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Abstract

We study a Bayesian Persuasion game with multiple senders employing condi-

tionally independent experiments. Senders have zero-sum preferences over what

information is revealed. We characterize when any pair of states can be pooled

in equilibrium and, as a consequence, when the state is (fully) revealed in every

equilibrium. The state must be fully revealed in every equilibrium if and only if

sender utility functions are sufficiently nonlinear. In the binary-state case, the state

is fully revealed in every equilibrium if and only if some sender has nontrivial pref-

erences. Our main takeaways are that ‘most’ zero-sum sender preferences result in

full revelation.
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1 Introduction

A key question in the economics of persuasion is the effect of competition on information

provision. This question is of interest in many contexts in which agents with opposing

interests control the information available to one or many decision makers. For instance,

a jury or judge’s decision to acquit or convict a defendant is informed by the evidence

collected by defense and prosecution attorneys. Competing firms design advertisements

in order to convince a consumer to buy their products. In order to persuade voters,

politicians may hire experts to provide information which might validate their platforms

and not their opponents’. In all these settings, the information providers (senders) are

competing to influence the decision maker(s). How does this competition affect what

information they reveal?

While it has been shown that information disclosure increases with competition in

some settings (Battaglini (2002); Milgrom and Roberts (1986); Shin (1998)), in others

competition has the opposite effect (Emons and Fluet (2019); Kartik et al. (2017)). In

this paper we address the question by modelling two or more senders persuading one or

more receiver(s) about an unknown state. The senders influence the receiver’s beliefs

by disclosing information in the manner of Bayesiyan Persuasion. Unlike existing work,

our senders simultaneously choose conditionally independent experiments; the receiver

observes these experiments and their realizations and updates her belief. To fix ideas,

consider competing lobbyists commissioning reports to persuade a politician (or entire

legislature) to vote yes/no on a climate change bill.1 Here the state may be whether

or not climate change is a significant threat. The politician would only like the bill to

pass if it is while environmental lobbyists support the bill and corporate lobbyists oppose

it regardless of the state. The lobbyists can commission reports from climate change

experts of their choice; these reports reveal information about the state and influence the

politician’s belief and hence decision.

To capture the disagreement between the senders in the examples above, we consider

a model in which senders are maximally-competitive —the senders’ payoffs are zero-sum

functions of the receiver’s posterior belief. This assumption is natural, for instance, in the

lobbying example. Lobbyists may only care about the probability the bill passes/fails;

these probabilities sum of one (zero is just a normalization —any constant-sum payoffs

will do) and may depend on the politician’s poterior belief. Our question is: how does

competition affect how much information is revealed in equilibrium and how does this

1e.g. a bill which would mandate use of alternative energy sources.
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change with the number of senders?

There is always an equilibrium of this game in which all senders fully reveal the state.

Our main result is that typically the state is fully revealed in every equilibrium. We find

that —under mild technical assumptions —when sender utility functions are sufficiently

nonlinear (in particular are nonlinear on every edge of the simplex) then regardless of the

number of senders the state is fully revealed in every equilibrium.2 If utility functions

are sufficiently linear, a knife-edge case, there are equilibria in which the receiver does

not always learn the state. Two implications are worth mentioning. In the binary-state

case, the state is fully revealed in every equilibrium if and only if all senders are not

indifferent across all strategy profiles. If the receiver chooses from a finite set of actions,

then generically the receiver learns enough to take her first-best action; furthermore, the

state is fully revealed in every equilibrium if and only if the receiver prefers a different

action in every state.

The intuition for our results can be seen from the two-sender binary-state case. The

first observation is that, as a sender is always free to fully reveal the state and the game

is zero-sum, each sender must do exactly as well in any equilibrium as she would from full

revelation. When utility functions are nonlinear, there are some posteriors at which one

sender has an ’advantage’ and one has a ’disadvantage’ in the following sense. Conditional

on such a posterior belief, the sender with an advantage is getting a higher payoff than she

would from fully revealing the state while the sender with a disadvantage would rather

the state be revealed. Loosely, each sender will try and maximize the probability that

the receiver’s posterior lies in her regions of advantage. While no sender has unilateral

control over the receiver’s posterior, a sender can affect the posterior conditional on her

opponent’s signal realization not being fully revealing. We show that if the state is not

being fully revealed, at least one sender can use extreme signals3 to force some posteriors

into regions she has an advantage. She can do this in a way that gives her higher utility

than she would get from full revelation, which means this cannot be an equilibrium.

This idea extends to arbitrary finite state spaces and more than two senders. Given

choices of experiments for each sender, we say that a set of states is not pooled if the

receiver never assigns positive probability to all of them. If a set of states is not pooled,

the receiver will always be able to distinguish between (at least) some of these states. We

show that a subset of states is not pooled in every equilibrium if and only if conditional

2The every quanitifier implies, by standard upper hemicontinuity arguments, that if the conditions

for full revelation are met for some zero-sum utilities, then for utilities close to those all equilibria are

almost fully revealing.
3Signals that induce posteriors in favor of one state close to fully revealing that state.
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on the receiver learning the state is in this subset, some sender has strict preferences

over what further information to reveal. For instance, a pair of states is not pooled in

all equilibria if any only if some sender’s utility is nonlinear on the edge of the simplex

between those two states.4 It follows that nonlinearity on every edge is necessary and

sufficient for full revelation in every equilibrium.

An implication of our main result is that competition of a zero-sum form cannot

decrease, in the sense of Blackwell (1953), the information provided in equilibrium.5 One

contribution of this paper is to identify a natural and applicable environment —zero-sum

preferences and conditionally independent experiments —for which this is the case. In

our setting the effect of competition is stark —typically it generates full information.

We show our results do not rely on conditional independence; in particular, if senders

have access to additional experiments (i.e. senders are able to correlate their experiments

partially or arbitrarily), they still hold. Our analysis hence generalizes, up to a tech-

nical assumption, the zero-sum game results of Gentzkow and Kamenica (2017b), who

consider a similar model in which senders are able to arbitrarily correlate experiments

(see discussion below). However, when senders have access to only a very limited set

of conditionally independent experiments, our results fail and zero-sum competition can

lead to a decrease in equilibrium information. We explore what technology/strategies are

needed for zero-sum competition to not decrease information and identify simple classes

of experiments for which this is the case. For instance, if each sender only has access

to a single base experiment (satisfying a mild technical condition) but can repeat it as

many times as desired, then a version of our results still holds. This example maps on

to applications in which senders commission scientific studies and can choose only the

sample size or number of clinical trials used in the studies.

Finally, we consider a few variants of our model. When senders begin the game

with bounded private information6 there is full revelation in all equilibria but for in a

knife-edge case of sender preferences. This setting is applicable, for instance, to the

prosecutor/defense attorney example in which the defense lawyer may hold private in-

formation on her client’s guilt/innocence. We show that there is full revelation in all

equilibria for a larger set of sender preferences in our baseline model than in a version of

the game where senders move sequentially; we relate this version of the game to the se-

quential Bayesian Persuasion games of Li and Norman (2018b), Li and Norman (2018a),

Wu (2017), and Dworczak and Pavan (2020). Finally, we apply our analysis to a few

4i.e. the line joining degenerate beliefs on the two states.
5In other words, if a set of senders did not have zero-sum preferences and we added a sender to make

the game zero-sum, then equilibrium information will not decrease.
6i.e. senders’ private beliefs are bounded away from the boundaries of the simplex.
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extensions of our model which deviate from our zero-sum assumption and are applicable

to real-world settings.

The rest of the paper is organized as follows. We discuss related literature in the

remainder of Section 1. In Section 2 we introduce our model and in Section 3 we solve the

special case of two senders and a binary state space. In Section 4 we extend the intuition

from Section 3 to the general model to obtain our main results. Section 5 considers two

applications of our model, one with a single receiver and one with multiple receivers. In

Section 6 we discuss to what extent our results are robust to our two most substantive as-

sumptions: zero-sum preferences and conditionally independent experiments. We consider

two extensions of the model in Section 7 and conclude in Section 8. Appendix A contains

proofs of all the main results and Supplementary Appendix B contains discussions and

proofs of extensions and robustness results.

Related Literature. The effect of competition on information has been studied in

environments of cheap talk (e.g. Krishna and Morgan (2001), Battaglini (2002)), costly

signalling (e.g. Kartik et al. (2020)), disclosure (e.g. Milgrom and Roberts (1986) and,

more recently, Bayesian Persuasion (e.g. Gentzkow and Kamenica (2017a), Gentzkow

and Kamenica (2017b)). Gentzkow and Kamenica (2017a) and Gentzkow and Kamenica

(2017b) (henceforth GK) show that when senders have access to a sufficiently rich (Black-

well connected) set of experiments, competition (weakly) increases equilibrium informa-

tion. Under Blackwell connectedness, GK (2017) obtain a full relevation result for zero-

sum games very similar to ours. Blackwell connectedness requires that senders are able to

arbitrarily correlate their experiments; in contrast we study the case of conditional inde-

pendence —a common assumption in information economics and an important benchmark

for many applications. We discuss the relationship between our paper and GK (2017) in

Section 6.

Boleslavsky and Cotton (2018) and Au and Kawai (2020) study two senders per-

suading a receiver. However their setups are substantially different from ours because

each sender can only reveal information about part of the state (her own type); as a

consequence, they find unique non-fully revealing equilibria. Li and Norman (2018b), Li

and Norman (2018a), and Wu (2017) consider Bayesian Persuasion with multiple senders

moving sequentially. Finally, in a concurrent paper, Dworczak and Pavan (2020) (hence-

forth DP) study a single persuader who is uncertain about what additional information

nature may give the receiver and chooses an experiment to maximize her worst-case pay-

off. This setting is related to competition between two senders in our model (our case

of more than two senders is less related). While their baseline model allows nature to
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arbitrarily correlate her experiment with the persuader’s, they address the case of condi-

tionally independent experiments in a supplementary appendix and obtain results related

to ours. However, due to differences between the models, our results concerning the total

information revealed in equilibrium are stronger. See Section 4.4 for discussion.

2 Model

There is a state ω ∈ Ω = {1, ..., N}. All agents have a common prior belief on ω with full

support π ∈ int∆(Ω). There are M > 1 senders, 1, ...,M , who persuade a receiver.7

Fix a set of signals S with |S| ≥ N . The game starts with each sender i simultane-

ously choosing a set Si ⊆ S, |Si| <∞ and an experiment Πi : Ω→ ∆(Si). Each Πi gives

the probability of the receiver receiving each signal in Si conditional on each state. As

|Si| < ∞, senders may only choose finite signal experiments. Implicit in this definition

of experiments is that senders’ experiments are independent conditional on the state. We

discuss these assumptions below.

The receiver observes the choices of Π1, ...,ΠM (and implicitly S1, ..., SM). Then,

the state is realized (but not observed by the receiver) and signals from each of the M

experiments, s1 ∈ S1, ..., sM ∈ SM , are realized and observed by the receiver. The receiver

is Bayesian and updates his belief on ω to some posterior β ∈ ∆(Ω). Senders receive their

payoffs and the game ends.

Senders’ payoffs depend only on the receiver’s posterior belief β. Each sender i has a

piecewise analytic utility function ui : ∆(Ω)→ R.8 Crucially, we assume senders’ payoffs

are zero-sum: u1(β) + ... + uM(β) = 0 for all β ∈ ∆(Ω).910 For any state l = 1, ..., N let

δl ∈ ∆(Ω) represent the belief that puts probability 1 on state l. Due to the structure of

the game, we can make the following normalization: ui(δl) = 0 for all senders i = 1, ...,M

and all states l = 1, ..., N (see explanation for this normalization below after reading the

definitions in the next paragraph).

7As we do not explicity model the receiver acting, the model allows for any number of receivers. We

discuss the receiver(s) in more detail and explicitly model them in Sections 4 and 5.
8That is, each ui is defined by a finite partition of ∆(Ω) into convex sets and a real analytic function

for each element of the partition. Note this restriction is not necessary; see Section 4.3 for discussion.
9Zero is just a normalization; any constant-sum game will do.

10This could represent the reduced form of a game where the receiver chooses an action a ∈ A after

observing experiment realizations. The receiver has preferences ur(a, ω) and the senders may also have

state dependent preferences {ui(a, ω)}i which are zero-sum:
∑
i ui(a, ω) = 0 for all a ∈ A,ω ∈ Ω.
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A strategy profile is a choice of experiment for each sender (Π1, ...,ΠM). Let Ui(Π1, ...,ΠM) =

EΠ1,...,ΠM [ui(β)] be sender i’s ex-ante expected utility from (Π1, ...,ΠM); the expectation

is over experiment realizations, of which β is a function. Senders choose experiments to

maximize their ex-ante expected utility.

Normalizing ui(δl) = 0. To see why this is a normalization, suppose senders

have utility functions u′1, ..., u
′
M with u′1(β) + ...+ u′M(β) = 0 for all β. For i = 1, ..,M let

αi : ∆(Ω)→ R be the affine function αi(β) = −
∑

l βlu
′
i(δl). For each i, let ui : ∆(Ω)→ R

as ui = u′i+αi. Then ui(δl) = 0 for all l = 1, ..., N . Note that utility function ui preserves

the same preferences over strategy profiles as u′i as for any strategy profile (Π1, ...,ΠM),

EΠ1,...,ΠM [ui(β)] = EΠ1,...,ΠM [u′i(β)]−
∑

l πlu
′
i(δl) and the latter term is a constant. Finally

note that α1(β) + ... + αM(β) = 0 for all β ∈ ∆(Ω), so u1 + .... + uM = 0. While the

normalization changes senders’ preferences over the receiver’s posterior, preferences over

strategy profiles are unchanged and these are what is relevant for equilibrium analysis.

Discussion of Strategies. There are a few aspects of senders’ strategies that are

worth discussing. First, we restrict senders to picking conditionally independent exper-

iments. In the lobbyist example, this corresponds to the reports lobbyists commission

being independently commissioned, researched, and written. The conditionally indepen-

dent case is a natural for many applications and an important benchmark to consider. It

contrasts with environments with richer strategies in which senders are able to correlate

their experiments’ realizations. For instance, Gentzkow and Kamenica (2017b) study a

‘Blackwell connected’ environment in which senders can arbitrarily correlate experiments;

our setting is not Blackwell connected. In Section 6 we allow our senders to play correlated

experiments in addition to conditionally independent ones.

Second, while we restrict attention to finite signal experiments,11 this is for conve-

nience and we show in Supplementary Appendix B that our main results go through when

the assumption is dropped.12 As we allow for S to be infinite, our baseline model allows

for the possibility of senders choosing experiments with arbitrary numbers of finite sig-

nals. As is common in Bayesian Persuasion work, it is important for our arguments that

|S| ≥ N .13

11Restricting attention to finite signal experiments is commonly done in the Bayesian Persuasion liter-

ature (e.g. Kamenica and Gentzkow (2011), Gentzkow and Kamenica (2017b)).
12Note all equilibria with the finite signal restriction are equilibria without it.
13It is well known that a single persuader has such a Bayesian Persuasion solution using at most N

signals; hence in our game senders will always have such a best response. Note that restricting the

cardinality of S is not without loss in multi-sender settings as there may be equilibria in which senders

use arbitrarily large sets of signals.
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A special case. It is worth noting that simple and important class of games fits

our assumptions. Suppose there is a single receiver who maximizes her utility given

her posterior belief β by taking one of two actions a1, a2. Suppose senders have state

independent preferences over the action the receiver takes; these payoffs need not be

zero-sum. This setup is natural for many applications we are interested in: lobbyists

persuading a politician to vote yes/no on a bill, attorneys persuading a judge/jury to

acquit/convict a defendant, or two politicians competing for a single voter’s vote. In such

games, as long as at least two senders prefer different actions, we can normalize sender

payoffs to make the game zero-sum. To see this, suppose sender i prefers action a1; then

when comparing two strategy profiles, i prefers the one that induces the receiver take

a1 more often. Hence normalizing sender payoffs to be zero-sum will not affect sender

preferences as long as ordinal preferences over actions are preserved.

Interim Beliefs. Instead of thinking of sender i picking Πi, it is easier to think of i

choosing a distribution over the receiver’s interim beliefs. For any i and choice of Πi, let

Γi ∈ ∆(Ω) be the random variable representing the receiver’s belief on ω if she observes

only the realization of Πi, si ∈ S. Γi represents the interim belief of the receiver after

she observes information from Πi but before viewing the realizations from {Πj}j 6=i and

updating to her posterior belief.14

A random variable Γ is Bayes-plausible if E[Γ] = π. Following Kamenica and

Gentzkow (2011), it is without loss for us to recast the choice of experiment of each sender

i as a selection of a Bayes-plausible distribution of the interim beliefs, Γi, the experiment

induces. As we have restricted senders to picking finite signal experiments which employ

at most |S| signals, a pure strategy for sender i is a selection of a Bayes-plausible Γi with

support on a finite number of beliefs that is at most |S|.15 Henceforth, when we use Γi

it implicit that this random variable is Bayes-plausible and has finite a support with at

most |S| elements. A strategy profile is a vector (Γ1, ...,ΓM). Fixing any strategy profile

and sender i, let Γ−i denote the experiment induced by observing realizations {Γj}j 6=i.

There are two benchmark experiments to consider. We say Γi is fully revealing, or

Γi = ΓFR, if Pr(Γi = δl) = πl ∀l ∈ Ω. If any sender chooses a fully revealing experiment the

receiver learns the state with certainty. The second benchmark is the fully uniformative

experiment which we denote ΓU ; Γi = ΓU if Pr(Γi = π) = 1.

Equilibrium. The solution concept is Nash Equilibrium; a Nash Equilibrium of

this game is a vector of random variables (Γ1, ...,ΓM) such that no sender i can strictly

14As the receiver is Bayesian, the order in which she views signal realizations does not matter.
15Note that any finite mixture of pure strategies is also a pure strategy.
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improve her ex-ante expected utility, Ui(Γ1, ...,ΓM), by deviating.

There is a trivial NE of this game: (ΓFR, ...,ΓFR). All senders are left indifferent

across all experiment choices as the state will be fully revealed by other senders’ ex-

periments regardless. Our results characterize when the state is fully revealed in every

equilibrium.

3 Two senders and a binary state space

First we derive the main results for the two-sender binary-state case. The intuition will

extend to the general case.

Figure 1: Example of u1 (blue) and u2 (red). u1(β) = β for β < 0.6 and u1(β) = 1 − β for

β ≥ 0.6. Sender 1’s preferences are those in Kamenica and Gentzkow (2011)’s leading prosecutor

persuading a judge example with discontinuity at 0.6 and normalization u1(0) = u1(1) = 0.

Let Ω = {0, 1}. A belief here is a scalar representing the probability the state is

ω = 1. Figure 1 shows an example of sender preferences. A sender i’s strategy is a

choice of interim belief random variable Γi ∈ [0, 1]. Note that for any Γ1,Γ2 chosen, the
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receiver’s posterior belief can be written as a function of the interim beliefs realized from

both experiments. If Γ1 = x and Γ2 = y, then the posterior is:

β(x, y) =
(1− π)xy

xy − πx− πy + π
(1)

Note that β(1, y) = β(x, 1) = 1 and β(0, y) = β(x, 0) = 0; if either interim belief

fully reveals the state, the other is irrelevant. Note β(0, 1) and β(1, 0) are not well defined

but this is not an issue as it is impossible for one sender to fully reveal ω = 0 while the

other reveals ω = 1.

For either sender i, given any strategy Γi, consider the distribution of Γi conditional

on Γj = x (j 6= i): Pr(Γi = y|Γj = x). Pr(Γi = y|Γj = x) can be constructed by taking

the signal structure Πi that corresponds to Γi and deriving the distribution over interim

beliefs it induces if x and not π was the receiver’s prior.16

Given an opponent choice of Γj, define Wi(x) as sender i’s expected payoff conditional

on generating Γi = x. For a fixed Γ2 W1(x) is written:

W1(x) =
∑

y∈supp[Γ2]

u1(β(x, y)) Pr(Γ2 = y|Γ1 = x) (2)

Note that W1(1) = W2(0) = W1(0) = W2(1) = 0; if either players’ experiment

generates a fully revealing interim belief then the other experiment is irrelevant. Two

special cases are important. When Γ2 = ΓFR then, regardless of u1 or the prior, W1(x) = 0

for all x. This is because Γ2 will reveal the state to be 0 or 1; any interim belief sender

1 produces can only affect the relative probability of these events, both of which yield

u1 = 0. Meanwhile, when Γ2 = ΓU , then W1(x) = u1(x) as x will be the receiver’s

posterior.

3.1 Analysis

The result below will be useful.

Lemma 1. In any equilibrium (Γ1,Γ2):

(1) U1(Γ1,Γ2) = U2(Γ1,Γ2) = 0.

16Formally Pr(Γi = y|Γj = x) = Pr(Γi=y)
π(1−π) (xy − πx− πy + π)
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(2) W1(x) ≤ 0 and W2(x) ≤ 0 for all x ∈ [0, 1].

Property (1) follows from the game being zero-sum and the observation that each

sender i can guarantee a payoff Ui = 0 by fully revealing the state. While property (1)

says that sender equilibrium payoffs equal those from full revelation, it does not say that

we must have full revelation in equilibrium: for instance if the u1 and u2 are linear, any

(Γ1,Γ2) constitute an equilibrium.

Property (2) holds because any violation leads to a contradiction of (1). Fix any Γj

such that sender i 6= j has Wi(x) > 0 for some x. We can find a Γi with support only on

{x, 0, 1}; as i gets strictly positive expected utility whenever x is realized and 0 otherwise,

Ui(Γi,Γj) > 0. Hence such Γj cannot be played in equilibrium. Figure 2 shows how to

construct such a Γ1 in our main example when Γ2 = ΓU and hence W1(0.7) > 0.

Figure 2: The blue curve is W1(x) when Γ2 = ΓU . Sender 1 can construct Γ1 with support

{0, 0.7} with Pr(Γ1 = 0) and Pr(Γ1 = 0.7) chosen to respect Bayes-plausibility. U1(Γ1,Γ2) =

w > 0.

More generally, when Wi(x) > 0 we can construct an appropriate Γi as follows. (1)

If x < π define Γi by Pr(Γi = 1) = π−x
1−x and Pr(Γi = x) = 1−π

1−x , (2) if x > π then let

Pr(Γi = 0) = x−π
x

and Pr(Γi = x) = π
x
, and (3) if x = π let Γi = ΓU . Note that in
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each case |supp[Γi]| ≤ 2 and hence Γi can always be implemented under the assumption

|S| ≥ N = 2.

The main result for the two-sender binary-state case relies on Lemma 1. We show

that if utility functions are nonlinear, then in equilibrium at least one sender i must choose

Γi = ΓFR, or else Wj(x) will violate property (2).

Proposition 1. The state is fully revealed in every equilibrium if and only if u1 is non-

linear.

The ‘only if’ direction is trivial —if u1 is linear then senders are indifferent between

all strategy profiles. Hence the result can be restated as:

There is full relevation in every equilibrium

⇐⇒ ∃(Γ1,Γ2), (Γ′1,Γ
′
2) and a sender i with Ui(Γ1,Γ2) 6= Ui(Γ

′
1,Γ

′
2).

In the rest of this section we prove the ‘if’ direction: u1 nonlinear =⇒ full revelation

in every equilibrium.

The idea can be seen using the example in Figure 1 with any prior. Note that for

all r ∈ [0.6, 1), u1(β) > 0 for all β ∈ [r, 1); fix any such r. Suppose for contradiction

that sender 2 plays a non-fully revealing strategy Γ2 in some equilibrium. As Γ2 6= ΓFR,

Pr(0 < Γ2 < 1) > 0; let y = min supp[Γ2] \ {0, 1} ∈ (0, 1) be in the smallest interior belief

in the support of Γ2. Using the definition of β(x, y), define x by β(x, y) = r. Conditional

on Γ1 = x ∈ [x, 1), β(x, y) ∈ [r, 1) for all interior y in Γ2’s support. But then for all

x ∈ [x, 1) we have:

W1(x) = u1(β(x, 0))︸ ︷︷ ︸
=0

Pr(Γ2 = 0|Γ1 = x) + u1(β(x, 1))︸ ︷︷ ︸
=0

Pr(Γ2 = 1|Γ1 = x)+

∑
y∈supp[Γ2]\{0,1}

u1(β(x, y))︸ ︷︷ ︸
>0

Pr(Γ2 = y|Γ1 = x)︸ ︷︷ ︸
>0

> 0.

This contradicts Lemma 1 property (2).

The broader intuition is as follows. We say a sender i has an advantage on any

subset of [0, 1] on which ui is strictly positive; for instance in the example, sender 1 has
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an advantage on [0.6, 1).17 While senders would like the receiver’s posterior to fall in

their regions of advantage with high probability, neither sender’s experiment unilaterally

controls the posterior. However, in the example sender 1 has an advantage at the end of

the unit interval, [r, 1). If sender 2 chooses Γ2 that is interior with positive probability

then sender 1 can find extreme enough interim beliefs x ≥ x guaranteeing that, conditional

on x being realized and Γ2 being interior, the receiver’s posterior is in [r, 1). Whenever

Γ2 fully reveals the state both senders get utility 0, and so overall sender 1 gets a strictly

positive expected payoff from generating an interim belief x ∈ [x, 1); Lemma 1 says this

is not possible in equilibrium.

This argument does not depend on the specific u1 in the example. As β → 1,

whenever u1 approaches u1(1) = 0 from above, as is the case in the example, we can find

an r ∈ (0, 1) such that sender 1 has an advantage on [r, 1). Hence for any such u1, we can

replicate the same argument to show that any Γ2 6= ΓFR cannot be played in equilibrium.

If u1 approaches 0 from below as β → 1 then u2 must approach from above, and so we

must have Γ1 = ΓFR in any equilibrium. The same argument applies whenever u1 or u2

approach 0 from above as β → 0.

Piecewise analycity guarantees that when utilities are nonlinear in a neighborhood of

0 or 1, then some i sender has an advantage on an interval (0, r] or [r, 1). These intervals of

advantage at the extremities of the interval are important as senders face uncertainty over

the realization of their opponent’s experiment. Conditional independence of experiments

means i cannot precisely control the receiver’s posterior given every interior realization of

Γj and hence i must have an extreme interval of advantage that she can ensure all interior

posteriors fall in.

As u1, u2 are piecewise analytic, there is only one other case to consider: u1, u2

nonlinear and u1(β) = u2(β) = 0 for all β in some neighborhoods of both 0 and 1. Here

too there will be a sender with an advantage closest to the ends of [0, 1] who can find

a violation of Lemma 1 property (2) whenever her opponent does not fully reveal the

state. Let r = sup{β ∈ [0, 1] : u1(β) 6= 0} be the supremum of posteriors at which

u1, u2 are nonlinear (note r < 1). WLOG, assume either u1(r) > 0 or that there are

beliefs approaching r from below at which u1 > 0 (zero-sumness implies this must hold

for either u1 or u2). Suppose Γ2 6= ΓFR. Defining y and x as before, if u1(r) > 0, then

W1(x) = u1(r) Pr(Γ2 = y|Γ1 = x) > 0. If u1(r) 6> 0, then W1(x − ε) > 0 for some small

17We use the word advantage because Lemma 1 tells us that both senders will get ex-ante expected

utility 0 in equilibrium. Any posteriors that yield strictly better utility than this for a sender are relatively

advantageous to that sender.

13



enough ε > 0.

4 Main result

Now we apply the logic from the previous section to N ≥ 2 states and M ≥ 2 senders.

For any T ≥ 1 and experiments Γ1, ...,ΓT , let β(Γ1, ...,ΓT ) be the receiver’s posterior

belief after observing all T realizations.18 Fixing opponents strategies Γ−i, we can define

Wi(x) just as before: Wi(x) =
∑

y∈supp[Γ−i] ui(β(x, y)) Pr(Γ−i = y|Γi = x). Lemma 1 then

extends to this more general setting:

Lemma 1. In any equilibrium (Γ1, ...,ΓM), for all senders i:

(1) Ui(Γ1, ...,ΓM) = 0.

(2) Wi(x) ≤ 0 for all x ∈ ∆(Ω).

Property (1) follows from the same arguments as in the previous seciton. Property (2)

then follows by showing that for any x ∈ ∆(Ω) there exists a Bayes-plausible experiment

with support on x and at most N − 1 elements of {δ1, ..., δN}.19

For any strategy profile (Γ1, ...,ΓM) and subset of states Ω′ ⊆ Ω, we say Ω′ is pooled

if Pr(βl(Γ1, ...,ΓM) > 0 ∀l ∈ Ω′) > 0 (otherwise, Ω′ is not pooled). When Ω′ is not pooled,

the receiver will always be able to rule out at least one of the states in the set. For any

Ω′ ⊆ Ω, let ∆(Ω′) = {γ ∈ ∆(Ω) :
∑

l∈Ω′ γl = 1} be the subset of the simplex assigning

probability 1 to ω ∈ Ω′. Note that for two states l, k, ∆({l, k}) is the edge of the simplex

between δl and δk. Hence Proposition 1 can be restated as: states 0, 1 cannot be pooled in

any equilibrium if and only if some ui is nonlinear on ∆({0, 1}). Proposition 2 generalizes

Proposition 1 and characterizes when any set of states can be pooled in equilibrium.

Proposition 2. A set Ω′ ⊆ Ω is pooled in no equilibrium if and only if there is a sender

i for whom ui is nonlinear on ∆(Ω′).

Suppose the receiver learns that ω ∈ Ω′. Conditional on this event, if ui is linear on

∆(Ω′) for all i then all senders are indifferent across all additional information that can be

revealed. Meanwhile, if for some i ui is nonlinear on ∆(Ω′), then there is some additional

experiment that i either strictly prefers or disprefers to not providing any additional

18See Appendix A for an explicit formula.
19This is because π is in the convex hull of x and some N − 1 elements of {δ1, ..., δN}.
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information. Proposition 2 says that conditional on the receiver learning that ω ∈ Ω′,

some sender having strict preferences over revealing additional information characterizes

Ω′ being not pooled in every equilibrium.

Taking this logic one step further, the following corollary gives another implication

of Proposition 2.

Corollary 1. Conditional on any posterior belief induced in equilibrium no sender can

find an experiment that strictly improves or reduces her payoff.

Corollary 1 tells us that in every equilibrium senders reveal enough information to

remove all further conflict between them. An implication of this result is that no informa-

tion revelation, the strategy profile (ΓU , ...,ΓU), is an equilibrium if and only if all senders

are indifferent across all strategy profiles (i.e. senders have trivial preferences).

We now turn to the proof of Proposition 2. Proving the ‘only if’ direction is straight-

forward: if all ui are linear on ∆(Ω′) then all senders fully revealing the state whenever

ω ∈ Ω \ Ω′ and revealing no further information whenever ω ∈ Ω′ is an equilibrium that

pools Ω′.20 Conditional on ω 6∈ Ω′, no sender i has the incentive to deviate as the receiver

will learn the state from Γ−i. Conditional on ω ∈ Ω′, Γ−i will reveal this fact to the re-

ceiver, ensuring that β ∈ ∆(Ω′); as ui is linear on ∆(Ω′) there is no additional information

i can reveal profitably.

Now for the ‘if’ direction; we provide the main intuition here but leave to proof to

Appendix A. For any Ω′ ⊆ Ω and sender i, fixing an opponent strategy Γ−i consider Wi(x)

on ∆(Ω′). As noted above, Γi = x ∈ ∆(Ω′) =⇒ β(x,Γ−i) ∈ ∆(Ω′) w.p. 1. Generating

an interim belief in ∆(Ω′) tells the receiver that ω ∈ Ω′, ensuring the posterior is also

on this set. Conditional on x ∈ ∆(Ω′), the only information Γ−i can convey is relative

probabilities of states in Ω′. When evaluating Wi(x) on ∆(Ω′), sender i can treat Γ−i as

an experiment just about states in Ω′.

If some ui is nonlinear on ∆(Ω′), we can apply a similar argument to Proposition

1. Firstly, at least one sender has an advantage somewhere on ∆(Ω′). We can find some

sender j such that whenever Pr(Γ−j = y s.t. yl > 0 ∀l ∈ Ω′) > 0 (i.e. Γ−j pools Ω′),

Wj(x) > 0 for some x ∈ ∆(Ω′). Like in Proposition 1, j will be a sender with an advantage

closest to the extremes (boundaries) of ∆(Ω′) and x will be extreme enough to ensure that

whenever Γ−j assigns positive probability to all states in Ω′, β(x,Γ−j) falls in a region

20Formally, each sender plays Γ s.t. Pr(Γ = δn) = πn for all n 6∈ Ω′ and Pr(Γ = y s.t. yl =
πl∑

k∈Ω′ yk
∀l ∈ Ω′) =

∑
k∈Ω′ πk.
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of j’s advantage with positive probability. Otherwise, β(x,Γ−j) will fall where j gets 0

utility. Hence Wj(x) > 0, violating Lemma 1 and implying that Γ−j (and hence the whole

strategy profile) must not pool Ω′ in equilibrium.

The bulk of the proof involves finding this x as a function of a Γ−j that pools Ω′.

When |Ω′| = 2, conditional on Γi = x ∈ ∆(Ω′) we are in a binary-state world; hence we

can find x on edge ∆(Ω′) just as in Proposition 1. As our main result, Theorem 1, will

only rely on Proposition 2 for |Ω′| = 2, we relegate a full proof of the case |Ω′| > 2 to

Appendix A (noting that the broad intuition is the same).

Whenever no pair of states can be pooled in any equilibrium, the state is fully revealed

all equilibria. Applying Proposition 2 to every pair of states:

Theorem 1. The state is fully revealed in every equilibrium if and only if for every pair

of states {l, k} there is a sender i for whom ui is nonlinear on ∆({l, k}).

This is an immediate corollary of Proposition 2. Theorem 1 shows that preferences

being sufficiently nonlinear characterizes all equilibria being fully revealing. The state

may not be fully revealed only if all senders have linear preferences on an edge of the

simplex. Linearity along any edge for any sender, let alone all senders, is knife-edge and

so for typical sender preferences the state is fully revealed in all equilibria.

Remark. While we have assumed that
∑M

i=1 ui = 0, Theorem 1’s condition for

full revelation in all equilibria only requires a subset of senders to have zero-sum utilities.

Specifically, suppose the game with senders 1, ...,M is not zero-sum21 but that there exists

I ⊆ {1, ...,M} with
∑

i∈I ui(β) = 0 for all β ∈ ∆(Ω). Then the state is fully revealed

in every equilibrium if for every l, k ∈ Ω there is a sender i ∈ I with ui nonlinear on

∆({l, k}).22 This is easy to see: our analysis applies directly to senders I. Note that we

no longer have the necessary condition for full revelation in all equilibria: it is possible

that all senders in I have linear utilities on some ∆({l, k}) but all equilibria of the game

are fully revealing.

4.1 Single receiver with finite actions

Thus far, the receiver’s only role in the model has been to update her beliefs and hence we

have defined sender preferences {ui}i over the receiver’s posterior belief. In this section we

21i.e. there exists β, β′ ∈ ∆(Ω′) with
∑M
i=1 ui(β) 6=

∑M
i=1 ui(β

′)
22We can extend Proposition 2 similarly. Some sender in I having nonlinear preferences on ∆(Ω′) is

sufficient for Ω′ to be pooled in no equilibrium.
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explicitly model the receiver. In particular, we consider a game in which after updating to

her posterior a single receiver picks an action from a finite set A. When we can microfound

the game in this way, Theorem 1 takes a clean form.

Suppose after observing all experiment realizations the receiver picks an action a ∈ A
and receives a payoff ur(a, ω) while each sender i gets payoff ui(a, ω). We make the generic

assumption that no agent is indifferent between any actions at any state. The solution

concept is Perfect Bayesian Equilibrium (PBE) and we assume the receiver breaks ties

by choosing ‘higher’ actions when indifferent (as actions can be reordered arbitrarily, we

make this assumption just to fix some tie-breaking rule).23

In the space of posteriors, senders have piecewise linear utility functions. For any

Ω′ ⊆ Ω these functions are linear on ∆(Ω′) if and only if the receiver has the same best

action at every state in Ω′. By Proposition 2, a set of states Ω′ cannot be pooled in any

equilibrium if and only if the receiver has different best actions at least two states in Ω′.

This implies a version of Theorem 1:

Corollary 2. Suppose a single receiver choosing actions from a finite set breaks indiffer-

ences in favor of higher actions. Generically, the state is fully revealed in every equilibrium

if and only if the receiver has a different best action at every state.

Further, when any subset of states Ω′ ⊆ Ω is pooled in equilibrium, Proposition 2

implies the receiver has the same best action at all states in Ω′. Hence more information

would not change the receiver’s action which means the receiver learns enough to take

her first best action. We leave the details behind these two results to Supplementary

Appendix B.

In Section 5.1 we work through an example of a game with a single receiver with a

finite set of actions. In Section 5.2, we present an application with multiple receivers and

discuss some of the differences between single and multiple receiver games.

4.2 Competition and information

Consider our game played by only a subset of senders {1, ...,M ′} ⊂ {1, ...,M} (M ′ < M);

note the game with M ′ senders may no longer be zero-sum. In order to assess the impact

23It turns out that fixing a tie-breaking rule is not necessary for the results below to go through; only

the assumption on lack of indifference between actions at every state is crucial. However, the tie-breaking

rule ensures that in all equilibria of the this game, sender preferences over the receiver’s posterior will be

piecewise analytic and hence we will be able to immediately apply our prior results.
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of zero-sum competition on information provision, we compare the information revealed

in equilibria with senders {1, ...,M ′} and with senders {1, ...,M} (if M ′ = 1, then the

‘equilibria’ of the M ′ sender game are just sender 1’s Bayesian Persuasion solutions).

We say a strategy profile is equivalent to another if they induce the same distribution

over posteriors. A strategy profile is (strictly) more informative than another if it is

(strictly) Blackwell more informative (Blackwell, 1953). A strategy profile is no more

informative than another if it is not strictly more informative. Proposition 3 compares

the informativeness of M ′ and M sender equilibria.

Proposition 3. Let (Γ1, ...,ΓM) be an equilibrium of the M sender game. Then:

(1) There is an M ′ sender equilibrium that is no more informative than (Γ1, ...,ΓM).

(2) If an M ′ sender equilibrium (Γ′1, ...,Γ
′
M ′) is more informative than (Γ1, ...,ΓM), then

there is an M sender equilibrium equivalent to (Γ′1, ...,Γ
′
M ′).

We interpret point (1) of Proposition 3 as saying that zero-sum competition cannot

decrease equilibrium information provision relative to competition between any subset of

senders. No equilibrium information of the M sender game can be strictly less informative

than all M ′ sender equilibria. This is a weak notion of non-decrease in information

provision; we discuss this in detail below. It is easy to find cases in which zero-sum

competition strictly increases information provision; for instance, in our leading example,

all ‘equilibria’ with any one sender (i.e. all Bayesian Persuasion solutions) are strictly less

informative than the unique equilibrium with two senders (full revelation).

When combined, point (1) and point (2) provide another sense in which zero-sum

competition does not decrease information provision. Information which can be revealed

in an M ′ sender equilibrium must have at least one of the two following properties. Either

it can also be revealed in an M sender equilibrium, or it is no more informative than all M

sender equilibria. Moving from M ′ to M senders can only remove equilibrium outcomes

that are no more informative than all outcomes of the new game. Equilibria that are

removed will also be strictly worse than some M sender equilibria (e.g. the fully revealing

one).

The weakness of Proposition 3 is that some equilibria of the M and M ′ sender games

may not be Blackwell comparable; this means zero-sum competition need not increase

information provision according to many orders used in the literature (e.g. those defined

in Gentzkow and Kamenica (2017a), Che et al. (2019), Milgrom and Shannon (1994)).

However, Theorem 1 tells us that for typical sender preferences, zero-sum competition

will not only increase information provision, but do so starkly.
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In two special cases, comparing M ′ and M sender equilibria is much simpler. In

the binary-state case, if all M senders have linear preferences, then the set of equilibria

with M ′ and M senders are the same. Meanwhile if any of the M ′ senders has nonlinear

preferences, then the state will be fully revealed in any M sender equilibrium. This implies

that M sender equilibria are more informative than M ′ sender equilibria according to the

‘strong set order’ (Veinott (1989), Milgrom and Shannon (1994)). Next suppose there

is a single receiver with finite actions (we maintain the assumptions on payoffs and tie-

breaking from Section 4.1). As all M sender equilibria deliver the receiver her first-best

payoff, moving from the M ′ sender game to the M sender game makes the receiver weakly

better off (of course, any of the M ′ senders could be made worse off).24 This has normative

implications for how a decision maker should choose sources of information or experts.

Suppose that before making a decision, the receiver can chooses a set of experts who then

choose what information (experiments) to reveal. The experts may have their own vested

interests in the receiver’s action. If the receiver has a selected some set of M ′ experts and

can choose an additional expert, she should pick one who maximally disagrees with the

others.

One contribution of this paper is to identify a natural and applicable environment

—zero-sum preferences and conditionally independent experiments —for which competi-

tion cannot decrease information provision. In Section 6 we discuss to what extent our

assumptions on preferences and sender technologies/strategies can be relaxed while still

maintaining this result.

4.3 Discussion

Here we discuss to what extent our results and analysis are robust to changes in our

modelling assumptions.

Robustness to zero-sumness. Using standard upper hemicontinuity arguments,

we can show Theorem 1 is robust.

Proposition 4. Suppose senders’ utility functions converge to zero-sum and utilities are

sufficiently nonlinear in the limit. Whenever convergent, the information revealed along

any sequence of equilibria converges to full revelation.

Convergence for utilities is in the sup norm. For information, the notion is conver-

24As the receiver learns everthing valuable to her in all M sender equilibria, comparing the informa-

tiveness of M and M ′ sender equilibria is less important.
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gence in distribution of the receiver’s posterior. We leave the details to Supplementary

Appendix B.

Proposition 4 tells us that our results are not knife-edge. Typically, when preferences

are close to zero-sum, all equilibria are close to fully revealing.25 This robustness is one

reason we focus on conditions for full revelation in all equilibria. Note that if the limiting

preferences are linear on every edge of the simplex, it is still possible for the information

revealed in all equilibria to converge to full revelation —Proposition 4 is just a sufficient

condition.

While our results are informative about preferences close to zero-sum, our analysis

does not apply far from it. In Section 6 we discuss nonzero-sum preferences more generally.

Piecewise analytic utility. Our assumption that utility functions are piecewise

analytic is not necessary for our results. Proposition 1 relied on being able to find an

interval of advantage for one sender at the extremes of the unit interval. For this result,

we just need to rule out pathological utility functions that, under our normalization, take

values oscillating infinitely about 0 close to the ends of the unit interval. A sufficient

condition for this would be the piecewise analycity of utilities in some neighborhoods of

each degenerate belief. Theorem 1, which only relies on Proposition 2 applied to pairs of

states, also goes through under this weaker condition. For Proposition 2, we need utility

functions to not oscillate infinitely about 0 on any path of beliefs in the simplex.

Experiments without finite signals. We have focused on finite signal equilibria

because the results are cleaner. The same intuition applies when senders can choose any

conditionally independent experiments (with countably or uncountably many signals).

However in this case we only obtain a sufficient condition for full revelation in every

equilibrium —satisfied in all but a knife-edge case —but not a necessary one.

For any states l, k let vl,k ∈ RN be the vector from δl to δk.
26 For any sender i let

∇vl,kui(·) be the directional derivative of ui moving along vl,k. Note that moving from any

δl to δk along vl,k, we cross a finite number of analytic ‘pieces’ of each ui (by piecewise

analycity). Hence while ∇vl,kui(β) need not exist for all β, the following quantity will

always exist for all i and l, k:

dl,ki = lim
β∈∆({l,k})\{δk}

β→δk

∇vl,kui(β)

25In Supplementary Appendix B we show a similar robustness result for Proposition 2.
26vl,kk = 1, vl,kl = −1, vl,kn = 0 for all n 6= l, k.
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Note that dl,ki exists even when ∇l,kui(δk) does not exist.

We say some ui satisfies Condition 1 on edge ∆({l, k}) if either dl,ki 6= ui(δk)−ui(δl),
dk,li 6= ui(δl)− ui(δk), or both.

Not satisfying Condition 1 is knife-edge. It is not satisfied by ui on ∆({l, k}), for

instance, if ui is linear on this edge or if ui is linear in neighborhoods of δl and δk.

Condition 1 is satisfied if ui looks like u1 or u2 in our leading example (Figure 1) on the

edge. Most importantly, Condition 1 is generically satisfied for all ui on edge ∆({l, k}) in

a model with a single receiver with a finite set of actions if and only if the receiver prefers

different actions at l and k. If for each edge of the simplex some sender’s preferences

satisfy Condition 1, we have full revelation in all equilibria.

Proposition 5. Suppose senders can choose any (conditionally independent) experiments.

The state is fully revealed in every equilibrium if for every pair of states {l, k} there exists

a sender i for whom ui satisfies Condition 1 on ∆({l, k}).

Proposition 5 says that we should still expect full revelation in all equilibria for

typical sender preferences when we drop the finite signal restriction on experiments. We

leave the proof to Supplementary Appendix B, but for intuition consider the two-sender

binary-state case. Note that when proving Proposition 1 using our leading example, we

made use of the fact that if Γ2 is not fully revealing, it has in its support some minimum

interior interim belief y. When Γ2 does not have finite support, y need not exist and

whether sender 1 can find a point x for which W1(x) > 0 will depend on the limiting

behavior of u1 (hence Condition 1).

Sender private information. In many settings of persuasion agents hold private

information. We can easily incorporate receiver private information into our model: at

each public posterior β realized from sender experiments, we can compute sender expected

payoffs by taking an expectation over what private information the receiver may obtain.27

Here we deal with the more interesting case: sender private information. This is an

important consideration in many of our applications. At the start of a court case, a

defense attorney may have information about the guilt/innocence of her client that the

prosecution and judge/jury are not privy to. Alternatively, companies may possess private

information about the quality of products they advertise.

Suppose when the game begins each sender receives a private signal. We assume

these signals are bounded28 and realized from finite signal conditionally independent ex-

27See discussion in Kamenica and Gentzkow (2011).
28They induce beliefs bounded away from the simplex’s boundaries.
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periments.29 The solution concept is PBE. In equilibrium, senders could potentially signal

their private information through their choice of experiment. However, for typical sender

preferences the takeaway from Theorem 1 remains the same.

Proposition 6. Suppose senders receive private signals before the game. The state is

fully revealed in every equilibrium if for every pair of states {l, k} there exists a sender i

for whom ui satisfies Condition 1 on ∆({l, k}).

The logic behind the result remains close to that in the baseline model. Any signalling

of private information that does occur via choice of experiments will, as private informa-

tion is bounded, induce bounded beliefs for the receiver. Hence a sender can ‘overpower’

information provided through signalling by generating extreme enough interim beliefs,

just as she can overpower interior interim beliefs induced by her opponents’ experiments.

Condition 1 is needed because of inability to discipline off-path beliefs in equilibrium; we

leave details and the proof to Supplementary Appendix B.

Sequential moving senders. Consider a sequential version of our model, in which

senders 1, ...,M move in order. Senders observe all previous experiment choices (but

not realizations).30 Such a setup may be applicable in modelling firms competing for

consumers by designing advertisements. A firm may observe the advertising campaign (or

experiment) its competitor chooses, but because it cannot observe the sales/marketing

data associated with the advertising campaign,31 cannot observe the realization of the

experiment.

We are interested in subgame perfect Nash Equilibria (SPNE) of this game. Note

that for each simultaneous game there are multiple corresponding sequential games, one

for each ordering of senders. The following result helps clarify the relationship between

the our baseline model and a sequential version.

Proposition 7. If for u1, ..., uM there is full revelation in every SPNE of the sequen-

tial game with the senders moving in some order, then there is full revelation in every

equilibrium of the simultaneous game.

We prove the result Supplementary Appendix B and also show that the converse

does not hold: it is possible for there be to full revelation in every equilibrium of the

29The latter two assumptions are for convenience.
30If senders could observe the realizations of upstream senders’ experiments, then a downstream senders

could correlate her experiment with upstream senders’ by conditioning her experiment choice on upstream

signal realizations. Our results in this section would also hold for such a model.
31e.g. how many consumers clicked on an online ad or how many bought products after viewing an ad.
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simultaneous game but non-fully revealing SPNE in the sequential game for every ordering

of senders. The result shows that we are guaranteed full revelation in equilibrium for a

(weakly) larger set of sender preferences with simultaneity than with sequentiality. This

is in line with Norman and Li (2018a) and Wu (2017), which show that simultaneous

persuasion cannot generate less information than sequential.32

In their supplementary appendix, Dworczak and Pavan (2020) consider a model sim-

ilar to the sequential model described above with two senders (see Section 1 for a de-

scription of their model). Their paper however asks very different questions than ours

and obtains weaker full revelation results. Differences in timing (sequentiality vs simul-

taneity) are one reason for our stronger full revelation results. Another is that while our

results concern the total information revealed by multiple senders, their results emphasize

the information revealed by a single persuader (less so her opponent —nature). Formally,

in the two sender version of our model, our condition for any states Ω′ to be not pooled in

every equilibrium is equivalent to the persuader in (Dworczak and Pavan, 2020)’s model

having a unique optimal strategy of not pooling Ω′ or nature minimizing her payoff by

not pooling Ω′.

5 Applications

In this section we consider two applications, one with a single receiver and one with

multiple receivers.

5.1 Lobbying

We first work through an example of persuading a single receiver. This example is intended

to unpack the sender preferences over the receiver’s posterior, which are the primitives of

our baseline model.

Consider the problem of two competing lobbyists attempting to persuade a single

politician. Suppose ω represents type of threat climate change poses; the threat can

either be low (ω = L), medium (ω = M), or high (ω = H). There are three possible

actions the politician can take to combat climate change. If she chooses a = N no action

is taken, choosing a = W would pass a weak law (maybe with non-binding measures), and

32However both papers allow senders to correlate experiments arbitrarily. Wu (2017) also considers

zero-sum games, but only shows existence of a fully revealing equilibrium.
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choosing a = S would enact a strong law (maybe mandating use of alternative energy).33

At the start of the game, an oil lobby firm and an environmental lobbying group

commission experts of their choice to write reports on climate change (i.e. the two senders

choose experiments on ω).34 The politician then reads the reports, updates her belief on

ω, and chooses her action a.

All three agrents receive payoffs that depend on the politician’s action, a. The oil

lobbyist prefers the weakest possible action: uo(N,ω) = 1, uo(W,ω) = 0.5, uo(S, ω) = 0

for all ω.35 The environmental lobbyist, meanwhile gets payoffs: ue(N,ω) = 0, ue(W,ω) =

0.5, ue(S, ω) = 1 for all ω. Note that payoffs for lobbyists are constant-sum at every action

and state pair. The politician’s preferences over actions depend on the state. Suppose the

politician strictly prefers to take no action when she is certain ω = L and strictly prefers

a = S at state ω = H. When ω = M , she has preferences: ur(N,M) = 0, ur(W,M) = 0.5

and ur(S,M) = ρ, where ρ ∈ [0, 1] may measure her willingness to fight the oil lobby.

Assume that when indifferent between actions, the politician breaks indifferences favoring

N over W over S.

The solution concept is PBE. Let RN , RW , RS ⊆ ∆(Ω) be the sets of posteriors at

which the politician optimally chooses actions N , W , and S respectively. These sets are

disjoint, partition ∆(Ω), and are convex (given our tie-breaking rule). Figure 3 shows an

example of these sets. In any PBE, the lobbyists’ expected payoff given the politician’s

posterior, uo(β) and ue(β), can be written: ui(β) =
∑

ω∈Ω ui(a
∗(β), ω)βω, where a∗(β) is

the politician’s action choice at β. Each ui(β) is linear on each of RN , RW , RS and hence

piecewise linear on ∆(Ω). As uc and ue are also constant-sum, they meet the conditions

for our analysis to apply (for exposition, we do not normalize ui(δl) = 0 for all l).

First suppose ρ < 0.5. Then: δL ∈ RN , δM ∈ RW , and δH ∈ RS —at each degenerate

belief the politician takes a different action. Then uo(β) must have a discontinuity along

∆({L,H}) as uo(β) jumps from 1 to 0 when crossing from RN to RS. Similarly, there

are discontinuities in uo(β) along ∆({L,M}) and along ∆({M,H}). As uo(β), ue(β) are

nonlinear on every edge, the state is fully revealed in all equilibria (Theorem 1).

Now suppose ρ > 0.5. Then δL ∈ RN and δM , δH ∈ RS. Along ∆({L,H}), uo(β)

33For instance, if the politician is the president of the United States W and S could be potential

executive orders. Alternatively, the politician could be a legislator casting a pivotal vote on two bills.
34As noted by Kamenica and Gentzkow (2011), lobbying groups spend large amounts of money on such

reports. For example, the tobacco lobby heavily funds reports on the health effects of smoking cigarettes

(Barnoya and Glantz, 2006).
35Both laws could reduce demand for oil: S directly and W by affecting consumers’ choices.
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and ue(β) are the same as when ρ < 0.5; hence Proposition 2 implies L and H cannot be

pooled in equilibrium. Along ∆({L,M}), both ui(β) are discontinuous and so {L,M} also

cannot be pooled. However, as δM , δH ∈ RS and RS is convex, ∆({M,H}) ⊆ RS; hence at

every belief along this edge the politician approves the strong bill and the environmental

lobbyist gets a payoff of 1 while the oil lobbyist gets payoff 0. Sender preferences are

linear along ∆({L,H}) and these states are pooled in some equilibria.

Figure 3: An example of how RN , RW , RS may look when ρ = 0 (left) and ρ = 1 (right).

When ρ < 0.5, the politician prefers a different action in each state. Hence any

information provided about the relative probabilities of the three states could be valuable

to her in decision making. As the politician learns the state in every equilibrium, she is

always able to take her first-best action. Meanwhile, when ρ > 0.5, the politician prefers

the strong action in both states M and H and so conditional on learning ω ∈ {M,H}, no

further information could benefit her decision making. Although M and H can be pooled

in equilibrium, neither can be pooled with L and so the politician still learns enough

to take her first best action. Because lobbyists disagree —in a zero-sum sense —over

the politician’s action, they never withhold information that could influence this action.

However, they may withhold information which will not affect the action.

5.2 Persuading voters

As an example of a game with multiple receivers, we adapt Alonso and Câmara (2016)’s

model of a single politician persuading voters to a competitive setting with two politicians.

There are V voters {v1, ..., vV } (V odd). Each voter vi will cast a vote ai for either

politician 1 or 2. The politician who receives the majority of the votes, O ∈ {1, 2}, wins

the election and receives a payoff of 1 while the losing politician receives payoff 0. We
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call O the outcome of the election. Voters have preferences over politicians that depend

on an underlying state ω ∈ Ω: {uvi(O,ω)}Vi=1.

We interpret this setup as follows. Politician 1 and 2 have platforms specifying

policies they would enact if elected. Voters have preferences over the policy decisions that

would be taken by the politicians, and hence the politicians themselves, that depend on

ω. At the start of the game, the politicians simulateneously choose experiments on ω; we

think of this as politicians commissioning experts to write reports. The voters commonly

observe these experiments and their realizations and then simultenously cast their votes.

In any PBE, voters’ actions constitute a Nash Equilibrium at every posterior belief

induced. We select equilibria in which voters play undominated stategies and vote for

politician 1 when indifferent. This implies that voter vi votes for politician 1 at posterior

β if and only if
∑

k∈Ω uvi(1, k) ≥
∑

k∈Ω uvi(2, k). Note that the set of posterior beliefs at

which voter vi votes for politician 1, O1(vi) ⊆ ∆(Ω), is convex.

To apply our results, we need to show that in any equilibrium, poiliticians’ preferences

over posterior beliefs fit our assumptions. In an equilibrium abiding by our selection, let

O1 ⊆ ∆(Ω) be the set of beliefs at which the voters elect politician 1 and O2 be the set

of beliefs they elect politician 2. At beliefs in O1, politician 1 (2) gets payoffs 1 (0), while

in O2 politician 1 (2) gets payoff 0 (1). It is easy to show that O1 and O2 can each be

written as the union of a finite number of disjoint convex sets;36 hence politicians’ payoffs

are real analytic and zero-sum.

For any Ω′ ⊆ Ω, senders have linear preferences on ∆(Ω′) if and only if ∆(Ω′) ⊆ O1 or

∆(Ω′) ⊆ O2. If ∆(Ω′) intersects both O1 and O2, then sender payoffs jump discontinuously

at some point in ∆(Ω′). Applying Proposition 2: Ω′ is pooled in some equilibrium if and

only if ∆(Ω′) ⊆ O1 or ∆(Ω′) ⊆ O2. This implies that in equilibrium, at every posterior

no additional information would affect the election outcome. By Theorem 1, the state

is fully revealed in every equilibrium if and only if for every pair of states l, k, ∆({l, k})
intersects O1 and O2.

There are a couple interesting features of this setting which we will discuss via the

following example. Suppose Ω = {0, 1} with a flat prior, V = 3, and uv1 , uv2 , uv3 are such

that the following is true. If voter 1 knew the state, she would prefer politician 1 when

ω = 0 and politician 2 when ω = 1; however, her preference for politician 2 when ω = 1

36The regions in which an individual voter votes for politicians 1,2 are defined by a single hyperplane.

Drawing all V such hyperplanes partitions the simplex into finitely many convex cells. All voters’ actions

are unchanged when moving within a cell. Hence each cell is either in O1 or O2.
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is stronger than her preference for politician 1 when ω = 0.37 Meanwhile voter 2 prefers

politician 1 at ω = 1 and politician 2 at ω = 0 but her preference at ω = 0 is stronger

than that at ω = 1. Finally voter 3 always prefers politician 1. Figure 4 shows what

O1(vi), O2(vi) look like for all voters.

Figure 4

Note that while O1(vi) and O2(vi) are convex for each vi, O1 and O2 need not be

convex. In the example, O2 = (c, d) while O1 = [0, c) ∪ (d, 1]. Hence despite the fact

that the voters would elect politician 1 at both states 0 and 1, politicians must still fully

reveal the state in all equilibria as there are interior beliefs at which voters would make a

different decision. This is in contrast to a game with a single receiver where the receiver

takes the same action on convex sets.

Alonso and Câmara (2016) find that relative to no information, a single persuader

can make a majority of voters strictly worse off. Although competition guarantees all

equilibria of our example provide voters with full information, this still makes a majority

of voters worse off. In equilibrium, when ω = 0, voter 1 gets an outcome (O = 1) she

marginally prefers given the state. With equal probability, ω = 1 and voter 1 gets an

outcome she strongly disprefers. Meanwhile, under no information, politician 2 wins the

election; this is the marginally dispreferred outcome for voter 1 when ω = 0 and the

strongly preferred outcome when ω = 1. In net, voter 1 does better under no information;

the same is true for voter 2 by identical logic. Voter 3, meanwhile, does better under full

information.38

37i.e. uv1
(2, 1)− uv1

(1, 1) > uv1
(1, 0)− uv1

(2, 0).
38Alonso and Câmara (2016) show that a majority of voters can be made worse off by a single persuader

even if at every state all voters agree on the best outcome. With competing persuaders, such agreement

between voters guarantees all voters do better off in equilibrium than under no information.
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The example adds some nuance to our results on information provision in equilbrium.

While the effects of zero-sum competition are unambiguously positive for a single receiver,

the welfare implications for multiple receivers will depend on the environment.

6 Discussion of Assumptions

Our two most substantive assumptions in this paper are that preferences are zero-sum

and senders have access to only conditionally independent experiments. In this section

we examine to what extent we can relax each of these.

6.1 Zero-Sum preferences

Zero-sum preferences correspond to maximal disagreement between senders,39 and hence

are an important benchmark to consider for the applications we had in mind: those in

which senders have strongly opposing interests. Under this benchmark, we were able

to characterize properties of all equilibria40 and show that competition cannot decrease

information provision. In this section we demonstrate that neither of these findings apply

away from zero-sum games.

It is easy to see why our full revelation results collapse in a more general setting:

if we allow for arbitrary sender preferences then it is possible for all senders to have

identical preferences; in this case any sender’s Bayesian Persuasion solution will be an

equilibrium and, of course, need not be fully revealing. More interestingly, when the

game is not zero-sum and senders employ conditionally independent experiments, the

effect of competition on information provision is ambiguous. We can find examples of

nonzero-sum piecewise real analytic preferences such that adding a sender can create

an equilibrium strictly less informative than all equilibria without the additional sender.

In the one parameter model of disagreement between two senders studied in Gentzkow

and Kamenica (2017a) we can show that increasing disagreement between senders can

produce strictly less informative equilibria.41 This suggests that while in the limit of

maximal disagreement competition cannot decrease information provision, information

39Formally, whenever Ui(Γ1, ...,ΓM ) > Ui(Γ
′
1, ...Γ

′
M ) then there exists a sender j with Uj(Γ1, ...,ΓM ) <

Uj(Γ
′
1, ...Γ

′
M ). Hence zero-sum preferences maximize the set of strategy profiles pairs for which senders

do not unanimously agree on the ranking.
40Proposition 4 tells us that these results apply close to this benchmark as well.
41At one limit of the parameter is zero-sum preferences.
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provision is not monotonic in competition. Hence another justification for our limiting

the scope of sender preferences is an inability to answer our motivating question outside

this scope.

6.2 Limitations in technology

The main results of this paper show that when senders have zero-sum preferences and have

access to all conditionally independent experiments, then competition cannot decrease

equilibrium information. This happens starkly —typically any such competition results

in all information being revealed.

The arguments we use have relied on our assumptions on the information technology

senders have access to. In particular, Lemma 1 property (1) relied on each sender being

able to fully reveal the state and Lemma 1 propery (2) relied on a sender being able

to construct any experiment using N signals that is conditionally independent of her

opponents’. In this section, we first show that these two ingredients are sufficient for our

results; in particular if other (potentially non-conditionally independent) experiments are

additionally available to senders then Propositions 1 and 2 and Theorem 1 go through.

We then argue that while the fact that zero-sum competition results in nondecreasing

information may not be shocking, it is not obvious; if senders do not have access to

a rich enough set of conditionally independent experiments then competition may in

fact decrease the amount of information provided in equilibrium. Finally, we consider

a few examples which demonstrate that our baseline assumptions on technology are not

necessary for our results —even when senders are limited to picking experiments from

some simple restrictive classes of conditionally experiments, we still can maintain our

main results.

6.2.1 Additional Experiments

The case of conditionally independent (CI) experiments is realistic in many real-world

settings. However, in some environments it is possible that senders may be able, to

an extent, to correlate the results of their experiments. For instance, in criminal cases

tried in United States federal court, the prosecutor may be bound to disclose (or place

in discovery) certain types of evidence at various deadlines before the trial. The defense

may hence (partially) condition what exonerating evidence they seek on what information

the prosecutor discloses. In the case of politicians competing for votes, campaigns are
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dynamic processes and a candidate may commission experts to write reports informative

about her agenda after her opponent has already done so. Importantly, while a sender

in these examples is able to partially condition what information she seeks on what her

opponent has revealed, she need not do so. A defense attorney is free to ignore the

evidence put into disclosure by the prosecution and a politician is free to conduct her

campaign ignoring information revealed by her competitors.

Our results also apply in these types of settings. Conditional independence is not

crucial to our results in the sense that they still hold if senders have access to additional

(partially or arbitrarily correlated) strategies. Fix a set of signals S, |S| ≥ N . Suppose

each sender i has access to a set of experiments Ei. We say sender i has access to all

CI experiments if for any finite subset of signals Si ⊆ S i chooses, Ei contains every

conditionally independent experiment Πi : Ω → ∆(Si). Sender i may have access to all

CI experiments and also have access to other (finite signal) experiments which realize to

signals in Si.

Corollary 3. If every sender has access to all CI experiments then Propositions 1,2 and

Theorem 1 hold.

The important part of Corollary 3 is showing that Proposition 2 holds in such an

environment; Proposition 1 is then implied and Theorem 1 follows by the same argument

as in the baseline model. First note that if all senders have access to all CI experiments

then Lemma 1 property (1) holds (for the same reason). Fixing an experiment Γ−i, we

can define Wi(x), as before, as i’s expected payoff from generating interim belief x from

an experiment conditionally independent to Γ−i. Next note that Lemma 1 propery (2)

holds here as well; just as in the baseline model, whenever Γ−i is such that Wi(x) > 0

for some x, i can find a conditionally independent Γi such that Ui(Γi,Γ−i) > 0 (violating

Lemma 1 property (1)). Extending the ‘if’ direction of Proposition 2 to this setting then

follows by and identical argument as in the baseline model; the ‘only if’ direction holds

by an identical construction of pooling equilibria.

It is worth noting that adding correlated experiments to senders’ strategy spaces

augments the set of deviations they can play and hence it could be easier to support

non-fully revealing equilibria when only CI experiments are available. Our analysis shows

that CI deviations are sufficient to eliminate non-fully revealing equilibria whenever there

is sufficient nonlinearity in preferences.

Gentzkow and Kamenica (2017b) consider a multi-sender Bayesian persuasion game

in which senders are allowed to arbitrarily correlate their signal realizations and obtain a
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sufficient condition for full revelation in all equilibria of zero-sum games almost identical

to ours. Corollary 3, combined with Theorem 1, nests this result of GK (2017) with the

caveat that we assume piecewise analytic utilities.

It is important to note the forces that deliver the full revelation results in GK (2017)

and this paper are different. In GK (2017), ability to correlate experiments gives each

sender much more control over the posterior. Given any Γ−i played by her opponents,

a sender i can play a different experiment for each realization of Γ−i. Senders’ ability

to manipulate the receiver’s posterior belief by belief makes Proposition 2, and hence

Theorem 1, much easier to prove. In our setting senders have less control over posteriors;

the strongest tool a sender has is using extreme interim beliefs to ensure poteriors are

similarly extreme. The mechanisms by which senders can take advantage of the state

not being fully revealed in our model require less complexity. As we discuss later in the

section, a key contribution of this paper is to show zero-sum competition in persuasion

typically generates full information even when senders have access to lower complexity

technology.

6.2.2 Limited CI experiments

Ex-ante, one may think that zero-sum competition is most favorable to information pro-

duction and hence that our results are not surprising. The following example demonstrates

that these results are not obvious and depend on the set of strategies senders have access

to.

Example 1. Suppose N = M = 2 and let π = 1
2
.

Sender preferences are zero-sum and are defined as follows:

• u1(β) = u2(β) = 0 for all β 6∈ {0.25, 0.26, 0.74, 0.75}

• u1(0.25) = u1(0.75) = u2(0.26) = u2(0.74) = 1

Define experiments Γ1,Γ2,ΓN as follows:

• Pr(Γ1 = 0.25) = Pr(Γ1 = 0.75) = 1
2

• Pr(Γ2 = 0.26) = Pr(Γ2 = 0.74) = 1
2

• Pr(ΓN = 37
76

) = Pr(ΓN = 39
76

) = 1
2
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Suppose E1 = {ΓU ,Γ1,ΓN} and E2 = {ΓU ,Γ2,ΓN}.

Figure 5: Plots u1 (blue) and u2 (red) in Example 1. The blue arrows show the possible interim

belief realizations for Γ1. The red and green arrows show the same for Γ2 and ΓN respectively.

Γ1 and Γ2 here are experiments that realize to sender 1 and sender 2’s points of

advantage respectively. ΓN provides extremely little information.

Note that β(0.74, 39
76

) = 0.75, β(0.75, 37
76

) = 0.74, β(0.26, 37
76

) = 0.25, and β(0.25, 39
76

) =

0.26. Given this, both players have best response Γi = ΓN whenever Γ−i = ΓN or

Γ−i = Γ−i. Sender i’s best response to Γ−i = Γi is Γi = ΓU . With two senders, there

is a unique equilibrium (ΓN ,ΓN). When only sender i ∈ {1, 2} is playing, the unique

‘equilibrium’ (Bayesian Persuasion solution) is Γi = Γi. Note that Γ1 and Γ2 are both

strictly more informative than the strategy profile (ΓN ,ΓN).42

42To see this note that Γ1 and Γ2 both only induce posteriors outside interval (0.26, 0.74). (ΓN ,ΓN )

induces posteriors inside (0.26, 0.74); as we are in a binary-state setting, this means that Γ1 and Γ2 are

both mean preserving spreads of the (ΓN ,ΓN ).
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Consider the game with 2 senders. As no feasible strategy profile fully reveals the

state, it is not surprising that our full revelation results collapse in this example. What is

more interesting is that zero-sum competition here results in less information in equilib-

rium than the receiver(s) would obtain with any one sender being the sole persuader.4344

Hence if senders have limited sets of experiments available, it is possible for competition

to decrease equilibrium information. In this example, this occurs because both senders

play low information experiments, ΓN , which given the available experiments make it im-

possible for their opponent to make use of her advantage points. Though one may think

zero-sum competition should intutively lead to more information, this is only true when

senders can choose from rich enough sets of experiments.

The following examples and results show that while very limited sets of CI experi-

ments will break our results, if senders have access to some simple classes of experiments

but not all CI experiments, our results go through.

Example 2. Two lobbyists, 1, 2, persuade a politician to vote yes/no (Y /N) on a bill.

They do so by commissioning scientists to conduct studies revealing information about a

state ω ∈ {0, 1}. The politician will vote yes on the bill if at her posterior Pr(ω = 1) ≥ 0.5

and no otherwise. Lobbyist i receives payoff, ui(a, ω) where a ∈ {Y,N} is the politician’s

vote. As in Section 4.1, we assume all senders have strict preferences over actions at both

states and that payoffs are zero-sum for each (a, ω).

As an example, suppose the bill would place restrictions on chemicals manufacturing

firms can use in producing household goods. If ω = 1 these chemicals are harmful and

if ω = 0 they are not. Lobbyist 1 represents the firms and wants the bill to fail, say

u1(N,ω) > u1(Y, ω) for all ω, whereas lobbyist 2 is a consumer protection advocate and

has the opposite preferences. Each lobbyist has a scientist (scientists 1, 2) who will study

the chemical’s effects on humans. Each scientist 1, 2 has their own test they use on a

human subject to determine the chemical’s effect on the subject; the only dimension the

lobbying firms can control is how many subjects their scientists test.

We can think of scientist 1 and 2’s individual tests as some experiments Γ1,Γ2; assume

that Γ1,Γ2 6∈ {ΓU ,ΓFR} —testing an individual subject is not totally uninformative or

fully informative about the effects on the population. Let experiment Γi(K) represent

the experiment induced by repeating Γi K times conditionally independently. Lobbyist i

43Note that if both senders were able to fully reveal the state, then while there would be a fully revealing

equilibrium, (ΓN ,ΓN ) would remain an equilibrium. Hence going from 1 to 2 senders would still create

a strictly less informative equilibrium while also creating a strictly more informative one.
44This fact does not depend on senders having different strategy sets. We can construct a similar but

more cumbersome example where E1 = E2.
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can play experiment Γi(K) by asking scientist i to test K subjects. We assume scientist

i can repeat Γi an arbitrary number of times. As K → ∞, note that Γi(K) will fully

reveal the state; this is because Γi is not totally uninformative and hence an arbitrarily

large number of copies will reveal the state with arbitrary certainty (follows from Law of

Large Numbers). As the limit of infinite repetitions, we allow each sender i to fully reveal

the state as well. Hence sender i has access to experiments Ei = {Γi(K)}∞K=1 ∪{ΓFR} for

i = 1, 2.

Each sender has access to a much smaller set of experiments than the set of all CI

experiments. However, each can fully reveal the state; this implies Lemma 1 property

(1) must hold. Further, by choosing large enough K, a sender can ensure the state is

almost fully revealed with high probabilility and that posterior beliefs concentrate close

to 0 and 1. If Γ−i is not fully revealing the state and sender i has advantages close to 0

and 1, sender i can obtain a strictly positive payoff by playing Γi(K) for large enough K.

If i has an advantage close to 1 but a disadvantage close to 0, this sort of deviation may

still give i a strictly positive payoff depending on the relative sizes of the advantage and

disadvantage. It turns out, that for generic payoffs {ui(a, ω)}, some sender will be able to

obtain a strictly positive payoff when her opponent is not fully revealing the state. This

implies:

Result. For generic payoffs the state is fully revealed in every equilibrium.

The intuition from Example 2 extends more generally. We say an experiment Γ

is asymptotically sufficient if: (1) Γ 6= ΓFR and (2) Γ(K) converges in distribution to

ΓFR as K → ∞. In the binary-state case, Γ is asymptotically sufficient if and only if

Γ 6= ΓU . More generally, Γ is assymptotically sufficient if the convex hull of its support has

dimension N−1; when this is true, then repeating Γ generates sufficient information about

the relative probabilities of states to guarantee convergence to ΓFR. If each player has

access to ΓFR and an asymptotically sufficient experiment which she can repeat arbitrarily,

then we can find a sufficient condition for the state to be fully revealed in all equilibria

(satisfied in all but a knife-edge case).45 This result is easiest to state in the case of a

single receiver with finite actions:

Proposition 8. For each sender i let Ei = {Γi(K)}K} ∪ {ΓFR} for some asymptotically

sufficient Γi. There is a single receiver with a finite action set who breaks indifferences in

favor of higher actions. Generically, the state is fully revealed in every equilibrium if the

receiver has a different best action at every state.

45If no sender has access to the fully revealing experiment then there can be issues with equilibrium

existence. ΓFR needs to be included as a limiting case of infinite repetitions.
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As a sender i repeats an asymptotically sufficient informative experiment, interim

beliefs Γi(K) converge to full revelation. For any fixed Γ−i, posterior beliefs do as well.

Depending on i’s relative advantage close to each δl, this may be good for i (for instance

if i has an advantage close to all δl). We show that generically, if states l and k are

being pooled, some sender i can deviate obtain a positive payoff by repeating Γi whenever

the receiver prefers a different action at l and k; this violates Lemma 1 property (1)

(extended to this setting). This implies that the receiver will always learn enough to take

her first-best action and also implies the proposition.

Proposition 8 gives us a simple class of conditionally independent experiments that

is sufficient for the receiver to learn adequately (or, enough that no further information

would help) under zero-sum competition. This class is in a sense coarse, but provides

senders with the necessary flexibility: ability to force posteriors into extreme regions of

advantage. We give one other example of a set of experiments that does the job.

Suppose for all i Ei = {Γ : ∃α ∈ [0, 1] s.t. ∀k ∈ Ω, Pr(Γ = αδk + (1 − α)π) = πk}.
Each Ei contains all convex combination of ΓU and ΓFR; this can be interpretted as senders

having access to only these two experiments and randomizing. With these strategies, in

the single receiver model, again, the state is fully revealed in every equilibrium if the

receiver has a different best action at every state. The argument is similar to that in the

previous example: again senders as able to fully reveal the state (so Lemma 1 property

(1) holds), and are able to almost fully reveal the state.

7 Extensions

In this section we consider a few applications that fall outside the scope of our model’s

assumptions. We use these applications to highlight that our analysis applies more broadly

to many real-world settings.

7.1 Persuading a judge/jury

Consider a criminal court case; there is a state ω ∈ {I,G} (the defendant is innocent

or guilty). Senders P,D are prosecutor/defense attorneys and will choose what evidence

to search for (experiments) in order to persuade the receiver, a judge or jury. After

hearing the arguments of the prosecution and defense (i.e. observing experiments and

their realizations), the judge/jury will update their beliefs on ω and make a decision. If,
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given the evidence presented Pr(ω = G) ≥ 0.9, i.e. the posterior is strongly in favor of

the defendant’s guilt, the judge/jury will convict the defendant. If after updating Pr(ω =

G) ≤ 0.3, the judge/jury will acquit the defendant. Finally, if Pr(ω = G) ∈ (0.3, 0.9),

there is a mistrial and no verdict (e.g. the judge does not have enough evidence to make

a ruling or the jury is hung).46

The prosecution gets a payoff of 1 from conviction, −1 from acquittal, and rp ∈
(−1, 1) from a mistrial. The defense gets payoff 1 from acquittal, −1 from conviction,

and rd ∈ (−1, 1) from a mistrial. Note that for posterior beliefs β ∈ [0, 0.3] ∪ [0.9, 1], the

game is zero-sum (for exposition, we do not normalize payoffs at β = 0 and β = 1 to

0). However, we make the assumption that rp + rd < 0 ; when there is a mistrial, there

is a loss in sender ‘surplus’ (or, the sum of sender payoffs). In a common law system, a

mistrial can result in a retrial; this loss in surplus could be due to both attorneys bearing

a cost of preparing for a retrial or from attorneys discounting their payoffs as it will take

another trial to reach a verdict. Figure 6 gives an example of such payoffs.

Figure 6: Example of up (blue) and ud (red) with rp = rd = 0.1

46If this is an adversarial legal system, we can think of 0.9 as the threshold of ‘reasonable doubt’. If,

more specifically, this is a common law legal system and the receiver is a jury, we can think of 0.9 as

the threshold above which jurors are all convinced of the defendant’s guilt beyond reasonable doubt.

Below 0.3, jurors are unanimously convinced there is not enough evidence to convict and for beliefs in

the interval (0.3, 0.9) the jury has a divided opinion and is hence hung.
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This game is not zero-sum —attorney/sender surplus is smaller at intermediate be-

liefs, (0.3, 0.9), then at extreme ones. Hence, although utilities are nonlinear, we may not

expect our full revelation results to hold. Despite this:

Result. The state is fully revealed in every equilibrium.

To see why this holds, first note that the jury must be hung w.p. 0 in all equilib-

ria. For any strategy profile (Γ1,Γ2) at which the jury is hung w.p. > 0, U1(Γ1,Γ2) +

U2(Γ1,Γ2) < 0. But full revelation guarantees that the sum of sender ex-ante expected

utilities equals 0; hence some sender must strictly benefit from deviating from this strategy

profile to full revelation.

As the jury is hung w.p. 0 in all equilibria, all equilibria place probability 1 on

extreme posteriors, [0, 0.3] ∪ [0.9, 1], for which u1 + u2 = 0. Our argument in proving

Proposition 1 used beliefs at extremes of the interval. As the game is zero-sum for such

beliefs, the prosecution has an advantage on [0.9, 1], and the defense has an advantage on

[0, 0.3], the same argument implies all equilibria are fully revealing.

Generalizing the example. This same intuition generalizes beyond this example.

Consider a nonzero-sum game otherwise identical to our baseline model. At any posterior

β, we define W (β) =
∑M

i=1 ui(β) as the sender surplus at this posterior. As in the example

above, whenever W (β) is maximized at and in the neighborhood of fully revealing pos-

teriors and close to each fully revealing posterior some sender has an advantage, then we

have full revelation in every equilibrium. This latter condition is guaranteed by Condition

1, and so we have the following sufficient condition for full revelation in all equilibria of

nonzero-sum games:

Proposition 9. Suppose that there exists neighborhoods of δ1, ..., δN such that W (β) is

maximized in each of these neighborhoods. Suppose for every l, k ∈ Ω some ui satisfies

Condition 1 on ∆({l, k}). Then the state is fully revealed in every equilibrium.

The proof follows from the logic above and the proof of Proposition 2 applied to pairs

of states (see Appendix A).

Notice that if W (β) is uniquely maximized at δ1, ..., δN then the argument above

implies that for every non-fully revealing (Γ1, ...,ΓM), some sender can profitably deviate

to ΓFR. Hence, if this is the case then we also have that all equilibria are fully revealing.47

While it may not be surprising that we can guarantee full revelation in all equilibria

47This logic is similar to that of Gentzkow and Kamenica (2017a) Proposition 1.
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of nonzero-sum games in cases where full revelation maximizes sender surplus, it should

also not be surprising that our results collapse when sender surplus is not maximized by

full revelation. If sender surplus is only maximized at interior posteriors, then it is easy

to construct payoffs for which senders collude to reveal little information to the receiver

in equilibrium.

7.2 Competition in advertising

Consider a game in which two firms (senders 1, 2) selling cars compete for the demand

of a single consumer (the receiver). The state-space here is two dimensional. First, the

consumer has a willingness of pay w ∈ {l = 1
2
, h = 1}. Second, one firm b ∈ {1, 2} has

a higher quality car. Assume w and b are drawn independently and the state is the pair

ω = (w, b).

At the start of the game, firms simultaneously choose advertising strategies (experi-

ments) to reveal information about ω. After viewing these ads and updating her beliefs

on ω, the consumer purchases exactly one car and pays her expected willingness to pay at

her posterior belief; that is, she pays 1
2
Pr(w = l) + 1Pr(w = h). The consumer purchases

the car 1 if it is more favorable at her posterior, if Pr(b = 1) ≥ 1
2
, and car 2 otherwise (the

tie-breaking rule does not matter). Firm i gets a payoff equal to the revenue it receives:
1
2
Pr(w = l) + 1Pr(w = h) if its car is bought and 0 otherwise.

Discussion of setup. We can think of advertisements here as revealing information

about the value of the car to the consumer (e.g. if an advertisement shows how a car is

valuable for commuters, then the consumer may increase her estimate of the car’s value

if she is a commuter) and about the relative qualities of the two cars (e.g. firms can

include characteristics, say mileage, which can be compared across cars). We assume

that initially, information about the consumer’s willingness to pay is symmetric. It is

reasonable to think the consumer does not initially know her own willingness to pay for

a product and that advertisements (here experiments) inform her of the value of the

product.

As in the previous section, this game is not zero-sum (or constant-sum): firm/sender

surplus is increasing in the consumer’s expexcted willingness to pay. However, note that

for any belief the consumer holds on w, firms have the same preferences over her belief

on b (up to scaling); furthermore, for any belief on w, firm preferences over beliefs on b

are constant-sum. This implies:
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Result. In every equilibrium the consumer learns (fully) which car is better.

Senders in this game agree on one dimension of the state-space, w. However, their

disagreement on the other dimension of the state-space, b, is constant-sum and is unaf-

fected by beliefs on w. As for any fixed belief on w the arguments of Proposition 1 will

imply that b is fully revealed, it must be that b is fully revealed in all equilibria.

Generalizing the example. The same result applies whenever ω is composed of two

independent dimensions with zero-sum disagreement on one dimension that is unaffected

by the other. Formally, suppose ω1 and ω2 are drawn independently from finite sets Ω1

and Ω2. Let ω = (ω1, ω2) ∈ Ω = Ω1 × Ω2. Any belief β ∈ ∆(Ω) on ω can be written

as β = (γ, η), where γ ∈ ∆(Ω1) is a belief on ω1, and η ∈ ∆(Ω2) is a belief on ω2. We

write sender utility functions over the receiver’s posterior as ui(γ, η). We say senders have

zero-sum preferences on Ω1 that are uniform in Ω2 if:

(1) for all η ∈ ∆(Ω2) there exists c ∈ R such that:
M∑
i=1

ui(γ, η) = c for all γ ∈ ∆(Ω1)

(2) for all η, η′ ∈ ∆(Ω2) there exists d, e ∈ R such that ui(·, η) = dui(·, η′) + e for all senders i

Part (1) of this definition says that for each belief η on ω2, senders have constant-

sum preferences over the receiver’s beliefs on ω1. Part (2) requires that, up to linear

transformations, sender preferences over beliefs on ω1 are not affected by the receiver’s

belief on ω2; this will imply at sender preferences over experiments on ω1 will not be

affected by the receiver’s belief on ω2. Under these conditions, if for any fixed belief on

ω2 sender preferences satisfy Theorem 1’s conditions for fully revealing ω1, ω1 is fully

revealed in all equilibria.

Proposition 10. Suppose senders have zero-sum preferences on Ω1 that are uniform in

Ω2. Fix any η ∈ ∆(Ω2). ω1 is fully revealed in every equilibrium if and only if for each

l, k ∈ Ω1 some ui(γ, η) is nonlinear in γ for γ ∈ ∆({l, k}).

The proof follows immediately from the logic above. Proposition 10 is not surprising

but is significant. Our analysis can be useful in (special) nonzero-sum settings for which

senders have zero-sum disagreement over some dimensions but not others.
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8 Conclusion

We study a multi-sender Bayesian Persuasion game. The substantive assumption is that

senders are maximally competitive and have zero-sum preferences over the the receiver’s

posterior belief. In our baseline model senders employ conditionally independent experi-

ments and we show that for typical sender preferences, the state is fully revealed in every

equilibrium. Further, we show that zero-sum competition cannot decrease equilibrium

information provision. Our results do not critically rely on conditional independence:

they apply when senders have access to technology to that is richer than the set of all

conditionally independent experiments as well as, in some cases, when sender technology

is coarser.

In the paper we consider various real-world applications of our model. Many of these

applications involve games with a single receiver who chooses from a finite actions set.

We show that in these settings our results take a clean form: the receiver always learns

enough to attain her first-best payoff. While our results are very positive for a single

receiver, the consequences of full revelation (or of a lot of information being revealed in

equilibria) on receiver welfare need not be positive in games with multiple receivers with

conflicting interests. While our results indicate that persuaders with opposing interests

will tend to produce a lot of information in equilibrium, whether this is ‘good’ or not will

depend on the setting.
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A Appendix A: Proofs

Definitions and Facts. The following definitions and facts are used in both Supple-

mentary Appendix A and B.

Let P be the set of Bayes-plausible finite support elements of ∆(∆(Ω)). It will be

convenient to talk about a strategy for sender i as a choice of interim belief Γi with

probability mass function pi ∈ P (in the text of the paper we did not introduce notation

for the distribution of Γi).

For any strategy profile (Γ1, ...,ΓM) and subset of senders S ⊆ {1, ...,M}, let the

random variable ΓS be the receiver’s belief after observing realizations of {Γj}j∈S but not

the realizations of {Γj}j 6∈S; let pS be it’s probability mass function and pS(·|ω = k) be its

probability mass function conditional on the state being k. Let Γ−S and p−S be the same

objects for the complementary set of senders.

For any disjoint subsets of senders S, S ′ ⊂ {1, ...,M} and any fixed strategy profile

(Γ1, ...,ΓM), let pS′(·|x) be the probability mass function of ΓS′ conditional on ΓS = x.

pS′(y|x) =
∑
k∈Ω

pS′(y|ω = k, x)Pr(ω = k|ΓS = x) =
∑
k∈Ω

pS′(y|ω = k)xk =
∑
k∈Ω

Pr(ω = k|y)pS′(y)

Pr(ω = k)
xk

=
∑
k∈Ω

xkykpS′(y)

πk

(3)

Where the second equality comes from conditional independence of ΓS and ΓS′ . Claim

1 tells us that conditional on ΓS, with probability 1 ΓS′ assigns positive probability to

at least one state that ΓS assigns positive probability to (i.e. ΓS′ cannot contradict ΓS).

This is a simple implication of Bayesian updating.
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Claim 1. For any disjoint subset of senders S, S ′, ΓS,ΓS′, and x ∈ ∆(Ω): pS′(y|x) = 0

for all y s.t. yl = 0 for all l ∈ Ω for which xl > 0. Further, there exists y ∈ supp[ΓS′ ]
such that ps′(y|x) > 0.

Proof. The first statement, that pS′(y|x) = 0 for all y such that yl = 0 for all l for which

xl > 0, follows immediately from Equation 3. The second statement follows from Bayes-

plausibility of ΓS′ . For every l such that xl > 0, as πl > 0, there exists y ∈ supp[ΓS′ ] with

yl ≥ πl > 0; by Equation 3, p(y|x) > 0 for such a y.

Let βl(x
1, ..., xM) = Pr(ω = l|x1, ..., xM) be the receiver’s posterior belief that ω = l

after observing experiment realizations Γ1 = x1, ...,ΓM = xM . By Bayes rule:

βl(x
1, ..., xM) =

Pr(Γ1 = x1, ...,ΓM = xM |ω = l)Pr(ω = l)

Pr(Γ1 = x1, ...,ΓM = xM)

=
[ΠM

i=1pi(x
i|ω = l)]πl∑N

k=1[ΠM
i=1pi(x

i|ω = k)]Pr(ω = k)
=

[ΠM
i=1

Pr(ω=l|xi)pi(xi)
Pr(ω=l)

]πl∑N
k=1[ΠM

i=1
Pr(ω=k|xi)pi(xi)

Pr(ω=k)
]πk

=
[ΠM

i=1x
i
l]/π

M−1
l∑N

k=1[ΠM
i=1x

i
k]/π

M−1
k

(4)

Where the second equality uses the conditional independence of Γ1, ...,ΓM . Note that

βl is not well defined when for each state k ∈ Ω there exists sender j with xjk = 0. However

it is straightforward to see by applying Claim 1 that such a realization of (Γ1, ...,ΓM)

occurs with zero probability; after viewing the realizations of any number of experiments,

the Bayesian receiver will have a well defined posterior w.p. 1.

For any strategy profile (Γ1, ...,ΓM) and disjoint sets of senders S1, ..., ST , we similarly

define define the receiver’s posterior as a function of interim belief realizations from each

experiment: {ΓSs = ySs}s=1,...,T .

βl(y
S1 , ..., yST ) =

ΠT
s=1y

Ss
l /π

T−1
l∑N

k=1 ΠT
s=1y

Ss
k /π

T−1
k

(5)

Note: ΓS1∪...∪ST = β(ΓS1 , ...,ΓST ), as both define the receiver’s belief after observing

realizations of ΓS1 , ...,ΓST .

Claim 2 shows that if any subset of experiments in a strategy profile generate an

interim belief in ∆(Ω′) then the posterior will fall in ∆(Ω′) w.p. 1.
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Claim 2. For any strategy profile (Γ1, ...,ΓM), disjoint subsets of senders S1, ..., ST , and

states Ω′ ⊆ Ω, if ΓS1 ∈ ∆(Ω′) then β(ΓS1 , ...,ΓST ) ∈ ∆(Ω′) w.p. 1.

Proof. This can be seen from the definition of β(yS1 , ..., yST ) which implies βl(y
S1 , ..., yST ) =

0 for all l 6∈ Ω′. After observing ΓS1 ∈ ∆(Ω′), the receiver updates to an interim belief

assigning 0 probability to all states outside of Ω′. No additional information can change

this.

Claim 3. For any strategy profile (Γ1, ...,ΓM), Ω′ ⊆ Ω, and any subsets of senders S: If

ΓS does not pool Ω′ then (Γ1, ...,ΓM) does not either.

Proof. Let S ′ = {1, ...,M} \ {S}. As ΓS does not pool Ω′, then Pr(ΓS = y : s.t. yl >

0 ∀l ∈ Ω′) = 0. If ΓS = y, ΓS′ = y′, then by Equation 5, if yl = 0 then βl(y, y
′) = 0.

Hence as w.p. 1 ΓS assigns 0 probability to at least one state in Ω′, β(ΓS,ΓS′) does as

well and so (Γ1, ...,ΓM) does not pool Ω′.

A.1 Section 2

Normalization of utility functions. Here we show that we can normalize ui(δl) = 0 for

all i = 1, ..., N , l = 1, ...,M without changing senders’ preferences over strategy profiles

or the zero-sumness of the game.

Suppose senders have utility functions u′1, ..., u
′
M with u′1 + ... + u′M = 0 for all β.

For i = 1, ..,M let αi : ∆(Ω) → R be the affine function αi(β) = −
∑

l βlui(δl). For

each i, define the function ui : ∆(Ω) → R as ui = u′i + αi. Then ui(δl) = 0 for all

i, l = 1, ..., N . Note that utility function ui preserves the same preferences over strat-

egy profiles as u′i, as for any strategy profile (Γ1, ..., .ΓM), Ep1,...,pM [ui(β(Γ1, ...,ΓM))] =

Ep1,...,pM [u′i(β(Γ1, ...,ΓM))]−
∑

l πlui(δl) - the latter term is a constant. Finally note that

α1(β) + ...+ αM(β) = 0 for all β ∈ ∆(Ω), so u1 + ....+ uM = 0.

A.2 Section 3

Lemma 1. General Case: In any equilibrium (Γ1, ...,ΓM): (1) Ui(Γ1, ...,ΓM) = 0 for

i = 1, ...,M and (2) Wi(x) ≤ 0 for all x ∈ ∆(Ω) and i = 1, ...,M .

Proof. We prove (1) first. First note that as the functions {ui}i=1,...,M are zero-sum, so are

{Ui}i. To see this, fix any (Γ′1, ...,Γ
′
M) and let Γ′ be the random variable representing the
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receiver’s posterior after viewing all M experiment realizations and p′ be its pmf. Then∑M
i=1 Ui(Γ

′
1, ...,Γ

′
M) =

∑
i

∑
β∈supp[Γ′] ui(β)p′(β) =

∑
β∈supp[Γ′] p

′(β)
∑

i ui(β) = 0. Next

note that any sender i choosing Γi = ΓFR yields Ui(Γ
FR,Γ−i) = 0 for all Γ−i. Hence in

any equilibrium (Γ1, ...,ΓM), each sender gets Ui(Γ1, ...,ΓM) ≥ 0. Finally no sender can

have Ui(Γ1, ...,ΓM) > 0 as this would imply Uj(Γ1, ...,ΓM) < 0 for some j 6= i.

For (2) we prove the contrapositive. Fix any sender i and opponents’ strategy profile

Γ−i such that Wi(x) > 0 for some x ∈ ∆(Ω); we will show Γ−i cannot be played in

equilibrium. Consider the strategy Γ′i with distribution p′i and support only on x and

{δl}l=1,...,N . Set p′i(x) > 0 small enough such that πl − xlp
′
i(x) > 0 for all l (such a

value exists as πl > 0 for all l). Bayes-plausibility implies we must have: p′i(δl) = πl −
xlp
′
i(x) > 0 for all states l (as the support of Γ′i is {x, δ1, ..., δM}). Then Ui(Γ

′
i,Γ−i) =

Wi(x)p′i(x) +
∑

l ui(δl)p
′
i(δl) > 0. Property (1) of the lemma implies Γ−i cannot be played

in equilibrium; hence Wi(x) ≤ 0 for all i in any equilibrium.

Proposition 1. Proposition 1 is implied by Proposition 2, proven in the next section.

However, as the proving Proposition 1 is much simpler than Proposition 2, we provide a

proof here for exposition.

Proof. The ‘only if’ direction is trivial. If u1 is linear so is u2. Under our normalization

of u1(0) = u1(1) = 0, this implies that u1(β) = u2(β) = 0 for all β ∈ [0, 1]. Hence both

senders are indifferent across all strategy profiles and any (Γ1,Γ2) is an equilibrium.

Now for the ‘if’ direction. Suppose u1 (and hence u2) are nonlinear. Let q = sup{β ∈
[0, 1] : u1(β) 6= 0} be the supremum of posteriors at which u1, u2 are nonlinear. We prove

the result in two cases.

Case 1: q = 1. If q = 1, then by the piecewise analycity of u1, u2, there exists r < 1

such that either u1(β) > 0 or u1(β) < 0 for all β ∈ [r, 1). If u1(β) < 0 then u2(β) > 0,

and so WLOG (we can always relabel senders) we assume u1(β) > 0 for all β ∈ [r, 1).

Suppose for contradiction that sender 2 plays a non-fully revealing strategy Γ2 in some

equilibrium. As Γ2 6= ΓFR, Pr(0 < Γ2 < 1) > 0; let y = min supp[Γ2] \ {0, 1} ∈ (0, 1) be

in the smallest interior belief in the support of Γ2. Using the definition of β(x, y), define

x by β(x, y) = r. Conditional on Γ1 = x ∈ [x, 1), β(x, y) ∈ [r, 1) for all interior y in Γ2’s

support. But then for all x ∈ [x, 1) we have:
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W1(x) = u1(β(x, 0))︸ ︷︷ ︸
=0

Pr(Γ2 = 0|Γ1 = x) + u1(β(x, 1))︸ ︷︷ ︸
=0

Pr(Γ2 = 1|Γ1 = x)+

∑
y∈supp[Γ2]\{0,1}

u1(β(x, y))︸ ︷︷ ︸
>0

Pr(Γ2 = y|Γ1 = x)︸ ︷︷ ︸
>0

> 0.

This contradicts Lemma 1 property (2) and hence Γ2 = ΓFR in all equilibria.

Case 2: q < 1. We break this case into two subcases.

First suppose u1(q) 6= 0. WLOG assume u1(q) > 0 (if not then u2(q) > 0). Suppose

for contradiction Γ2 6= ΓFR in some equilibrium. Then let r = q and define y, x as before.

Again Lemma 1 prpoerty (2) is violated as:

W1(x) = u1(β(x, 0))︸ ︷︷ ︸
=0

Pr(Γ2 = 0|Γ1 = x) + u1(β(x, 1))︸ ︷︷ ︸
=0

Pr(Γ2 = 1|Γ1 = x)+

∑
y∈supp[Γ2]\{0,1,y}

u1(β(x, y))︸ ︷︷ ︸
=0

Pr(Γ2 = y|Γ1 = x)︸ ︷︷ ︸
>0

> 0 + u1(β(x, y))︸ ︷︷ ︸
=u1(r)>0

Pr(Γ2 = y|Γ1 = x)︸ ︷︷ ︸
>0

> 0.

Now suppose u1(q) = u2(q) = 0. Then by piecewise analycity of utilities either

u1(q−) > 0 or u2(q−) > 0. WLOG assume u1(q−) > 0 and suppose for contradiction

Γ2 6= ΓFR in some equilibrium. Define y as before. There exists r < q and x such that

u1 > 0 on interval [r, q) and β(x, y) = r. Then we have W1(x) > 0, violating Lemma 1

property (2).

A.3 Proof of Proposition 2

A.3.1 ‘Only if’ direction.

Suppose for some Ω′ ⊆ Ω all senders have linear utilities on ∆(Ω′). Let x′ ∈ ∆(Ω′) with

x′k = πk∑
n∈Ω′ πn

∀k ∈ Ω′. Consider the experiment Γ′ with Pr(Γ′ = δl) = πl for all l 6∈ Ω′

and Pr(Γ′ = x′) =
∑

n∈Ω′ πn. Γ′ is Bayes-plausible and has finite support. The strategy
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profile (Γ′, ...,Γ′) is an non-fully revealing equilibrium. To see this consider a sender i’s

incentive to deviate. If ω ∈ Ω′ then Γ−i ∈ ∆(Ω′) =⇒ β(Γ1, ...,ΓM) ∈ ∆(Ω′) w.p. 1

(Claim 2); as ui is linear on ∆(Ω′), i has no profitable deviation conditional on ω ∈ Ω′.

Conditional on ω 6∈ Ω′, Γ−i fully reveals the state and no deviation from i can change

this.

A.3.2 ‘If’ direction.

Let ∆int(Ω′) = {γ ∈ ∆(Ω′) : γl > 0 ∀l ∈ Ω′}; this is the set of beliefs in ∆(Ω′) whose

support is Ω′.

We first prove the result for the case of |Ω′| = 2. This case is simpler than the case

of |Ω′| > 2 and is of particular interest because Theorem 1 only relies on Proposition 2

with |Ω′| = 2.

Proof for |Ω′| = 2.

Proof. WLOG let Ω′ = {1, 2}. Suppose some sender i has ui nonlinear on ∆({1, 2}). For

each sender j′ let r′j′ = sup{t ∈ [0, 1] : uj′(tδ2 + (1 − t)δ1) > 0}. Let r′ = maxj′=1,...,M r′j′

and j ∈ argmaxj′=1,...,Mr
′
j′ . As ui is nonlinear there exists γ ∈ ∆int({1, 2}) with ui(γ) 6= 0.

If ui(γ) < 0 then ui′(γ) > 0 for some sender i′ (zero-sumness); otherwise ui(γ) > 0.

Regardless, we have that r′ exists and is > 0.

WLOG let j = 1. We prove the ‘if’ direction in 2 cases.

Case 1: r′ = 1. u1 is piecewise real analytic and so ∆({1, 2}) can be partitioned into

intervals each of which u1 is real analytic on. Each γ ∈ ∆({1, 2}) can be represented by

scalar γ2 —how close it is to δ2. For some a ∈ [0, 1), u1 is real analytic on an interval {γ ∈
∆({1, 2}) : γ2 ∈ (a, 1)} (this a ∈ [0, 1) is not unique; any selection will do). This implies

that there are a finite number of points (possibly zero) on {γ ∈ ∆({1, 2}) : γ2 ∈ (a, 1)} at

which u1 = 0. As r′ = 1, there exists r ∈ (a, 1) such that u1(γ) > 0 for all γ ∈ ∆({1, 2})
s.t. γ2 ∈ [r, 1) (again, this r will not be unique; any selection will do).

Suppose, for contradiction, that some equilibrium (Γ1, ...,ΓM) pools {1, 2}. Then we

must must have Pr(Γ−1 = y s.t. y1, y2 > 0) > 0, i.e. Γ−1 pools {1, 2}, by Claim 3.

Let Z = {y ∈ supp[Γ−1] : y1, y2 > 0}; Z is nonempty. For any x ∈ ∆int({1, 2}) and

y ∈ Z, we have p−1(y|x) > 0 and β(x, y) ∈ ∆int({1, 2}) (by Claim 2 and equation 4).

Note that as x → δ1 we have β(x, y) → δ1 =⇒ β2(x, y) → 0 and as x → δ2 we have
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β(x, y) → δ2 =⇒ β2(x, y) → 1. As Z is finite, this implies miny∈Z β2(x, y) goes to 0 as

x→ δ1 and miny∈Z β2(x, y) goes to 1 as x→ δ2. As for all y ∈ Z β2(x, y) is continuous in

x for x ∈ ∆int({1, 2}), miny∈Z β2(x, y) is also continuous in x for x ∈ ∆int({1, 2}). By the

intermediate value theorem there exists x ∈ ∆int({1, 2}) such that miny∈Z β2(x, y) = r.

Note that by equation 4, β(x, y) = δ1 for all y ∈ supp[Γ−1] with y1 > 0 and y2 = 0;

similarly β(x, y) = δ2 for all y ∈ supp[Γ−1] with y2 > 0 and y1 = 0. Finally by Claim 1,

p−1(y|x) = 0 for all y ∈ supp[Γ−1] with y1 = y2 = 0.

Putting this together:

W1(x) =
∑

y∈supp[Γ−1]
y1=0,y2>0

u1(δ2)︸ ︷︷ ︸
=0

p−1(y|x) +
∑

y∈supp[Γ−1]
y2=0,y1>0

u1(δ1)︸ ︷︷ ︸
=0

p−1(y|x)

+
∑
y∈Z

u1(β(x, y))︸ ︷︷ ︸
>0

p−1(y|x)︸ ︷︷ ︸
>0

> 0

This contradicts Lemma 1 property (2). Hence no equilibrium can pool {1, 2}.

Case 2: r′ < 1. First, if u1(r′) > 0, then set r = r′ and derive x just as in Case 1.

As in Case 1, we have W1(x) > 0, violating Lemma 1 property (2). Next if u1(r′) < 0,

then some sender i 6= 1 must have ui(r
′) > 0 (zero-sumness); we can relabel sender i to 1

and repeat the same argument.

Next assume u1(r′) = 0. Now for some a ∈ [0, r′), u1 is real analytic on an interval

{γ ∈ ∆({1, 2}) : γ2 ∈ (a, r′)} (this a ∈ [0, r′) is not unique; any selection will do). This

implies that there are a finite number of points (possibly zero) on {γ ∈ ∆({1, 2}) : γ2 ∈
(a, r′)} at which u1 = 0. This implies that there exists r ∈ (a, r′) such that u1(γ) > 0 for

all γ ∈ ∆({1, 2}) with γ2 ∈ [r, r′) (again, this r will not be unique; any selection will do).

Note that u1(γ) ≥ 0 for all γ ∈ ∆({1, 2}) with γ2 ≥ r.

Suppose, for contradiction, that in some equilibrium (Γ1, ...,ΓM) pools {1, 2}. We

follow identical steps in defining Z and x. Note that for all y ∈ Z, βk(x, y) ∈ [r, 1) =⇒
u1(β(x, y)) ≥ 0. By the definition of x, there exists y ∈ Z such that β(x, y) = r =⇒
u1(β(x, y)) > 0. For all y ∈ supp[Γ−1] \Z either β(x, y) ∈ {δ1, δ2} or p−1(y|x) > 0. Hence

W1(x) > 0, violating Lemma 1 property (2).

Now we proceed with the analysis for |Ω′| ≥ 2.
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General Analysis.

Suppose some uj is nonlinear on ∆(Ω′). Fix a strategy profile (Γ1, ...,ΓM) that pools

Ω′; let Γ be the experiment induced by observing the realizations of all M experiments

and p be its probability mass function. We show, via violation of Lemma 1 property (1),

that (Γ1, ...,ΓM) is not an equilibrium. To do this it sufficies to identify a sender j and an

interim belief x such that when Γ1, ...,ΓM are played, conditional on generating interim

belief x (from an experiment played additionally and conditionally independently to Γj)

j gets a strictly positive expected payoff: : E[ui(β(x,Γ))] > 0. As in the proof of Lemma

1 property (2), j can then construct an experiment Γ′j with support on {δ1, ..., δN , x} and

obtain a strictly positive payoff by playing Γ′j in addition to, conditionally independently,

Γj. The remainder of the proof shows that such a sender j and x exist.

For i = 1, ...,M let Ai = {γ ∈ ∆(Ω) : ui(γ) > 0} and Di = {γ ∈ ∆(Ω) : ui(γ) < 0}
be the sets of posteriors at which i has an advantage and disadvantage respectively. Let

A = ∪iAi be the union of these advantage sets (also equal to the union of disadvantage

sets as utilities are zero-sum) and cl(A) be its closure.

We say a subset of states Θ ⊆ Ω (|Θ| > 1) is minimal if A ∩ Θ 6= ∅ and Θ′ ∩ A = ∅
for all Θ′ ⊂ Θ. Note that if A is empty, then there are no minimal subsets. Meanwhile if

A is nonempty, any subset of states that intersects A (i.e. any set Θ for which some ui is

nonlinear on ∆(Θ)) is either minimal or has a minimal subset:

Claim 4. Every subset Θ ⊆ Ω for which ui (for some i) is nonlinear on ∆(Θ) is either

minimal or has a subset Θ′ that is minimal.

Proof. If for some i ui is nonlinear on ∆(Θ), then A∩∆(Θ) 6= ∅. Either Θ is minimal, or

there exists a subset Θ′ ⊂ Θ that intersects A. Now set Θ = Θ′ and repeat this process

until Θ is minimal; it must be minimal at some point because Ω is finite and states are

removed from Θ each iteration.

By Claim 4, it is sufficient to prove Proposition 2 for minimal Ω′ alone. If all minimal

sets cannot be pooled in equilbirium, then any set on which there are nonlinear sender

preferences cannot be pooled, as all such sets have a minimal subset. Henceforth we

assume Ω′ is minimal.

Let |Ω′| = K ≤ N and WLOG let Ω′ = {1, ..., K}.

It is convenient for us to represent any belief γ ∈ ∆(Ω′) by the ratios (r1(γ), ..., rK−1(γ)) ∈
(R+ ∪ {∞})K−1, where for k = 1, ..., K − 1: (1) rk(γ) = γk

1−
∑k
l=1 γl

when 1 −
∑k

l=1 γl is
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nonzero, (2) when this doesn’t hold rk(γ) =∞ if γk > 0 and rk(γ) = 0 if γk = 0. We call

this the ratio representation of γ. The ratio rk(γ) tells us the ratio of probability mass

assigned to state k by γ to the mass assigned to states k + 1, ..., K.

Lemma 2. Note for any γ, γ′ ∈ ∆(Ω′) we have rk(γ) = rk(γ
′) for all k = 1, ..., K − 1 if

and only if γ = γ′; that is, ratio representations for beliefs in ∆(Ω′) are unique.

Proof. The ‘if’ direction is trivial; we prove the ‘only if’ direction as follows. First suppose

rk(γ) < ∞ for all k = 1, ..., K − 1. This implies that 1 −
∑k

l=1 γl is nonzero for all k

(or else, let k′ be the minimum k for which 1 −
∑k

l=1 γl = 0; but then we must have

γk′ > 0 =⇒ rk′(γ) =∞ —contradiction). But then from its definition, r1 uniquely pins

down γ1 (γ1 = r1(γ)
1+r1(γ)

), after which r2 pins down γ2, ..., rK−1 pins down γK−1, and γK

is pinned down by 1 =
∑K

l=1 γl). Now suppose rk′′(γ) = ∞ for some k′′. Note that this

implies γk = 0 for all k > k′′; further, 1−
∑k

l=1 γl > 0 for all k < k′′ and hence rk(γ) <∞
for all k < k′′. Then γ1, ..., γk′′−1 are uniquely pinned down by using the definitions of

r1(γ), ..., rk′′−1(γ) (just as in the previous case). γk′′ is pinned down by 1 =
∑K

l=1 γl.

The the continuity of rk(γ) on part of ∆(Ω′) will be useful later:

Claim 5. For k = 1..., K − 1, rk(γ) is continuous in γ for γ ∈ ∆({k, ..., K}) \ {δk}.

Proof. rk(γ) = γk
1−

∑k
l=1

γk. As γ ∈ ∆({k, ..., K}), the denominator is strictly positive when

γk < 1 and so rk(γ) is continuous in γ on this domain.

The following simple results will be useful.

Lemma 3. Suppose K > 2. For any 1 < L < K, let x ∈ ∆({L, ...,K}), x′ ∈ ∆({1, ..., L−
1}) and y ∈ ∆(Ω). If β(x, y) is well defined,48 then rk(β(λx′ + (1− λ)x, y)) = rk(β(x, y))

for all k = L, ...,K − 1 and λ ∈ [0, 1).

Proof. For any n ∈ Ω,

βn(λx′ + (1− λ)x, y) =

(λx′n+(1−λ)xn)yn
πn∑N

n′=1

(λx′
n′+(1−λ)xn′ )yn′

πn′

For k ≥ L:

48From its definition, one can see β(x, y) is only not well defined when y assigns probability 0 to every

state that x assigns strictly positive probability to.
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rk(β((λx′ + (1− λ)x), y)) =
βk((λx

′ + (1− λ)x), y)∑N
n=k+1 βn((λx′ + (1− λ)x), y)

=
(λx′k + (1− λ)xk)yk/πk∑N

n=k+1(λx′n + (1− λ)xn)yn/πn

=
(1− λ)xkyk/πk

(1− λ)
∑N

n=k+1 xnyn/πn
=

xkyk/πk∑N
n=k+1 xnyn/πn

whenever the denominator is nonzero; when the denominator is nonzero, this expres-

sion is equal to rk(β(x, y)). When the denominator and numerator are zero, rk(β(λx′ +

(1 − λ)x, y)) = rk(β(x, y)) = 0 and when the denominator is zero and the numerator is

nonzero, rk(β(λx′ + (1− λ)x, y)) = rk(β(x, y)) =∞.

Claim 6. Suppose K > 2. For any 1 < L < K, let x ∈ ∆({L, ...,K}), x′ ∈ ∆({1, ..., L−
1}) and y ∈ ∆(Ω). If β(x, y) and β(x′, y) are well defined then βk(λx

′ + (1 − λ)x, y) =

λβk(x
′, y) + (1− λ)βk(x, y) for all λ ∈ [0, 1], k = 1, ..., N .

Proof. Simple algebra.

Let Z = {z ∈ supp[Γ] : zn > 0 for all n ∈ Ω′}. Note Z is nonempty as (Γ1, ...,ΓM)

pools Ω′. For k = 1, ..., K − 1 and x ∈ ∆int(Ω′) define Mx(k) recursively starting with

k = K − 1:

Mx(K − 1) = argminz∈ZrK−1(β(x, z)) (6)

Mx(K−1) is nonempty as Z is. For k < K−1, letMx(k) = argminz∈Mx(k+1)rk(β(x, z));

these sets are nonempty for all k. For k = 1, ..., K − 1 define mx(k) by: pick z ∈ Mx(k)

and let mx(k) = rk(β(x, z)). mx(k) is well defined for all k.

Mx(K−1) gives the set of realizations of Γ that, conditional on interim belief x being

realized from a different experiment, would induce the lowest rK−1 ratio of posteriors

among those in Z. mx(K − 1) gives the value of this lowest rK−1 ratio. Mx(K − 2) gives

the subset of Mx(K − 1) that would result in lowest rK−2 ratio of posteriors conditional

on x being realized and mx(K − 2) gives this value, etc.

Note any z ∈Mx(1) must satisfy:

rk(β(x, z)) = mx(k) for all k = 1, ..., K − 1 (7)
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As β(x, y) ∈ ∆(Ω′) (x ∈ ∆int(Ω′) and Claim 2), by Lemma 2, ratiosmx(1), ...,mx(K−
1) uniquely pin down the value of β(x, z) for all z ∈ Mx(1). If we have |Mx(1)| > 1, this

means that multiple realizations of Γ, z 6= z′, produce the same posterior conditional on

x. This is possible when x assigns probability 0 to states z, z′ do not —z and z′ differing

on these states may not affect the posterior.

Using the objects introduced above, we finish proving Proposition 2 in two cases. In

the first case, cl(A) ∩ Ω′′ = ∅ for all Ω′′ ( Ω′. This case include the example in the main

Appendix in the text of paper; the same logic generalizes. The second case to consider is

cl(A) ∩ Ω′′ 6= ∅ for some Ω′′ ( Ω′.

Case 1: cl(A) ∩ Ω′′ = ∅ for all Ω′′ ( Ω′.

Lemma 4. Suppose cl(A) ∩ ∆(Ω′′) = ∅ for all Ω′′ ( Ω′. Then there exists x∗ ∈ ∆(Ω′)

and β̄ ∈ cl(A) such that for all y ∈ Z either: (1) β(x∗, y) 6∈ cl(A) or (2) β(x∗, y) = β̄.

Proof. Define the point β̄ ∈ cl(A)∩∆(Ω′) as follows. LetE(K−1) = argmaxγ∈cl(A)∩∆(Ω′) rK−1(γ)

and e(K−1) = maxγ∈cl(A)∩∆(Ω′) rK−1(γ). For k = 1, ..., K−2, let E(k) = argmaxγ∈E(k+1) rk(γ)

and e(k) = maxγ∈E(k+1) rk(γ). Note that as cl(A) ∩∆(Ω′′) = ∅ for all Ω′′ ( Ω′, we have

0 < e(k) <∞ for all k = 1, ..., K− 1. Further, by Lemma 2, |E(1)| = 1 as γ ∈ E(1) must

satisfy rk(γ) = e(k) for all k = 1, ..., K − 1. Let β̄ be the unique element in E(1).

Consider x ∈ ∆int({K − 1, K}). Note that as x → δK , β(x, y) → δK =⇒
rK−1(β(x, y)) → 0 for all y ∈ Z. Similarly as x → δK−1, β(x, y) → δK−1 =⇒
rK−1(β(x, y))→∞ for all y ∈ Z. By the finiteness of Z, x→ δK =⇒ miny∈Z rK−1(β(x, y))→
0 and x → δK−1 =⇒ miny∈Z rK−1(β(x, y)) → ∞. The continiuity of β(x, y) in x,

continuity of rK−1 in β(x, y) (Claim 5), and finiteness of Z together imply the con-

tinuity of miny∈Z rK−1(β(x, y)) in x. By the intermediate value theorem, there exists

x′ ∈ ∆int({K − 1, K}) with miny∈Z rK−1(β(x′, y)) = e(K − 1), or mx′(K − 1) = e(K − 1).

We prove the result inductively, with the previous paragraph being the base case.

Suppose we have found x′ ∈ ∆({k′ + 1, ..., K}) such that for all k = k′ + 1, ..., K − 1,

mx′(k) = e(k). We find x′′ ∈ ∆({k′, ..., K}) with mx′′(k) = e(k) for all k = k′, ..., K − 1.

Consider x′(λ) = λδk′ + (1 − λ)x′ for λ ∈ (0, 1). As λ → 1, β(x′(λ), y) → δk′ =⇒
rk′(β(x′(λ), y))→∞ for all y ∈ Z and as λ→ 0, β(x′(λ), y)→ x′ =⇒ rk′(β(x′(λ), y))→
0 for all y ∈ Z. For all λ ∈ [0, 1), y ∈ Z, k = k′+1, ..., K−1, rk(β(x′(λ), y)) = rk(β(x′, y))

by Lemma 3; hence changing λ will leave mx′(k) = e(k) for k = k′ + 1, ..., K − 1. By

finiteness of Mx′(k
′ + 1), continuity of β(x′(λ), y) for all y ∈Mx′(k

′ + 1), continuity of rk′

in β(x′(λ), y) for all y ∈ Mx′(k
′ + 1), and in the intermediate value theorem, there exists
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λ∗ ∈ (0, 1) and x′′ = λ∗δk′ + (1− λ∗)x′ ∈ ∆({k′, ..., K}) such that mx′′(k
′) = e(k′). Then

mx′′(k) = e(k) for all k = k′, ..., K − 1.

Carrying this inductive process through until k′ = 1, by equation 7 we find x∗ ∈ ∆(Ω′)

with, for all y ∈Mx∗(1) and k = 1, ..., K−1: rk(β(x∗, y)) = e(k). Hence for all y ∈Mx∗(1),

β(x∗, y) = β̄. Meanwhile for all y 6∈ Mx∗(1), there exists 1 ≤ k′ ≤ K − 1 such that

rk(β(x∗, y)) = e(k) for all k > k′ and rk′(β(x∗), y) > e(k′); this implies (by definition of

e(k′)) that β(x∗, y) 6∈ cl(A).

The following result follows from Lemma 4 almost immediately.

Lemma 5. Suppose cl(A)∩∆(Ω′′) = ∅ for all Ω′′ ( Ω′. Then there exists x ∈ ∆(Ω′) and

β′ ∈ A such that for all y ∈ Z either: (1) β(x, y) 6∈ cl(A) or (2) β(x, y) = β′.

Proof. Find x∗ and β̄ as per Lemma 4. If β̄ ∈ A then set x = x∗ and β′ = β̄ and we’re

done.

Assume now β̄ 6∈ A. As Z finite, cl(A) is closed, and β(x, y) is continuous in x for

all y ∈ Z, there exists ε > 0 and a set Nε = {x ∈ ∆(Ω′) : |x − x∗| < ε} such that for all

x ∈ Nε and y ∈ Z, β(x∗, y) 6∈ cl(A) =⇒ β(x, y) 6∈ cl(A).

By equation 4, for any γ ∈ ∆(Ω′) and y ∈ Z there exists x ∈ ∆(Ω′) such that

β(x, y) = γ. Also by equation 4, if β(x, y) = β(x, y′) for some x ∈ ∆int(Ω′) and y, y′ ∈ Z,

then β(x′, y) = β(x′, y′) for all x′ ∈ ∆int(Ω′).

As β̄ ∈ cl(A), there is a sequence of beliefs in A converging to β̄. By continuity of

β(x, y) in x for all y ∈ Z and the facts in the previous paragraph, there exists β′ ∈ A

close to β̄ and x ∈ Nε such that for all y ∈ Z, β(x∗, y) = β̄ =⇒ β(x, y) = β′.

Hence we have either β(x, y) = β′ ∈ A or β(x, y) 6∈ cl(A) for all y ∈ Z.

This next Lemma wraps up the proof of the ‘if’ direction of Proposition 2 for the

case that cl(A) ∩∆(Ω′′) = ∅ for all Ω′′ ( Ω′:

Lemma 6. Suppose cl(A)∩∆(Ω′′) = ∅ for all Ω′′ ( Ω′. Then there exists a sender j and

x ∈ ∆int(Ω′) with E[uj(β(x,Γ))] > 0.
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Proof. Find β′ and x as per Lemma 5.

Note that for all y ∈ supp[Γ] \Z, one of the following holds. (1) yl = 0 for all l ∈ Ω′.

(2) yl = 0 for some l ∈ Ω′ but yk > 0 for some k ∈ Ω′. For y in case (1), by Claim 1

p(y|x) = 0. For y in case (2), equation 4 implies β(x, y) ∈ Ω′′ for some Ω′′ ( Ω′; as Ω′ is

minimal we have ui(β(x, y)) = 0 for all i.

For all y ∈ Z such that β(x, y) 6= β′, ui(β(x, y)) = 0 for all i.

Let j be some sender with uj(β
′) > 0. Then E[uj(β(x,Γ))] = uj(β

′)Pr(Γ ∈ {y ∈ Z :

β(x, y) = β′}|x) > 0.

Case 2: cl(A) ∩ Ω′′ 6= ∅ for some Ω′′ ( Ω′.

Note that it is still the case that Ω′ is minimal, so A ∩ Ω′′ = ∅ for all Ω′′ ( Ω′.

Let Ω′′ ∈ argmin{Ω′′′⊂Ω′:cl(A)∩Ω′′′ 6=∅}|Ω′′′| be one of the smallest subsets of Ω′ that

intersects cl(A). Note that 1 ≤ |Ω′′| < |Ω′|. Define Z, and all other necessary objects, as

in the previous case. Then note that cl(A) ∩Θ = ∅ for all Θ ( Ω′′ and so by an identical

argument to Lemma 4 we can find β̄ ∈ cl(A) ∩∆int(Ω′′) and x∗ ∈ ∆int(Ω′′) such that for

all y ∈ Z either β(x∗, y) = β̄ or β(x∗, y) 6∈ cl(A). Then by a similar argument to Lemma

5, we can find x ∈ ∆int(Ω′) close to x∗ and β′ ∈ A close to β̄ such that either β(x, y) = β′

or β(x, y) 6∈ cl(A) for all y ∈ Z.

Following the same argument as in Lemma 6, all y ∈ supp[Γ] \ Z either occur with

probability 0 conditional on x or result in a posterior outside of ∆int(Ω′) conditional on

x (yielding 0 utility by minimality of Ω′). Letting j be some sender with uj(β
′) > 0, we

have E[uj(β(x,Γ))] > 0 and we’re done.

A.3.3 Additional Claim

In the proof of Proposition 2 given, when utilities are nonlinear on some ∆(Ω′) and

(Γ1, ...,ΓM) pooled Ω′, we were able to find a sender j who could take advantage of Ω′

being pooled and find x conditonal on which she gets strictly positive expected utility.

Identifying this sender j did not depend on the strategy profile (Γ1, ...,ΓM). Hence, the

claim below (which is useful for further results in Supplementary Appendix B) holds.

Claim 7. Suppose for some sender i and Ω′ ⊆ Ω that ui is nonlinear on ∆(Ω′). Then

54



there exists a sender j such that for any (Γ1, ...,ΓM) that pools Ω′ j can find some x such

that E[uj(β(x,Γ1, ...,ΓM))] > 0.

A.4 Proof of Theorem 1

Theorem 1.

Proof. ‘If’ direction. Proposition 2 implies that if for every l, k some ui is nonlinear on

∆({l, k}), then in any equilibrium (Γ1, ...,ΓM), w.p. 1 βn(Γ1, ...,ΓM) > 0 for only one

n ∈ Ω. Hence w.p. 1 we must have βn(Γ1, ...,ΓM) = 1 for some n ∈ Ω; the state is fully

revealed.

‘Only if’ direction. Suppose for some l, k ∈ Ω, ui is linear along ∆({l, k}) for all i.

Then the equilibrium construction in the Proposition 2 ‘only if’ direction is a non-fully

revealing equilibrium.

A.5 Proofs of Section 4.3

Proposition 3.

Before proving Proposition 3 we prove the following simple Lemma.

Lemma 7. Suppose an experiment Γ not pools Ω′ ⊆ Ω. If Γ′ is more informative than Γ

then Γ′ also not pools Ω′.

Proof. At every posterior induced by Γ, the receiver has ruled out at least one state in Ω′;

hence at any belief induced by Γ, no further information could induce a posterior which

pools Ω′. Thus Γ′ cannot pool Ω′.

Now we prove Proposition 3.

Proof. We first prove property (1). Take any equilibrium of theM sender game (Γ1, ...,ΓM).

If this equilibrium is fully revealing the result is trivial; suppose it is not. We prove the

result in two cases.

55



First suppose M ′ = 1; equilibria of the M ′ sender game are sender 1’s Bayesian

Persuasion solutions. First suppose that sender 1’s payoff from every experiment yields

her ex-ante expected utility ≤ 0. Then the equilibrium of the M sender game, which yields

sender 1 0 utility (Lemma 1) is a solution to sender 1’s Bayesian Persuasion problem,

and we’re done. Now suppose sender 1 can attain a strictly positive payoff from some

experiment (when she is the sole persuader). Then all of sender 1’s Bayesian Persuasion

solutions yields her strictly positive utility and hence must pool some set of states that

cannot be pooled in an equilibrium of the M sender game (any experiment that only

pools states that can be pooled in an equilibrium of the M sender game yields 0 utility

for sender 1). By Lemma 7, none of sender 1’s Bayesian Persuasion solutions is more

informative than (Γ1, ...ΓM).

Now suppose M ′ > 1. We again split the proof into two cases. First suppose that

for every Ω′ and Ω′′ pooled by (Γ1, ...,ΓM), whenever Ω′ ∩ Ω′′ 6= ∅, all ui are linear on

∆(Ω′∪Ω′′). This implies that Ω can be partitioned into some Ω1, ...,ΩB such that: (1) w.p.

1 β(Γ1, ...,ΓM) ∈ ∆(Ωb) for some b, and (2) whenever |Ωb| > 1, all ui are linear on ∆(Ωb).

Consider the strategy profile where all M ′ senders reveal which partition element ω is in,

but nothing else. This is an M ′ sender equilibrium (no sender i can profitably deviate as

the receiver will learn the partition element from her opponents and conditional on this, i

cannot strictly improve her payoff by providing additional information). It is also weakly

less informative than (Γ1, ...,ΓM), as (Γ1, ...,ΓM) reveals which partition element ω is in

and, potentially, more information.

Now suppose there exists Ω′ and Ω′′ pooled by (Γ1, ...,ΓM) such that Ω′∩Ω′′ 6= ∅ and

some ui is nonlinear on ∆(Ω′ ∪ Ω′′). Consider the strategy profile in the M ′ sender game

(Γ, ...,Γ), where Pr(Γ = δn) = πn for all n 6∈ Ω′ and Pr(Γ = y s.t. yl = πl∑
k∈Ω′ πk

∀l ∈
Ω′) =

∑
k∈Ω′ πk. This is an M ′ sender equilibrium (see proof of the ‘only if’ direction

of Proposition 2). We now show it is not strictly more informative than (Γ, ...,Γ). Note

that the strategy profile (Γ, ...,Γ) induces the same distribution over posteriors as the

experiment Γ; hence we will deal with Γ instead of (Γ, ...,Γ). Let conv[supp[Γ]] be the

convex hull of the support of Γ. Γ induces N − |Ω′|+ 1 distinct posteriors: the N − |Ω′|
degenerate beliefs in ∆(Ω\Ω′), and a single belief in ∆(Ω′). These posteriors are all affinely

independent (or, alternatively, their convex hull has dimension N − |Ω′|). By Theorem 5

of Wu (2017), Γ is more informative than (Γ1, ...,ΓM) if and only if supp[β(Γ1, ...,ΓM)] ⊆
conv[supp[Γ]]. Note that conv[supp[Γ] only contains beliefs that that satisfy at least

one of the following three properties. Either they assign probability one to Ω \Ω′, assign

probability one to Ω′, or assign strictly positive probability to all states in Ω. With positive

probability, (Γ1, ...,ΓM) results in posteriors which pool Ω′′. Such posteriors cannot assign
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probability one to Ω\Ω′ (as Ω′′∩Ω′ 6= ∅), cannot assign probability one to Ω′ (Ω′′ 6⊆ Ω′ as

some utilities are nonlinear on ∆(Ω′∪Ω′′)), and cannot assign strictly positive probability

to all states (some utilities are nonlinear on ∆(Ω′∪Ω′′) =⇒ Ω ⊇ Ω′′∪Ω′ cannot be pooled

in an M sender equilibrium). Hence (Γ, ...,Γ) is no more informative than (Γ1, ...,ΓM)•

Now we prove property (2) of Proposition 3. SupposeM ′ sender equilibrium (Γ′1, ...,Γ
′
M ′)

is more informative than (Γ1, ...,ΓM). Consider theM sender strategy profile (Γ′1, ...,Γ
′
M ′ ,Γ

U , ...,ΓU).

This is an M sender equilibrium for the following reasons. No sender i = 1, ...,M ′

has an incentivie to deviate as (Γ′1, ...,Γ
′
M ′) is an M ′ sender equilibrium. No sender

i = M ′ + 1, ...M has an incentive to deviate as, by Lemma 7, every non-fully revealing

posterior of (Γ′1, ...,Γ
′
M ′ ,Γ

U , ...,ΓU) falls in some ∆(Ω′) on which all senders have linear

utilities.

B Supplementary Appendix B: Extensions

B.1 Single Receiver with Finite Actions

Setup. There is a single receiver. Let A = {a1, ..., aA} be a finite set of actions; the game

is as in the baseline model except after observing realizations of Γ1, ...,ΓM the receiver

picks an action a ∈ A after which the players get payoffs. The reciever’s utility function

is ur : A × Ω → R and senders’ utility functions are ui : A × Ω → R for i = 1, ...,M .

Sender’s preferences are zero-sum: for all a ∈ A, ω ∈ Ω,
∑M

i=1 ui(a, ω) = 0. We make the

assumption that for any a 6= a′ ∈ A, ω ∈ Ω, ur(a, ω) 6= ur(a
′, ω) and ui(a, ω) 6= ui(a

′, ω)

for all i ∈ {1, ...,M}; this is generically true. The equilibrium concept is Perfect Bayesian

Equilibrium (PBE).

For any β ∈ ∆(Ω) let A∗(β) = argmaxa∈A
∑N

l=1 ur(a, l)βl. In any PBE, after signals

are realized and the receiver updates to posterior belief β ∈ ∆(Ω), the receiver takes an

action a ∈ A∗(β) that maximizes expected utility (sequential rationality). Let Rindiff =

{β ∈ ∆(Ω) : |A∗(β)| > 1} be the set of posteriors at which the receiver is indifferent

between multiple best actions. We assume that at posteriors in β ∈ Rindiff the receiver

breaks ties by choosing the lowest indexed action in A∗(β). Hence in equilibrium the

reciever takes action a∗(β) = argminab∈A∗(β) b; this is well defined and single valued for

each β ∈ ∆(Ω).

For i = 1, ...,M define vi : ∆(Ω)→ R as sender i’s expected utility from any posterior

β ∈ ∆(Ω) in a PBE following the specified tie breaking rule: vi(β) =
∑N

l=1 ui(a
∗(β), l)βl.
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First we show that in any PBE satisfying this tie-breaking rule, vi’s are zero-sum and

piecewise analytic. This will allow us to directly apply our previous results to them.

Claim 8. In any PBE in which the receiver chooses action a∗(β) = argminab∈A∗(β) b after

signals are realized, v1, ..., vM are each piecewise analytic and are zero-sum.

Proof. Zero-sumness is trivial. For all β,
∑M

i=1 vi(β) =
∑

i

∑N
l=1 ui(a

∗(β), l)βl

=
∑N

l=1 βl
∑

i ui(a
∗(β), l) = 0.

Now we show piecewise analyicity. For each ab ∈ A, let ∆ab = {β ∈ ∆(Ω) : ab =

a∗(β)}. Note that for every ab ∈ A the set ∆ab is convex; for any β, β′ ∈ ∆ab we can see

a∗(λβ + (1− λ)β′) = ab for all λ ∈ (0, 1) as follows. For any b′ < b we have:

N∑
l=1

ur(ab, l)βl >
N∑
l=1

ur(ab′ , l)βl

N∑
l=1

ur(ab, l)β
′
l >

N∑
l=1

ur(ab′ , l)β
′
l

=⇒
N∑
l=1

ur(ab, l)(λβl + (1− λ)β′l) >
N∑
l=1

ur(ab′ , l)(λβl + (1− λ)β′l)

For any b′ > b the first two inequalities must hold weakly which implies the third

holds weakly. So at (λβl + (1− λ)β′l) ab yields weakly higher utility for the receiver than

all higher indexed actions. Together this implies a∗(λβ+ (1−λ)β′) = ab and hence ∆ab is

convex. Note that {∆ab}b=1,...,A partition ∆(Ω); hence they form a partition of ∆(Ω) into

convex sets. On each ∆ab , each vi =
∑N

l=1 ui(ab, l)βl (i = 1, ...,M) is linear in β. Hence

each vi is piecewise linear on ∆(Ω). So {vi}i=1,...,M are piecewise analytic.

Lemma B.1.1 below shows that all vi’s are linear on ∆(Ω′) if and only if the receiver

prefers the same action at all states in Ω′.

Lemma B.1.1. Fix Ω′ ⊆ Ω, |Ω′| > 1. v1, ..., vM are all linear on ∆(Ω′) if and only if

a∗(δl) = a∗(δk) for all l, k ∈ Ω′.

Proof. We prove the ‘only if’ direction by proving the contrapositive. Consider any states

l 6= k ∈ Ω′. Suppose a∗(δl) 6= a∗(δk). For β ∈ ∆({l, k}) ⊆ ∆(Ω′), the receiver has
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expected utility ur(a, l)βl+ur(a, k)βk. Note by our assumption that no agent is indifferent

between any two actions at any state, we must have that ur(a
∗(δl), l) > ur(a

′, l) for all

a′ 6= a∗(δl) and ur(a
′, k) < ur(a

∗(δk), k) for all a′ 6= a∗(δk). By continuity, this implies

that there exists 1 > βuk > βlk > 0 such that for β ∈ ∆({l, k}) if: (1) βk < βlk then

a∗(β) = a∗(δl) and (2) βk > βuk then a∗(β) = a∗(δk). For β ∈ ∆({l, k}) and i ∈ {1, ...,M},
vi(β) = βkui(a

∗(β), k) + (1−βk)ui(a∗(β), l) = ui(a
∗(β), l) +βk(ui(a

∗(β), k)−ui(a∗(β), l)).

When βk > βuk , vi is linear in βk with slope (ui(a
∗(δk), k)−ui(a∗(δk), l)). When βk < βlk, vi

is linear in βk with slope (ui(a
∗(δl), k)− ui(a∗(δl), l)). These slopes are different because:

ui(a
∗(δk), k)− ui(a∗(δl), k) > 0 > ui(a

∗(δk), l)− ui(a∗(δl), l)

=⇒ ui(a
∗(δk), k)− ui(a∗(δk), l) 6= ui(a

∗(δl), k)− ui(a∗(δl), l)

Hence vi is nonlinear along ∆({l, k}) and hence nonlinear on ∆(Ω′) ⊇ ∆({l, k}).

‘If’ direction. Suppose for all l ∈ Ω′, a∗(δl) = a. Note that ∆(Ω′) is the convex

hull of {δl : l ∈ Ω′}. Then, by convexity of the set ∆a (see proof of Claim 8), we must

have ∆(Ω′) ⊆ ∆a. For all i ∈ {1, ...,M} vi is linear on ∆a (proof of Claim 8) and hence

∆(Ω′).

Finally we prove our main results for the finite action model. Proposition 11 is

important as it says that even when the receiver does not fully learn the state, they learn

adequately —that is, enough that further learning would not influence their action.

Proposition 11. In any PBE in which the receiver chooses action a∗(β) = argminab∈A∗(β)

b, the receiver takes their first best action w.p. 1.

Proof. Fix a PBE and consider all posteriors induced by the equilibrium experiments with

positive probability. At any posterior β ∈ {δ1, ..., δN}, the receiver clearly takes their first

best action. Now consider any posterior that occurs with positive probability that does

not fully reveal the state. At such a β, there exists Ω′ ⊆ Ω with |Ω′| > 1 and βl > 0 for

all l ∈ Ω′. But then Ω′ is being pooled in equilibrium which implies (Proposition 2) that

v1, ..., vM are all linear on ∆(Ω′) which implies (Lemma B.1.1) that there exists a ∈ A

such that a∗(δl) = a for all l ∈ Ω′. Note that ω ∈ Ω′ (all other states are ruled out by β).

By convexity of ∆a (proof of Claim 8), a∗(β) = a = a∗(δω). Hence, the receiver’s ex-post

payoff is always their first best payoff: ur(a
∗(ω), ω).
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The Corollary 2, finite action characterization of all equilibria being fully revealing

follows immediately from Theorem 1 and Lemma B.1.1.

Corollary 2 proof.

Proof. ‘If’ direction. If for a pair of states l and k, a∗(δl) 6= a∗(δk), then by Lemma B.1.1

some vi is nonlinear (and hence nonlinear) on ∆({l, k}). If this is true for every pair of

states, then along every edge of the simplex we have nonlinearity of some sender’s utility

function which implies (Theorem 1) full revelation in every equilibrium.

‘Only if’ direction. If a∗(δl) = a∗(δk) for any pair of states l and k, then Lemma

B.1.1 implies that all vi’s are linear on ∆({l, k}). This implies (Theorem 1) that there

are non-fully revealing equilibria.

B.2 Robustness

Here we consider the robustness of our results to the assumption that preferences are

zero-sum. Consider a game identical to the baseline model but with utility functions

u1, ..., uM (ui : ∆(Ω) → R) that need not be zero-sum. We assume that all utilities are

piecewise analytic and make the normalization ui(δl) = 0 for all senders i and states l.

We adopt notation from the baseline model whenever it obviously carries over.

Before presenting the robustness results, which concern the information revealed in

equilibrium as preferenes approach zero-sum, we discuss what we can say in this more

general setting. As in the baseline model, we have no issues with equilibrium existence;

for any u1, ...uM there is a fully revealing equilibrium (ΓFR, ...,ΓFR).49

Of course our results in the paper, starting with Lemma 1, rely on the zero-sumness

of preferences and do not generalize to this setting. While Lemma 1 says senders must

get their full revelation payoff in every equilibrium of a zero-sum game, this is no longer

true when preferences may be nonzero-sum. As an example, suppose all senders have the

same preferences; then there will be an equilibrium in which one sender plays a single

sender optimal experiment (a Bayesian Persuasion, or BP, solution) and all others play

ΓU . This BP solution may not fully reveal the state and may yield the senders strictly

larger payoffs than the 0 payoff from full revelation.50 More generally, when preferences

49The reason this is an equilibrium is the same —no sender’s experiment is pivotal when others are

full revealing the state.
50In fact whenever there exists a posterior γ′ that yields the senders utility larger than 0, then all BP
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are not zero-sum, agreement between senders (even if it isn’t complete agreement) may

allow them to play experiments that yield them strictly positive payoffs in equilibrium.

For any γ ∈ ∆(Ω) and u1, ..., uM , let
∑

i ui(γ) be the total surplus shared among

senders when the receiver’s posterior is γ. Note this surplus is 0 when γ ∈ {δ1, ..., δN}.
Let MS(u1, ..., uM) = supγ∈∆(Ω)

∑M
i=1 ui(γ) be the supremum of the total surplus senders

get at any posterior. Note MS(u1, ..., uM) = 0 when the game is zero-sum. While we

cannot pin down equilibrium payoffs as we did in Lemma 1, we can upperbound them for

each sender. While senders may get above utility 0 in equilibrium, none can attain utility

higher than the maximum surplus:

Lemma B.2.1. In any equilibrium (Γ1, ...,ΓM), for all senders i = 1, ...,M : 0 ≤ Ui(Γ1, ...,ΓM) ≤
MS(u1, ..., uM).

Proof. The first inequality, 0 ≤ Ui(Γ1, ...,ΓM), follows from the fact that each sender can

always fully reveal the state and obtain payoff 0.

Note that for all strategy profiles (Γ′1, ...,Γ
′
M) (with distributions p′1, ..., p

′
M), we have:∑

i Ui(Γ1, ...,ΓM) =
∑

i Ep′1,...,p′M [ui(β(Γ1, ...,ΓM))] = Ep′1,...,p′M [
∑

i ui(β(Γ1, ...,ΓM))] ≤
Ep′1,...,p′M [MS(u1, ..., uM)] = MS(u1, ..., uM).

Suppose for contradiction that for equilibrium (Γ1, ...,ΓM) and sender i, Ui(Γ1, ...,ΓM) >

MS(u1, ..., uM). Then the previous paragraph implies that there exists sender j with

Uj(Γ1, ...,ΓM) < 0. But then j can profitably deviate to Γj = ΓFR. Contradiction.

Lemma B.2.1 implies that when MS(u1, ..., uM) = 0, all senders get payoff 0 in

every equilibrium. In one special case, when only fully revealing posteriors generate this

maximum surplus, all equilibria must be fully revealing:

Corollary 4. If for all γ′ 6∈ {δ1, ..., δM}
∑

i ui(γ
′) < 0, then the state is fully revealed in

every equilibrium.

Proof. Note that MS(u1, ..., uM) = 0. For any strategy profile (Γ1, ...,ΓM) that is fully re-

vealing, Ui(Γ1, ...,ΓM) = 0 for all i. For (Γ1, ...,ΓM) that is not fully revealing,
∑

i Ui(Γ1, ...,ΓM) <

0, as with strictly positive probability the surplus at the posterior is strictly less than 0

(when the state is not fully revealed). This implies that for each non-fully revealing

solutions yield utility larger than 0. To see this, note that there exists an experiment that puts support

only on γ′ and δ1, ..., δN (such a construction is shown in the proof of Lemma 1). This experiment yields

all senders utility strictly greater than 0.
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(Γ1, ...,ΓM), there is a sender j such that Uj(Γ1, ...,ΓM) < 0. Hence, by Lemma B.2.1,

the state is fully revealed in equilibrium.

The logic of Corollary 4 is similar to that of Proposition 1 of Gentzkow and Ka-

menica (2017a). If sender surplus is uniquely maximized at fully revealing posteriors, any

non-fully revealing strategy profile leaves at least one sender strictly worse off than full

revelation, which is always an available strategy.

We now turn our attention to what we can say as preferences approach zero-sum.

We consider convergence of utilities under the sup norm. A sequence of utility functions

{uk}∞k=1 converges to a function u, or uk → u, if limk→∞ supγ∈∆(Ω) |uk(γ)−u(γ)| = 0. For

a sequence of profiles of utility functions {(uk1, ..., ukM)}∞k=1 (for notational convenience we

will drop the limits), (uk1, ..., u
k
M)→ (u1, ..., uM) if uki → ui for i = 1, ...,M .

For a sequence of strategies/experiments {Γk}∞k=1, with each Γk distributed according

to pmf pk, we say Γk → Γ (where Γ has distribution p), or Γk converges in distribution to

Γ, if for all γ ∈ ∆(Ω), limk→∞ pk(γ) = p(γ). For any strategy profile (Γ1, ...,ΓM), let the

random variable Γ(Γ1, ...,ΓM) denote the receiver’s posterior after observing realizations

of all Γ1, ...,ΓM (i.e. the experiment induced by combining all M senders’ experiments).

The following result says that as utilities converge to zero-sum sufficiently nonlinear

functions, the information revealed along any sequence of equilibria, whenever convergent,

converges to full revelation. This is the same Proposition 4 from Section 4.4 stated more

formally.

Proposition 4. Fix a sequence of games with utilities {(uk1, ..., ukM)} with (uk1, ..., u
k
M)→

(u1, ..., uM) and
∑

i ui(γ) = 0 for all γ ∈ ∆(Ω). For each k let (Γk1, ...,Γ
k
M) be an equilib-

rium of game (uk1, ..., u
k
M). Suppose for every pair of states l, k ∈ Ω there exists an i with

ui nonlinear on ∆({l, k}). Then if Γ(Γk1, ...,Γ
k
M)→ Γ, Γ = ΓFR.

Proposition 4 is important, as indicates that Theorem 1 does not qualitatively rely

on the knife-edge assumption of zero-sum preferences. As utilities get close to zero-sum

and sufficiently nonlinear, the information revealed in every equilibrium (if it converges)

gets close to full revelation. Before proving the result, we prove a lemma which shows

Proposition 2 is similarly robust.

Lemma B.2.2. Fix a sequence of games with utilities {(uk1, ..., ukM)} with (uk1, ..., u
k
M)→

(u1, ..., uM) and
∑

i ui(γ) = 0 for all γ ∈ ∆(Ω). For each k let (Γk1, ...,Γ
k
M) be an equilib-

rium for (uk1, ..., u
k
M). Suppose for some Ω′ ⊆ Ω and i, ui is nonlinear on ∆(Ω′). Then if

Γ(Γk1, ...,Γ
k
M)→ Γ, Γ does not pool Ω′.
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Proof. For strategy profile (Γ′1, ...,Γ
′
M) (with distributions p′1, ..., p

′
M), let Uk

i (Γ′1, ...,Γ
′
M) =

Ep′1,...,p′M [uki (β)] be sender i’s expected utility when she has preferences uki .

Let the distribution of Γ be p and for any k let the distribution of Γ(Γk1, ...,Γ
k
M) be pk.

Note that as Γ(Γk1, ...,Γ
k
M) has finite support for every k, Γ must also finite support (by the

definition of convergence in distribution). Define T = supp[Γ]∪ (∪∞k=1supp[Γ(Γk1, ...Γ
k
M)]);

note by the finiteness of all terms in the union, T is countable.

Suppose for contradiction that some ui is nonlinear on Ω′ and Γ pools Ω′. By Claim

7, there exists a sender j such who can find experiment Γj (with distribution pj) such

that in the limiting (zero-sum) game (u1, ..., uM), Uj(Γj,Γ) = c > 0.

For any k, MS(uk1, ..., u
k
M) = supγ

∑
i u

k
i (γ) = supγ

∑
i ui(γ) + (uki (γ) − ui(γ)) ≤

supγ
∑

i ui(γ) + |uki (γ) − ui(γ)|. As (uk1, ..., u
k
M) → (u1, ..., uM), the second term goes to

0 for all i as k → ∞ and hence MS(uk1, ..., u
k
M) → MS(u1, ..., uM) = 0. This implies

there exists K s.t. ∀k > K, MS(uk1, ..., u
k
M) < c/2. By Lemma B.2.1, for all k > K,

Uk
j (Γkj ,Γ

k
−j) < c/2.

Consider j playing experiment Γkj as well as (conditionally independently) playing

Γj, while her opponents’ play Γk−j. The expected payoff that j gets from this can be

written Uk
j (Γ(Γj,Γ

k
j ),Γ

k
−j) = Uk

j (Γj,Γ(Γk1, ...,Γ
k
M)), as it does not affect j’s payoff if she

plays Γkj or her opponents’ do. As T ⊃ supp[Γ(Γk1, ...,Γ
k
M)] for each k, we can write

Uk
j (Γj,Γ(Γk1, ...,Γ

k
M)) =

∑
x∈supp[Γj ]

∑
y∈supp[T ] u

k
j (β(x, y))pk(y|x)pj(x). Then:

lim
k→∞

Uk
j (Γj,Γ(Γk1, ...,Γ

k
M)) =

∑
x∈supp[Γj ]

∑
y∈supp[T ]

lim
k→∞

ukj (β(x, y))pk(y|x)pj(x)

For any y ∈ T , limk→∞ u
k
j (β(x, y)) = uj(β(x, y)) and limk→∞ p

k(y|x) = p(y|x) (by

definition of pk(y|x) and convergence in distribution). Hence:

lim
k→∞

Uk
j (Γj,Γ(Γk1, ...,Γ

k
M)) =

∑
x∈supp[Γj ]

∑
y∈supp[T ]

uj(β(x, y))p(y|x)pj(x) = Uj(Γj,Γ) = c

This implies that there exists K ′ such that ∀k > K ′, Uk
j (Γj,Γ(Γk1, ...,Γ

k
M)) > c/2.

TakeK ′′ = max{K,K ′}. For all k > K ′′ we have: Uk
j (Γkj ,Γ

k
−j) < c/2 and Uk

j (Γj,Γ(Γk1, ...,Γ
k
M)) >

c/2. But for all k > K ′′, this contradicts that (Γk1, ...,Γ
k
M) is an equilibrium as j has a

profitable deviation of Γ(Γj,Γ
k
j ).
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We now prove Proposition 4.

Proof. Suppose not. Then Γ(Γk1, ...,Γ
k
M)→ Γ 6= ΓFR. Then Γ pools some set of states Ω′

with |Ω′| ≥ 2; let l, k ∈ Ω′. There is a sender with ui nonlinear on ∆({l, k}); hence ui is

nonlinear on ∆(Ω′). But then by Lemma B.2.2 Γ must not pool Ω′. Contradiction.

Proposition 4 relates to the standard results on the upper hemicontinuity of the set

of equilibria (although here we are not concerned with the set of equilibrium actions

themselves but instead the set of information that could be revealed in equilibrium). As

is also standard, we do not have the corresponding lower hemicontinuity properties. In

particular, it is possible for there to be non-fully revealing equilibria in the limit, but only

fully revealing equilibria along the sequence. It is not hard to come up with examples of

this; we provide a one here.

Example 3. Suppose Ω = {0, 1} and there are two senders 1 and 2. Consider the sequence

of utility functions {(uk1, uk2)} with uk1(β) = −1
k

for all β ∈ [0, 1]\{0, 1}, uk1(0) = uk1(1) = 0,

and u2(β) = 0 for all β ∈ [0, 1]. Define utility function u as u(β) = 0 for all β. Then

note (uk1, u
k
2) → (u, u). Proposition 1 states that in the game (u, u), there are non-fully

revealing equilibria (any strategy profile is an equilibrium). Note for any k, the game

(uk1, u
k
2), uk1(β) + uk2(β) < 0 for all β 6∈ {0, 1}. Hence by Corollary 4, all equilibria of

(uk1, u
k
2) are fully revealing for all k.

B.3 Infinite Signal Experiments

So far we have restricted senders to choosing experiments with a finite number of signals,

or equivalently interim belief distributions pi ∈ P that have finite support. In this section

we demonstrate that our takeaway from the finite signal results —that for typical sender

preferences we have full revelation in every equilibrium —extends when senders can choose

from a more general set of experiments. Senders now choose any experiments Π : Ω →
∆(S) (with no restrictions on the signal space). Again, we recast choices of experiments as

choices of interim belief distributions. For technical convenience we restrict our attention

to senders choosing interim belief distributions that can be written as the sum of absolutely

continuous and discrete distributions.51 We will call the space of pure strategies, or the

set of Bayes-plausible distributions that satisfies this requirement G. Formally G = {g ∈
∆(∆(Ω)) : Eg[Γi] = π, g = gc + gd for some abs. cont. and discrete (respectively)

51As ∆(Ω) ⊂ RN , by the Lebesgue Decomposition Theorem this only rules senders choosing distribu-

tions with singular continuous components.
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measures gc, gd ∈ ∆(∆(Ω))}. Each g ∈ G is a generalized density.52 A strategy for sender

i is a choice of random variable Γi with generalized density gi ∈ G. Preferences over

strategy profiles for a sender i are given by Ui(Γ1, ...,ΓM) = Eg1,...,gM [ui(β)]. The game

and equilibrium concept are otherwise identical to the finite signal model (including our

normalization of the ui’s).

Remark: Note that our equilibrium analysis under both the finite signal restriction

and under the technical restriction above can be seen as equilibrium selections. Any finite

signal equilibrium will also be an equilibrium when senders are allowed to pick strategies

from G and any equilibria with strategies selected from G will be equilibria in a game

where senders can pick any distribution in ∆(∆(Ω)).

We make one additional technical assumption on utility functions:

Assumption 1. For each l ∈ Ω and i ∈ {1, ...,M}, ui is real analytic in some neighbor-

hood of δl.

Note that Assumption 1 only rules out piecewise analytic utility functions for which

some δl lies on the boundary between different pieces. For any states l, k let vl,k ∈ RN be

the vector from δl to δk.
53 For any sender i let ∇vl,kui(·) be the directional derivative of

ui moving along vl,k. Note for some i ∇vl,kui(·) may not be well defined at some points

on ∆(Ω); but under Assumption 7.1 for all i and all l it is a well defined continuous

function in some neighborhood of δl. With this assumption we can define Condition B.1.

Condition B.1 concerns the shape of utility functions on an edge of the simplex and will

be sufficient for a pair of states l and k to not be pooled in every equilibrium.

Definition B.1. For any states l, k and sender i we say that ui satisfies Condition B.1

on ∆({l, k}) if either ∇vl,kui(δl) 6= ui(δk)− ui(δl), ∇vl,kui(δk) 6= ui(δk)− ui(δl), or both.54

For example, utility functions that look like Figure 7.2 along edge ∆({l, k}) do not

satisfy Condition B.1; nor does a utility function that is linear along that edge. Functions

that look this those in Figure 1 do satisfy Condition B.1.

52g is the density function gc on intervals where the distribution is absolutely continuous and the

probability mass function gd everywhere else.
53vl,kk = 1, vl,kl = −1, vl,kn = 0 for all n 6= l, k.
54Under the normalization we made, ui(δk)− ui(δl) = 0.
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Figure B.7

Proposition B.3.1. For any pair of states l and k, if there exists a sender i with ui

satisfying Condition B.1 on ∆({l, k}), then l and k are not pooled in every equilibrium.

We prove Proposition B.3.1 after redefining some objects for this setting. For any

sender i and strategy profile for all opponents {Γj}j 6=i, we define Wi(x) for x ∈ ∆(Ω)

analogously to the finite signal case.

Wi(x) =

∫
∆(Ω)

ui(β(x, y))p−i(y|x)dy (8)

For any vector v ∈ RN and y ∈ ∆(Ω), let ∇vp−i(y|x) and ∇vβk(x, y) (for any state

k) be the directional derivates of these two functions with respect to x along vector v.

Note the following.

∇vp−i(y|x) = ∇v

N∑
l=1

xlylp−i(y)

πl
=

N∑
l=1

vlylp−i(y)

πl
(9)

∇vβk(x, y) = ∇v

xkyk
πk∑N
l=1

xlyl
πl

= −
N∑
l=1

vlyl
πl

xkyk
πk

(
∑N

n=1
xnyn
πn

)2
+

vkyk
πk∑N

l=1 xlyl/πl
(10)

For any states l, k ∈ {1, ..., N} let ∆int({l, k}) = ∆({l, k})\{δl, δk} be the nondegen-

erate beliefs in ∆({l, k}). Let ∆0({l, k}) = {β ∈ ∆(Ω) : βl, βk = 0} and ∆1({l, k}) = {β ∈
∆(Ω) : βl+βk < 1; βl and/or βk 6= 0}. Note {δl, δk}∪∆int({l, k})∪∆0({l, k})∪∆1({l, k}) =

∆(Ω) and all four sets are disjoint.
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We now prove Proposition B.3.1

Proof. First note Lemma 1 still holds in this context by an identical proof. In any equi-

librium (Γ1, ...,ΓM) all senders i have: Ui(Γ1, ...,ΓM) = 0 and Wi(x) ≤ 0 for all x ∈ ∆(Ω).

WLOG let l = 1, k = 2. For notational convenience let v = v1,2. Suppose ui

satisfies Condition B.1 on ∆({1, 2}) for some i. WLOG we consider the case ∇vui(δ2) 6=
ui(δ2)− ui(δ1) = 0. Then by zero-sumness (derivatives must also be zero-sum where they

exist for all senders) there exists a sender j with ∇vuj(δ2) = c < 0. We will prove that Γ−j

must not pool {l, k}; this clearly implies the Proposition B.3.1 as by Claim 3, (Γ1, ...,ΓM)

also will not pool {l, k}.

Suppose for contradiction there is an equilibrium (Γ1, ...,ΓM) such that Γ−j pools

{l, k}. For x ∈ ∆(Ω), by the product rule and the partition of ∆(Ω) into {δ1, δ2},∆int({1, 2}),
∆0({1, 2}),∆1({1, 2}):

∇vWj(x) = ∇v(uj(β(x, δ2))p−j(δ2|x) + uj(β(x, δ2))∇vp−j(δ2|x)

+∇v(uj(β(x, δ1))p−j(δ1|x) + uj(β(x, δ1))∇vp−j(δ1|x)

+

∫
∆int({1,2})

∇vuj(β(x, y))p−j(y|x)dy +

∫
∆int({1,2})

uj(β(x, y))∇vp−j(y|x)dy

+

∫
∆0({1,2})

∇vuj(β(x, y))p−j(y|x)dy +

∫
∆0({1,2})

uj(β(x, y))∇vp−j(y|x)dy

+

∫
∆1({1,2})

∇vuj(β(x, y))p−j(y|x)dy +

∫
∆1({1,2})

uj(β(x, y))∇vp−j(y|x)dy

though this may not be well defined for some x. Note:

∇v(uj(β(x, y))p−j(δ2|x)) =
N∑
k=1

∂uj(β(x, y))

∂βk
∇vβk(x, y)p−j(y|x)

(again this may not be well defined for some x). Now consider x ∈ ∆({1, 2}). For

such x, with some algebra:

∇vβk(x, y)p−j(y|x) =
(y1/π1 − y2/π2)xkyk

πk
x1y1

π1
+ x2y2

π2

+
vkyk
πk

(11)
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One can check that for y ∈ ∆0({1, 2}) and for y ∈ {δ1, δ2} this expression is 0 for

all k = 1, ..., N . This tells us that the 1st, 3rd, and 7th terms of ∇vWj(x) are 0 for

x ∈ ∆({1, 2}). Note that for y ∈ ∆({1, 2})0, ∇vp−i(y|x) = 0, and so the 8th term is also

0.

We consider the limit of ∇vWj(x) for x ∈ ∆({1, 2}) as x → δ2. We show this limit

exists and is negative.

lim
x→δ2
∇vWj(x) = lim

x→δ2
uj(β(x, δ2))∇vp−j(δ2|x) + lim

x→δ2
uj(β(x, δ1))∇vp−j(δ1|x)

+

∫
∆int({1,2})

N∑
k=1

lim
x→δ2

∂uj(β(x, y))

∂βk
∇vβk(x, y)p−j(y|x)dy +

∫
∆int({1,2})

lim
x→δ2

uj(β(x, y))∇vp−j(y|x)dy

+

∫
∆1({1,2})

N∑
k=1

lim
x→δ2

∂uj(β(x, y))

∂βk
∇vβk(x, y)p−j(y|x)dy +

∫
∆1({1,2})

lim
x→δ2

uj(β(x, y))∇vp−j(y|x)dy

We evaluate this term by term. The first term is 0 as ∇vp−j(δ2|x) is finite and

does not depend on x and limx→δ2 β(x, δ2) = δ2 which implies (by continuity of uj in a

neighborhood of δ2) limx→δ2 uj(β(x, δ2)) = 0. The second term is also 0 as ∇vp−j(δ1|x)

is finite and does not depend on x and limx→δ2 β(x, δ1) = δ1 (by L’Hopital’s rule) which

implies (by continuity of uj in a neighborhood of δ1) limx→δ2 uj(β(x, δ1)) = 0.

The fourth term is also 0 as for all y ∈ ∆int({1, 2}), limx→δ2 β(x, y) = δ2 and uj(δ2) =

0 while ∇vp−j(y|x) is finite and does not depend on x. The sixth term is also 0 for the

following reason. For y ∈ ∆1({1, 2}) with y2 > 0, limx→δ2 β(x, y) = δ2; as uj(δ2) = 0, the

terms inside the integral are 0 when y2 > 0. For y ∈ ∆1({1, 2}) with y2 = 0, we must

have y1 > 0; then by L’Hopital’s rule limx→δ2 β(x, y) = δ1 and uj(δ1) = 0 meaning terms

inside the interal are 0 when y2 = 0.

Using (11) note that ∇vβk(x, y)p−j(y|x) = 0 for all k 6= 1, 2 as for such k xk =

vk = 0. For y ∈ ∆({1, 2})int we have: limx→δ2∇vβ1(x, y)p−j(y|x) = −y1

π1
p−j(y) and

limx→δ2 ∇vβ2(x, y)p−j(y|x) = y1

π1
p−j(y). The same holds for y ∈ ∆1({1, 2}) with y2 > 0.

For y ∈ ∆1({1, 2}) with y2 = 0, we have: limx→δ2∇vβ1(x, y)p−j(y|x) = limx→δ2 ∇vβ2(x, y)p−j(y|x) =

0 (applying L’Hopital’s rule).
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Putting this together:

lim
x→δ2
∇vWj(x) =

∫
∆int({1,2})∪{y∈∆1({1,2}):y2>0}

[
∂uj(δ2)

∂β2

− ∂uj(δ2)

∂β1

]
y1

π1

p−j(y)dy

= ∇vuj(δ2)

∫
∆int({1,2})∪{y∈∆1({1,2}):y2>0}

y1

π1

p−j(y)dy

= c

∫
∆int({1,2})∪{y∈∆1({1,2}):y2>0}

y1

π1

p−j(y)dy

(12)

As Γ−j pools Ω′, there exists y ∈ supp[Γ] for which y1, y2 > 0. Such a y must fall

inside the set (∆int({1, 2}) ∪ {y ∈ ∆1({1, 2}) : y2 > 0}) (any point in the completement

of this set assigns probability 0 to at least one of states 1, 2.). This implies that there are

y ∈ (∆int({1, 2}) ∪ {y ∈ ∆1({1, 2}) : y2 > 0}) for which pj(y) > 0 and y1 > 0. As y′1 ≥ 0

for all y′ ∈ ∆(Ω), the integral on the righthand side of equation 12 is strictly positive. As

c < 0, we have limx→δ2 ∇vWj(x) < 0.

But as Wj(δ2) = 0, this implies that for some x∗ ∈ ∆({1, 2}) close enough to δ2, we

must have Wj(x
∗) > 0, contradicting Lemma 1.

Condition B.1 holding on each edge for some sender is a sufficient condition for full

revelation in any equilibrium:

Proposition 5. If for every pair of states l and k there exists a sender i such that

ui satisfies Condition B.1 on ∆({l, k}) then the state is fully revealed in every equilibrium

in which senders choose experiments from G.

Proof. If for every pair l, k there is a sender with ui satisfying Condition B.1 on ∆({l, k}),
then by Proposition B.3.1, no pair of states is pooled in any equilibrium. Hence w.p. 1

the posterior assigns positive probability to only 1 state and hence must fully reveal that

state.

Note that a function not satisfying Condition B.1 along a given edge is knife-edge

—it requires a particular directional derivative to take a certain value at two points. If

no sender has a utility function satisfying Condition B.1 along an edge, this is even more

particular. Hence we ‘typically’ expect Condition B.1 to be satified on each edge for

some ui and so Proposition 5 says we should typically expect fully revelation in every

equilibrium.
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B.4 Privately Informed Senders

Consider our baseline model with one modification: each sender receives a private signal

before the game. For simplicity, senders’ private signals are realizations of finite signal

experiments that are conditionally (on ω) independent across senders.55 We think of the

experiments in terms of the beliefs they induce. Formally each sender i draws a private

belief bi ∈ ∆(Ω) with bi ∼ Bi ∈ P , |supp[bi]| < ∞, and E[bi] = π (Bayes-plausibility).

The distributions {Bi}Ni=1 are conditionally independent. We make one more assumption:

that for each Ω′ ( Ω, supp[bi] ∩∆(Ω′) = ∅ for all i; no sender’s private information rules

out any states.56

A pure strategy for sender i is a mapping from private beliefs (or types) to choices

of finite signal experiments: σi : supp[bi]→ P . As before, we use Γi to denote the interim

belief produced by sender i’s experiment. i chooses the distribution of Γi, pi ∈ P after

observing her own type. Importantly, we define Γi to be the interim belief the receiver

holds after viewing realization of i’s experiment but without updating her belief on Ω from

observing the choice of pi (we formalize this updating in the next paragraph). Hence Γi is

the receiver’s learning from i’s experiment ignoring information from signalling. A pure

strategy profile is a vector (σ1, ..., σM).

The receiver’s posterior belief β is a function of the signal realizations she observes

as well as the experiment choices she observes. The receiver will form beliefs about each

{bi}i=1,...,M independently via a belief function µi : ∆(∆(Ω))→ ∆(supp[bi]) (i = 1, ...,M)

which maps choices of experiment to a belief on the sender’s type.57 For an experiment

choice of pi by sender i, let µi(pi)[b] denote the probability the receiver assigns to bi = b

under belief function µi. For i = 1, ...,M let τ i(µi, pi) ∈ ∆(Ω) be the receiver’s belief on

ω given belief function µi after observing experiment choice pi from sender i but not its

signal realization or any other senders’ experiment choices are realizations. Then for each

state l ∈ Ω:

55These assumptions are not necessary.
56Having already made the assumption of finite signals, this assumption is equivalent saying signals

are bounded.
57While other senders’ experiment choices and the realizations of (Γ1, ...,ΓM ) will affect the receiver’s

belief about each bi, as players’ types and experiment realizations are conditionally independent they

will only affect the receiver’s beliefs through learning about ω. This updating will hence not affect the

receiver’s belief on ω, which is all that players care about. The functions {µi} are what is important for

evaluating senders’ payoffs.
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τ il (µ
i, pi) =

∑
b∈supp[bi]

Pr(ω = l|bi = b)Pr(bi = b|pi) =
∑

b∈supp[bi]

blµ
i(pi)[b] (13)

For any sender i let αi(Γi, pi, µ
i) ∈ ∆(Ω) be the random variable representing the

receiver’s interim belief given µi after observing just the choice pi and the realization

of Γi. αi hence captures the receiver’s belief after taking into account all information

—signalling and otherwise —from sender i. For any l ∈ Ω:

αil(Γi, pi, µ
i) =

τ il (µ
i, pi)Γi,l/πl∑N

k=1 τ
i
k(µ

i, pi)Γi,k/πk
(14)

For fixed {µi}i=1,...,M , after observing {pi} and realizations {Γi}, the receiver updates

by Bayes rule to a posterior belief for each l ∈ Ω:

βl({Γi}, {pi}, {µi}) =
ΠM
i=1α

i
l(Γi, pi, µ

i)/πM−1
l∑N

k=1 ΠM
s=1α

i
k(Γi, pi, µ

i)/πM−1
k

(15)

A PBE (in pure strategies) is a strategy profile (σ1, ..., σM) and a set of belief functions

(µ1, ..., µM) satisfying two conditions. First, no sender i can strictly gain from deviating

from σi(bi) for any bi ∈ supp[bi]:

∀i ∈ {1, ...,M}, bi ∈ supp[bi] : E{Bj}j 6=i [Eσi(bi),{pj}j 6=i [ui(β)]|bi]

≥ E{Bj}j 6=i [Ep′i,{pj}j 6=i [ui(β)]|bi] for all p′i ∈ P
(16)

where the receiver’s posterior β is formed using (15). It is important to note that

sender i may not know {pj}j 6=i but forms beliefs about these given her own private infor-

mation to evaluate expected utility.

Second, beliefs must follow Bayes rule on path:

∀i ∈ {1, ...,M} and p ∈ P s.t. ∃bi ∈ supp[bi] with σi(bi) = p :

∀b ∈ supp[bi], µi(p)[b] =
1σ(b)=pBi(b)∑

b′∈supp[bi] 1σ(b′)=pBi(b′)

(17)

The result below is Lemma 1 adapted to this setting with private information.
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Lemma B.4.1. Take any equilibrium (σ1, ..., σM), (µ1, ..., µM). For any sender i and

b ∈ supp[bi], conditional on bi = b sender i gets expected utility 0.

Proof. Fix any equilibrium. No sender i can get expected utility strictly less than 0

conditional on any bi = b ∈ supp[bi], as playing the fully revealing experiment guarantees

expected utility 0. This means each sender i’s expected utility unconditional on type,

∑
b′∈supp[bi]

E{Bj}j 6=i [Eσi(b′),{pj}j 6=i [ui(β)]]Bi(b
′) (18)

is weakly positive. As the game is zero-sum, the sum of all senders’ unconditional

expected utilities must be 0; as each of these payoffs is weakly positive, it must be Equation

18 is equal to 0 for each i. But then as each term in the summation of Equation 18 is

weakly positive, sender i’s expected utility conditional on bi = b cannot be strictly positive,

and hence it must be 0.

We redefine state pooling in the game with private information as follows. An equi-

librium (σ1, ..., σM), (µ1, ..., µM) does not pool a set of states Ω′ ⊆ Ω if Pr(βl > 0 ∀l ∈
Ω′) = 0. Otherwise, the equilibrium pools Ω′. The following Lemma is useful for the main

results; it says an equilibrium pools Ω′ if and only if αi does for every sender i.

Lemma B.4.2. An equilibrium (σ1, ..., σM), (µ1, ..., µM) pools Ω′ ⊆ Ω if and only if for

all i Pr(αil(Γi, pi, µ
i) > 0 ∀l ∈ Ω′) > 0.

Proof. ‘If’ direction. If for all i Pr(αil(Γi, pi, µ
i) > 0 ∀l ∈ Ω′), then as αi is conditionally

(on state) across senders (as bi and Γi are), Pr(αil(Γi, pi, µ
i) > 0 ∀l ∈ Ω′ ∀i = 1, ...,M) >

0. By equation 15, Pr(βl > 0 ∀l ∈ Ω′) > 0.

‘Only if’ direction. If for some sender i, Pr(αil(Γi, pi, µ
i) > 0 ∀l ∈ Ω′) = 0, then by

equation 15, βl = 0 for some l ∈ Ω′ w.p. 1.

We now provide a sufficient condition for a pair of states to be not pooled in every

equilibrium. The sufficient condition is the same as that in Section B.3 and will lead to

the same sufficient condition for full revelation in all equilibria. We note as before that

this condition is satisfied for all but a knife-edge case of sender preferences. As in Section

B.3 we make the mild technical assumption that all sender utilities are real analytic in

some neighborhood of δl for all states l (Assumption 1).
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Lemma B.4.3. Suppose Assumption 1 holds. Consider any pair of states l and k. {l, k}
is not pooled in every equilibrium if for some i ui satisfies Condition B.1 on ∆({l, k}).

Proof. WLOG let l = 1, k = 2. For notational convenience let v = v1,2. Suppose ui

satisfies Condition B.1 on ∆({1, 2}) for some i. WLOG we consider the case ∇vui(δ2) 6=
ui(δ2)− ui(δ1) = 0. Then by zero-sumness (derivatives must also be zero-sum where they

exist for all senders) there exists a sender j with ∇vuj(δ2) = c < 0. This implies there

exists r ∈ (0, 1) such that for all γ ∈ ∆({1, 2}) with γ2 > r, uj(γ) > 0. In other words, j

has a region of advantage along ∆({1, 2}) close to δ2.

Suppose for contradiction there is an equilibrium (σ1, ..., σM), (µ1, ..., µM) that pools

{l, k}. For each j′ 6= j, let Λj′ = αj
′
(Γj′ , pj′ , µ

j′). By Lemma B.4.2, for all j′ 6= j, Λj′

pools {1, 2}. Note Λj′ is also a random variable (where randomness is over pj′ and the

realization of Γj′) with finite support (due to finite support of bj′ and Γj′). If all senders

j′ 6= j follow the equilibrium play, Λj′ is also Bayes-plausible (with mean π); this is

because Γj′ Bayes-plausible, any learning the receiver does about bj′ must follow Bayes

rule on path, and the distribution of bj′ has mean π. Let Λ−j denote the interim belief

induced by viewing realizations of all {Λj′}j′ 6=j; note this experiment also pools {1, 2};
this is also a finite signal Bayes-plausible experiment.

We will now find a profitable deviation for sender j. This deviation will take the form

of an experiment p′j, which we will construct, that generates strictly positive expected

utility no matter what j’s type is.

We can rewrite βl for l ∈ Ω (from equation 15) conditional on this deviation p′j as:

βl(Λ−j, α
j(Γj, p

′
j, µ

j)) =
Λ−j,lα

j
l (Γj, p

′
j, µ

j)/πl∑N
k=1 Λ−j,kα

j
k(Γj, p

′
j, µ

j)/πk
(19)

It is also useful to write down the probability distribution of Λ−j conditional on

αj(Γj, p
′
j, µ

j):

Pr(Λ−j = y|αj(Γj, p′j, µj)) =
N∑
l=1

αjl (Γj, p
′
j, µ

j)yl

πl
(20)

Let Y = {y ∈ supp[Λ−j] : y1, y2 > 0}; note this set is nonempty as Λ−j pools {1, 2}.
Let Y0 = {y ∈ supp[Λ−j] : y1, y2 = 0}, Y1 = {y ∈ supp[Λ−j] : y1 > 0, y2 = 0}, and

Y2 = {y ∈ supp[Λ−j] : y1 = 0, y2 > 0}. These sets partition the support of Λ−j.
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Consider j generating interim belief Γj = x ∈ ∆({1, 2}) \ {δ1, δ2}. As in Proposition

2’s proof, we will try and find such an x conditional on which j gets a strictly positive

expected payoff. We will then construct p′j which assigns positive probability to x. Note

that Pr(αj(Γj, p
′
j, µ

j) ∈ ∆({l, k}) \ {δ1, δ2}|Γj = x) = 1. This can be seen from the

definition of αj (equation 14) and is a consequence of every private belief b ∈ supp[bj]

having bn > 0 for all n ∈ Ω which implies τ jl (µj, p′j) > 0 for all l ∈ Ω. This implies that

Pr(Λ−j ∈ Y0|Γj = x ∈ ∆({1, 2}) \ {δ1, δ2}) = 0 (equation 20). Also note that conditional

on Γj = x ∈ ∆({1, 2}) \ {δ1, δ2}, β = δ1 when Λ−j ∈ Y1 and β = δ2 when Λ−j ∈ Y2 (see

equation 19); these posteriors both yield utility 0.

Finally, note that conditional Γj = x ∈ ∆({1, 2}) \ {δ1, δ2}, we have Pr(Λ−j ∈
Y ) > 0 (by equation 20 and αj ∈ ∆({l, k}) \ {δ1, δ2}). Note that for each y ∈ Y

and αj(Γj, p
′
j, µ

j) ∈ ∆({1, 2})\{δ1, δ2}, βk(y, αj(Γj, p′j, µj)) is continuous in αj(Γj, p
′
j, µ

j),

βk(y, α
j(Γj, p

′
j, µ

j))→ 1 as αj(Γj, p
′
j, µ

j)→ 1, and βk(y, α
j(Γj, p

′
j, µ

j))→ 0 as αj(Γj, p
′
j, µ

j)→
0. As Y is finite, the function miny∈Y βk(y, α

j(Γj, p
′
j, µ

j)) is also continuous in its second

argument for αj(Γj, p
′
j, µ

j) ∈ ∆({1, 2})\{δ1, δ2} and goes to 0 or 1 as αj(Γj, p
′
j, µ

j) goes to

0 or 1 respectively. By the intermediate value theorem, there exists a αr ∈ (0, 1) such that

miny∈Y βk(y, αr) = r. When 1 > αj(Γj, p
′
j, µ

j) > αr, we have βk(y, α
j(Γj, p

′
j, µ

j)) ∈ (r, 1)

for all y ∈ Y .

Note that for Γj = x ∈ ∆({1, 2})\{δ1, δ2}, we have αj2(x, p′j, µ
j) =

τ j2 (µj ,p′j)x2/π2

τ j1 (µj ,p′j)x1/π1+τ j2 (µj ,p′j)x2/π2
.

We can rewrite this as: αj2(x, p′j, µ
j) =

τ
j
2(µj,p′j)

τ
j
1(µj,p′

j
)
x2/π2

x1/π1+
τ
j
2(µj,p′

j
)

τ
j
1(µj,p′

j
)
x2/π2

. Note that as private beliefs have

finite support and cannot rule out any state, for all beliefs the receiver may hold about j’s

type, µ ∈ ∆(supp[bj]), the corresponding belief τ this induces on Ω (τl =
∑

b∈supp[bj ])blµ[b])

must have τ2
τ1
≥ d > 0 for some d ∈ (0, 1). Hence:

αj2(x, p′j, µ
j) =

τ j2 (µj ,p′j)

τ j1 (µj ,p′j)
x2/π2

x1/π1 +
τ j2 (µj ,p′j)

τ j1 (µj ,p′j)
x2/π2

≥ dx2/π2

x1/π1 + dx2/π2

(21)

αj2(x, p′j, µ
j) is continuous in x on ∆({1, 2}) \ {δ1, δ2} and will also fall in ∆({1, 2}) \

{δ1, δ2}. By equation 21, as x2 → 1, αj2(x, p′j, µ
j) → 1 regardless of what beliefs the

receiver holds. Hence there exist x∗ ∈ ∆({1, 2})\{δ1, δ2} such that 1 > αj2(x∗, p′j, µ
j) > αr.

Hence we have βk(y, α
j(x∗, p′j, µ

j)) ∈ (r, 1) for all y ∈ Y . Conditional on x∗, j gets

expected utility:
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∑
y∈Y1

uj(δ1)︸ ︷︷ ︸
=0

Pr(Λ−j = y|αj(x∗, p′j, µj)) +
∑
y∈Y2

uj(δ2)︸ ︷︷ ︸
=0

Pr(Λ−j = y|αj(x∗, p′j, µj))

+
∑
y∈Y

uj(β(y, αj(x∗, p′j, µ
j)))︸ ︷︷ ︸

>0

Pr(Λ−j = y|αj(x∗, p′j, µj))︸ ︷︷ ︸
>0

> 0

The proof of Lemma 1 demonstrates how any type of sender j can construct a stratgy

p′j which assigns positive probability only to x∗ and {δ1, ..., δN}. p′j yields j strictly positive

expected utility conditional on x∗ being realized and 0 utility otherwise. Hence Lemma

B.4.1 is violated. Contradiction. Hence no equilibrium can pool {1, 2}.

Lemma B.4.3 implies that Condition B.1 being satisfied by some ui on each edge of

the simplex is sufficient for full revelation in all equilibria. It is worth noting again that

is sufficient condition is satisfied for all but a knife-edge case of sender preferences.

Proposition 6. Suppose Assumption 1 holds. The state is fully revealed in every

equilibrium if for all pairs of states l and k, there is some ui that satisfies Condition B.1

on ∆({l, k}).

Proof. Argument is identical to Proposition 5’s proof.

B.5 Sequential Moving Senders

Consider a sequential version of our baseline model. Senders 1, ...,M move in order,

observing all previous experiment choices (but not realizations); we are interested in pure

strategy subgame perfect Nash Equilibria (henceworth just SPNE) of this game. Note

that for a simultaneous game, there are multiple corresponding sequential games, one for

each ordering of senders.

A few facts easily carry over from the simultaneous case. First, all senders must get

utility 0 in equilibrium (as the game is zero-sum and anyone can fully reveal the state).

Second, full revelation can be supported as an SPNE outcome in a game with senders

moving in any order. We can construct such an equilibrium with all senders playing ΓFR

on path and playing any sequentially rational strategies off path. No sender after the first
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has an incentive to deviate if those upstream from them have not (as the receiver will

the learn the state from upstream senders). The first sender cannot strictly gain from

deviating, as a strict gain would imply a strict loss for a downstream sender; sequential

rationality rules this out as the downstream sender can fully reveal the state to avoid a

loss. As for the simultaneous game, the interesting question is when all equilibria (here

SPNE) are fully revealing. The following results and discussion clarify the relationship

between the our simultaneous model and a sequential version.

Proposition 7. If for u1, ..., uM there is full revelation in every SPNE of the sequen-

tial game with the senders moving in some order, then there is full revelation in every

equilibrium of the simultaneous game.

Proof. We prove the following statement, from which the result follows: if there exists a

non-fully revealing equilibrium in the simultaneous game, then, for any order of senders,

there exists a non-fully revealing SPNE in the sequential game.

Choose any ordering of senders 1, ...,M . Consider any non-fully revealing equilibrium

of the simultaneous game, (Γ1, ...,ΓM) and let Γ be the experiment induced by observing

the realizations of Γ1, ...,ΓM . In the sequential game, consider the following strategy

profile: (1) sender 1 plays Γ. (2) each sender i = 2, ...,M plays ΓU if all previous senders

haven’t deviated and play some seqentially rational strategies otherwise. We will show

this is an SPNE. By Lemma 1 all senders get utility 0 from following perscribed play as Γ

is the information revealed in an equilibrium of the simultaneous game and no additional

information is revealed. First note sender 1 has no strict incentive to deviate as any

profitable deviation would give some downstream sender strictly negative utility. This is

not possible along any path of play in an SPNE as this downstream sender can always

fully reveal the state.

If sender 1 plays Γ, senders 2, ...,M have no incentive to deviate for the following

reason. Consider any deviation Γ′j 6= ΓU for sender j, 2 ≤ j ≤M . This deviation leads to a

path of play producing information from Γ as well as additional conditionally independent

experiments. Suppose, for contradiction, this deviation yields j strictly positive expected

utility. But then j has a profitable deviation from the simulatenous game equilibrium

(Γ1, ...,ΓM); if j unilaterally plays these additional conditionally independent experiments

in addition to Γj, she gets strictly positive utility.

Proposition 7 implies that the set of (zero-sum) utility functions under which there

is full revelation in all equilibria in the simultaneous game contains the set under which
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for some order of senders there is full revelation in all SPNE of the sequential game. The

converse is not true. It is possible for there to be full revelation in every equilibrium of the

simultaneous game but, for every order of senders, non-fully revealing SPNE in sequential

game. The following example demonstrates this.

Example 4. There are two senders 1, 2 and three possible states 1, 2, 3. Assume that

π1 < π2 < π3 (this is not necessary, but eases exposition; the assumption rules out

any two states having equal prior probabilities but is otherwise without loss). Suppose

u1((1/2, 1/2, 0)) = u1((1/2, 0, 1/2)) = 1 and u2((1/2, 1/2, 0)) = u2((1/2, 0, 1/2)) = −1.

Also, u2((0, 1/2, 1/2)) = 1 and u1((0, 1/2, 1/2)) = −1. At all other γ ∈ ∆(Ω), u1(γ) =

u2(γ) = 0. Sender 1 has an advantage at single points along edges ∆({1, 2}) and ∆({1, 3})
and sender 2 has a single advantage on edge ∆({2, 3}); on the rest of the simplex, neither

sender has an advantage. Figure B.8 summarizes this. By Theorem 1, the state is fully

revealed in all equilibria of the simultaneous game. However we will show that regardless

of the order senders move in, there is always a non-fully revealing SPNE.

Figure B.8

First suppose sender 1 plays first, then sender 2. Consider the sender 1 playing Γ1

s.t. Pr(Γ1 = δ3) = π3 and Pr(Γ1 = ( π1

π1+π2
, π2

π1+π2
, 0)) = 1− π3 (this distribution satisfies

Bayes-plausibility). Suppose sender 2 plays Γ2 = ΓU whenever sender 1 plays this and

following a deviation plays any sequentially rational Γ2. Note the posterior when following

perscribed play will either be δ3 or ( π1

π1+π2
, π2

π1+π2
, 0). The latter is not equal to (1/2, 1/2, 0)

by our assumption on the prior, and hence both senders get utility 0 at all posteriors.

Sender 1 hence has no incentive to deviate as no experiment can yield strictly positive

utility (sender 2 can always fully reveal the state and is playing sequentially rationally).

Sender 2 has no incentive to deviate as conditional on ω = 3 the receiver learns the state

and conditional on ω ∈ {1, 2} the posterior will lie on ∆({1, 2}), on which sender 2 has

no points of advantage, w.p. 1 (by Claim 2). This is a non-fully revealing equilibrium.

If sender 2 plays first, we can construct an analogous non-fully revealing equilibrium
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with Γ2 s.t. Pr(Γ2 = δ1) = π1 and Pr(Γ2 = (0, π2

π2+π3
, π3

π2+π3
)) = 1 − π1. Sender 1 plays

Γ1 = ΓU on path and any sequentially rational Γ1 otherwise.

In the simultaneous version of Example 4, the state is fully revealed in every equilib-

rium for the following reasons. States 2 and 3 must not be pooled in equilibrium because

if not sender 2, who has an advantage along ∆({2, 3}), could find an experiment yielding a

strictly positive payoff (violating Lemma 1). More precisely, Γ1 cannot pool states {2, 3},
because if not sender 2 can gain a strictly positive payoff. Similarly, Γ2 cannot pool {1, 2}
or {1, 3} or sender 1 take advantage. Each sender is ‘responsible’ for not pooling some

states in equilibrium because their opponent has an advantage.

More generally, when the state must be fully revealed in every equilibrium of a

simultaneous game, for every subset of states Ω′ there is some sender j who could take

advantage of Γ−j pooling Ω′. This is shown by Claim 7 (in the proof of Prosition 2);

sender j must have an advantage somewhere on ∆(Ω). When sender j moves last in the

sequential game, then by the same argument, all upstream senders must (collectively)

not pool Ω′ in any SPNE. For example, when sender 2 moved second in the example,

sender 1 did not pool {2, 3}. However, as the last moving sender may only be able to take

advantage of some subsets of states being pooled, we need not get full revelation. If there

is a sender j who can take advantage of Ω′ being pooled for any Ω′ ∈ 2Ω s.t. |Ω′| > 1,

then when this sender moves last, every SPNE fully reveals the state. As in Example 4,

it is when there is no such sender exists that there are non-fully revealing equilibria for

all orders of senders.

This logic implies the following result: if any set of states is not pooled in every

equilibrium of the simultaneous game, there is an ordering of senders such that those

states are not pooled in every SPNE of the sequential game.

Proposition B.5.1. If for utility functions u1, ..., uM a set of states Ω′ ⊆ Ω is not pooled

in every equilibrium of the simultaneous game, then, for some ordering of senders, Ω′ is

not pooled in every SPNE of the sequential game.

Proof. Suppose Ω′ ⊆ Ω′ is not pooled in every equilibrium of the simultaneous game.

Then by Proposition 2, ui(γ) > 0 for some sender i and some γ ∈ ∆(Ω′). By Claim 7,

there exists a sender j such that for every Γ−j that pools Ω′, there exists a Γj such that

Uj(Γj,Γ−j) > 0. Consider any ordering of senders with j moving last. Then as all senders

must get utility 0, in any SPNE senders upstream from j (collectively) do not pool Ω′ (or

else j’s best response yields strictly positive utility). Hence, by Lemma 3, all SPNE do

not pool Ω′.
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