Nash
bargaining in which outside options are strictly inferior to all h for both parties, and utility is log-linear in
c). Rearranging the maximand of Equation (B.5) as (1− 2β)c+ {βf(h)− (1− β)ν(h)}, we can observe that
this setting delivers outcomes as-if chosen by a single agent with quasi-concave preferences, as βf(h) −
(1− β)ν(h) is concave. For Assumption CONVEX from Section 4 to hold with the assumed direction of
monotonicity in costs c, we would require that β > 1/2 for all worker-firm pairs: informally, that firms have
more say than workers do in determining hours. However CONVEX* holds regardless of the distribution of
β over worker-firm pairs. If βit < 1/2, paycheck it will look exactly like a worker-chooser, and if βit > 1/2
paycheck it will look exactly like a firm-chooser.
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tial outcomes are continuously distributed (by contrast, k is a “hole” in the worker-chooser
hours distribution). Indeed under regularity conditions all of the data local to 40 are from
firm-choosers (and counterfactual bunchers). To make this claim precise, we assume that
for worker-choosers hours are the only margin of response (i.e. their utility depends on x
only thought y(x)), and let IC0it(y) and IC1it(y) be the worker’s indifference curves pass-
ing through h0it and h1it, respectively. I assume these indifference curves are twice Lips-
chitz differentiable, with Mit := supy max{|IC ′′0it(y)|, |IC ′′1it(y)|}, where the supremum is
taken over the support of hours, and IC ′′ indicates second derivatives.

Proposition 1. Suppose that the joint distribution of h0it and h1it admits a continuous density
conditional on K∗it = 0, and that for any worker-chooser IC0it and IC1it are differentiable with
Mit/wit having bounded support. Then, under CHOICE and CONVEX*:

• P (hit = k and K∗it = 0) = P (h1it ≤ k ≤ h0it and K∗it = 0 and Wit = 0)

• limh↑k f(h) = P (Wit = 0) limh↑k f0|W=0(h)

• limh↓k f(h) = P (Wit = 0) limh↓k f1|W=0(h)

Proof. See Supplemental Material.

The first bullet of Proposition 1 says that all active bunchers are also firm-choosers, and
have potential outcomes that straddle the kink. The second and third bullets state that the
density of the data as hours approach 40 from either direction is composed only of worker-
choosers. This result on density limits requires the stated regularity condition, which
prevents worker indifference curves from becoming too close to themselves featuring a
kink (plus a requirement that straight-time wages wit be bounded away from zero).

Given the first item in Proposition 1, the buncher LATE introduced in Section 4 only
includes firm-choosers:

E[h0it − h1it|hit − 40,K∗it = 0] = E[h0it − h1it|hit − 40,K∗it = 0,Wit = 0]

Accordingly, I assume rank invariance among the firm-chooser population only:

Assumption RANK* (near rank invariance and counterfactual bunchers). The following
are true:

(a) P (h0it = k) = P (h1it = k) = p

(b) Y = k iff h0 ∈ [k, k+∆∗0] and W = 0 iff h1 ∈ [k−∆∗1, k] and W = 0, for some ∆∗0, .1cm∆∗1
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where p continues to denote P (K∗it = 1).
We may now state a version of Theorem 2 that conditions all quantities on W = 0,

provided that we assume bi-log concavity of h0 and h1 conditional on W = 0 and K = 0.

Theorem 1* (bi-log-concavity bounds on the buncher LATE, with worker-choosers). As-
sume CHOICE, CONVEX* and RANK* hold. If both h0it and h1it are bi-log concave conditional
on the event (Wit = 0 and K∗it = 0), then:

E[h0it − h1it|hit = k,K∗it = 0] ∈
[
∆Lk , ∆Uk

]
where

∆Lk = g(F0|W=0,K∗=0(k), f0|W=0,K∗=0(k),B∗) + g(1− F1|W=0,K∗=0(k), f1|W=0,K∗=0(k),B∗)

and

∆Uk = −g(1− F0|W=0,K∗=0(k), f0|W=0,K∗=0(k),−B∗)− g(F1|W=0,K∗=0(k), f1|W=0,K∗=0(k),−B∗)

where B∗ = P (hit = k|Wit = 0,K∗it = 0) and

g(a, b,x) = a

bx
(a+ x) ln

(
1 + x

a

)
− a

b

The bounds are sharp.

Proof. See Supplemental Appendix.

Theorem 1* does not immediately yield identification of the buncher-LATE bounds ∆Lk
and ∆Uk , as we need to estimate each of the arguments to the function g. Using that the
function g is homogenous of degree one, the bounds can be rewritten in terms of p, the
identified quantities B, P (Wit = 0) limy↑k f0|W=0(y) and P (Wit = 0) limy↑k f1|W=0(y), as
well as the two probabilities P (hit < 40 and Wit =) and P (hit > 40 and Wit = 0) (see
proof for details).

Figure B.3 depicts an example of a joint distribution of (h0,h1) that includes worker-
choosers and satisfies Assumption RANK*. The x-axis is h0, and the y-axis is h1, with
the solid lines indicating 40 hours and the dotted diagonal line depicting h1 = h0. The
dots show a hypothetical joint-distribution of the potential outcomes, with the (red) cloud
south of the 45-degree line being firm-choosers, and the (green and blue) cloud above
being worker-choosers. Green x’s indicate worker-choosers who choose their value of h0,
while blue circles indicate worker-choosers who choose their value of h1. The orange dot
at (40, 40) represents a mass of counterfactual bunchers.
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FIGURE B.3: The joint distribution of (h0it,h1it), for a distribution including worker-choosers and
satisfying assumption RANK*, cf. Figure 6. See text for description.

Observed to the the econometrician is the point mass at 40 as well as the truncated
marginal distributions depicted at the bottom and the right of the figure, respectively. The
observable P (hit ≤ h) for h < 40 doesn’t exactly identify P (h0it ≤ h) because some green
x’s are missing – these are worker-choosers for whom h1 > 40 > h0 and choose to work
overtime at their h1 value. Thus they show up in the data at h > 40 even thoug they
have h0 < 40. Similarly, some blue circles are missing from the data above 40 – these are
worker-choosers for whom h1 > 40 > h0 and choose to work their h0 value, not working
overtime. The probabilities P (hit < 40 and Wit =) and P (hit > 40 and Wit = 0) can thus
only be estimated with some error, with the size of the error depending on the mass of
worker-choosers in the northwest quadrant of Figure B.3. However, this has little impact
on the results.53

Two further caveats of Theorem 1* are worth mentioning here. First, an evaluation
of the FLSA would ideally account for worker-choosers (who are working longer hours

53The components of the bounds ∆Lk = L0 + L1 and ∆Uk = −U0− U1 are not sensitive to the values of
the CDF inputs F0|W=0,K∗=0(k) and F1|W=0,K∗=0(k), as can be verified numerically (details available upon
request). Intuitively, ∆Lk and ∆Uk mostly depend on the density estimates and the size of the bunching mass.
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as a result of the policy) when averaging treatment effects. However, the proportion of
worker-choosers and the size of their hours increases are not identified. Using the buncher
LATE to estimate the overall ex-post effect of the FLSA – as described in Section 4.4 – may
overstate its overall average net hours reduction. Secondly, note that we can no longer
directly verify the bi-log concavity assumption of h0 for h < k, and of h1 for h > k, by
looking at the data. The reason is that the observed data is a mixture of the firm-chooser
and worker-chooser distributions, while our BLC assumption regards the subgroup of
firm-choosers. If the proportion of worker-choosers is small, then these caveats should
have only a minor impact on the interpretation of the results. The first problem is difficult
to avoid: estimating the overall effect of the FLSA based on a subset of firm-choosers is
inevitably going to miss the fact that overtime pay increases hours for some workers.

C Interdependencies among hours within the firm

In this section I consider the impact that interdependencies among the hours of different
units may have on the estimates, reflected in the third term of Equation (8) from Section
4.4. I develop some structure to guide our intuition of this term, and then present some
empirical evidence that it is likely to be small.

The basic issue is as follows: when a single firm chooses hours jointly among mulitple
units—either across different workers or across multiple weeks, or both—this term may
be nonzero and contribute to the overall effect of the FLSA. This can be thought of as a
violation of the stable unit treatment value assumption (SUTVA) in assessing the overall
average impact of the FLSA on hours, the effect of which is captured in the third term of
Equation (8).

To simplify the notation, I’ll assume that such SUTVA violations may occur across
workers within a firm in a single week, suppressing the time index t and focusing on a
single firm. As in Section 4.4 let h−i denote the vector of actual (observed) hours for all
workers aside from i within i′s firm. These hours are chosen according to the kinked cost
schedule introduced by the FLSA. Let h0i(·) denote the hours that the firm would choose
for worker i if they had to pay i′ straight-wage wi for all of i’s hours, as a function of
the hours profile of the other workers in the firm (suppressing dependence on straight-
wages in this section). Define h1i(·) analogously with 1.5wi. In this notation, the potential
outcomes from Section 4 are h0i = h0i(h−i) and h1i = h1i(h−i). As in Section 4.4 let
(h∗i , h∗−i) denote the hours profile that would occur absent the FLSA, so that the average
ex-post effect of the FLSA is E[hi − h∗i ].

For concreteness, we may consider the model introduced in the beginning of Section 4

61



in which hours are chosen to maximize profits with a joint-production function F (h). In
this case we have that (hi, h−i) = argmax

{
F (h)−∑j Bkj(hj)

}
, where the sum is across

workers j in the firm and Bkj(h) := wjh+ .5wj1(h > 40)(h− 40). Similarly (h∗i , h∗−i) =

argmax
{
F (h)−∑j wjhj

}
(where for the moment we ignore changes in wj). Whether

h0i(h−i) is smaller or larger than h∗i (with a fixed set of employees) will depend upon
whether i’s hours are complements or substitutes in production with those of each of
their colleagues, and with what strength. It is natural to expect that both cases occur.
Consider for example a production function in which workers are divided into groups
θ1 . . . θM corresponding to different occupations, and:

F (h) =
M

∏
m=1

(
( ∑
i∈θm

ai · hρmi )1/ρm

)αm
(C.6)

where ai is an individual productivity parameter for worker i. The hours of workers
within an occupation enter as a CES aggregate with substitution parameter ρm, which
then combine in a Cobb-Douglas form across occupations with exponents αm. The hours
of two workers i and j belonging to different occupations are always complements in
production, i.e. ∂hiF (h) is increasing in hj . When i and j belong to the same occupation
θm, it can be shown that worker i and j’s hours are substitutes—i.e. ∂hiF (h) is decreasing
in hj—when αm ≤ ρm.

Thus both substitution and complementarity in hours can plausibly coexist within a
firm, and it is difficult to sign theoretically the contribution of interdependencies to θ.
Given that occupations or tasks are not observed in the data, it is also difficult to obtain
direct evidence with the aid of structural assumptions like Eq. (C.6). I therefore turn to an
indirect empirical test of whether these effects are likely to play a significant role in θ.

Figure C.4 shows that in weeks when a worker receives a positive number of sick-pay
hours, their individual hours worked for that week decline by about 8 hours on average.
Yet I fail to find evidence of a corresponding change in the hours of others in the same
firm. This suggests that short term variation in the hours of a worker’s colleagues does
not tend to translate into contemporaneous changes in their own (for example, if the firm
were dividing a fixed number of hours across workers).

Table C.1 shows another piece of evidence: that my overall effect estimates are similar
between small, medium, and large firms. If firms were to compensate for overtime hours
reductions by “giving” some hours to similar workers who would otherwise be working
less than 40, for instance, then we would expect this to play a larger role in firms where
there are a large number of substitutable workers–causing a bias that increases with firm
size. I cannot reject that my strategy estimates the same parameter value across the three
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firm size categories, in my preferred specification of estimating p using variation in PTO.

p=0 p from PTO

Bunching Effect of the kink Net Bunching Effect of the kink
Small firms 0.198 [-1.525, -1.455] 0.027 [-0.231, -0.171]

[0.189, 0.208] [-1.676, -1.299] [0.023, 0.031] [-0.274, -0.139]
Medium firms 0.103 [-1.123, -0.786] 0.030 [-0.337, -0.224]

[0.095, 0.110] [-1.237, -0.710] [0.025, 0.035] [-0.407, -0.178]
Large firms 0.050 [-0.768, -0.468] 0.024 [-0.371, -0.224]

[0.047, 0.054] [-0.861, -0.414] [0.021, 0.028] [-0.444, -0.180]

TABLE C.1: Estimates of the ex-post effect of the kink by firm size. “Small” firms have between 1
and 25 workers in my estimation sample, “Medium” have 26 to 50, and “Large” have more than
50. Note that the estimated net bunching caused by the FLSA is similar across firm sizes (right),
despite the raw bunching observed in the data differing by firm size category.
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FIGURE C.4: Event study coefficients βj and 95% confidence intervals across an instance of a
worker receiving pay for non-work hours (either sick pay, holiday pay, or paid time off–‘PTO’).
Equation is yit = µt + λi + ∑10

j=−3 βjDit,j + uit, where Dit,j = 1 if worker i in week t has a positive
number of a given type of non-work hours j weeks ago (after a period of at least three weeks in
which they did not), λi are worker fixed effects, and µt are calendar week effects. Rows correspond
to choices of the non-work pay type: either sick, holiday, PTO. Columns indicate choices of the
outcome yit. “Colleague hours worked” sums the hours of work in t across all workers other than
i in i’s firm. The timing of holiday and PTO hours appears to be correlated across workers, leading
to a decrease in the working hours of i’s colleagues in weeks in which i takes either holiday or PTO
pay (center-right and bottom-right graphs). However I cannot reject that colleague work hours are
unrelated to an instance of sick pay: before, during and after it occurs (top-right). Since i’s hours of
work reduce by about 8 hours on average during an instance of sick pay (top-center), this suggests
that there is no contemporaneous reallocation of i’s forgone work hours to their colleagues.

D A simple model of wages and “typical” hours

The firm chooses a pair (z∗,h∗) based on the cost-minimization problem:

min
z,h,K,N

N(z + ψ) + rK s.t. F (Ne(h),K) ≥ Q and N ≤ N(z,h) (D.7)
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where the labor supply function is increasing in z while decreasing in h, e(h) represents
the "effective labor" from a single worker working h hours, and ψ represents non-wage
costs per worker. The quantity ψ can include for example recruitment effort and train-
ing costs, administrative overhead and benefits that do not depend on h. Concavity of
e(h) captures declining productivity at longer hours, for example from fatigue or morale
effects. The function F maps total effective labor Ne(h) and capital into level of output
or revenue that is required to meet a target Q, and r is the cost of capital. For simplicity,
workers within a firm are here identical and all covered by the FLSA.

To understand the properties of the solution to Equation (D.7), let us examine two
illustrative special cases.

Special case 1: an exogenous competitive straight-time wage

Much of the literature on hours determination has taken the hourly wage as a fixed input
to the choice of hours, and assumed that at that wage the firm can hire any number of
workers, regardless of hours. This can be motivated as a special case of Equation (D.7) in
which there is perfect competition on the straight-time wage, i.e. N(z,h) = N̄1(ws(z,h) ≥
w) for some large number N̄ and wage w exogenous to the firm. Then Equation (D.7)
reduces to:

min
N ,h,K

N · (hw+ 1(h > 40)(w/2)(h− 40) + ψ) + rK s.t. F (Ne(h),K) ≥ Q (D.8)

By limiting the scope of labor supply effects in the firm’s decision, Equation (D.8) is well-
suited to illustrating the competing forces that shape hours choice on the production side:
namely the fixed costs ψ and the concavity of e(h). Were ψ equal to zero with e(h) strictly
concave globally, a firm solving Equation (D.8) would always find it cheaper to produce
a given level of output with more workers working less hours each. On the other hand,
were ψ positive and e weakly convex, it would always be cheapest to hire a single worker
to work all of the firm’s hours. In general, fixed costs and declining hours productivity
introduce a tradeoff that leads to an interior solution for hours.54

Equation (D.8) introduces a kink into the firm’s costs as a function of hours, much
as short-run wage rigidity does in my dynamic analysis. However, the assumption that
the firm can demand any number of hours at a set straight-time wage rate is harder to
defend when thinking about firms long-run expectations, a point emphasized by Lewis

54In the fixed-wage special case, these two forces along with the wage are in fact sufficient to pin down
hours, which do not depend on the production function F or the chosen output level Q. See e.g. Cahuc and
Zylberberg (2004) for the case in which e(h) is iso-elastic.
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(1969). Equilibrium considerations will also tend to run against the independence of
hourly wages and hours - a mechanism explored in Supplemental Appendix 1.

Special case 2: iso-elastic functional forms

By placing some functional form restrictions on Equation (D.7), we can obtain a closed-
form expression for (z∗,h∗). In particular, when labor supply and e(h) are iso-elastic,
production is separable between capital and labor and linear in the latter, and firms set
the output target Q to maximize profits, Proposition 2 characterizes the firm’s choice of
earnings and hours:

Proposition 2. When i) e(h) = e0hη and N(z,h) = N0zβzhβh ; ii)F (L,K) = L+ φ(K) for
some function φ; and iii) Q is chosen to maximize profits, the (z∗,h∗) that solve Equation (D.7)
are:

h∗ =

[
ψ

e0
· β

β − η

]1/η

and z∗ = ψ · βz
βz + 1

η

β − η

where β := |βh|
βz+1 , provided that ψ > 0, η ∈ (0, β), βh < 0 and βz > 0. Hours and compensation

are both decreasing in |βh| and increasing in βz.

Proof. See Supplement Appendix Section 4.

The proposition shows that the hours chosen depend on labor supply via β = |βh|
1+βz , which

gages how elastic labor supply is with respect to hours compared with earnings. The more
sensitive labor supply is to a marginal increase in hours as compared with compensation,
the higher β will be and lower the optimal number of hours. The proof of Proposition
2 also shows that unlike Special case 1 of perfect competition on the straight-time wage,
whenN(z,h) is differentiable the general model can support an interior solution for hours
even without fixed costs ψ = 0.

Note: Broadly speaking, the function N(z,h) might be viewed as an equilibrium object
that reflects both worker preferences over income and leisure and the competitive envi-
ronment for labor. Thus it is conceivable that equilibrium forces lead to a labor supply
function like that of the fixed-wage model, in which the the FLSA has an effect on the
hours set at hiring. In Supplemental Appendix 1, I show that the prediction of the fixed-
job model that the FLSA has litte to no effect on h∗ or z∗ is robust to embedding Equation
(D.7) into an extension of the Burdett and Mortensen (1998) model of equilibrium with
on-the-job search.55 In the context of the search model, the only effect of the overtime rule

55This remains true even in the perfectly competitive limit of the model, the basic reason being that work-
ers choose to accept jobs on the basis of their known total earnings z∗, rather than the straight-time wage.
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on the distribution of h∗ is mediated through the minimum wage, which rules out some
of the (z∗,h∗) pairs that would occur in the unregulated equilibrium. In a numerical cal-
ibration, this effect is quite small, suggesting that equilibrium effects play only a minor
role in how the FLSA overtime rule impacts anticipated hours or straight-time wages.

E Additional empirical results

E.1 A test of the Trejo (1991) model of straight-time wage adjustment

Another way to assess the role of wage rigidity is to test directly whether straight-time
wages and hours are plausibly related according to Equation (1). To do this by supposing
that some proportion of all paychecks reflect a wage that is determined from the worker’s
total earnings zit according to Equation (1), while the others have wages set in some other
way. We indicate those paychecks for which the wage is actively adjusted to this period’s
hours as Ait = 1, and let q(h) = P (Ait = 1|hit = h). This nests an extreme version of the
fixed-job model of Trejo (1991), in which q(h) = 1 for all h.

By the law of iterated expectations and some algebra we have that:

E [lnwit|hit = h] = q(h) {E [ln(wit)|hit = h,Ait = 0]− ln (h+ 0.5(h− 40)1(h ≥ 40))}
− (1− q(h))E [lnwit|hit = h,Ait = 1]

The second term above introduces a kink in the conditional expectation of log wages with
respect to hours. IfE [ln zit|hit = h,Ait = 0],E [lnwit|hit = h,Ait = 1] and q(h) are all con-
tinuously differentiable in h, then the magnitude of this kink identifies q(40), the propor-
tion of active wage responders local to h = 40:56

lim
h↓40

d

dh
E [lnwit|hit = h]− lim

h↑40

d

dh
E [lnwit|hit = h] = −1

2 ·
q(40)

40

Figure E.5 reports the results of fitting separate local linear functions to the CEF of log
wages on either side of h = 40. We can reject the hypothesis that the fixed-job model
applies to all employees at all times. However, the data appear to be consistent with a
proportion q(40) of about 0.25 of all paychecks close to 40 hours reflecting an hours/wage
relationship according to Equation (1). This is consistent with straight wages being up-

56These continuous differentiability assumptions are reasonable, if wage setting according to Equation (1)
is the only force introducing non-smoothness in the relationship between wages and hours.
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dated intermittently to reflect expected or anticipated hours, which vary in practice be-
tween pay periods.

FIGURE E.5: A kinked-CEF test of the fixed-jobs model presented in Trejo (1991). Regression lines
fit on each side with a uniform kernel within 25 hours of the 40.

E.2 Further characteristics of the sample

FIGURE E.6: Industry distribution of estimation sample versus the Current Population Survey
sample described in Section 3.
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FIGURE E.7: Geographical distribution of estimation sample versus the Current Population Sur-
vey sample described in Section 3.

Industry Avg. OT hours OT % hours OT % pay Industry share

Accommodation and Food Services 2.37 0.06 0.11 0.08
Administrative and Support 5.69 0.13 0.18 0.08
Agriculture, Forestry, Fishing and Hunting 3.76 0.11 0.15 0.00
Arts, Entertainment, and Recreation 3.87 0.10 0.13 0.00
Construction 3.09 0.07 0.10 0.20
Educational Services 1.83 0.05 0.07 0.00
Finance and Insurance 0.31 0.00 0.01 0.00
Health Care and Social Assistance 4.59 0.12 0.12 0.02
Information 1.67 0.04 0.06 0.00
Manufacturing 3.37 0.08 0.11 0.18
Mining 2.26 0.07 0.12 0.00
Other Services 2.61 0.06 0.09 0.02
Professional, Scientific, and Technical Services 2.91 0.07 0.10 0.06
Public Administration 2.36 0.05 0.08 0.00
Real Estate and Rental and Leasing 2.85 0.07 0.09 0.02
Retail Trade 2.83 0.07 0.10 0.08
Transportation and Warehousing 5.24 0.12 0.17 0.04
Utilities 3.80 0.08 0.11 0.00
Wholesale Trade 5.15 0.11 0.14 0.10
Total Sample 3.55 0.08 0.12 0.98

TABLE E.2: Overtime prevalence by industry in the sample, including average number of OT
hours per weekly paycheck, % OT hours among hours worked, % pay for hours work going to OT,
and industry share of total hours in sample.
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(1) (2) (3) (4) (5)
Work hours=40 OT hours Total work hours Work hours=40 OT hours

Tenure 0.000400 0.0515 0.0796
(0.95) (3.95) (3.31)

Age 0.000690 0.00266 0.0250
(3.82) (0.74) (3.25)

Female 0.0140 -1.322 -1.943
(2.08) (-9.07) (-6.08)

Minimum wage worker 0.00121 -1.687 -5.352
(0.29) (-2.39) (-4.08)

Firm just hired -0.00572 0.553
(-2.95) (5.78)

Date FE Yes Yes Yes Yes Yes
Employer FE Yes Yes Yes
Worker FE Yes Yes
Observations 499619 499619 499619 628449 628449
R squared 0.229 0.264 0.260 0.387 0.515

t statistics in parentheses

TABLE E.3: Columns (1)-(3) regress hours-related outcome variables on worker characteristics,
with fixed effects for the date and employer. Standard errors clustered by firm. Columns (4)-(5)
show that bunching and overtime hours among incumbent workers are both responsive to new
workers being hired within a firm, even controlling for worker and day fixed effects. “Firm just
hired” indicates that at least one new worker appears in payroll at the firm this week, and the new
workers are dropped from the regression. “Minimum wage worker” indicates that the worker’s
straight-time wage is at or below the maximum minimum wage in their state of residence for the
quarter. Tenure and age are measured in years, and age is missing for some workers.

(1) (2) (3)
Total work hours Total work hours Total work hours

R squared 0.366 0.499 0.626
Date FE Yes
Worker FE Yes Yes
Employer x date FE Yes Yes
Observations 621011 628449 620854

t statistics in parentheses

TABLE E.4: Decomposing variation in total hours. Worker fixed effects and employer by day fixed
effects explain about 63% of the variation in total hours.
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E.3 Additional treatment effect estimates and figures

p=0 p from PTO

Bunching Buncher LATE Net Bunching Buncher LATE
Accommodation and Food Services 0.036 [0.937, 0.988] 0.036 [0.937, 0.988]
(N=69427) [0.029, 0.044] [0.734, 1.212] [0.029, 0.044] [0.734, 1.212]
Administrative and Support 0.062 [1.625, 1.771] 0.009 [0.251, 0.255]
(N=49829) [0.051, 0.074] [1.313, 2.136] [0.005, 0.013] [0.143, 0.365]
Construction 0.139 [2.759, 3.326] 0.029 [0.612, 0.638]
(N=136815) [0.128, 0.149] [2.341, 3.854] [0.022, 0.035] [0.442, 0.821]
Health Care and Social Assistance 0.051 [1.412, 1.522] 0.005 [0.146, 0.147]
(N=13951) [0.034, 0.069] [0.570, 2.450] [0.000, 0.010] [-0.052, 0.348]
Manufacturing 0.137 [2.098, 2.521] 0.018 [0.307, 0.316]
(N=112555) [0.126, 0.148] [1.894, 2.785] [0.016, 0.021] [0.255, 0.370]
Other Services 0.160 [1.804, 2.240] 0.037 [0.452, 0.478]
(N=19263) [0.132, 0.188] [1.243, 2.996] [0.024, 0.049] [0.256, 0.693]
Professional, Scientific, Technical 0.136 [2.281, 2.737] 0.010 [0.178, 0.180]
(N=47705) [0.117, 0.155] [1.862, 3.297] [0.003, 0.016] [0.060, 0.302]
Real Estate and Rental and Leasing 0.187 [3.477, 4.478] 0.097 [1.920, 2.215]
(N=13498) [0.141, 0.234] [2.432, 6.053] [0.060, 0.135] [1.065, 3.316]
Retail Trade 0.129 [3.694, 4.399] 0.032 [0.969, 1.016]
(N=56403) [0.112, 0.146] [2.447, 5.935] [0.024, 0.040] [0.550, 1.463]
Transportation and Warehousing 0.091 [2.230, 2.530] 0.015 [0.400, 0.409]
(N=25926) [0.070, 0.111] [1.754, 3.127] [0.009, 0.022] [0.216, 0.602]
Wholesale Trade 0.126 [2.751, 3.299] 0.046 [1.068, 1.149]
(N=66678) [0.110, 0.141] [2.321, 3.848] [0.037, 0.055] [0.765, 1.490]
All Industries 0.116 [2.614, 3.054] 0.027 [0.640, 0.666]
(N=630217) [0.112, 0.121] [2.483, 3.217] [0.024, 0.029] [0.571, 0.740]

TABLE E.5: Estimates of the buncher LATE by industry, based on p = 0 (left) or p estimated from
paid time off (right). Estimates are reported only for industries having at least 10,000 observations.
95% bootstrap confidence intervals in gray, clustered by firm.
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p=0 p from PTO

Bunching Effect of the kink Net Bunching Effect of the kink
Accommodation and Food Services 0.036 [-0.368, -0.248] 0.036 [-0.368, -0.248]
(N=69427) [0.029, 0.044] [-0.450, -0.192] [0.029, 0.044] [-0.450, -0.192]
Administrative and Support 0.062 [-1.190, -0.681] 0.009 [-0.178, -0.101]
(N=49829) [0.051, 0.074] [-1.424, -0.548] [0.005, 0.013] [-0.256, -0.057]
Construction 0.139 [-1.550, -1.121] 0.029 [-0.330, -0.219]
(N=136815) [0.128, 0.149] [-1.771, -0.944] [0.022, 0.035] [-0.422, -0.157]
Health Care and Social Assistance 0.051 [-0.633, -0.320] 0.005 [-0.065, -0.030]
(N=13951) [0.034, 0.069] [-1.020, -0.129] [0.000, 0.010] [-0.155, 0.012]
Manufacturing 0.137 [-1.167, -0.850] 0.018 [-0.162, -0.110]
(N=112555) [0.126, 0.148] [-1.282, -0.766] [0.016, 0.021] [-0.192, -0.090]
Other Services 0.160 [-0.977, -0.811] 0.037 [-0.235, -0.176]
(N=19263) [0.132, 0.188] [-1.300, -0.538] [0.024, 0.049] [-0.345, -0.095]
Professional, Scientific, Technical 0.136 [-1.192, -0.959] 0.010 [-0.090, -0.063]
(N=47705) [0.117, 0.155] [-1.411, -0.767] [0.003, 0.016] [-0.150, -0.021]
Real Estate and Rental and Leasing 0.187 [-1.766, -1.466] 0.097 [-0.954, -0.725]
(N=13498) [0.141, 0.234] [-2.303, -1.002] [0.060, 0.135] [-1.378, -0.392]
Retail Trade 0.129 [-1.685, -1.342] 0.032 [-0.434, -0.308]
(N=56403) [0.112, 0.146] [-2.274, -0.908] [0.024, 0.040] [-0.626, -0.175]
Transportation and Warehousing 0.091 [-1.590, -0.998] 0.015 [-0.274, -0.166]
(N=25926) [0.070, 0.111] [-1.935, -0.783] [0.009, 0.022] [-0.406, -0.086]
Wholesale Trade 0.126 [-2.122, -1.297] 0.046 [-0.776, -0.476]
(N=66678) [0.110, 0.141] [-2.474, -1.088] [0.037, 0.055] [-1.016, -0.333]
All Industries 0.116 [-1.466, -1.026] 0.027 [-0.347, -0.227]
(N=630217) [0.112, 0.121] [-1.542, -0.972] [0.024, 0.029] [-0.386, -0.202]

TABLE E.6: Estimates of the hours effect of the FLSA by industry, based on p = 0 (left) or p
estimated from paid time off (right). Estimates are reported only for industries having at least
10,000 observations. 95% bootstrap confidence intervals in gray, clustered by firm. In the case of
Accommodation and Food Services, P (hit = 40|ηit > 0) > B, so I take the PTO-based estimate to
be p = 0.

TABLE E.7: Hours distribution by gender, conditional on different than 40 for visibility (size of
point mass at 40 can be read from Figures E.8 and E.9).
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p=0 p from non-changers p from PTO

Net bunching: 0.090 0.044 0.011
[0.083, 0.098] [0.041, 0.048] [0.009, 0.012]

Buncher LATE [1.507, 1.709] [0.763, 0.814] [0.187, 0.190]
[1.387, 1.855] [0.706, 0.877] [0.150, 0.227]

Buncher LATE as elasticity [0.093, 0.105] [0.047, 0.050] [0.012, 0.012]
[0.086, 0.114] [0.044, 0.054] [0.009, 0.014]

Average effect of kink on hours [-0.633, -0.489] [-0.319, -0.231] [-0.078, -0.054]
[-0.688, -0.446] [-0.343, -0.213] [-0.094, -0.043]

———————–
Num observations 147953 147953 147953
Num clusters 352 352 352

TABLE E.8: Hours distribution and results of the bunching estimator among women.

p=0 p from non-changers p from PTO

Net bunching: 0.124 0.060 0.031
[0.119, 0.129] [0.058, 0.063] [0.028, 0.034]

Buncher LATE [3.074, 3.635] [1.560, 1.701] [0.828, 0.868]
[2.777, 3.991] [1.407, 1.869] [0.717, 0.986]

Buncher LATE as elasticity [0.190, 0.224] [0.096, 0.105] [0.051, 0.053]
[0.171, 0.246] [0.087, 0.115] [0.044, 0.061]

Average effect of kink on hours [-1.867, -1.271] [-0.921, -0.604] [-0.482, -0.311]
[-2.060, -1.149] [-1.015, -0.545] [-0.549, -0.269]

———————–
Num observations 482264 482264 482264
Num clusters 524 524 524

TABLE E.9: Hours distribution and results of the bunching estimator among men.
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p=0 p from non-changers p from PTO

Net bunching: 0.114 0.055 0.027

[0.109, 0.118] [0.054, 0.057] [0.024, 0.029]

Treatment effect

———————–

Linear interpolation 2.621 1.276 0.614

[2.418, 2.825] [1.178, 1.374] [0.541, 0.686]

Monotonicity bounds [2.320, 3.014] [1.129, 1.467] [0.543, 0.705]

[2.140, 3.201] [1.034, 1.550] [0.485, 0.775]

BLC buncher LATE [2.463, 2.706] [1.247, 1.309] [0.612, 0.627]

[2.311, 2.876] [1.171, 1.389] [0.547, 0.695]

———————–

Num observations 643720 643720 643720

Num clusters 567 567 567

TABLE E.10: Treatment effects in levels with comparison to alternative shape constraints.

p=0 p from non-changers p from PTO

Net bunching: 0.114 0.055 0.027

[0.109, 0.118] [0.054, 0.057] [0.024, 0.029]

Treatment effect

———————–

Linear interpolation 0.162 0.079 0.038

[0.150, 0.175] [0.073, 0.085] [0.033, 0.042]

Monotonicity bounds [0.143, 0.186] [0.070, 0.090] [0.033, 0.043]

[0.132, 0.197] [0.064, 0.096] [0.030, 0.048]

BLC buncher LATE [0.152, 0.167] [0.077, 0.081] [0.038, 0.039]

[0.142, 0.177] [0.072, 0.086] [0.034, 0.043]

———————–

Num observations 643720 643720 643720

Num clusters 567 567 567

TABLE E.11: Treatment effects as elasticities with comparison to alternative shape constraints.
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p=0 p from non-changers p from PTO

Buncher LATE as elasticity [0.161, 0.188] [0.082, 0.088] [0.039, 0.041]

[0.153, 0.198] [0.077, 0.093] [0.035, 0.046]

———————–

Average effect of FLSA on hours [-1.466, -1.329] [-0.727, -0.629] [-0.347, -0.294]

[-1.541, -1.260] [-0.769, -0.593] [-0.385, -0.262]

———————–

Avg. effect among directly affected [-2.620, -2.375] [-1.453, -1.258] [-0.738, -0.624]

[-2.743, -2.259] [-1.532, -1.189] [-0.814, -0.560]

———————–

Double-time, average effect on hours [-2.604, -0.950] [-1.239, -0.492] [-0.580, -0.241]

[-2.716, -0.904] [-1.293, -0.464] [-0.639, -0.215]

TABLE E.12: Estimates of policy effects (replicating Table 3) ignoring the potential effects of
changes to straight-time wages.

FIGURE E.8: Hours distribution for an industry with a low treatment effect (left), and a high one
(right). Both industries exhibit a comparable amount of raw bunching (14% and 19% respectively,
see Table E.6). In Professional, Scientific, and Technical Services, much more of the observable
bunching is estimated to be counterfactual bunching, using the PTO-based method. Furthermore,
the density of hours is higher just to the right of 40, meaning that the remaining bunching can be
explained by a very small responsiveness of hours to the FLSA.
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FIGURE E.9: Validating the assumption of bi-log-concavity away from the kink. The left panel
plots estimates of lnF0(h) and ln(1− F0(h)) for h < 40, based on the empirical CDF of observed
hours worked. Similarly the right panel plots estimates of lnF1(h) and ln(1− F1(h)) for h > k,
where I’ve conditioned the sample on Yi < 80. Bi-log-concavity requires that the four functions
plotted be concave globally.

FIGURE E.10: Histogram of hours worked pooling all paychecks in sample, with one hour bins.
Blue mass in the stacks indicate that the paycheck included no overtime pay, while red indicates
that the paycheck does include overtime pay.
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FIGURE E.11: Estimates of the bunching and average effect on hours were k changed to any value
from 0 to 80, assuming p = 0. Bounds are not informative far from 40.

FIGURE E.12: Treatment effect estimates as a function of assumed counterfactual bunching p at
40, pooling across industries. Confidence intervals depicted here are 95% intervals for each of the
bounds separately.
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FIGURE E.13: Treatment effect estimates as a function of p, by each of the largest major industries.

E.4 Estimates from the iso-elastic model

This section estimates bounds on ε from the iso-elastic model under the assumption that
the distribution of h0it = η−εit is bi-log-concave. The results here can be seen as a spe-
cial case of Theorem 5 from the Supplemental Material, but I develop it here as well for
completeness.

If h0it is BLC, bounds on ε can be deduced from the fact that

F0(40 · 1.5−ε) = F0(40) + B = P (hit ≤ 40)

where F0(h) := P (h0it ≤ h) and the RHS of the above is observable in the data. 40 · 1.5−ε

is the location of this “marginal buncher” in the h0 distribution. In particular,

ε = − ln(Q0(F0(40) + B)/40)/(ln(1.5))

where Q0 := F−1
0 is guaranteed to exist by BLC (Dümbgen et al., 2017). In particular:

ε ∈

 ln
(

1− 1−F0(40)
40f(40) ln

(
1− B

1−F0(40)

))
− ln(1.5) ,

ln
(

1 + F0(40)
40f(40) ln

(
1 + B

F0(40)

))
− ln(1.5)


where F0(k) = limh↑40 F (h) and f0(k) = limh↑40 f(h) are identified from the data. The
bounds on ε estimated in this way are ε ∈ [−.210,−.167] in the full sample.

Since BLC is preserved when the random variable is multiplied by a scalar, BLC of h0it
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implies BLC of h1it := η−εit · 1.5ε as well. This implication can be checked in the data to the
right of 40, since η−εit · 1.5ε is observed there. BLC of h1it implies a second set of bounds on
ε, because:

F1(40 · 1.5ε) = F1(40)−B = P (hit < 40)

and the RHS is again observable in the data, where F1(h) := P (h1it ≤ h). Here 40 · 1.5ε is
the location of a second “marginal buncher” – for which h0 = 40 – in the h1 distribution.
Now we have:

ε ∈

 ln
(

1 + F1(40)
40f1(40) ln

(
1− B

F1(40)

))
ln(1.5) ,

ln
(

1− 1−F1(40)
40f1(40) ln

(
1 + B

1−F1(40)

))
ln(1.5)


where F1(k) = F (k) and f1(k) := limh↓40 f(h) are identified from the data. Empirically,
these bounds are estimated as ε ∈ [−.179,−.141]. Taking the intersection of these bounds
with the range ε ∈ [−.210,−.168] estimated previously, we have that ε ∈ [−.179,−.168].57

The identified set is reduced from a length of .043 to .012, a factor of nearly 4.
Table E.13 reports estimates broken down by industry, as well as estimates that allow

counterfactual bunching at the kink to be estimated from PTO (see Section 5).

57Note that this interval differs slightly from the identified set of the buncher LATE as elasticity for p = 0
in Table 3. The latter quantity averages the effect in levels over bunchers and rescales: 1

40 ln(1.5)E[h0it(1−
1.5ε)|hit = 40], but the two are approximately equal under 1.5ε ≈ 1 + .5ε and ln(1.5) ≈ .5.
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p=0 p from PTO

Bunching Elasticity Net Bunching Elasticity
Accommodation and Food Services 0.036 [-0.059, -0.060] 0.036 [-0.059, -0.060]
(N=69427) [0.029, 0.044] [-0.073, -0.073] [0.029, 0.044] [-0.073, -0.073]
Administrative and Support 0.062 [-0.102, -0.106] 0.009 [-0.014, -0.017]
(N=49829) [0.051, 0.074] [-0.125, -0.125] [0.005, 0.013] [-0.020, -0.020]
Construction 0.139 [-0.190, -0.180] 0.029 [-0.034, -0.043]
(N=136815) [0.128, 0.149] [-0.218, -0.218] [0.022, 0.035] [-0.043, -0.043]
Health Care and Social Assistance 0.051 [-0.085, -0.095] 0.005 [-0.008, -0.010]
(N=13951) [0.034, 0.069] [-0.135, -0.135] [0.000, 0.010] [-0.018, -0.018]
Manufacturing 0.137 [-0.158, -0.127] 0.018 [-0.018, -0.020]
(N=112555) [0.126, 0.148] [-0.177, -0.177] [0.016, 0.021] [-0.022, -0.022]
Other Services 0.160 [-0.120, -0.123] 0.037 [-0.024, -0.033]
(N=19263) [0.132, 0.188] [-0.167, -0.167] [0.024, 0.049] [-0.034, -0.034]
Professional, Scientific, Technical 0.136 [-0.140, -0.160] 0.010 [-0.009, -0.013]
(N=47705) [0.117, 0.155] [-0.175, -0.175] [0.003, 0.016] [-0.014, -0.014]
Real Estate and Rental and Leasing 0.187 [-0.250, -0.230] 0.097 [-0.115, -0.133]
(N=13498) [0.141, 0.234] [-0.355, -0.355] [0.060, 0.135] [-0.177, -0.177]
Retail Trade 0.129 [-0.256, -0.238] 0.032 [-0.055, -0.066]
(N=56403) [0.112, 0.146] [-0.359, -0.359] [0.024, 0.040] [-0.084, -0.084]
Transportation and Warehousing 0.091 [-0.124, -0.161] 0.015 [-0.019, -0.031]
(N=25926) [0.070, 0.111] [-0.167, -0.167] [0.009, 0.022] [-0.029, -0.029]
Wholesale Trade 0.126 [-0.212, -0.163] 0.046 [-0.067, -0.068]
(N=66678) [0.110, 0.141] [-0.248, -0.248] [0.037, 0.055] [-0.088, -0.088]
All Industries 0.116 [-0.179, -0.168] 0.027 [-0.037, -0.043]
(N=630217) [0.112, 0.121] [-0.190, -0.190] [0.024, 0.029] [-0.041, -0.041]

TABLE E.13: Estimates of ε in the iso-elastic model based on assuming h0it = η−εit is bi-log-concave,
by industry. 95% bootstrap confidence intervals in gray brackets, clustered by firm.

F Proofs

F.1 Proof of Lemma 1

For any convex budget function B(x), (zBi, xBi) = argmaxz,x {ui(z, x) s.t. z ≥ B(x)} ex-
ists and is unique since it maximizes the strictly quasi-concave function ui(z, x) over the
convex domain {(z, x) : z ≥ B(x)}. Furthermore, by monotonicity of u(z, x) in z we may
substitute in the constraint z = B(x) and write

xBi = argmaxxui(B(x), x)

80



Consider any x 6= xBi, and let x̃ = θx + (1− θ)x∗ where x∗ = xBi and θ ∈ (0, 1). Since
B(x) is convex in x and ui(z, x) is weakly decreasing in z:

ui(B(x̃), x̃) ≥ ui(θB(x)+ (1− θ)B(x∗), x̃) > min{ui(B(x), x),ui(B(x∗), x∗)} = ui(B(x), x)
(F.9)

where I have used strict quasi-concavity of ui(z, x) in the second step, and that x∗ is a max-
imizer in the third. This result implies that for any x 6= x∗, if one draws a line between x
and x∗, the function ui(B(x), x) is strictly increasing as one moves towards x∗. When x is
a scalar, this argument is used by Blomquist et al. (2015) (see Lemma A2 therein) to show
that ui(B(x), x) is strictly increasing to the left of x∗, and strictly decreasing to the right
of x∗. Note that for any (binding) linear budget constraint B(x), the result holds without
monotonicity of ui(z, x) in z. This is useful for Theorem 2* in which some workers choose
their hours.

Let X0i = {x : yi(x) ≤ k} and X1i = {x : yi(x) ≥ k}. For any function B, let uBi(x) =

ui(B(x), x), and note that

uBki(x) =

uB0i(x) if x ∈ X0i

uB1i(x) if x ∈ X1i

Let xki be the unique maximizer of uBki(x), where Yi = yi(xki). Suppose that Yi < k.
By continuity of yi(x), X0i is a closed set and xki belongs to the interior of X0i. Sup-
pose furthermore that Y0i 6= Yi, with x0i the maximizer of uB0i(x). If this were the case,
then there would exist a point x̃ ∈ X0i along the line from x0i to xki. By Eq. (F.9) with
B = Bk, we must have uBki(x̃) > uBki(x0i). Since uB0i(x) = uBki(x) in X0i this means that
uB0i(x̃) > uB0i(x0i), contradicting the premise that x0i maximizes uB0i(x). Figure F.14 de-
picts the logic visually. Thus, Yi < k implies Yi = Y0i. We can similarly show that Yi > k

implies Yi = Y1i. Taking the contrapositive of each of these, we have that Y1i ≤ k ≤ Y0i

implies that Yi = k.

It is easily demonstrated under WARP alone (see the proof of Theorem 3 below) that Y0i ≤
k implies that Yi = Y0i and that Y1i ≥ k implies that Yi = Y1i. Note that together these
imply that Y0i < k ≤ Y1i and Y0i ≤ k < Y1i are both impossible (since we would then have
both that Yi < k and Yi ≥ k or that both that Yi ≤ k and Yi > k). Thus, we can summarize
the relationship between observable Yi and potential outcomes in the remaining three
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x1

x2

is X0 := {x : y(x) ≤ k}

is X1 := {x : y(x) ≥ k}

x∗
k
•

Suppose Y = y(x∗
k) < k

=⇒ x∗
k ∈ int(X0)

x∗
0
•

Y0 6= Y =⇒ x∗
0 6= x∗

k

uBk
(x)

uB0(x)

On X0, B0(x) = Bk(x)

and thus uB0
(x) = uBk

(x) in X0

FIGURE F.14: Depiction of the step establishing (Y < k) =⇒ (Y = Y0) in the proof of Lemma
1. In this example z = (x1,x2) and y(x) = x1 + x2. We suppress indices i for clarity. Proof is by
contradiction. If Y0 6= Y , then x∗k 6= x∗0, where x∗k and x∗0 are the unique maximizers of uBk

(x) and
uB0(x), respectively. By Equation F.9, we have that the function uB0(x), depicted heuristically as
a solid black curve, is strictly increasing as one moves along the dotted line from x∗k towards x∗0.
Similarly, the function uB0(x), depicted as a solid blue curve, is strictly increasing as one moves in
the opposite direction along the same line, from x∗0 towards z∗k. By the assumption that Y < k, then
using continuity of y(x) it must be the case that x∗k lies in the interior of X0, the set of x’s that make
y(x) ≤ k. This means that there is some interval of the dotted line that is within X0 (regardless of
whether z∗0 is also within X0, or it is not, as depicted). On this interval, the functions B0 and Bk
are equal, and thus so must be the functions uBk

and uB0 . Since the same function cannot be both
strictly increasing and strictly decreasing, we have obtained a contradiction.
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cases as:

Yi =


Y0i if Y0i < k

k if Y1i ≤ k ≤ Y0i

Y1i if Y1i > k

F.2 Proof of Theorem 3

We first prove the statement in b). If Y0i ≤ k, then by CHOICE xB0 is in X0, where X0 is
defined in the proof of Lemma 1. Since Bk(x) = B0(x) for all x ∈ X0, it follows that zB0i ≥
Bk(xB0i), i.e. Y0i is feasible under Bk. Note that Bki(x) ≥ B0i(x) for all x. By WARP then
(zBki, xBki) = (zB0i, xB0i). Thus Yi = yi(xBk) = yi(xB0) = Y0i. So Y0i ≤ k =⇒ Yi = Y0i.
As an implication we have that Y0i < k =⇒ Yi < k.

By the same logic we can show that Y1i ≥ k =⇒ Yi = Y1i and thusly that Y1i > k =⇒
Yi > k. Taking the contrapositives, we see that Yi = k ⇐⇒ Yi ≤ k & Yi ≥ k implies
Y1i ≤ k and Y0i ≥ k. Thus Yi = k implies Y1i ≤ k ≤ Y0i and hence B ≤ P (Y1i ≤ k ≤ Y0i).

This holds under CONVEX or WARP since CONVEX implies WARP. However under
CONVEX we also have from Lemma 1 that Y1i ≤ k ≤ Y0i implies Yi = k, and thus
B ≥ P (Y1i ≤ k ≤ Y0i). Together we have that both B ≤ P (Y1i ≤ k ≤ Y0i) and B ≥ P (Y1i ≤
k ≤ Y0i) and hence B = P (Y1i ≤ k ≤ Y0i) under CONVEX.

F.3 Proof of the Corollary to Theorem 3

In the proof of Theorem 3 I showed that under WARP and CHOICE, Y0i ≤ k =⇒ Yi =

Y0i. Thus, for any δ > 0 and y < k: Y0i ∈ [y − δ, y] implies that Yi ∈ [y − δ, y] and
hence P (Y0i ∈ [y − δ, y])− P (Yi ∈ [y − δ, y]) is negative. This implies that f0(y)− f(y) =
limδ↓0

P (Y0i∈[y−δ,y])−P (Yi∈[y−δ,y])
δ ≤ 0, i.e. that f(y) ≥ f0(y). An analogous argument holds

for Y1, where we consider the event Y1i ∈ [y, y + δ] any y > k. Under CONVEX instead of
WARP, the inequalities are all equalities, by Lemma 1.

F.4 Proof of Theorem 1

By Theorem 1 of Dümbgen et al. (2017): for d ∈ {0, 1} and any t, bi-log concavity implies
that:

1− (1− Fd|K∗=0(k))e
−

fd|K∗=0(k)
1−Fd|K∗=0(k)

t
≤ Fd|K∗=0(k+ t) ≤ Fd|K∗=0(k)e

fd|K∗=0(k)
Fd|K∗=0(k)

t
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Defining u = F0|K∗=0(k + t), we can use the substitution t = Q0|K∗=0(u)− k to translate
the above into bounds on the conditional quantile function of Y0i, evaluated at u:

F0|K∗=0(k)

f0|K∗=0(k)
· ln
(

u

F0|K∗=0(k)

)
≤ Q0|K∗=0(u)−k ≤ −

1− F0|K∗=0(k)

f0|K∗=0(k)
· ln
(

1− u
1− F0|K∗=0(k)

)

And similarly for Y1, letting v = F1|K∗=0(k− t):

1− F1|K∗=0(k)

f1|K∗=0(k)
· ln
(

1− v
1− F1|K∗=0(k)

)
≤ k−Q1|K∗=0(v) ≤ −

F1|K∗=0(k)

f1|K∗=0(k)
· ln
(

v

F1|K∗=0(k)

)

Note that:

E[Y0i − Y1i|Yi = k,K∗i = 0] = 1
B∗
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
{Q0|K∗=0(u)−Q0|K∗=0(u)}du

=
1
B∗
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
{Q0|K∗=0(u)− k}du+

1
B∗
∫ F1|K∗=0(k)

F1|K∗=0(k)−B∗
{k−Q1|K∗=0(v)}dv

where B∗ := P (Yi = k|K∗ = 0). A lower bound for E[Y0i − Y1i|Yi = k,K∗i = 0] is thus:

F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

u

F0|K∗=0(k)

)
du+

1− F1|K∗=0(k)

f1|K∗=0(k)(B∗)
∫ F1|K∗=0(k)

F1|K∗=0(k)−(B∗)
ln
(

1− v
1− F1|K∗=0(k)

)
dv

= g(F0|K∗=0(k), f0|K∗=0(k),B∗) + h(F1|K∗=0(k), f1|K∗=0(k),B∗)

where

g(a, b,x) :=
a

bx

∫ a+x

a
ln
(u
a

)
du =

a2

bx

∫ 1+x
a

1
ln (u) du

=
a2

bx
{u ln(u)− u}|1+

x
a

1

=
a2

bx

{(
1 + x

a

)
ln
(

1 + x

a

)
− x

a

}
=

a

bx
(a+ x) ln

(
1 + x

a

)
− a

b

and

h(a, b,x) :=
1− a
bx

∫ a

a−x
ln
(

1− v
1− a

)
dv =

(1− a)2

bx

∫ 1+ x
1−a

1
ln (u) du = g(1− a, b,x)
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Similarly, an upper bound is:

−
1− F0|K∗=0(k)

f0|K∗=0(k)(B∗)
∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)
ln
(

1− u
1− F0|K∗=0(k)

)
du

−
F1|K∗=0(k)

f1|K∗=0(k)(B∗)
∫ F1|K∗=0(k)

F1|K∗=0(k)−(B∗)
ln
(

v

F1|K∗=0(k)

)
dv

= g′(F0|K∗=0(k), f0|K∗=0(k),B∗) + h′(F1|K∗=0(k), f1|K∗=0(k),B∗)

where

g′(a, b,x) := −1− a
bx

∫ a+x

a
ln
(

1− u
1− a

)
du = −(1− a)

2

bx

∫ 1

1− x
1−a

ln (u) du

=
(1− a)2

bx
{u− u ln(u)}|11− x

1−a

=
1− a
b

+
1− a
bx

(1− a− x) ln
(

1− x

1− a

)
= −g(1− a, b,−x)

and

h′(a, b,x) := − a

bx

∫ a

a−x
ln
(v
a

)
dv = −a

2

bx

∫ 1

1−xa
ln (u) du = g′(1− a, b,x) = −g(a, b,−x)

This ∆∗k ∈ [∆Lk , ∆Uk :] were

∆Lk := g (F−(k), f−(k),B − p) + g (1− F (k), f+(k),B − p)

and
∆Uk := −g (1− p− F−(k), f−(k), p−B)− g (F (k)− p, f+(k), p−B)

The bounds are sharp as CHOICE, CONVEX and RANK imply no further restrictions on
the marginal potential outcome distributions. To obtain the final result, note then that

F0|K∗=0(k) =
F0(k)− p

1− p and F1|K∗=0(k) =
F1(k)− p

1− p

f0|K∗=0(k) =
f0(k)

1− p and f1|K∗=0(k) =
f1(k)

1− p

B∗ := P (Yi = k|K∗i = 0) = B − p1− p
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and finally that the function g(a, b,x) is homogeneous of degree zero. As shown by Düm-
bgen et al. (2017), BLC implies the existence of a continuous density function, which as-
sures that these density limits exist and are equal to the corresponding potential outcome
densities above.

F.5 Proof of Lemma 2

Let ∆ki (ρ, ρ′) := Yi(ρ, k)− Yi(ρ′, k) for any ρ, ρ′ ∈ [ρ0, ρ1] and value of k.

Assumption SMOOTH (regularity conditions). The following hold:

1. P (∆ki (ρ, ρ′) ≤ ∆,Yi(ρ, k) ≤ y) is twice continuously differentiable at all (∆, y) 6= (0, k∗),
for any ρ, ρ′ ∈ [ρ0, ρ1] and k.

2. Yi(ρ, k) = Y (ρ, k, εi), where εi has compact support E ⊂ R
m for some m. Y (·, k, ·) is

continuously differentiable on all of [ρ0, ρ1]×E, for every k.

3. there possibly exists a set K∗ ⊂ E such that Y (ρ, k, ε) = k∗ for all ρ ∈ [ρ0, ρ1] and ε ∈ K∗.
The quantity E

[
∂Yi(ρ,k)
∂ρ

∣∣∣ Yi(ρ, k) = y, εi /∈ K∗
]

is continuously differentiable in y for all y
including k∗.

In the remainder of this proof I keep k be implicit in the functions Yi(ρ, k) and ∆ki (ρ, ρ′),
as it will remained fixed. Item 1 of SMOOTH excludes the point (0, k∗) on the basis
that we may expect point masses at Yi(ρ) = k∗, as in the overtime setting. Following
Section 4, item 3 imposes that all such “counterfactual bunchers” have zero treatment
effects, while also introducing a further condition that will be used later in Lemma 3.
Let K∗i be an indicator for εi ∈ K∗ and denote p = P (K∗i = 1). Item 1 implies that
the density f∆(ρ,ρ′),Y (ρ)(∆, y) is continuous in y whenever y 6= k∗ or ∆ 6= 0, so I define
f∆(ρ,ρ′),Y (ρ)(∆, k∗) = limy→k∗ f∆(ρ,ρ′),Y (ρ)(∆, y) for any ρ, ρ′ and ∆. Similarly, we can define
the marginal density fρ(y) of Yi(ρ) at k∗ to be limy→k∗ fρ(y) for any ρ.

The main tool in the proof of Lemma 2 will be the following Lemma, which shows that
the uniform density approximation of Theorem 6 becomes exact in the limit that the two
cost functions approach one another.

Lemma SMALL (small kink limit). Assume CHOICE*, WARP, and SMOOTH. Then:

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = −fρ(k)E

[
dYi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
Proof. Throughout this proof we let fW denote the density of a generic random variable or
random vector Wi, if it exists. Write ∆i(ρ, ρ′) = ∆i(ρ,ρ′, εi) where ∆i(ρ, ρ′, ε) := Y (ρ, ε)−
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Y (ρ′, ε).

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = lim

ρ′↓ρ
P (Yi(ρ) ∈ [k, k+ ∆(ρ, ρ′)i])− p(k)

ρ′ − ρ

= lim
ρ′↓ρ

P (Yi(ρ) ∈ (k, k+ ∆(ρ, ρ′)i])
ρ′ − ρ

= lim
ρ′↓ρ

1
ρ′ − ρ

∫ ∞
0

d∆
∫ k+∆

k
dy · f∆(ρ,ρ′),Y (ρ)(∆, y)

= lim
ρ′↓ρ

∫ ∞
0

d∆
∫ k+∆

k
dy ·

f∆(ρ,ρ′),Y (ρ)(∆, k) + (y− k)r∆(ρ,ρ′),Y (ρ)(∆, k, y)
ρ′ − ρ

(F.10)

where we have used that by item 1 the joint density of ∆i(ρ, ρ′) and Yi(ρ) exists for any
ρ, ρ′ and is differentiable and r∆(ρ,ρ′),Y (ρ) is a first-order Taylor remainder term satisfying

lim
y↓k
|r∆(ρ,ρ′),Y (ρ)(∆, y)| = |r∆(ρ,ρ′),Y (ρ)(∆, k)| = 0

for any ∆.
I now show that the whole term corresponding to this remainder is zero. First, note

that:∣∣∣∣∣ limρ′↓ρ
∫ ∞

0
d∆
∫ k+∆

k
dy ·

(y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣ = lim
ρ′↓ρ

∣∣∣∣∣
∫ ∞

0
d∆
∫ k+∆

k
dy ·

(y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣
≤ lim
ρ′↓ρ

∫ ∞
0

d∆
∫ k+∆

k
dy ·

∣∣∣∣∣ (y− k)r∆i(ρ,ρ′),Yi(ρ)(∆, y)
ρ′ − ρ

∣∣∣∣∣
≤ lim
ρ′↓ρ

∫ ∞
0

d∆
∆

ρ′ − ρ
∫ k+∆

k
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣

where I’ve used continuity of the absolute value function and the Minkowski inequality.
Define ξ(ρ, ρ′) = supε∈E ∆(ρ, ρ′, ε). The strategy will be show that limρ′↓ρ ξ(ρ, ρ′) = 0, and
then since r∆i(ρ,ρ′),Yi(ρ)(∆, y) = 0 for any ∆ > ξ(ρ, ρ′) and all y (since the marginal density
f∆(ρ,ρ′)(∆) would be zero for such ∆). With ξ(ρ, ρ′) so-defined:

RHS of above ≤ lim
ρ′↓ρ

∫ ξ(ρ,ρ′)

0
d∆

ξ(ρ, ρ′)
ρ′ − ρ

∫ k+ξ(ρ,ρ′)

k
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣

= lim
ρ′↓ρ

ξ(ρ, ρ′)
ρ′ − ρ · limρ′↓ρ

∫ ξ(ρ,ρ′)

0
d∆
∫ ξ(ρ,ρ′)

0
dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, k+ y)
∣∣∣(F.11)

where in the second step I have assumed that each limit exists (this will be demonstrated
below). Let us first consider the inner integral of the above:

∫ k+ξ(ρ,ρ′)
k dy ·

∣∣∣r∆i(ρ,ρ′),Yi(ρ)(∆, y)
∣∣∣,

for any ∆. Supposing that limρ′↓ρ ξ(ρ, ρ′) = 0, it follows that this inner integral evaluates
to zero, by the Leibniz rule and using that r∆i(ρ,ρ′),Yi(ρ)(∆, k) = 0. Thus the entire second
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limit is equal to zero.
Now I prove that limρ′↓ρ ξ(ρ, ρ′) = 0 and that limρ′↓ρ

ξ(ρ,ρ′)
ρ′−ρ exists. First, note that contin-

uous differentiability of Y (ρ, εi) implies Yi(ρ) is continuous for each i so limρ′↓ρ ∆i(ρ, ρ′) =
0 point-wise in ε. We seek to turn this point-wise convergence into uniform conver-
gence over ε, i.e. that limρ′↓ρ supε∈E ∆(ρ, ρ′, ε) = supε∈E limρ′↓ρ ∆(ρ, ρ′, ε) = supε∈E 0 = 0.
The strategy will be to use equicontinuity of the sequence and compactness of E. Con-
sider any such sequence ρn

n→ ρ from above, and let fn(ε) := Y (ρ, ε) − Y (ρn, ε) and
f(ε) = limn→∞ fn(ε) = 0. Equicontinuity of the sequence fn(ε) says that for any ε, ε′ ∈ E
and e > 0, there exists a δ > 0 such that ||ε− ε′|| < δ =⇒ |fn(ε)− fn(ε′)| < e.

This follows from continuous differentiability of Y (ρ, ε). LetM = supρ∈[ρ0,ρ1],ε∈E |∇ρ,εY (ρ, ε)|.
M exists and is finite given continuity of the gradient and compactness of [ρ0, ρ1] × E.
Then, for any two points ε, ε′ ∈ E and any ρ ∈ [ρ0, ρ1]:

|Y (ρ, ε)− Y (ρ, ε′)| =
∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε

∣∣∣∣ ≤ ∫ ε

ε′
|∇εY (ρ, ε) · dε| ≤M

∫ ε

ε′
||dε|| ≤M ||ε− ε′||

where dε is any path from ε to ε′ and I have used the definition of M and Cauchy-Schwarz
in the second inequality. The existence of a uniform Lipschitz constant M for Y (ρ, ε)
implies a uniform equicontinuity of Y (ρ, ε) of the form that for any e > 0 and ε, ε′ ∈ E,
there exists a δ > 0 such that ||ε− ε′|| < δ =⇒ supρ∈[ρ0,ρ1] |Y (ρ, ε)− Y (ρ, ε′)| < e/2, since
we can simply take δ = e/(2M). This in turn implies that whenever ||ε− ε′|| < δ:

|Y (ρ, ε)− Y (ρn, ε)−
{
Y (ρ, ε′)− Y (ρn, ε′)

}
| = |Y (ρ, ε)− Y (ρ, ε′)−

{
Y (ρn, ε)− Y (ρn, ε′)

}
|

≤ |Y (ρ, ε)− Y (ρ, ε′)|+ |Y (ρn, ε)− Y (ρn, ε′)| ≤ e,

our desired result. Together with compactness ofE, equicontinuity implies that limn→∞ supε∈E fn(ε) =
supε∈E limn→∞ fn(ε) = 0.

We apply an analogous argument for limρ′↓ρ
ξ(ρ,ρ′)
ρ′−ρ , where now fn(ε) = Y (ρ,ε)−Y (ρn,ε)

ρn−ρ .

For this case it’s easier to work directly with the function Y (ρ,ε)−Y (ρn,ε)
ρn−ρ , showing that it is

Lipschitz in deviations of ε uniformly over n ∈ N, ε ∈ E.∣∣∣∣Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

− Y (ρ, ε′)− Y (ρn, ε′)
ρn − ρ

∣∣∣∣ = 1
ρn − ρ

∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε−

∫ ε

ε′
∇εY (ρn, ε) · dε

∣∣∣∣
≤ 1
ρn − ρ

(∣∣∣∣∫ ε

ε′
∇εY (ρ, ε) · dε

∣∣∣∣+ ∣∣∣∣∫ ε

ε′
∇εY (ρn, ε) · dε

∣∣∣∣)
≤ 2M
ρn − ρ

∫ ε

ε′
||dε|| ≤ 2M

ρn − ρ
||ε− ε′||
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This implies equicontinuity of Y (ρ,ε)−Y (ρn,ε)
ρn−ρ with the choice δ = e(ρn − ρ)/(2M). As be-

fore, equicontinuity and compactness ofE allow us to interchange the limit and the supre-
mum, and thus:

lim
n→∞

ξ(ρ, ρn)
ρn − ρ

= lim
n→∞

supε∈E {Y (ρ, ε)− Y (ρn, ε)}
ρn − ρ

= lim
n→∞

sup
ε∈E

Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

= sup
ε∈E

lim
n→∞

Y (ρ, ε)− Y (ρn, ε)
ρn − ρ

= sup
ε∈E

∂Y (ρ, ε)
∂ρ

:= M ′ <∞

where finiteness of M ′ follows from it being defined as the supremum of a continuous
function over a compact set. This establishes that the first limit in Eq. (F.11) exists and is
finite, completing the proof that it evaluates to zero.

Given that the second term in Eq. (F.10) is zero, we can simplify the remaining term as:

lim
ρ′↓ρ

P (Yi(ρ) ≤ k ≤ Yi(ρ′))− p(k)
ρ′ − ρ = lim

ρ′↓ρ

1
ρ′ − ρ

∫ ∞
0

f∆(ρ,ρ′),Y (ρ)(∆, k)∆d∆

= fρ(k) lim
ρ′↓ρ

1
ρ′ − ρP (∆i(ρ, ρ

′) ≥ 0|Yi(ρ) = k)

·E
[
∆i(ρ, ρ′)|Yi(ρ) = k, ∆i(ρ, ρ′) ≥ 0

]
= fρ(k)(k) lim

ρ′↓ρ

1
ρ′ − ρE

[
∆i(ρ, ρ′)|Yi(ρ) = k, ∆i(ρ, ρ′)

]
= fρ(k)(k)E

[
lim
ρ′↓ρ

∆i(ρ, ρ′)
ρ′ − ρ

∣∣∣∣ Yi(ρ) = k

]
= fρ(k)E

[
−Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
where I have used Lemma POS and then finally the dominated convergence theorem. To
see that we may use the latter, note that dYi(ρ)

dρ = ∂Y (ρ,εi)
∂ρ < M uniformly over all εi ∈ E,

and E [M |Yi(ρ) = k] = M <∞.

Now we return to the proof of Lemma 2. By item 1 of Assumption SMOOTH, the
marginal Fρ(y) := P (Yi(ρ) ≤ y) is differentiable away from y = k with derivative fρ(y).
From the proof of Theorem 3 it follows that B ≤ Fρ1(k) − Fρ0(k) + p(k) with equality
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under CONVEX, and thus:

B − p(k) ≤ Fρ1(k)− Fρ0(k)

=
∫ ρ1

ρ0

d

dρ
Fρ(k)dρ

=
∫ ρ1

ρ0
lim
δ↓0

Fρ+δ(k)− Fρ(k)
δ

dρ

=
∫ ρ0

ρ1
lim
δ↓0

Fρ(k)− Fρ+δ(k)
δ

dρ

=
∫ ρ0

ρ1
lim
δ↓0

P (Yi(ρ) ≤ k ≤ Yi(ρ+ δ))− p(k)
δ

dρ

=
∫ ρ0

ρ1
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

where the fourth equality has applied the identity 1 = P (Y0i ≤ k) + P (Yi(ρ) ≤ k ≤
Yi(ρ+ δ)) + P (Y1i > k) under CHOICE and WARP to the pair of choice constraints B(ρ)
and B(ρ+ δ), noting that P (Yi(ρ) < k) = Fρ(k)− p(k).

F.6 Proof of Lemma 3

This mostly follows the proof in Kasy (2017) adapted to our setting in which y is one-
dimensional. As in the proof of Lemma 2 I leave k implicit in the functions Yi(ρ, k) and
Y (ρ, k, ε), as k remains fixed throughout. One additional subtlety concerns the possibility
of a point mass in the distribution of each Yi(ρ) at k∗. Note that Assumption SMOOTH im-
plies a continuous density fρ(y) for all ρ ∈ [ρ0, ρ1] and y 6= k∗, which is also continuously
differentiable in ρ. We define fρ(k∗) = limy→k fρ(y) in the case that p > 0.

Consider any bounded differentiable function a(y) having the property that a(k∗) = 0,
and note that we may write A(y) := d

dρE[a(Yi(ρ))] in two separate ways. Firstly:

A(y) =
d

dρ

∫
dy · fρ(y) · a(y) =

∫
dy · a(y) · d

dρ
fρ(y) (F.12)

and secondly:

A(y) =
d

dρ
E[a(Yi(ρ, εi))] =

∫
dFε(ε)

d

dρ
a(Y (ρ, ε)) =

∫
dFε(ε)a

′(Y (ρ, ε)) · ∂ρY (ρ, ε)
(F.13)

The first representation integrates over the distribution of Yi(ρ), while the second inte-
grates over the distribution of the underlying heterogeneity εi. In both cases we are justi-
fied in swapping the integral and derivative by boundedness of a(y).
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Continuing with Eq. (F.13), we may apply the law of iterated expectations over values
of Y (ρ, ε), and then integrate by parts:

A(y) =
∫
dyfρ(y)a

′(y)
∫
dFε|Y (ρ,ε)=y∂ρY (ρ, ε)

=
∫
dyfρ(y)a

′(y) ·E
[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]
= −

∫
dy · a(y) · ∂

∂y

{
fρ(y) ·E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}
where we’ve assumed the density fρ(y) vanishes at the limits of y. Comparing with Eq.
(F.12), we see that for this to be true of any bounded differentiable function a (satisfying
a(k∗) = 0, we must have

d

dρ
fρ(y) = −

∂

∂y

{
fρ(y) ·E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}
point-wise for all y 6= k∗.

Now consider y = k∗. First note that

d

dρ
fρ(k

∗) =
d

dρ
lim
y→k∗

fρ(y) = lim
y→k∗

d

dρ
fρ(y) = − lim

y→k∗
∂

∂y

{
fρ(y)E

[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = y

]}
where we can interchange the limit and derivative by the Moore-Osgood theorem, since
d
dρfρ(y) is uniformly bounded over ρ ∈ [ρ1, ρ0] by Assumption SMOOTH. Furthermore,

for all y 6= k∗: E
[
∂Y (ρ,ε)
∂ρ

∣∣∣ Y (ρ, ε) = y
]
= E

[
∂Y (ρ,ε)
∂ρ

∣∣∣ Y (ρ, ε) = y,K∗i = 0
]
, and the latter

of these is continuously differentiable at all y (including y = k∗) by item 3 of Assumption
SMOOTH. Thus:

d

dρ
fρ(k

∗) = − ∂

∂y

{
fρ(k

∗) ·E
[
∂Y (ρ, ε)
∂ρ

∣∣∣∣ Y (ρ, ε) = k∗,K∗i = 0
]}

since fρ(y) is also continuously differentiable at y = k∗, by SMOOTH and the definition
of fρ(k∗) as limy→k∗ fρ(y).

F.7 Proof of Theorem 2

This proof follows the notation of Appendix A. Throughout this proof we let Yi(ρ, k) =

Yi(ρ), given Assumption SEPARABLE.
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First, consider the effect of changing k on the bunching probability:

∂k {B − p(k)} = −
∂

∂k

∫ ρ1

ρ0
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]
dρ

= −
∫ ρ1

ρ0

∂

∂k

{
fρ(k)E

[
Yi(ρ)

dρ

∣∣∣∣ Yi(ρ) = k

]}
dρ

=
∫ ρ1

ρ0
∂ρfρ(k)dρ = f1(k)− f0(k)

I turn now to the total effect on average hours.

∂kE[Y
[k,ρ1]
i ] = ∂k {P (Yi(ρ0) < k)E[Yi(ρ0)|Yi(ρ0) < k]}+ k∂k

(
B[k,ρ1] − p(k)

)
+ B[k,ρ1] − p(k)

+ ∂k {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}

= ∂k

∫ k

−∞
y · fρ0(y) · dy+ k (f0(k)− f1(k)) + B[k,ρ1] − p(k) + ∂k

∫ ∞
k

y · fρ1(y) · dy

=���
�kf0(k) +((((

((((
(

k (f1(k)− f0(k)) + B[k,ρ1] − p(k)−����kf1(k)

Meanwhile:

∂ρ1E[Y
[k,ρ1]
i ] = k∂ρ1B[k,ρ1] + ∂ρ1 {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}

= k∂ρ1B[k,ρ1] +
∫ ∞
k

y · ∂ρ1fρ1(y) · dy

= −kfρ1(k)E

[
Yi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = k

]
−
∫ ∞
k

y · ∂y
{
fρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]}
dy

=
((((

((((
(((

((((
(

−kfρ1(k)E

[
Yi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = k

]
+
((((

(((
((((

(((
(((

yfρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]∣∣∣∣k
∞

−
∫ ∞
k

fρ1(y)E

[
dYi(ρ1)

dρ

∣∣∣∣ Yi(ρ1) = y

]
dy

where I have used Theorem F.5 and Lemma 3, and then integration by parts along with
the boundary condition that limy→∞ y · fρ1(y) = 0., implied by Assumption SMOOTH.
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