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Abstract

How do schools affect where families choose to live and does their effect contribute to residential
segregation? I study these questions using unique administrative microdata from Auckland, New
Zealand, an ethnically diverse – but segregated – city. I develop and estimate a dynamic model of
residential choice where forward-looking families choose neighborhoods based on their children’s
schools, local amenities, and moving costs. Previous studies typically estimate school quality val-
uations using a boundary discontinuity design. I leverage attendance zones in this setting to also
generate reduced form estimates using this methodology. The structural model estimates show that
the valuation of school quality varies by the child’s school level and the family’s ethnicity; the re-
duced form approach, however, cannot capture this heterogeneity. Moreover, I find that the reduced
form estimates are aligned only with white families’ valuations of quality. The model estimates also
show that families experience a high disutility from moving houses if it results in their child changing
school. In counterfactuals, I show that residential segregation increases as the link between housing
and schools weakens.
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1 Introduction

Residential segregation is a prevalent issue in cities across the world (Logan and Stults, 2021; Boterman
et al., 2021; Jones et al., 2018). It often reflects barriers to mobility (Bergman et al., 2019), harms to
long-term well-being (Kramer, 2018), and racial disparities (Logan and Parman, 2017). Understanding
what drives residential choice is critical to designing policies that address residential segregation. Schools
are a key factor for families’ choice of neighborhood; the demand for schools plays out through the
housing market as public schools typically base admissions on the student’s home address (OECD,
2019). There is also consistent evidence that households are willing to pay higher housing costs to
access better quality schools (Black and Machin, 2011). Moreover, schools are a particularly important
amenity to study because there is a large scope for policy interventions that change the relationship
between schools and neighborhoods – for example, voucher programs or expanding school choice.

In this paper, I study how schools affect where families choose to live. By understanding this, I can
then evaluate whether schools contribute to residential segregation. To study this link, I develop a dy-
namic model of within-city neighborhood choice that incorporates children’s schooling into the family’s
payoffs. Each period, families decide whether to stay in their current location or move to a new neigh-
borhood. The value of a neighborhood is affected by the quality of its schools and the ethnic composition
of its residents. Families are also forward-looking: they forecast that neighborhood amenities change
over time, that new children may be born, and that their preferences for schools change as their children
enter and exit each school level (elementary, middle, and high school). I also account for costs to mov-
ing, both in terms of changing one’s physical home as well as a cost to changing a child’s school. The
forward-looking behavior and the moving costs give rise to the dynamic forces in the model.

Residential choice is best analyzed through a dynamic framework, as reflected in a burgeoning empirical
literature on estimating dynamic residential choice models (Bayer et al., 2016; Diamond et al., 2017;
Davis et al., 2018; Caetano, 2019; Caetano and Maheshri, 2019; Almagro and Domínguez-Iino, 2021).
However, with the exception of Caetano (2019), these studies have largely ignored the role of children.1

I present descriptive evidence that children affect the family’s moving decisions and that these patterns
are consistent with dynamic behavior. These forces are therefore not being captured in the existing
empirical literature on residential choice.2 A key reason for the omission of children is that the data
required to estimate such a model is often difficult to obtain. Studying residential segregation also
requires data on a heterogeneous sample; in contrast, much of the existing evidence is estimated using

1I use the identification strategy proposed by Caetano (2019) in this paper. Our papers are distinguished in the way we
model children and our resulting estimation strategies. Additionally, I aim to study residential segregation, while his paper
studies the returns to financing public schools.

2There is a theoretical literature on schools and neighborhood choice, such as Epple and Romano (1998), Nechyba (2003) and
Avery and Pathak (2021). Zheng (2021) empirically shows that parental valuation of quality changes as charter schools enter
and uses this to give suggestive evidence of subsequent neighborhood sorting. This past literature motivates the importance
of the children/school channel. The cost to changing schools is, however, an understudied topic.
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data with a disproportionately high share of white households.3

This paper overcomes these challenges by studying Auckland, New Zealand. This city of 1.5 million
is ethnically diverse: its population is 42% white, 31% Asian, and 25% Polynesian. It is also highly
segregated; by some measures, it is as residentially segregated as Los Angeles and New York. Through
the New Zealand statistics agency, I have access to a variety of administrative datasets including national
censuses, education records, and birth records. I use this microdata to create a unique panel dataset of
families that tracks their home locations and children’s schools over a 12 year period. I provide causal
evidence that motivates incorporating schools into a residential choice model: school quality causes
house prices to increase, and a child’s grade has a causal effect on the likelihood of a family moving.
Estimating this model using standard techniques (e.g. Hotz and Miller (1993)) is difficult due to the high
dimensionality of the problem. In my setup, I have over 6 million possible states and 44 actions that
families can choose from. To overcome this, I employ the novel computationally light ECCP estimator
developed by Kalouptsidi et al. (2020).4

With the ECCP estimator, I derive a linear equation that compares moving probabilities to the flow (per
period) utility of living in a given neighborhood. However, there is a key identification challenge: com-
ponents of the observable utility (e.g. school quality) are likely correlated with unobserved neighbor-
hood characteristics (e.g. parks, safety). Parameter estimates by OLS will therefore be biased. I address
this endogeneity problem in two ways. Using the identification strategy of Caetano (2019), I compare
the moving probabilities between families with school-aged children and families without school-aged
children to isolate the flow utility generated by schools. I then use an instrumental variables strategy to
account for the remaining endogenous variables: house prices and ethnic shares. I use a Hausman-style
instrument of non-neighboring prices and a past settlement instrument to generate simulated ethnic
shares.

My analysis generates three findings. First, the valuation of school quality varies by the child’s school
and the family’s ethnicity. I find that non-white (Polynesian and Asian) families have relatively stable
preferences for quality across all school levels, with slightly lower valuations for high school. This is in
contrast to white families, who value high school quality the most. I benchmark these results against
estimates from the standard approach in the reduced form literature: a boundary discontinuity design
(BDD). I find that the BDD estimates most closely mirror those of white families. This is likely explained
by the fact that the reduced form analysis uses house sales, and that most home owners are white. This
raises concerns on the generalizability of current estimates in the literature.

3As an example of some papers and their data: Bayer et al. (2016) in San Francisco, subset to 100% white households (53%
of full dataset); Caetano and Maheshri (2019) using similar data in the Bay Area have a 72% white sample; Caetano (2019)
in Minnesota, 92% white; Almagro and Domínguez-Iino (2021) in Amsterdam, 69% Dutch or Western-origin. Diamond et al.
(2017) and Davis et al. (2018) both use broadly sampled data in Californian cities, but do not observe race or ethnicity.

4Almagro and Domínguez-Iino (2021) also use the ECCP estimator to estimate a similar model (without children) using
Dutch data.
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Second, I find that parents experience a high disutility to interrupting their children’s education, which
I term as school moving costs. This is captured by the child changing the school they attend as a result of
the family moving.5 Moreover, this effect is stronger the younger the child. For families of all ethnicities,
the school moving cost is 1.5 times larger for elementary school than it is for high school. These costs can
also be significant: for a white family to offset the cost of changing a first grader’s school, the new school
would need to have a quality score that is 2 standard deviations higher than the old school. Previous
studies have found large moving costs for households (Bayer et al., 2016; Diamond et al., 2017), but this
points to a specific source of that cost and with important policy implications. These school moving
costs could hamper the effectiveness of school choice or voucher programs if families are unwilling to
interrupt their child’s education – even if it means attending a higher quality school.

Third, I use the model estimates to conduct simplified counterfactuals. For computational reasons,
I simulate the model as a static problem; however, by calibrating the model, the baseline simulation
matches observed segregation patterns in the data. I run two counterfactuals. In the first, I remove
school quality from the family’s utility. This represents equal school utility across neighborhoods. I find
that segregation increases relative to the baseline simulation. In the second counterfactual, I remove all
school-related components from the family’s utility. In particular, families no longer experience a school
moving cost. Here, segregation increases again, by almost double the rate of the first scenario. This
change is driven primarily by an increase in Polynesian-white segregation. I find that in each successive
counterfactual, white families are more likely to move. Moreover, they are more likely to move to areas
with a higher share of other white families. This result is consistent with Caetano and Maheshri (2019),
who find that the presence of moving costs reduces segregation.

The remainder of the paper is organized as follows. Section 2 provides an overview of the New Zealand
setting and a description of the data. Section 3 gives causal and descriptive evidence, including the
boundary discontinuity design. Section 4 outlines the model and the derivation of the main estimat-
ing equation. Section 5 describes the data preparation and estimation process. Section 6 provides a
discussion of the results and presents the counterfactual simulations.

5This is cost is only experienced for school changes within the same level, but not between levels (e.g. changing from
elementary to middle school).
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2 Setting and Data

2.1 New Zealand Educational System

In New Zealand, there are three levels of schooling: primary (grades 1-6), intermediate (grades 7-8), and
high school (grades 9-13). I focus on public schools, which are free to attend for New Zealand citizens
and permanent residents. Approximately 84% of students in Auckland attend public schools.

There are three features that distinguish the New Zealand public educational system. First, it is a de-
centralized system where schools are independent autonomous entities (akin to charter schools in the
United States). Second, it is a system of complete choice: students can apply to any public school re-
gardless of where they live. However, some schools – but not all – have a catchment area (known as
a “school zone”). Any student who lives inside a school’s zone receives guaranteed admission to that
school. Third, the measure of school quality is an index from 1 to 10 called the decile score. Decile scores
are not based on test scores, but rather are a measure of the student body’s socioeconomic status. New
Zealand does not have standardized testing; consequently, decile scores are commonly (mis)interpreted
as a measure of school quality. In Appendix A.1, I provide further details about these features and why
they make New Zealand an ideal setting to study the research questions.

2.2 Residential Segregation in Auckland

Auckland is an ethnically diverse city.6 42% of its 1.5 million residents were born overseas, which is a
higher proportion than in New York City (36.2%) and Los Angeles (36.4%).7 I will focus on ethnicity
as the form of heterogeneity in the population. In my analysis, I designate three distinct ethnic groups:
white, Polynesian, and Asian. In Appendix A.2, I describe how I create these groupings.

2.2.1 Statistics about Ethnic Groups

The ethnic groups exhibit differences in their incomes, family structures, and housing patterns. Using
microdata from the 2018 New Zealand census, I provide summary statistics on Auckland families by
their ethnic group. Table A.4 shows statistics about the parents (i.e. at the individual level) and Table
A.5 shows statistics at the family level. These indicate that, on average, white families are the richest
group while Polynesian families are the poorest. 67% of white families reported a household income
above NZ$100,000 (approximately US$73,000), while only 32% of Polynesian and 42% of Asian families
reported the same. The income measure tends to correlate with other socio-economic indicators, such as
whether the parents are employed or have a university degree. Asian families tend to have lower home

6In this paper, “Auckland” refers to the urban area of the wider Auckland region. Figure A.13 indicates this on a map.
7Foreign-born statistics are author’s calculations from the 2018 New Zealand census (for Auckland) and the 2019 ACS

1-year estimate (for the U.S. cities)
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tenure rates (mean of 6 years in current home versus 9 for the other two groups), in part due to a higher
rates of immigration (18% of Asian parents immigrated in the last 5 years). Families of all ethnicities
have approximately 2 children, on average.

Figure 1: School Quality versus Ethnicity

Note: The figure shows how the ethnic share of students varies with decile score (the measure of school quality) in
Auckland schools for 2010-2019. I calculate the ethnic share for each school-year separately and then average values
within each decile score (discrete values of 1–10). The three ethnicities shown (white, Polynesian, Asian) are distinct
groupings; other ethnicities are not plotted. 95% confidence intervals are plotted with each marker.

Ethnic differences are also reflected in the children’s schools. Figure 1 shows the relationship between
school decile scores and the student body ethnic share. In higher decile schools, there is a higher pro-
portion of white students and a lower proportion of Polynesian students. Similarly, there is a strong
correlation between house prices and ethnic shares (Figure A.15). Areas with a higher white share (and
lower Polynesian share) tend to have higher average house prices. My analysis focuses on ethnicity and
residential segregation, but this implicitly intersects with school and income segregation as well.

2.2.2 Evidence of Residential Segregation

Figure 2 shows the share of each ethnicity in locations across the city per the 2018 census.8 Whites are
concentrated more in the center and outer suburbs of the city. Polynesians predominately reside in South
Auckland with an enclave in West Auckland as well. Asians appear more dispersed than Polynesians
but with locations of high concentration in the northern, south central, and southeastern suburbs.

8As a benchmark, Figure A.14 shows the population distribution in Auckland. Most of the population lives in the central
regions of the city, which are largely suburban (88.6% of housing units in Auckland are detached or semi-detached houses).
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To quantify the extent of residential segregation, I use the dissimilarity index. This is the mostly widely
used measure for segregation. It indicates whether two groups are evenly distributed across the city,
with values closer to one (zero) indicating greater (lower) segregation between the two groups. I calcu-
late the Polynesian-white dissimilarity index as 0.545 and the Asian-white dissimilarity index as 0.388.
These are moderate levels of segregation per the Massey and Denton (1993) classification. In Appendix
A.3, I show other measures of residential segregation (Table A.2) and discuss how Auckland’s segre-
gation measures compare to those found in some U.S. cities. The calculations indicate that Auckland
exhibits clear residential segregation, and that Polynesians tend to be more segregated than Asians.
This is also consistent with the patterns observed in Figure 2.

Figure 2: Ethnic Shares (2018)

(a) Share White

(b) Share Polynesian (c) Share Asian

Note: The maps show the share of each location’s population belonging to the listed ethnic group. Shares are calculated
using 2018 individual-level census microdata. The area units are defined by Statistics New Zealand (Figure A.16b). I
overlay the borders of the locations used in the structural model estimation (Figure A.16c).
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2.3 Data for Model Estimation

To estimate the structural model, I require panel data on families. This dataset should track information
about the family over time, including: the family’s home location, the ages/grades of the children, and
the school that each child attends. I construct this panel using data from Statistics New Zealand (Stats
NZ), which has created a database that links individuals across a variety of administrative records.

To construct the family panel, I rely on four sources of data. First, I use the school records. These are
annual files available from 2008 to 2020 that list the enrolled students for each school in the country.
Second, I use microdata from the quinquennial census, available for 2013 and 2018. The individual-level
responses to the census include details on living arrangements and familial relationships. Third, I use
personal demographics data collected by Stats NZ, which includes ethnicity identifications, birthday
(month and year), and the identity of the birth parents (via the birth records, if available). Finally, I have
a panel of residential locations for each individual in the Stats NZ database. This is constructed by Stats
NZ using home address information across all the datasets they collect.

The key steps to constructing the family panel are: linking children to their parents, identifying where
the family lives each year, and assigning each family an ethnic group. Appendix A.4 provides details.
The family panel covers 2008 to 2019. It contains 302,508 unique families and 3,288,381 family-year
observations, including before the family’s children are born. Table A.6 provides summary statistics
about the panel sample. This shows it is representative of the population of interest (as measured in the
census per Tables A.4 and A.5) . This dataset is larger in scope compared to data used in similar studies
(see Appendix A.4 for a comparison), but this is necessary to address the high dimensionality of the
estimation procedure.

As the panel data relies on a number of sources, I perform a number of validity checks on the data
(Appendix A.5). I validate the sample’s coverage of Auckland families and find that I capture over
75% of children for most years and age groups. I verify that the family’s home location tends to be
close to their children’s schools, and that this is especially true for primary schools. This is the expected
pattern and provides suggestive evidence that the process of linking parents to children and the method
of identifying the family home are both likely to be accurate. Finally, I show that the chosen ethnic
classifications are appropriate and reflect the ethnic shares of the broader population.

I supplement the family panel with additional data about schools and houses. I use publicly available in-
formation about schools (including decile scores) and their school zones from the New Zealand Ministry
of Education. From the Auckland Council, I have data on the universe of house sales in Auckland for
2003-2019. This data includes the exact home address, sale price, and house characteristics for each sale.
Finally, I have data on the near-universe of rental agreements via Stats NZ. This provides information
on the weekly rent amount, property type, number of bedrooms, and the rental start date.9

9Due to the data structure and confidentiality reasons, I cannot link sale/rental transactions to specific families.
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3 Causal and Descriptive Evidence

In this section, I detail key empirical patterns that will motivate the structural model. First, using a
boundary discontinuity design, I show that decile scores have a causal effect on house prices. This ex-
ercise is useful to show that decile scores can be used in the model as the measure of school quality. The
boundary discontinuity design is one of the most widely-used methods in the reduced form literature
for estimating the valuation of school quality. Its estimates can then be used as a benchmark for the
results of the structural estimation. Second, I provide descriptive evidence using intertemporal moving
probabilities to show that a family’s moving decisions appear to be affected by their children’s school-
ing. This exercise will also highlight the dynamic factors at play and justify the incorporation of children
into a dynamic model of residential choice.

3.1 Valuation of Decile Scores

3.1.1 Identification Strategy

I leverage the school zones in this setting to apply a boundary discontinuity design (BDD). The strategy
involves looking at an area close to the boundary of a school zone and comparing houses that are inside
the zone (“in-zone”) to houses that are outside the zone (“out-of-zone”), as illustrated in Figure 3.

The assumption is that these sets of houses should have similar characteristics (both in terms of house
characteristics as well as local neighborhood amenities), except that there is a discontinuous change in
expected school quality across the boundary.10 This means that any observed discontinuous changes in
house prices can be attributed to the change in school quality. We can therefore interpret this as a causal
estimate of the willingness to pay (WTP) for school quality. The equation to estimate is:

ln phbstv = �0 +
X

V 2{Primary,
Intermediate,
High School}

⇣
�V1 SQbstv · {V = v}

⌘
+Xht + �b + �t + "hbstv (1)

where the indices refer to house h, on side s of boundary b, in time t, for school level v. Equation 1 is
regressing the price of a house (phbstv) on a measure of school quality at level v for that boundary-side
(SQbstv), as well as house/neighborhood controls (Xht), a set of boundary fixed effects (�b) and time
fixed effects (�t). The identification assumption is that the boundary fixed effects should capture all
(unobserved) commonalities on both sides of the boundary, which should be all factors except school
quality. The coefficient of interest is �V1 , which captures the willingness to pay for an additional school
quality at school level V 2 {Primary, Intermediate,High School}. Most papers that apply the BDD
method focus on elementary schools (see Black and Machin (2011) for a recent review). As New Zealand

10Here, we can think of “school quality” as a neighborhood amenity available to each house. The method of assigning school
quality to each house is discussed in Appendix B.3.
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Figure 3: Boundary Discontinuity Design Illustration

Note: The figure shows an example of the boundary discontinuity design (BDD). The green line indicates the boundary
of a one school zone. The blue shaded area is the area inside the zone. The BDD involves comparing an area inside the
zone that is close to the boundary (hatched blue) to an adjacent area that is outside of the zone (orange). The dashed
black lines indicate the boundary of other school zones.

has school zones for all school levels, I contribute to this literature by testing whether (reduced form)
estimates of school quality valuation vary by school level. In Appendix B.1, I show a graphical intuition
for the identification strategy. In Appendix B.2, I discuss in detail how boundaries are constructed. In
Appendix B.3, I describe how the school quality measure SQbstv is calculated.

3.1.2 Results

I estimate Equation (1) using a fixed effects regression. I repeat all analysis twice: once using the sales
data (Table 1a) and the other using rental data (Table 1b), with column 2 as the main specification . The
values shown represent the WTP for an additional decile score as a percentage of the house price.

Using the sales data, I find that high school quality increases house prices by 3.81% for each additional
decile score. For primary schools, this value is only 0.87%; I do not find statistically significant results
for intermediate schools. I am also able to conduct this analysis using rental data, whereas most papers
use sales data. This is a useful comparison as the population who buys houses is likely skewed towards
higher income families.11 The results in Table 1b show that the willingness to pay for high school quality

11As Table A.5 shows, a significant portion of families are renters, especially among the Polynesian population.
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is 2.8% for an additional decile score. This is approximately three-quarters the magnitude found using
the sales data. With the rental data, the estimates for primary and intermediate school quality are not
statistically distinguishable from zero, however.

I show additional specifications in Tables 1a and 1b. I include controls for the ethnic shares (column
3), distance to school (column 4), and a running variable to capture unobserved continuous changes
in neighborhood quality (column 5). The results hold across these specifications. I conduct further
robustness checks in Appendix B.4.

Other papers in the literature find that a 1 standard deviation (s.d.) increase in elementary school quality
causes a 3-4% increase in sale prices (Black and Machin, 2011). In Appendix B.4, I argue that 3 decile
scores is analogous to a 1 s.d. in school quality. Therefore, I find that a 1 s.d. increase in elementary
school quality causes a 2.6% increase in sale prices, but a similar change in high school quality causes an
11.4% increase. This suggests that while the valuation of school quality may be slightly lower in New
Zealand as compared to other countries, other papers may be severely underestimating families’ full
school valuation by only focusing on elementary schools.12

Even though a reduced form analysis is possible in this setting, there are two reasons why it is still useful
to estimate the willingness to pay for school quality through a structural model.

First, the reduced form estimates are estimated using sales/rental data, without microdata about the
families generating these transactions. This is typically the data constraint other researchers face when
conducting a BDD analysis. Without microdata, heterogeneity analysis is limited or nonexistent. As
we cannot identify which families bought which house, we would not be able to say whether there is
variation in quality valuation across, say, ethnic or racial lines. Moreover, families also vary in their
composition. This means that the willingness to pay values do not take into account the number of
children or their ages. However, these factors influence the “amount” of school quality each family
enjoys.13 The policy-relevant statistic is in fact the willingness to pay for school quality per child per year

(Caetano, 2019). In contrast, the BDD estimates the willingness to pay for the whole family over their
expected tenure in the house.

Second, the reduced form approach can give us estimates for the valuation of school quality, however
these alone are not enough to understand how schools affect residential choice. We would need to ac-
count for other factors in the family’s decision-making process. Then we would also need to understand
how the re-sorting of families can have an effect on aggregate market variables (i.e. prices) and the sub-
sequent equilibrium effects. This is beyond the scope of a reduced form framework, but is achievable
with a structural model of the market.

12The lower WTP estimates here can be explained by the greater degree of school choice in New Zealand. Zheng (2021)
embeds an event study into the BDD and finds that the valuation of school quality decreases after charter schools enter.

13For example, if every family had two children, then the true willingness to pay for school quality would in fact by half the
estimated amount. Similarly, the age of the children determines the horizon over which this school quality will be enjoyed.
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Table 1: Boundary Discontinuity Regression Estimates
(a) Sales

(1) (2) (3) (4) (5)

School Quality

High School 0.0709⇤⇤⇤ 0.0381⇤⇤⇤ 0.0334⇤⇤⇤ 0.0350⇤⇤⇤ 0.0407⇤⇤⇤
(0.0199) (0.0122) (0.0109) (0.0115) (0.0129)

Intermediate 0.0187 0.0003 �0.0029 �0.0024 �0.0046
(0.0279) (0.0141) (0.0136) (0.0137) (0.0140)

Primary 0.0166⇤ 0.0087⇤⇤⇤ 0.0065⇤⇤ 0.0067⇤⇤ 0.0077⇤⇤
(0.0097) (0.0029) (0.0032) (0.0032) (0.0029)

Other Controls

House Characteristics No Yes Yes Yes Yes
Ethnic Shares No No Yes Yes Yes
Distance to School No No No Yes Yes
Running Variable No No No No Yes

N 128,646 128,646 128,646 128,646 128,646
R2 0.554 0.813 0.816 0.816 0.816
Clusters 39 39 39 39 39

(b) Rents

(1) (2) (3) (4) (5)

School Quality

High School 0.0323⇤⇤ 0.0283⇤⇤⇤ 0.0270⇤⇤⇤ 0.0281⇤⇤⇤ 0.0259⇤⇤
(0.0120) (0.0097) (0.0093) (0.0095) (0.0097)

Intermediate 0.0171 0.0103 0.0086 0.0086 0.0076
(0.0106) (0.0073) (0.0071) (0.0068) (0.0069)

Primary 0.0044 0.0032 0.0002 0.0002 �0.0012
(0.0046) (0.0045) (0.0037) (0.0038) (0.0045)

Other Controls

House Characteristics No Yes Yes Yes Yes
Ethnic Shares No No Yes Yes Yes
Distance to School No No No Yes Yes
Running Variable No No No No Yes

N 313,404 313,404 313,404 313,404 313,404
R2 0.331 0.545 0.551 0.551 0.551
Clusters 39 39 39 39 39

Note: The table shows the estimate of (a) log house sale price and (b) log annual rent on school quality (decile score), bound-
ary and year fixed effects, and the listed coefficients. School quality (decile score) is interacted with an indicator for each
school level. In panel (a), house characteristics include the area and age of the house. In panel (b), they are the number of
bedrooms and rental type (apartment or house). Ethnic shares are calculated at the family level at each Level 2 area (Figure
A.16b). Running variable is distance to boundary d 2 [�500, 500], where the side with the higher (lower) average decile
score has positive (negative) values. Clusters are set as the Level 3 area units (Figure A.16c). Significance stars thresholds:
⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01. In accordance with Stats NZ confidentiality rules, the number of observations has been
randomly rounded to a multiple of 3 (RR3).
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3.2 Moving Decisions

The BDD analysis in section 3.1 has shown that parents value school quality (as measured by decile
scores). However, it also highlighted the need for a structural model to fully understand the relationship
between schools and neighborhood choice. This section will show to what extent schools are affecting
the moving probability of families. These descriptive statistics will provide motivation for the dynamic
structural model in section 4.

I use the constructed family panel to estimate the probability of moving at different stages for the family.
I observe that families are less likely to move as they grow older. Figure B.13 shows that families have an
almost 35% probability of moving when the mother is under 25 years old but a less than 10% probability
of moving when the mother is over 45. My focus then turns to establishing whether moving patterns
change differentially over time relative to the child’s age and grade.

Figure 4 shows how the family’s probability of moving varies by the child’s grade (where a negative
grade indicates the years before the child starts school). For ease of interpretation, I only focus on
families with one child and control for mother’s age to account for the downward trend observed in
Figure B.13.14 The figure shows that there are local peaks in moving probabilities when the child is born
(grades –5 or –4), and when they start primary school (grade 1) or high school (grade 9).15

While these are not causal results, this is a stark finding as moving probabilities tend to change smoothly
over time – for example as shown in Figure B.13 (relative to mother’s age) and Figure C.7 (relative to
housing tenure). However, the birth of children and the changes in school levels generates discontinu-
ities in the needs of families. This is reflected by the sudden spikes in the intertemporal moving profile
at those specific points in time. This suggests that children and schools are indeed playing a role in the
family’s moving decisions.

The empirical patterns also suggest that families exhibit dynamic behavior in terms of how children
affect their moving decisions. If families were myopic, we would expect to see much larger spikes at
the start of each school level (e.g. in such a world, families would not anticipate that their child would
enter primary school and so would have to re-adjust suddenly once the child begins school). In fact, the
reduced form estimates suggest that families value high school more than primary school. Yet parents
are more likely to move when their child enters primary school than when they enter high school. This
can be rationalized if moving costs are high and families are forward-looking about future benefits when
considering where to live (Bayer et al., 2016).

14For every family-year observation in the panel, I regress a moving indicator on dummies for the grade of the child and
dummies for the age of the mother. The probabilities plotted in the figure are the coefficient estimates on dummies for each
child’s grade added to the coefficient for an age 35 mother. I choose 35 as a baseline since this is the average age of mothers at
the time of their child’s birth.

15Children in New Zealand are either age 5 or 6 in the first grade. Therefore, the grade values –5 and –4 can both represent
the period in which the children is born. The majority of children are age 6 in first grade (i.e. are born in grade –5).
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Figure 4: Moving Probabilities – Child’s Grade

Note: The figure shows the moving probability given the grade of the child. I regress a moving indicator on dummies
for each grade of the child and dummies for each age of the mother. Each point is equal to the grade-specific coefficient
plus the coefficient for age 35 mother. 95% confidence intervals are plotted. Depending on the age they start school, the
child’s birth is represented at either grade �5 or �4. Shaded regions indicate the ranges for each school level: primary
(grades 1-6), intermediate (grades 7-8), and high school (grades 9-13).

In Appendix B.5, I show further analysis of the intertemporal moving profile. I show that the moving
profile varies by the birth order of the child (Figure B.14). For example, families are far less likely to
move at the time of youngest child’s birth as compared to the time of the eldest child’s birth. This
implies that a structural model needs to take into account different family sizes and the children’s birth
order when considering the family’s moving choice. I also validate that schools (and not other factors)
are driving the effects seen in Figure 4. I leverage cut-offs in school entry rules to identify plausibly
exogenous variation in the child’s grade. I compare children who were born in the same calendar year
but are assigned to different grades (Figure B.16). This shows that after a child enters school, it is their
grade (rather their age) that is affecting the the family’s moving decisions.

Finally, it is important to note that across all these figures, we see that most of the family’s moves occur
before the child even begins school (and oftentimes even before their birth). This highlights the data
challenge of studying this topic as it requires tracking the family’s home location over a long period
of time. For example, using home addresses from a child’s education records would be insufficient for
studying residential sorting. This data would not capture the family’s location in the years prior to the
child entering school. This is a challenge that I overcome by using the New Zealand administrative data.
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4 Model of Residential Choice

In this section, I develop a residential choice model using a dynamic discrete choice framework. This
model studies the within-city neighborhood choice of households, similar to Almagro and Domínguez-
Iino (2021). The main contribution to the literature is that the model incorporates children into the
agent’s problem.16 Following Kalouptsidi et al. (2020), I then show how the model implies a linear
equation from which the key parameters can be estimated.

4.1 Setup

In the model, each agent i is a family. This represents a household consisting of adults who currently
have (or will have) one or more children.17 Each family is of type  2  (this will represent ethnic
groups in the estimation). Time is discrete and indexed by t 2 {1, ..., T}. This corresponds to one
calendar year.18 In the city, there are L locations, indexed by l 2 L = {1, ..., L}. An additional location
l = 0 will represent the outside option, which represents all areas outside of the city. The full set of home
locations is therefore L [ {0}.

Each family i has Ci 2 N+ children. A child c 2 Ci is born in period T b
ic and therefore is of age aitc = t�T b

ic

at time t. In Appendix C.1.1, I outline the process in which children are born and families enter into the
economy. The key element is that while I make the number of children (Ci) known and exogenous, I
introduce randomness in the timing of each child’s birth. Families anticipate the birth of their children
by a fixed number of periods (denoted as b). Let Cit be the number of children in family i as of time t.

4.2 The Household’s Problem

4.2.1 Decisions

Each period, the family decides whether to stay in their current home or move to a new neighborhood.
Call the location decision as dit 2 D = L [ {0, stay}, where dit = stay corresponds to staying in their
current home and dit = 0 corresponds to leaving the city (outside option). Note that for a family living
in location l, a choice of dit = l means moving to a different house in the same area. This is a different
choice to dit = stay, which means not moving.

16Caetano (2019) is most similar to this paper in its incorporation of children. However, the key difference between our
papers is that I model each family individually and fully incorporate multiple children into the family payoff. In contrast,
he categorizes families based on the age of their eldest child and accounts for other children based only on observed group
averages. Our differences in data further change our modeling approaches. I have panel data on all families, allowing me to
specify how the family composition transitions. His data is cross-sectional and so he makes a synthetic cohort assumption for
estimating the transitions, which also circumvents him having to model the transitions explicitly.

17The number of adults is irrelevant in the model. I abstract away from changes in parents due to events such as marriages,
divorces, separations, and deaths. I also do not focus on families who will never have children over their lifetime.

18Fortunately, as New Zealand is in the Southern Hemisphere, the academic year aligns with the calendar year.
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4.2.2 Maximization Problem

The family’s problem is to choose {dit}
T 1
i

t=T 0
i

to maximize their expected discounted sum of payoffs:

E

2

4
T 1
iX

t=T 0
i

�t�T 0
i ⇧ (dit, sit)

������
IiT 0

i

3

5 (2)

where T 0
i and T 1

i (defined in section C.1.1) represent b periods before the eldest child’s birth to the
adulthood of the youngest child. � is the discount rate and IiT 0

i

is the family’s information set at T 0
i . ⇧

is the payoff in each period. This depends on the decision dit and the state variables sit = (kit, wt, ⌘t, "it).
Following Kalouptsidi et al. (2020), the state variables are grouped as follows:

• kit are observable individual-level variables, which includes: the family’s type ( i); current home
location (hi,t�1); the location tenure (⌧i,t�1), defined as number of years lived in current home; the
current number of children (Ci,t�1); as well as the current age (ai,t�1,c), grade (gi,t�1,c), and school
(mi,t�1,c) for each child c 2 Ci,t�1.19

• wt are observable neighborhood characteristics, which includes: school-related variables (e.g. school
quality); house prices (rt) in each area; and the share of each type  in the city’s locations (TS t ).

• ⌘t are unobservable neighborhood characteristics of each location.

• "it = ("it0, "it1, ..., "itL, "it,stay) are unobservable idiosyncratic action-specific shocks.

Note that kit is a vector of t� 1 variables, such as home location (hi,t�1). These t� 1 variables represent
the family’s current living situation at the start of period t and are simply expressed as kit for notational
convenience. In Appendix C.1.2, I specify the intraperiod timing and what families know when making
their decision.

4.3 Per Period Utility

The per period payoff function ⇧ for a decision dit = j 2 D, given the state variables sit, is defined as:

⇧(j, sit) = u(j, kit,!t) + "itj

= ū(j, kit, wt) + ⇠(j, ⌘it; kit, wt) + "itj (3)

u(j, kit,!t) is the payoff before the idiosyncratic shock is realized. This can be further separated into ū,
utility that is a function of the observable state variables (kit, wit), and ⇠, utility that is a function of the

19Children of the same age can be in different grades (Appendix B.5), which requires specifying them as separate variables.
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unobservable market-level state variables (⌘t).20 Equation (3) assumes that the payoffs are additively
separable in both the unobservable neighborhood payoffs ⇠ and the idiosyncratic error "itj .

Next, I will outline the components of the observable utility ū, whose parameters will be estimated in
section 5. For brevity, I will provide descriptions of each component and leave the full mathematical
expressions to Appendix C.1.3. I provide a summary of the observable utility components in Table C.1.

4.3.1 School Variables

A family’s location decision affects what school their child attends and therefore their payoff from the
school variables. I will outline how children are assigned to schools in section 4.4. In this part, I consider
the payoff associated with schools conditional on the child’s grade (git), school (mit), and family home
location (hit). For ease of exposition, I omit the c subscript and momentarily assume the family only has
one child. For families with multiple children, I sum the payoffs associated with each child. There are
four parts to the school payoff: school quality, a school moving cost, distance to school, and an outside
option value.

The school quality component is denoted by SQ(ki,t+1, wt). This represents the quality of the child’s
school. The valuation for quality is determined by a coefficient ✓V , which varies by the child’s school
level V 2 {Primary, Intermediate,High School} and the family’s type  2  .

The school moving cost is denoted by SMC (ki,t+1,mi,t�1). This represents the cost of changing a child’s
school within a given level. This captures, for example, the inconvenience of changing schools or the
psychological cost of the child losing connections to their friends and teachers. I set this cost as �V ,
which (like the quality valuation) varies by school level V and family type  . This cost is experienced
when the child’s school differs from their previous year’s school (mit 6= mi,t�1). Importantly, there is no
school moving cost when a child begins a new school level (as they always have to change schools when
this happens). This occurs at git = 1, 7, and 9, which are the starting grades for primary, intermediate,
and high school, respectively.21

Finally, the distance to school and outside options components also have payoffs that differ by school
level and family type. Distance is denoted by DS(ki,t+1), and it represents the distance from the family’s
home location to the child’s assigned school. The outside option is OOS(ki,t+1), which reflects that
parents may send their children to private schools within the city as well as schools outside of the city.
Further details of its parameterization are left to Appendix C.1.3.

20I separate out the inputs of ⇠ to make it clear that it should be interpreted as the utility from unobservable neighborhood
characteristics. ⇠ is capturing anything that is not explained by ū. ⇠ is written as a function of the observable states (kit, wt)
as they may play a role in determining the utility from ⌘t. For example, if the action chosen is j = stay, then knowing the
previous home location hi,t�1 (part of kit) is necessary to knowing the family’s location in the next period (and therefore the
unobserved market-level utility they experience in that location).

21I parameterize the transition to a new school level as costless because there are no opportunity costs to be captured. The
school moving cost arising from changing school levels will be incurred regardless of the family’s action.
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Per the notation in section 4.2, the grade (git), school (mit), and home (hit) are part of ki,t+1. This is
unknown at the time families choose their action dit = j. Therefore, the school payoff component is
expressed as an expectation over ki,t+1:

Ek

h
SQ(ki,t+1, wt) +DS(ki,t+1) + SMC(ki,t+1,mi,t�1) +OOS(ki,t+1)

���j, kit, wt

i
(4)

In section 4.4, I will provide the relevant probability distributions to show how this expectation is eval-
uated. Finally, note that if a child is not in school, then the school payoffs are all equal to zero.

4.3.2 Neighborhood Variables

Let r(l) be the average house price in location l and TS'(l) be the share of location l’s families that are
of type ' 2  . The neighborhood component of utility is given by:

Ek


↵r
 ln r (hit) +

X

'2 
↵' TS

' (hit)

����j, kit, wt

�
(5)

where ↵r
 captures the price sensitivity of group  and ↵' captures the preferences of type  to the share

of type ' living in their neighborhood. Under this specification, all types experience the same house
prices in a given location. This implicitly assumes away potential frictions that some groups may face
in the housing market (e.g. differential bargaining power or discrimination) as well as within-location
sorting (wherein some types sort into lower value housing even within a neighborhood).

4.3.3 Moving and Location Variables

The final set of payoffs relate to moving and the family’s home location:

Ek

h
� (hit) + ↵⌧ ⌧it

���j, kit
i
+MC (j, kit) (6)

First, there is a location fixed effect, which is � (l) for location l. This captures time-invariant character-
istics of locations over the sample period. Second, there is a tenure variable ⌧it, which is the number of
years the family has been in their home. Finally, there is a moving cost denoted by MC (j, kit), which I
parameterize as a fixed cost plus a per kilometer distance cost. Moves between the city and the outside
option are equal to a different fixed cost. Families who stay in their current home do not pay a moving
cost. I allow preferences for all these components to vary by family type.

These modeling choices are supported by the data. Figure C.7 shows that the probability of moving
is decreasing relative to the tenure length. Tenure could act as a proxy for connections to the current
house and the local area (e.g. knowing your neighbors). Figure C.8 shows the distribution of moving
distances: within-city moves are relatively close with the median distance being 3.8 kilometers. This
supports parameterizing moving costs as a function of distance.
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Putting everything together (expressions 4, 5, 6), the observable payoff for an action dit = j is:

ū(j, kit, wt) = Ek


SQ(ki,t+1, wt) +DS(ki,t+1) + SMC(ki,t+1,mi,t�1) +OOS(ki,t+1)

+ ↵r
 ln r (hit) +

X

'2 
↵' TS

' (hit)

+ � (hit) + ↵⌧ ⌧it
���j, kit, wt

�
+MC (j, kit) (7)

4.4 State Transition

4.4.1 Individual State Transition

Equation (7) shows that the observable utility is a conditional expectation over how kit transitions to
ki,t+1. In this section, I will outline this transition process. While some variables transition deterministi-
cally (making the expectation trivial), the child-related variables follow a stochastic process. I first make
the following assumption about the individual state transition:

Assumption 1: The transition of the observable individual state variable kit, denoted by F k
, depends

only on the agent’s action and the observable states:

F k (ki,t+1| dit, kit, wt)

Next, the home location updates according to where the family chooses to move, or remains the same if
they do not move:

hit =

8
<

:
hi,t�1 if dit = stay

dit if dit 2 L [ {0}

Tenure accumulates as long as the family stays in the same home (up to some maximum value, ⌧̄ ). If the
family moves to a new home (even in the same location), the tenure counter resets to zero.22

⌧it =

8
<

:
min {⌧i,t�1 + 1, ⌧̄} if dit = stay

0 otherwise

22An argument could be made that tenure should continue to accumulate if households stay in the same location (dit =
hi,t�1). This depends on how large the locations are defined and whether the neighborhood connections that ⌧ captures are
highly local to the house or represent a broad area. If tenure captured these broader neighborhood connections, we should see
that higher tenure implies closer moves. Figure C.9 shows a negative relationship between moving distance and tenure only
for Polynesians (that eventually plateaus), while a weaker correlation for the other two groups.
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The age of each child c grows by one each year:

aitc = ai,t�1,c + 1, 8c 2 {1, ..., Cit}

The child’s school (mitc) is determined by a stochastic school assignment process. For this, I define a
set of locations R (j) ⇢ L that are nearby to home location j. I call this the region of j, with j 2 R (j).
If a child enters a new school level, i.e. git 2 {1, 7, 9}, they change schools with probability 1. If they
are in the same school level as before and their family continues to live close to their previous location,
i.e. hit 2 R (hi,t�1), then the child changes school with probability ⇢. However, if the family moves
to a location that is far from their original home, i.e. hit /2 R (hi,t�1), then their child changes school
with probability 1. I refer to the parameter ⇢ as the re-assignment probability. When a child changes
school, they receive a draw from the probability distribution MNew

t (hit, gitc). This randomly assigns a
child to a school based on the family’s home location, the child’s grade, and the time t. This process is
summarized in Figure 5.

Figure 5: School Assignment Process

Current action and state
(dit, kit)

Same school level
gitc 62 {1, 7, 9}

Same region

hit 2 R(hi,t�1)

Same school

Prob. 1� ⇢

New region

hit 62 R(hi,t�1)

New school draw
⇠ MNew

t (hit, gitc)

Prob. 1

New school level
gitc 2 {1, 7, 9}

Prob. ⇢

Prob. 1

In Appendix C.1.4, I give further details on the school assignment process and show that it is supported
by patterns in the data. I also outline the transition process for the other child-related variables, namely
the number of children (Cit) and the grade of the child (gitc).

4.4.2 Full State Transition

Next, I describe the transition process for the remainder of the state variable sit = (kit, wt, ⌘t, "it):
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Assumption 2: The transition of the market-level states !t = (wt, ⌘t) is given by: F! (!t+1|!t).

Assumption 3: The "it shocks are i.i.d. and follow a Type 1 extreme value distribution.

Assumption 2 implies that individual agents are small relative to the market. Therefore, no individual
agent’s action affects the market-level variables. This is appropriate here as an agent is one family,
while the market is an entire city. Assumption 3 is standard in the industrial organization literature.
Assumptions 1, 2, and 3 imply that the state variable sit follows a first order Markov process with a
transition probability given by:

F (si,t+1| dit, sit) = F k (ki,t+1| dit, kit, wt)F
! (!t+1|!t)F

" ("i,t+1) (8)

4.5 Deriving the Estimation Equation

In this section, I apply the Euler Equations in Conditional Choice Probability (ECCP) estimator proposed
by Kalouptsidi et al. (2020). In Appendix C.3, I provide an intuition of the ECCP estimator through a
simplified example. In Appendix C.4, I show the full derivation of the main equation.

Applying ECCP relies on two features of the model. The first feature is that agents (families) are small
compared to the market (the city), i.e. Assumption 2. This allows me to use observed values of market
variables, rather than their expected value. This means I do not need to estimate the transition process
of the market variables, nor do I need to specify how agents believe the market variables will evolve.
The second feature is that there is finite dependence in the agent-specific variables (Arcidiacono and
Miller, 2011). By applying this property, I can compare the payoff from two action sequences such that
continuation values get cancelled out. This circumvents having to calculate the full value functions, and
thus dramatically simplifies the computations.

4.5.1 Renewal Actions

Let K = {k1, ..., kK} represent the set of possible values for kit. For a given state (kit,!t), we want to
consider two distinct actions d and d0 taken in period t, followed by an action d00 in period t+ 1. For the
remainder of the derivations, I hold the individual state variable fixed at kit = k⇤.

Let Fk
jt be the K ⇥ K transition matrix of kit given an action j and market state wt. Let F k

jt(k
⇤) be a

1 ⇥K vector equal to the row in Fk
jt corresponding to kit = k⇤.23 The action d00 is chosen such that the

following condition holds:
F k
dt(k

⇤)Fk
d00,t+1 = F k

d0t(k
⇤)Fk

d00,t+1 (9)

In other words, choosing dit = d followed by di,t+1 = d00 must result in the same distribution of states
23The (a, b) entry of Fk

jt is equal to the probability F k
�
ki,t+1 = kb

�� dit = j, kit = ka, wt

�
. F k

jt(k
a) is the ath row of Fk

jt.
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(in period t + 2) if the family had instead chosen dit = d0 in period t. This is a case of one-period finite
dependence (Arcidiacono and Miller, 2011). Note that d00 is chosen depending on k⇤, d, and d0. I will
refer to d00 as a renewal action.

To ensure Equation (9) holds, a renewal action d00 must result in: (i) the tenure capital ⌧ being reset
to zero, and (ii) the children’s school assignment being re-drawn from the school distribution MNew

t .
Therefore, a renewal action must be a move to a new region. Specifically, let hit be the family’s location
after action d and h0it be their location after action d0. The condition for d00 to be a renewal action is then:

d00 2 D\
�
{stay} [R (hit) [R

�
h0it
��

(10)

4.5.2 Equations

I define pjt(k⇤) as the conditional choice probability (CCP) of an action dit = j given the state kit = k⇤.

pjt(k
⇤) := Pr (dit = j| kit = k⇤,!t)

Let pjt be the K ⇥ 1 vector of CCPs: pjt = [pjt(k1), ..., pjt(kK)]0. Taking the transition of !t as given, and
starting at kit = k⇤, the log likelihood of choosing the action sequence (dit, di,t+1) = (j, d00) is:

Pr
⇣
(dit, di,t+1) = (j, d00)

���kit = k⇤,!t

⌘
= ln pjt(k

⇤) + �F k
jt(k

⇤) lnpd00,t+1 (11)

The second term of expression (11) represents the likelihood of choosing di,t+1 = d00, while taking into
account that choosing dit = j affects the state transition of ki,t+1 (starting from kit = k⇤).

We can then evaluate expression (11) for the two action sequences: (dit, di,t+1) = (d, d00) and (d0, d00).
Taking the difference between these evaluations defines their relative likelihood:

Yd,d0,d00,t(k
⇤) := ln

✓
pdt(k⇤)

pd0t(k⇤)

◆
+ �

⇣
F k
dt(k

⇤)� F k
d0t(k

⇤)
⌘
lnpd00,t+1 (12)

Yd,d0,d00,t(k⇤) is the relative likelihood of observing (d, d00) as compared to observing (d0, d00), starting at
kit = k⇤ in time t. The model implies that Yd,d0,d00,t is explained by the difference in the payoffs between
the action sequences (d, d00) and (d0, d00). There are two components to this difference.

In period t, there is the difference in the flow utility (exclusive of "it) of actions d and d0. This is repre-
sented by u (d, k⇤,!t)�u (d0, k⇤,!t). To simplify notation, I will re-write the previously defined functions
with a j and t subscript to represent an input of dit = j and !t, respectively. For brevity, I will then omit
the function’s inputs (including kit = k⇤, as that is being held fixed). This means the flow utility differ-
ence is given by udt � ud0t. By Equation (3), this can be decomposed into: (ūdt � ūd0t) + (⇠dt � ⇠d0t).
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In period t+1, given that d00 is a renewal action, the realized continuation values are the same regardless
of the past actions. Consequently, after families pay a cost to move to location d00, there is no difference
in expected payoffs between the two action sequences (given the transition of !t). The costs entail
the school moving costs (SMC) and the location moving costs (MC).24 I denote this difference by:
�
SMCd,d00,t � SMCd,d00,t +MCd,d00 �MCd0,d00

�
.25 However, note that these costs are experienced one

period in the future. This means they should be discounted by �. More importantly, it also means that
the payoffs depend on how agents forecast the transition process of !t. The ECCP estimator involves
decomposing the expected continuation valuation into the realized component and an expectational
error component. This step is made possible by Assumption 2.

This intuition implies the following relationship:

Yd,d0,d00,t = (ūdt � ūd0t) + �
�
SMCd,d00,t � SMCd,d00,t +MCd,d00 �MCd0,d00

�
+ ✏dd0t (13)

The error term (✏dd0t) has two parts. The first is the difference in unobserved neighborhood utility after
taking each action (⇠dt � ⇠d0t). The second is the difference in expectational error of the continuation
value after action d as compared to after d0.

Equation (13) can be re-written using the parameterization of ūdt in Equation (7). This gives the main
estimation equation:

Yd,d0,d00,t =(SQdt � SQd0t) + (DSd �DSd0) + (SMCdt � SMCd0t)

+ ↵r
 (ln rdt � ln rd0t) +

X

'2 
↵' 
�
TS'dt � TS'd0t

�

+
�
� d � � d0

�
+ ↵⌧ (⌧d � ⌧d0) + (MCd �MCd0)

+ �
�
SMCd,d00,t � SMCd,d00,t +MCd,d00 �MCd0,d00

�
+ ✏dd0t (14)

We can take Equation (14) to the data as the left hand side is a function of empirical probabilities. The
right hand side is a function of data values, state transition probabilities, and the model parameters
(which are to be estimated). Implicitly, this equation depends on the choice of the individual state
variable kit = k⇤ and the time t (which captures the variation in market variables !t). The set of renewal
actions d00 is determined by k⇤, d, and d0. Therefore, the data used to estimate Equation (14) should be at
the (k⇤, t, d, d0, d00) unit level.

24For (d, d00), a family has to move from hit to d00. For (d0, d00), the family has to move from h0
it to d00. This generates the

difference in MC. The SMC difference depends on the likelihood that the child changes school after moving to d00. For the
most part, SMC will be identical regardless of the dt action (d or d0), which means it gets differenced out completely.

25Concretely, SMCj,d00,t +MCj,d00 = Ek [SMC(ki,t+2,mit) +MC (d00, ki,t+1)| di,t+1 = d00, dit = j, kit = k⇤] for j = d, d0.
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5 Estimation

In this section, I outline the estimation of the structural model parameters. I first outline how the data
is mapped to the model. This involves estimating conditional choice probabilities, estimating state tran-
sitions, and calculating the payoff components for state-action tuples. Then, I focus on estimating the
parameters of Equation (14).

The key empirical challenge for the estimation is accounting for endogeneity. It is likely that components
of the observable utility ūdt are correlated with components of the unobservable utility ⇠dt. For example,
areas with higher school quality are also likely to have other desirable neighborhood characteristics. As
⇠dt is part of the error term in Equation (14), this means an OLS regression will provide biased estimates
of the parameters.

To account for this, I estimate the parameters in a three-step procedure. First, to estimate the parameters
on the school variables, I difference out the unobserved neighborhood characteristics by comparing
families with school-aged children to otherwise similar families without school-aged children. Second, I
use an instrumental variable regression to identify the parameters for price and ethnic shares. I use a
Hausman-style instrument of non-neighboring prices and a shift-share instrument that simulates ethnic
shares based on past settlement. Finally, I estimate the remaining parameters with OLS as there is limited
scope for endogeneity once the neighborhood variables are accounted for.

5.1 Setting the State Space

I provide an overview of how I define the state space of (kit,!t), with further details outlined in Ap-
pendix D.1. Each period t is one year. The data covers 12 periods, from 2008 to 2019 (inclusive). Calen-
dar years represent the market-level state !t. For the individual-level state, the family types are set as
ethnicities:  = {White, Polynesian, Asian}. I set the maximum tenure value as ⌧̄ = 5. To keep the state
space manageable, I restrict to families with at most 2 children. I also restrict the decision window to be
from 3 years prior to the eldest child’s birth up to when the youngest child reaches 25. These choices
mean that I observe 674 possible child-age-grade combinations.

For the locations, I discretize the city area as shown in Figure A.16. I set the locations as the Level 3 areas
(Figure A.16c). The mean number of families per location is around 5,800 over the sample period. There
are |L| = 42 locations in the city. This means there are |D| = 2 + |L| = 44 possible actions (each location
plus the stay and outside option actions).

With this setup, the possible number of states is equal to: 12 (the number of years) ⇥ 3 (the number of
types) ⇥ 43 (the number of home locations) ⇥ 674 (the number of child-age-grade combinations) ⇥ 6
(the number of tenure values) = 6,260,112.
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One component of the state variables that I did not include is the child’s school. With over 300 schools
in the city, this would greatly increase the already large state space and make the estimation infeasible.
However, given that schools are assigned in an exogenous manner (Equation C.7 in Appendix C.1.4),
I interpret the variables as weighted sums, with the school attendance probabilities as the weights. In
Appendix D.4, I discuss what this means for the values of the school-related variables.

5.2 Estimating Probabilities

I estimate the conditional choice probabilities (CCPs) pdt, which are used for constructing the relative
likelihood Yd,d0,d00,t (Equation 12). However, the state space dimension and the relatively large number
of actions mean that many state-action combinations have few or no observations.

I apply the semi-parametric estimation method of Raval et al. (2017) to reduce the dimensionality of the
problem. This defines an algorithm wherein states with similar characteristics are iteratively grouped
together. Within this group, CCPs are estimated using standard techniques. For example, one grouping
could be families who are similar on all dimensions, except their tenure capital can be either ⌧ = 3 or 4.
I discuss the grouping process further in Appendix D.2.1.

I use the grouping algorithm within a two-step CCP estimation procedure. In the first step, I estimate
the conditional probability of choosing between the actions {stay, move, outside}, where move indicates
all choices d 2 L. Reducing the number of actions generates more precise frequency estimates. In
the second step, I subset to families who chose move in the first step and use a spatial kernel density
estimator to calculate choice probabilities. I combine the probabilities from the two steps to derive CCPs
for each d 2 D. Appendix D.2.2 provides further details on this procedure.

I estimate individual state transition function F k
dt using empirical frequencies. This is used for calculat-

ing Yd,d0,d00,t (Equation 12) and evaluating the expectations in ūdt (Equation 7). Appendix D.3 provides
further details.

5.3 Components of the Estimating Equation

Equation (14) is at the state-action tuple level (k⇤, t, d, d0, d00). The data used in the regression must also
be at this level. In fact, the model implies that this equation holds for any state (k⇤, t), any dt pair (d, d0),
and any (appropriately chosen) renewal action d00. However, an estimation that covers all possible state
and action combinations is not possible due to practical and computational limitations. To simplify
this, for each state (k⇤, t), I construct up to 85 possible action tuples (d, d0, d00) and aggregate the data
according to these choices. This is described in Appendix D.4.

Appendix D.4 also describes the data analogs for each of the components in Equation (14), e.g. school
quality and distance measures. Calculating the payoffs requires making two assumptions:
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Assumption 4: The discount factor is assumed to be � = 0.9.

Assumption 5: The payoff to the outside option, exclusive of moving costs, is normalized to zero.

ū(0, kit, wt)�MC(0, kit) = 0, 8kit, 8t

Assumption 4 is standard in the estimation of dynamic models as the discount rate cannot typically be
identified.26 Assumption 5 is also standard, as only differences in utility can be identified.

Next, I outline the estimation of Equation (14). The estimation is done separately by ethnic group, as the
model parameterization allows all the coefficients to vary by type  .

5.4 School Related Variables

To deal with the endogeneity of school quality, I use the fact that the school components only enter
the utility function for families with children who attend school. This suggests a natural strategy: I
can compare two similar families who both have children, where one family’s children are of school-age
while the other family’s children are not. In doing so, I can difference out all common factors – including
unobserved neighborhood qualities – leaving only the school variables in the regression equation. A
similar identification strategy was first used by Caetano (2019).

Consider Equation (14) for two families who have the same state variables other than the age/grade of
their children. This means that they live in the same location, have the same tenure counter, and (as
they are of the same type) have the same coefficient values. For a family without school-aged children,
however, the school variables are all zero (Equation D.2). This means the difference in Yd,d0,d00,t between
a family with school-aged children and a family without school-aged children can be expressed as:

�Yd,d0,d00,t = Yd,d0,d00,t{School aged} � Yd,d0,d00,t{Non-school-aged}

= (SQdt � SQd0t) + (DSd �DSd0)� (SMCdt � SMCd0t)

+ (OOSdt �OOSd0t) + �
�
SMCd,d00,t � SMCd0,d00,t

�
(15)

To generate unbiased estimates on school valuation, the identifying assumption is that families with
school-aged children value locations in the same way as families with non-school-aged children, except
in terms of the school components. For example, families with a 7 year-old child (who is in primary
school) should value neighborhood amenities such as parks and safety similarly to families with a 3 year-
old child (who has not yet started school). A violation of the assumption would be if the neighborhood
valuation changes discontinuously as children enter school or change school levels. I show evidence
supporting this identification strategy in Appendix D.5.1.

26For reference, Diamond et al. (2017) set � = 0.85 and Davis et al. (2021) set � = 0.95 in similar residential choice models.
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The estimation results are shown in Table D.2. These coefficients do not have a clear interpretation as
they are in terms of utility relative to the outside option. They are also not comparable across ethnic
groups. However, in section 6, I will convert them into economically meaningful WTP values. Reas-
suringly, the coefficients are estimated with the expected signs. School quality is generally viewed as a
positive characteristic, while school moving cost is highly negative. The coefficient on distance varies in
sign across the specifications. This is because DS represents the average distance between a home loca-
tion and school, weighted by the probability of attending each school (as described in section 5.1). This
means that the coefficient is only relevant for schools that a child has a non-zero probability of attending.
Larger average distances could be viewed positively if they represent having access to a greater number
of schools. Importantly, disutility towards distance is still being captured, albeit implicitly by the school
attendance probabilities.27

5.5 Neighborhood Variables

Next, I estimate the coefficients on the observable neighborhood variables: price and ethnic shares.28

For this, I use an instrumental variable (IV) approach to address the endogeneity.

To set up the regression, I use the estimated school coefficients from Equation (15) to find the residuals
from Equation (14) after controlling for the school-related components. Let eYd,d0,d00,t represent these
residuals. Then, using a similar strategy as Almagro and Domínguez-Iino (2021) and Scott (2013), I
difference the expression for eYd,d0,d00,t across time to eliminate the time-invariant components. I consider
two state-action tuples (k⇤, t, d, d0, d00) and (k⇤, s, d, d0, d00), where t > s. These tuples are similar on all
dimensions except the calendar year. The equation to estimate is then:

�ts
eYd,d0,d00 =eYd,d0,d00,t � eYd,d0,d00,s

=↵r
 (�ts ln rd ��ts ln rd0) +

X

'2 
↵' 
�
�tsTS

'
d ��tsTS

'
d0
�
+�ts✏dd0 (16)

where the operator �ts represents a differencing across time between times t and s. The moving cost,
tenure, and location fixed effects are differenced out because they are time-invariant in the utility func-
tion. This leaves the time-varying neighborhood variables: price and ethnic shares. The endogeneity
problem persists however, as we could expect a correlation between �ts ln r or �tsTS and the error
term �ts✏. Appendix D.5.2 shows the full derivation for Equation (16) and a further discussion on the
endogeneity concern.

To instrument for price, I use a Hausman instrument commonly used in the industrial organization
literature. I construct an index of non-neighboring prices for each location. The identifying assump-
tion is that prices across the city are interrelated through market forces (relevance), but prices in non-

27As Figure D.5 shows, families are more likely to attend schools closer to their home.
28I create a house price index for each location and year (Appendix D.4). This uses both the sales and rental data.
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neighboring areas should not have a direct relationship with local neighborhood amenities (satisfying
the exogeneity restriction). This uses a similar intuition to the instrument of Bayer et al. (2007). An
example and further details on the instrument construction are given in Appendix D.5.3.

To instrument for ethnic shares, I use the past settlement instrument. This is a shift-share instrument
often used in the immigration literature. This relies on national-level shocks in the population of each
ethnic group (the “shift”) being independent from the group’s neighborhood location distribution as of
a baseline date (the “share”). I use data from the 1986 census as the baseline and rely on this identifying
assumption to create a simulated ethnic share for each location and time. Appendix D.5.4 explains the
instrument construction and discusses the instrument validity further.

The first stage results of the IV estimation are shown in Table D.3a. All the instruments are statistically
significant and each regression has a large F -statistic. The second stage results are shown in Table D.3b.
The price coefficient is always negative, as expected. I find that Polynesians are the most price sensitive,
while whites are the least. This is consistent with the summary statistics of section 2.2. However, for the
ethnicity shares, the point estimates are all negative, suggesting that all groups value areas with higher
white shares. It may seem surprising that even non-white groups view their own ethnicity negatively.
However, as described in Appendix A.2, these ethnic groups are broadly defined with heterogenous
subgroups. These subgroups may not have positive preferences towards all those within their ethnic
classifications (e.g. Chinese and Indian within Asian). Moreover, these coefficients are not precisely
estimated, which could be a further reflection of heterogeneous preferences within each ethnic group.

5.6 Moving and Location Variables

The final step is to estimate the coefficients on the time-invariant moving and location variables. With
the IV estimates, I can once again generate residuals after controlling for the price and ethnic share
components. I then run a regression of the residuals on the remaining variables (location fixed effects,
tenure, and moving costs). We should not expect these variables to be correlated with the unobserved
errors, and so a standard OLS regression is sufficient. I show the results of this estimation in Table D.4.
The results again show the expected sign. First, tenure is generally positively valued (however not for
Asians, many of whom are recent immigrants and may not have as strong ties to the local communities).
In contrast, moving costs are negative for all groups.
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6 Discussion of Results

In this section, I provide the key takeaways of the structural model estimates. I focus on how parents
respond to school quality and the school moving cost; the model estimates show that responses to both
these factors vary across ethnicities and school levels. To find the full effect that schools have on resi-
dential segregation, I simulate the market under counterfactual utility specifications.

6.1 School Quality Valuation

First, I discuss the valuation of school quality. I use the price elasticity estimates (Table D.3b) to convert
each ethnicity’s marginal utility of school quality (Table D.2) into a willingness to pay (WTP) figure.29

The interpretation of this value is the percentage increase in annual house price that a family is willing
to pay for an increase of one decile score per child per year. The average annual house price in 2019 is
NZ$28,387 (US$20,723).30

I also benchmark the structural estimates to the reduced form estimates from section 3.1. As discussed
in section 3.1.2, these results are not directly comparable. Namely, the reduced form estimates give the
WTP for a one decile score increase without accounting for the time horizon that this additional school
quality will be enjoyed over. In Appendix E.1, I describe how I normalize the reduce form results. This
relies on using the family panel to generate statistics about families who move into the boundary areas.
I argue that the key statistic is the present discounted value of school years that a family expects to
experience when they move to a new home. Using this figure, I can convert the BDD sales results (Table
1a) into a per-child-per-year valuation.

Given these calculations, I plot the WTP estimates in Figure 6. I find that white families are willing to pay
0.5% higher annual house prices for an increase in one primary school decile score, per child per year. In
contrast, their valuation of high school is more than double with a WTP of 1.1% for high school quality.31

As with the reduced form estimates, I find that their preference for intermediate schools is statistically
indistinguishable from zero. The pattern for Polynesian and Asian families is remarkably similar, with
the highest WTP for intermediate school (1.5% and 1.4%, respectively), followed by primary school
(1.1% for both), and finally high school (0.7% and 0.6%, respectively). However, the estimates do not
have enough precision to confidently conclude whether this reflects their true prioritization of school
levels.

The most striking feature of Figure 6 is that the reduced form estimates are most closely aligned with the

29For a coefficient estimate b✓V and price elasticity estimate b↵r

 , the WTP is calculated as
⇣
exp

�
� b✓V /b↵r

 

�
� 1

⌘
⇥ 100.

30This is calculated using the house price index for each of the model’s locations, weighted by their population.
31For a one standard deviation increase in quality (i.e. 3 decile scores), this corresponds to an average additional housing

cost of NZ$433 and NZ$937 per child per year for primary and high school, respectively. As a reference point, annual tuition
fees for private schools start at approximately NZ$25,000.
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structural estimates for white families. This could be driven by the fact that the reduced form estimates
are based on house sales, while white households are disproportionately more likely to be home-owners
(Table A.5). If these results hold true in other settings, then it calls into question the generalizability of
the boundary discontinuity design. Even if the BDD estimates were accurate, this exercise shows that
their interpretation is limited without further information about the family composition and housing
tenure.

Figure 6: Willingness to Pay for School Quality

Note: The figure shows the willingness to pay estimates for an increase of one decile score, per child per year. The
reduced form estimates are from a boundary discontinuity design (Table 1a, column 2), scaled using an estimated present
discounted value of school years for the given school level. The ethnic group results are from the structural model
estimation (Table D.2), scaled by the price sensitivity estimates (Table D.3b). 95% confidence intervals are plotted for
each estimate.

6.2 School Moving Cost

Following the steps in section 6.1, I convert the estimates on school moving costs (Table D.2) into WTP
values. The results are shown in Figure 7, where I plot the estimates of the school moving cost by
ethnicity and school level. As these values are all negative, we can interpret this as the change in house
price that is required to offset the disutility of changing one child’s school. There are two key takeaways
from this graph.

The first takeaway is that all ethnicities have an aversion to changing their child’s school. White families,
in particular, exhibit the greatest disutility with a WTP ranging from –14.3% for primary school to –9.2%
for high school. The WTP of Polynesian families, in contrast, is almost half that of white families in each
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school level, e.g. their estimated WTP is –6.8% and –4.5% for primary and high school, respectively.
Asian families, despite being the most mobile group, have a WTP that is in between the other two
groups. The Asian families exhibit a WTP of –10.3% for primary school and –6.7% for high school. The
second takeaway is that the aversion to changing schools decreases as the child is older. This pattern
holds true for all ethnicities. For each group, the WTP for primary school is approximately 1.5 times that
of the high school WTP.

Figure 7: School Moving Cost Estimates

Note: The figure shows the estimated school moving cost. Each point represents the willingness to pay for changing one
child’s school within the same school level. The estimates are from the structural model estimation (Table D.2), scaled
by the price sensitivity estimates (Table D.3b). 95% confidence intervals are plotted for each estimate.

The existing literature has found high moving costs for housing (Bayer et al., 2016; Diamond et al., 2017;
Almagro and Domínguez-Iino, 2021), and this is an importance source of the dynamics in the residential
choice problem.32 I show the WTP estimates for the other components of utility in Figure E.1. We can
see that the fixed costs of moving are almost equal to the school moving costs for each ethnic group.
This means that schools may be explaining half of the moving costs for families. Past studies have not
focused on identifying the source of the moving costs. However, understanding why moving costs are
large is important for predicting the efficacy of policies. For example, we may see low take-up of housing
vouchers if – as in this case – parents are unwilling to move houses due to the cost of interrupting their
children’s education. Policy makers could then instead target vouchers to families whose children have

32The results in Almagro and Domínguez-Iino (2021), whose model is most similar to mine, imply that the fixed cost of
moving has a WTP of 30-40% in annual budget (income net of rent) for most of their distinct groups, with some groups having
moving costs of almost 90% WTP. This does not include the per distance moving costs.
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not yet started school to increase take-up and welfare.

The school moving cost finding is also relevant for the education literature, where researchers seek to
better understand what parents value about schools (Abdulkadiroglu et al., 2020). These results show
that quality is only part of the story. To give a sense that these school moving costs are substantial,
we can ask whether parents can offset these costs by simply changing to a higher quality school. In
Appendix E.2, I show through a simple example that a white family with a first grader would have to
move to a school that is more than 2 standard deviations higher in quality to offset their school moving
cost. These significant frictions have policy implications. If parents are reluctant to change their child’s
school, this lowers the competitive forces under a school choice policy. As a result, these costs may
inhibit school choice policies from raising school quality.33

6.3 Counterfactuals

To understand the impact schools have on residential segregation, I simulate the market using the esti-
mated parameters. In general, counterfactuals based on the ECCP estimator require strong assumptions
(Kalouptsidi et al., 2020). In my setting, simulating the full dynamic model has a high computational
burden. To simplify, I set � = 0 to convert it into a static problem. In Appendix E.3, I provide further
details on this simplification and the calibrations I make to account for the dynamic factors.

I consider two counterfactual utility specifications. The first counterfactual sets the coefficient on school
quality to be equal to zero (No Quality). This can be thought of as having equal school quality in all
neighborhoods. The second counterfactual sets the coefficients on all school components to zero (No

School). This counterfactual represents a world in which schools no longer matter for a family’s residen-
tial choice. Relative to the first counterfactual, the second counterfactual highlights the additional effect
of school moving costs.34

To evaluate changes in residential segregation, I calculate the dissimilarity index (DI) in each period.
Logan and Stults (2021) classify changes in the DI (in units of 0.01 increments) over a decade as follows:
differences of less than 5 units indicate small to no change in segregation; 5-10 units indicates moderate
change; and above 10 units indicates a very significant change in residential segregation. I also calculate
the DI from the benchmark simulation (no changes to utility) and from the data (using the family panel).

The results are shown in Figure 8. Panel (a) shows the Polynesian-white DI. The benchmark model –
despite being a simplification of the full dynamic model – closely tracks the data’s DI. In the benchmark,
the Polynesian-white DI increases by 3.6 units over the sample period. The DI increases even more
in the counterfactuals: by 6.4 units in the first, and by 10.2 units in the second. This suggests that

33Implementing school choice will not necessarily reduce the school moving costs – the New Zealand system already offers
a high degree of school choice and yet these costs remain high.

34Under this counterfactual, there is also no preference over distance to school. I find that the effect of school distance in the
simulations to be negligible, because the school attendance probabilities already capture the households’ disutility to distance.
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as schools become less relevant to the family’s residential choice, segregation between Polynesian and
white families increases. For the Asian-white DI, I find a similar pattern of increasing segregation, but
at a smaller magnitude. In the benchmark, the DI changes by –1.4 units (decreasing segregation). In the
counterfactuals, the DI is unchanged in the first and increases by 1.9 units in the second.

Figure 8: Dissimilarity Index in Counterfactual Simulations

(a) Polynesian-White (b) Asian-White

Note: The figures show the dissimilarity index in each period (representing the sample period of 2008-2019). The index
is calculated using the Level 3 area units (Figure A.16c).

Figure 9: Change in Home Location’s White Share Among White Movers

Note: The figure shows a kernel density estimation for each simulation. For white families who move within the city,
the horizontal axis shows the difference in the white share between their previous home location and their new home
location. The distribution is taken over all moves observed in each counterfactual simulation.

To understand what is driving this change in segregation, I check whether families are moving into areas
with a higher share of their own ethnicity. In Figure 9, I focus on within-city moves by white families.
The distribution shows the difference in white share between their previous home location and their
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new home location. In the counterfactuals, this distribution has a greater weight on positive differences.
In other words, white families are more likely to move to whiter areas. Caetano and Maheshri (2019) also
find that moving costs reduce residential segregation: if families could move more, they would segregate
further. Here, both school quality and school moving costs prevent white families from moving more
often. In contrast, I do not find these effects for Polynesian (Figure E.2) and Asian (Figure E.3) families.
These results are likely driven by the estimated preferences over ethnic shares (Table D.3b), and so the
results may differ in other contexts.

7 Conclusion

This paper studies how schools affect where families choose to live in a city and, as a result, whether
schools have an impact on residential segregation. I develop a dynamic model of residential choice,
which incorporates children and schools into the family’s problem. Using administrative microdata on
families in Auckland, New Zealand, I construct a novel panel dataset that links parents to children and
tracks their home location and the children’s schools over a 12 year period. With this data, I estimate the
model parameters separately by ethnic group to assess heterogeneity in the effects of schools.

The estimation generates three main findings. First, school quality matters to families, however the
valuation varies by ethnicity and school level. I leverage the existence of catchment areas to compare the
model’s estimates against ones derived from a boundary discontinuity design. I find that the reduced
form estimates are aligned only with white families’ valuations of quality. More generally, without
microdata on the family’s structure and moving behavior, reduced form estimates do not provide a
standardized measure of valuation. Second, I find that families experience high costs to moving homes
if that results in their child changing schools. These costs are larger for younger children and are unlikely
to be offset by changing to a higher quality school. Third, through a simplified counterfactual, I show
that schools reduce residential segregation. Without schools, families would move more often, with
white families choosing to segregate further.

Children play a key part in a family’s choice of neighborhoods. Importantly, their effect on moving
decisions acts in a dynamic way – families change with the birth of children and children’s schooling
needs change as they grow up. This paper shows that children and schools should be incorporated into
dynamic models of residential choice. The findings also highlight that preferences are heterogeneous
across ethnicities. Researchers should account for this – or seek out settings where this variation can be
identified – to strengthen the generalizability of their results. Moreover, capturing this heterogeneity is
critical for understanding the drivers of residential segregation. While this paper has focused on study-
ing segregation along ethnic lines, another critical (and closely tied) issue is that of income segregation.
Future work should incorporate the parents’ employment into the model to then estimate how work
impacts the home location choice. With this, researchers can then study the interplay between income
and ethnic residential segregation, while also accounting for the role of children and schools.
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Appendices

A Setting Appendix

A.1 Details on the New Zealand Educational System

My analysis focuses on public schools in Auckland. Approximately, 84% of students in Auckland at-
tend public schools.35 In 2019, there were 353 public schools in Auckland. 272 of these schools can be
categorized as a primary (grades 1-6), intermediate (grades 7-8), or high school (grades 9-13). There are
also combined primary and intermediate schools (grades 1-8; 72 schools in 2019), combined interme-
diate and high schools (grades 7-13; 6 schools), as well as schools with all grade levels (grades 1-13; 3
schools). For my analysis, I treat these combined schools as separate for each of their respective school
levels.

A.1.1 Key Features of the New Zealand System

As discussed in section 2.1, there are three key features that distinguish the New Zealand public educa-
tional system. These features make this an ideal setting to study the research questions.

The first feature is that it is a decentralized system. There are no school districts; instead, schools are
autonomous entities that are governed by an elected board of trustees. Public schools receive funding
from the national government and supplement this through donations. In contrast to the United States,
schools are not financed through local property taxes. This is an advantage of the setting as having
school funding tied to property taxes could complicate any analysis related to residential sorting.

The second feature is that it is a system of complete choice. Students can choose to apply to any public
school regardless of where they live. However, acceptance is not always guaranteed. To prevent over-
subscription, schools can establish a catchment area, which is commonly referred to as a school zone.
This is a geographic boundary that determines which residences receive guaranteed admission into the
school.36 Any student who lives inside a school’s zone (in-zone student) must receive admission into
the school if they choose to apply there. Any student who lives outside of the zone (out-of-zone stu-
dent) can still apply to the school, but they are given lower priority in the admissions process.37 Only
schools that are oversubscribed – or are close to being oversubscribed – can introduce a school zone.
In contrast, schools without a zone (“unzoned schools”) must accept all students who wish to attend.

356% of students attend private schools, and 10% attend “special character” public schools (these are former private schools
that have been integrated into the public system; most of these are Catholic schools). Both of these school types charge
attendance fees and have different admissions processes than the standard public schools.

36Figures A.2 and A.3 show school zones in Auckland for some primary and high schools, respectively. Note that school
zones tend to be smallest for primary schools and largest for high schools.

37After admitting all in-zone applicants, the school calculates the number of seats available for out-of-zone students. If there
are more out-of-zone applications than seats, the school holds a stratified lottery to determine admission.
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Figure A.1: Fraction of Schools Zoned

Note: The figure shows the fraction of public schools in Auckland that have a school zone. Fractions are
calculated within each school level, in each year. Data is from the New Zealand Ministry of Education.

Over time, more schools have become “zoned”, i.e. introduced a school zone. Figure A.1 shows the
fraction of schools at each school level. Empirically, once a school becomes zoned, it does not ever be-
come unzoned. However, the fraction of zoned schools may fall over time due to schools opening or
closing. As of 2019, the number of zoned schools is: 185 of 258 (72%) of primary schools, 87 of 122 (71%)
intermediate schools, and 44 of 57 (77%) of high schools. The presence of school zones allows me to
study the valuation of school quality using a reduced form framework (section 3), which I can then use
to benchmark the structural estimates (section 6). Moreover, this admissions process means that the link
between housing and schools is much weaker in New Zealand than it is in in other countries. If schools
are tied to residential segregation in this setting, then it is plausible that the connection is even stronger
in areas where residential choice and school admissions are even more intertwined.

The final feature is the measure of school quality. In New Zealand, there are no standardized tests or
test scores that parents can use to compare schools. Instead, a commonly used measure of quality is a
government index called the decile score. The national government assigns every school in the country
a decile score of 1 through 10, which reflects the socioeconomic status of the student body. A lower
decile score indicates that the school draws its students from higher poverty areas. The decile score is
not a measure of school effectiveness (e.g. value-added); rather, the government uses this score when
allocating its funding to schools. However, the general public commonly uses (or misinterprets) the
decile score as a school quality measure.38 A key advantage of the decile scores is that they are inputs-

38A government taskforce stated in their 2018 report: “School deciles were introduced in 1995 as a funding mechanism, but
decile is now often viewed as a proxy for the quality of teaching and learning” (Tomorrow’s Schools Independent Taskforce,
2018). Similarly, a 2013 report by the secondary school teachers’ union stated that “school decile has become such a factor in
the (mis)interpretation by parents of the quality or status of a school” (PPTA, 2013).
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based measure of school quality, as it is entirely a function of which students attend a school. This allows
us to abstract away from typical considerations of what determines school quality, such as the quality
of teachers and classroom sizes. Another advantage is that they are calculated using a relative ranking
of all schools in the country, regardless of their school level. This means that the decile score is directly
comparable across all school levels.39 This will allow for a more meaningful comparison when assessing
whether school quality valuation changes by school level. Appendix A.1.2 below gives further details
on how decile scores are calculated.

Figure A.2: School Zones in Auckland (Primary Schools)

Notes: The maps show the location of primary schools for a section of the Auckland urban area.
Schools that are zoned are represented by the orange triangles. Schools that are unzoned are repre-
sented by the blue circles. The figure overlays the school zones (as of 2018), which have been assigned
random colors.

39An alternative measure, such as test scores, may not have that advantage. For example, test scores for an elementary
school may not be comparable to test scores for a high school, even after a within-level normalization.
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Figure A.3: School Zones in Auckland (High Schools)

Notes: The maps show the location of high schools for a section of the Auckland urban area. Schools
that are zoned are represented by the orange triangles. Schools that are unzoned are represented by
the blue circles. The figure overlays the school zones (as of 2018), which have been assigned random
colors.
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A.1.2 Decile Scores

Each public school in the country is designated a decile score (an integer from 1 through 10). The schools
with the lowest decile score (1) have students drawn from the lowest socioeconomic status (SES) areas in
the country and the highest decile (10) schools have students drawn from highest SES areas. To calculate
this score, the national government uses the following process. Each census meshblock m (analogous to
a U.S. census block) is given a SES score ⇢m based on 5 equally weighted factors:

1. percentage of parents in meshblock m who are employed in a low-skill job (p1)

2. percentage of parents in meshblock m who are receiving income support (p2)

3. percentage of parents in meshblock m without formal qualifications (p3)

4. percentage of households in meshblock m with an income in the bottom quintile (p4)

5. percentage of households in meshblock m which experience crowdedness (p5)

where ⇢m =
P5

i=1 pi ranges from 0 to 500, with higher scores indicating lower SES. For each school j,
let the fraction of students living in meshblock m be smj . Each school j is assigned an SES score ⇢̄j by
weighting each meshblock’s SES score by the fraction of students who live there:

⇢̄j =
MX

m=1

smj⇢m

The decile score is then the decile of the school’s SES score ⇢̄j within the national distribution. Figure
A.4 shows this process graphically. In (a), the raw score ⇢̄j is plotted for the national distribution in
2015. In (b), the assigned decile score is shown relative to the school’s raw score, where a higher ⇢̄j
indicates a lower decile score. The vertical lines indicate the decile cutoffs, which are determined ex
post and change every time the deciles are re-calculated. The decile scores are generally updated every
five years after the national census, however, each year schools may request a review of their score in if
they believe their student composition has changed dramatically.40

Figure A.5 shows the distribution of decile scores for schools in Auckland. By definition, the national
distribution has an approximately equal number of schools within each decile band. In contrast, Auck-
land schools tend to be skewed as having both very low and very high decile scores. This shows that
this is setting with large heterogeneity and already indicates the presence of segregation (in this case,
along socioeconomic lines).

40The most recent censuses have been conducted in 2006, 2013, and 2018. A census was planned for 2011 but was delayed
by two years due to the 2011 Christchurch earthquake.
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Figure A.4: Decile Score Calculation (2015)

(a) Raw Score Distribution (b) Decile Score Assignment

Note: The figures show how decile scores are calculated. Each school in the country is assigned a score out of 500 (sum of
five percentages), where 0 is indicates highest SES and 500 indicates lowest SES. The distribution of this score is shown
in panel (a). Cut-offs are determined to group schools into approximately 10 even groups (i.e. deciles). Schools with the
lowest raw measure receive a decile score 10, while schools with the highest raw measure receive a decile score of 1. All
schools in the same score band receive the same decile score. This is shown in panel (b).

Figure A.5: Distribution of Decile Scores in Auckland

Note: The figure shows the number of Auckland schools in each decile score as of 2015. All school
levels (primary, intermediate, high school) are included.
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A.2 Defining Ethnic Groups

In my analysis, I designate three distinct ethnic groups: white, Polynesian, and Asian. However, as
ethnicity is a social construct, this classification first merits some discussion.

The New Zealand government currently defines five major ethnic groups, where ethnicity refers to a
person’s cultural affiliation and not race, ancestry, or citizenship. The groups are: European, Māori,
Pacific Islanders, Asian, MELAA (Middle Eastern, Latin American, or African), and Other. European
includes New Zealand Europeans (the majority group in the country), as well as direct migrants from
Europe. Māori are the indigenous people of New Zealand. Pacific Islanders (or Pacific Peoples) refers to
those ties to the neighboring island nations in Polynesia, such as Samoa, Tonga, and Fiji. Asian includes
all of Asia except the Middle East, with the largest groups identifying as Chinese, Indian, and Filipino.
Importantly, people can self-identify with multiple ethnicities and a person’s ethnic identification may
change over time in government records.41

To be consistent with the model (where a family’s type does not change over time), I create an ethnic
grouping that is distinct and stable. I define “white” as people who identify as European but not as
Māori, Pacific Islander, or Asian. “Polynesian” are those who identify as either Māori or Pacific Islander,
but not Asian. “Asian” are those who identify as Asian (and possibly other ethnicities as well). All other
people who do not fit into these groups are excluded from the remainder of the analysis. While I use
these labels as a shorthand for ethnicity, in reality, these groups are not completely distinct and still
exhibit substantial within-group heterogeneity.

I apply my ethnicity categorization to microdata from the 2018 New Zealand census. In Table A.1, I
show the demographic breakdown of individuals living in Auckland. Under my categorization, whites
are the largest group in the city (42.2% of the population), followed by Asians (30.6%), and then Poly-
nesians (24.8%).42 The table also shows how the (distinct) ethnic groups that I created compare to the
government’s (overlapping) ethnic categories. Most notably, 32% of Polynesian people identify as Eu-
ropean (i.e. white). This overlap is primarily driven by people who identify as both Māori and New
Zealand European.43 Similarly, Table A.4 shows that the majority of Asian parents were born in Asia
(77.5%); however, a substantial minority (13.2%) were born in the Pacific Islands. This is explained by
Indo-Fijians, who tend to identify as both Pacific Islanders (Fijian) and Asian (Indian). Under my classi-
fication, these families are categorized as Asian, though this further highlights the heterogeneity within
each group.

Finally, it is also important to note that the statistics in Table A.1 reflect the city as of 2018. Auckland’s
41For the panel construction, I use the Stats NZ personal demographic data. This contains information on ethnicity iden-

tification that takes into account that reported identities can change. An individual is recorded as identifying with an ethnic
group if they have ever identified with that group at any point in time across any of the datasets collected by Stats NZ.

422.4% of the city does not fall into these groups. This represents the population excluded from my sample.
4353% of those who identify as Māori also identify as European. For Pacific Islanders, 17% also identify as European.
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ethnic composition has also changed over time (my sample period is 2008 to 2019). In particular, the
Asian population has been growing each year – in large part due to immigration – with the Asian share
of the city being 19.8% in the 2006 census, and 24.8% in the 2013 census.

Table A.1: Official Ethnic Identification by Ethnic Groups

Ethnic Groups
White Polynesian Asian Other

Ethnic Identification in 2018 Census
European 100.0 31.9 6.2 0.0

Māori 0.0 45.3 1.5 0.0

Pacific Islander 0.0 63.9 2.9 0.0

Asian 0.0 0.0 100.0 0.0

Middle Eastern/Latin American/African 0.8 0.4 0.4 80.7

Other 1.8 0.5 0.8 19.5

Number of Individuals 629,586 370,272 456,150 36,558

Share of City (% of total population) 42.2 24.8 30.6 2.4

Note: The table shows how individuals living in Auckland per the 2018 census identified their ethnicity according to
the official Statistics New Zealand categories (rows in first panel). The columns represent the ethnic groups I create for
my analysis. Each cell in the first panel indicates the percentage of individuals in my ethnic classification that identify
with the official ethnic category. The ethnic groups I create (columns) are distinct groups by construction, while people
can identify with multiple of the official ethnic groups (rows). This means columns in the first panel range from 0% to
100%, but can sum to over 100%. In accordance with Stats NZ confidentiality rules, the number of observations has been
randomly rounded to a multiple of 3 (RR3).

A.3 Measuring Residential Segregation

There are a number of possible indices that researchers can use to measure residential segregation, each
with advantages and drawbacks. For each segregation measure, the city is divided into L neighborhoods
indexed by ` = {1, ..., L}. Consider two population sub-groups a and b. In a location `, the population
of each group is a` and b`, respectively. Let n` be the total population in location ` and N =

P
` n` be

the total population of the city. Finally, let the total population of each group in the city be denoted as
A =

P
` a` and B =

P
` b`.

The most widely used approach in the literature is the dissimilarity index. For two groups a and b, the
dissimilarity index (Dab) is calculated as:

Dab =
1

2

LX

`=1

����
a`
A

� b`
B

���� (A.1)
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The interpretation of Dab is the proportion of group a that would need to move in order to have a spatial
distribution even to that of group b. This means numbers closer to 1 indicate greater segregation, and
numbers closer to 0 indicate lower segregation. This value is symmetric, i.e. Dab = Dba, and must be
calculated using exactly two groups. This means it is limited to measuring how segregated group a is
relative to group b (and vice versa).

Another common approach is the isolation index, which captures the probability of interaction between
the groups. Using the same notation as above, the isolation index (Iab) is calculated as:

Iab =
LX

`=1

 
a`
A

! 
b`
n`

!
(A.2)

Iab is interpreted as the probability that a member of group a will interact with a member of group b.
Here, numbers closer to 1 indicate a higher probability of interaction and therefore lower segregation
between the two groups. As with the dissimilarity index, the isolation index can only compare two
groups at a time (however, it is generally not symmetric).

As this setting has three major ethnic groups, the final measure of segregation I use is the entropy index.
For a location i, let p` be the share of type  in location ` (where  2 {a, b, c}). The entropy index h` for
location ` is calculated as:

h` = �
 X

 =1

p` ln(p` ) (A.3)

This is interpreted as a measure of concentration in each location `.44 In this case, as there are three
groups, h` ranges from 0 (only one group in the location) to ln 3 ⇡ 1.10 (equal shares of each group). In
Figure A.6, I plot the entropy measures h` for locations ` in the city.

To calculate a city wide measure of entropy, we first calculate Ĥ , a city-wide measure of entropy (using
Equation A.3, where ` = city).45 Next, we calculate H̄ , which is the population weighted average of h`:

H̄ =
LX

`=1

n`
N

h`

The entropy index (H) is then calculated as:

H =
Ĥ � H̄

Ĥ
(A.4)

The entropy index is calculated by comparing the observed level of entropy (H̄) to the level of entropy
if the city was perfectly integrated (Ĥ), i.e. if each location had the same composition as the entire city.

44For cases with locations with zero shares of a subgroup, i.e. p` = 0, let p` ln(p` ) = 0
45Using the shares shown in Table A.1 (excluding other), Ĥ = 1.07 for Auckland in 2018.
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Figure A.6: Local Entropy Measures

Note: The map shows in each area (Level 2 units, Figure A.16b) the entropy measure of the ethnic
shares. Values closer to ln(3) ⇡ 1.1 indicate equal distribution of all three ethnic groups. I overlay
the borders of the locations used in the structural model estimation (Figure A.16c).

This means that H = 0 indicates perfect integration and H = 1 indicates perfect segregation.

An important point to consider across all of these cases is that these measures depend on the size of
the locations ` 2 {1, ..., L}. To show a range of possible values, I re-calculate each of these indices
based on the three smallest geographic units (Levels 1 to 3) shown in Figure A.16. These indices in the
U.S. are often calculated using census tracts, which are comparable to the Level 2 geographic unit. The
structural model estimation (section 5) uses Level 3 as the geographic unit, which generally produces
lower measures of residential segregation. This suggests that any index may not fully capture the intra-
neighborhood levels of segregation. Table A.2 shows the different segregation measures using each of
the three indices as well as the different geographic units.

Interpreting the segregation indices can often be difficult. A useful benchmark is to compare against
measures found in other cities. Using the Diversity and Disparities database, I find the segregation
indices of U.S. cities as of 2020.46 San Diego, California is a comparable city to Auckland. It has a similar
population of 1.3 million, with a racial/ethnic breakdown of 41% white, 30% Hispanic, and 21% Asian.
In San Diego, the dissimilarity index is 0.521 for Hispanic-white (comparable to Auckland’s Polynesian-
white index) and 0.415 for Asian-white (comparable to Auckland’s Asian-white index). To continue

46This database categorizes the population of each city into the distinct groups of: non-Hispanic white; non-Hispanic Black;
non-Hispanic Asian; Hispanic; and other. I omit the “non-Hispanic” qualifier when describing statistics for the U.S. cities.
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the comparison started in section 2.2, the dissimilarity index in New York City is 0.477 for Hispanic-
white and 0.42 for Asian-white. For Los Angeles, these figures are 0.607 and 0.378, respectively. The
demographic shares in New York are 31% white, 28% Hispanic, and 17% Asian. For Los Angeles, these
are 29%, 47%, and 13%, respectively. While their demographic compositions are different, these are also
close to the Auckland measures of segregation.

Table A.2: Measures of Residential Segregation

Dissimilarity Index Isolation Index Entropy

Geo. Level Polynesian-White Asian-White Polynesian-White Asian-White All

1 0.586 0.458 0.260 0.344 0.261
2 0.545 0.388 0.280 0.374 0.200
3 0.493 0.305 0.304 0.400 0.146

Note: The table shows different specifications for measuring residential segregation. Each column represents a segrega-
tion index. The dissimilarity and isolation index are always comparisons of two groups. I show the Polynesian-White
and Asian-White index values. The entropy index is a single city-wide measure that captures segregation across all
groups. Each row represents a different geographic unit level, as shown in Figure A.16. I re-calculate each index for each
geographic levels 1 to 3.

A.4 Panel Data Construction Process

Stats NZ’s Integrated Data Infrastructure (IDI) is a database that hosts a wide array of administrative
datasets.47 Importantly, Stats NZ assigns each individual a unique identifier across all the datasets
within the IDI. This extensive – and interconnected – database allows me to construct the panel required
for the structural estimation.

My focus is on identifying the sample population relevant to estimating the model. This means identi-
fying families with children who have ever lived in Auckland. I first start by finding all children who
live in Auckland (via the address history dataset) or attend an Auckland school (via the school records)
at any point during my sample period of 2008 to 2019. Using the birth records and the censuses, I then
identify their parents. Here, “parent” can refer to a biological parent (via the birth records) or the adult
that they reside with and have indicated as their parent (via the censuses). This process may identify
multiple parents, so I use the address history file to find the parents that the child is most often living
with during the sample period. With this, I categorize families as sets of parents and children who live
together. I only keep families for whom I can identify the parents and who have no more than four
children.48

I use the mother’s home location as the family’s location. This is because my goal is on knowing where
47The full list of data in the IDI is available at the Statistics New Zealand website.
48The restriction on number of children excludes less than 1% of families, according to Table A.4, but simplifies the data

management and analysis.
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Figure A.7: Living with Parents

Note: The figure shows the proportion of children in my sample data who are living with their identified mother
and identified father as of the two most recent censuses (2013 and 2018). I calculate this proportion separately by
census year and the age of the child at the time of the census. Home locations for each child and parent is per their
response in the census. These statistics are only among families who are able to be matched to the census data.

the children live. I find that children are much more likely to be living with their identified mother than
with their identified father (Figure A.7).49 I further restrict so that families also must have been living in
Auckland for at least one period in the sample period. For each family, I am able to identify their home
location for every period in the sample period 2008 to 2019, including before any children are born.50 I
assign each family one location per year, using the location that has the longest residence spell in a given
year. For confidentiality reasons, the data in the IDI does not show the exact home address. It is listed
at the meshblock level, a geographic unit that is analogous to a census block in the U.S.51

Finally, I assign each family an ethnicity. This is not straightforward as families may have different
ethnicities: not only can parents have multiethnic identities, but inter-ethnic relationships can result in
children identifying with more ethnicities than each of their parents do. I assign each family as iden-
tifying with one of the five official ethnic groups (European, Māori, Pacific Islanders, Asian, MELAA,
Other) if either the mother identifies with the group or if more than half of the children identify with

49In addition, I am almost always able to identify a child’s mother, while children’s fathers are not always identified or
children within the same family can have different fathers.

50While my analysis is restricted to Auckland, the address history dataset allows me identify all locations that the family is
living in, even outside of Auckland. Using information on border arrivals and departures in the IDI, I can also identify when
families enter and leave New Zealand. All those living outside New Zealand in a given period are identified as “overseas”.
This is important due to high levels of immigration during my sample period, especially among Asian families.

51Each meshblock contains approximately 30-50 households and is represented as the Level 1 unit in Figure A.16a.
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the group. I then assign each family one ethnic group (white, Polynesian, Asian) using the classification
approach described in section A.2.

Table A.6 shows that the my family panel contains 302,508 unique families and 3,288,381 family-year
observations. While other studies focus on cities larger than Auckland, the scope of their data is typically
more limited (which means that their data also covers a smaller percentage of their city’s population).
For example: Davis et al. (2021) have 1,787,558 person-year observations over a 15 year period; Bayer et
al. (2016) have 220,403 observations over an 11 year period; Almagro and Domínguez-Iino (2021) have
614,410 individuals over an 11 year period, though the panel is unbalanced and they do not report the
number of households (e.g. 54.5% of their individuals are children); Caetano (2019) has 153,102 families
in a cross-sectional dataset. Studying Auckland also gives me a large enough sample size on each of the
major ethnic groups, which ensures diversity in my data (see footnote 3).

In Figure A.8, I show the total number of families by ethnicity in my sample dataset. As expected, I
find that the number of Asian families is growing rapidly each year, such that it is equal to the number
of white families in the final period.52 Table A.6 provides summary statistics about the families in the
sample; these statistics align with the census statistics in Tables A.4 and A.5. This shows that the sample
construction is accurately reflecting the population of interest.

Figure A.8: Annual Count of Auckland Families in Data

Note: This figure shows the number of families (by ethnic group) in the sample data that are living in Auckland
each year. Families are included in the sample from 3 years prior to the birth of their eldest child up to when their
youngest child turns 25. The sample is a panel dataset I construct using administrative records from Stats NZ.

52While white families make up the largest number of people in the city (Table A.1), they are also the least likely to be in
families (Table A.3).
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Table A.3 shows that 57.2% of the Auckland population is part of a family, either as a parent (27.6%) or
as a child (24.5%). While my analysis focuses on the residential choice of families, this shows that these
choices determine the home location for a majority of the city’s residents.

Table A.3: Family Role of Population (2018)

Ethnic Group
White Polynesian Asian All

Role in Family (%)
Parent 27.6 24.0 30.4 27.6

Child 24.5 38.2 29.9 29.7

Not in Family 47.9 37.8 39.7 42.8

Total Proportion 100.0 100.0 100.0 100.0

Number of Individuals 629,586 370,272 456,150 1,456,008

Note: The table shows what role individuals living in Auckland per the 2018 census play in a family. A family is
defined as a household of parents and children. Each cell in the first panel shows the proportion of people in the
ethnic group who are either in a family as a parent, as a child, or not in a family. These proportions sum to 100%.
In accordance with Stats NZ confidentiality rules, the number of observations has been randomly rounded to a
multiple of 3 (RR3).

A.5 Data Validity Checks

I discuss three validity checks for the data construction process.

First, I check whether the sample has sufficient coverage of Auckland families. Figure A.9 compares the
number of children living in Auckland in my sample data to the official number of children reported to
be living in Auckland per the census. This comparison is within each child’s age group and for each of
the three most recent censuses.53 In general, coverage is relatively high with over 75% coverage for most
years and age groups. However, the older cohorts in the earlier years have worse coverage, dropping to
almost 50% in the 16-17 year-old age groups. This is for two reasons. First, identifying the children in
the older cohorts is harder because the school records appear to be of lower quality in the earlier years.54

Second, identifying their parents is also more challenging. This is because: (i) the proportion of people
linked to their birth records decreases in older cohorts, and (ii) many of these children are no longer
living with their parents by the time of the 2013 census. As stated above, I exclude children from my

53My sample period begins in 2008 and there is a census in 2006. In each period, I need to know the family’s previous home
for the model analysis. This means that I also identify each in-sample family’s home location in 2007. Therefore, I compare the
child counts in my sample as of 2007 to the counts of the 2006 census as this is the closest comparison point.

54Quality here refers to the extent to which individuals in the schools records can be matched to other datasets (e.g. the
census). This relies on Statistics New Zealand assigning the correct identifier using the reported personally identifiable in-
formation (PII), which may be limited by the quality of the PII. The total number of students in each school-year aligns with
publicly available enrollment counts.
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Figure A.9: Children Counts in Data versus Census Counts

Note: The figure shows the number of children identified in my sample divided by the number of children in the
official census counts (vertical axis), by age group (horizontal axis). This is restricted to families who are living in
Auckland. The three most recent census were in 2006, 2013, and 2018. My period of analysis is from 2008 to 2019,
though my sample data also includes 2007 information too. I compare the 2013 and 2018 sample statistics to their
respective censuses. I compare the 2007 sample statistics to the 2006 census.

sample if their parents cannot be identified (as discussed in section 2.3). This explains why I observe
lower coverage for these cohorts. Fortunately, it appears that the coverage has improved significantly
by 2013. Though I cannot conduct this exercise for years between 2007 and 2013, it is likely that the
lower coverage is only an issue for a few cohorts in the initial years of my sample period.

Second, I check whether the identified home location is likely to be accurate. Figure A.10 compares the
distance between the child’s school and their home location. Note that the home location is sourced
from the identified mother’s address history records, while the school is from the child’s school records.
These independent datasets are being connected using the parent-child links I have identified. We see
that children in the sample are far more likely to be attending schools that are closer to them, which
is to be expected. Moreover, this pattern is stronger for primary schools than for high schools, which
is also consistent with expectations. This suggests that the sample construction process is likely to be
capturing the family’s home location quite well. Moreover, it also suggests that the parent-child links I
have identified are also correct.
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Figure A.10: Distribution of Distances to School

Note: The figure shows the cumulative distribution of distances between a family’s identified home location (Level
1 unit, Figure A.16a) and the location of a child’s school. Distances are straight-line distances in kilometers (km)
between the Level 1 centroid and the school coordinates. The distribution is shown separately for each school
level (primary, intermediate, and high school). Each unit is a child-year.

Finally, there may be a concern that the ethnicity classifications may lead to inaccuracies. One poten-
tial issue is that I assign each family into one ethnic group, but this may not reflect the actual ethnic
proportions we see in terms of individuals. Figure A.11 compares the ethnic shares in each location
using families as the unit of observation against the ethnic shares when using individuals as the unit of
observation. The figure shows that these two measures are highly correlated. Therefore, studying the
shares at the family-level is likely to be a good proxy for understanding segregation more broadly at
the individual-level.55 Another issue relates to the multi-ethnic identities that my classification does not
capture. The most notable concern is that there are a high number of individuals who identify as both
European and Māori. I classify these people as Polynesian, which could raise concerns if they are better
classified as white. To show that this is not the case, I look at the residential distribution of individuals
who identify as both white (European) and Polynesian (Māori or Pacific Islander) using the 2018 census.
Figure A.12 shows that these individuals are more likely to be found in areas with a high proportion of
people who identify only as Polynesian rather than in areas with a high proportion of people who iden-
tify only as white. Therefore, categorizing white-Polynesian families with the other Polynesian families
seems to be the appropriate classification.

55An argument can also be made that family-level segregation is the more appropriate measure. Individual-level measures
treat children equally to adults, but children typically do not choose their home location independently from their parents.
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Figure A.11: Ethnicity Shares at Individual versus Family Level

Note: The figure shows the ethnic share statistic in each location when calculated at the individual-level using
census data (vertical axis) versus at the family-level using my sample panel data (horizontal axis). All statistics
are as of 2018 and locations are set as the Level 3 geographic unit (Figure A.16c).

Figure A.12: Correlations with White-Polynesian Shares

Note: The figure shows where individuals who identify as both Polynesian (Māori or Pacific Islander) and white
(European) are most likely to live. On the horizontal axis, I plot the share of Polynesian-white individuals living
in each location. On the vertical axis, I plot the share of individuals who identify only as Polynesian (red) and
only as white (blue) living in that same location. Shares are calculated over each group’s population in the city. I
plot a binned scatterplot and linear regression (with 95% confidence interval). Statistics are calculated using the
2018 census and locations are set as the Level 2 area unit (Figure A.16b).
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A.6 Supporting Figures
Figure A.13: Auckland Region Map

Note: The map shows the location of the Auckland region (blue) within New Zealand (gray). The urban area on the
major island (orange) is the geographic area of analysis.

Figure A.14: Population Distribution in Auckland (2018)

Note: The figure shows the population distribution within the Auckland urban area using the 2018 census. I shade each
location (Level 2 unit, Figure A.16b) according to the fraction of the city’s total population that is living in that location.

55



Figure A.15: House Prices versus Ethnic Shares

Note: The figure shows how average house prices (in log New Zealand dollars) vary by share of each
ethnic group. Statistics are as of 2018 using the 2018 census to calculate ethnic shares. Locations are
the Level 2 area unit (Figure A.16b). The figure shows a binned scatter plot with a line of best fit (and
95% confidence interval).

A.7 Supporting Tables

• Table A.4 shows statistics about the parents of families in Auckland using the 2018 census micro-
data.

• Table A.5 shows statistics about families in Auckland using the 2018 census microdata.

• Table A.6 shows statistics about families in the family panel data I construct.
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Table A.4: Summary Statistics of Parents

Ethnic Group
White Polynesian Asian

Demographics
Age (mean) 47.3 43.9 44.0

(0.027) (0.044) (0.030)

Employed† 0.817 0.657 0.698
(0.001) (0.002) (0.001)

Female† 0.533 0.585 0.548
(0.001) (0.002) (0.001)

Has university degree† 0.422 0.143 0.465
(0.001) (0.001) (0.001)

Immigration Status
Born in New Zealand† 0.660 0.573 0.044

(0.001) (0.002) (0.001)

Born in Pacific Islands† 0.001 0.380 0.132
(0.000) (0.002) (0.001)

Born in Asia† 0.005 0.001 0.775
(0.000) (0.000) (0.001)

Immigrated within last 5 years† 0.051 0.026 0.180
(0.001) (0.001) (0.001)

Years in New Zealand (mean) 20.3 25.4 14.0
(0.068) (0.076) (0.025)

Years in New Zealand (median) 15 24 14
� � �

Housing Tenure
Years in current home (mean) 8.7 9.0 5.7

(0.023) (0.038) (0.018)

Years in current home (median) 6 5 4
� � �

Same home location as one year ago† 0.837 0.708 0.755
(0.001) (0.002) (0.001)

Same home location as five years ago† 0.507 0.415 0.349
(0.001) (0.002) (0.001)

Number of Individuals (parents) 173,637 88,716 138,795

Note: The table shows summary statistics for Auckland adults who are parents of dependent children. Statistics are calculated
using responses to the 2018 census. † indicates a mean of an indicator variable (i.e. interpreted as a proportion). Standard
errors are in parenthesis below each estimated mean. In accordance with Stats NZ confidentiality rules, the number of
observations has been randomly rounded to a multiple of 3 (RR3).
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Table A.5: Summary Statistics of Families

Ethnic Group
White Polynesian Asian

Family Composition
Number of children (mean) 1.8 2.3 1.7

(0.003) (0.006) (0.003)

1 child† 0.434 0.360 0.482
(0.002) (0.002) (0.002)

2 children† 0.412 0.293 0.396
(0.002) (0.002) (0.002)

3 children† 0.125 0.175 0.095
(0.001) (0.002) (0.001)

4 children† 0.023 0.093 0.020
(0.000) (0.001) (0.001)

5 or more children† 0.006 0.079 0.007
(0.000) (0.001) (0.000)

Single Parent Household† 0.239 0.432 0.183
(0.001) (0.002) (0.001)

Household Income
Income below NZ$50,000† 0.113 0.385 0.260

(0.001) (0.002) (0.002)

Income between
NZ$50,000-$100,000† 0.215 0.300 0.330

(0.001) (0.002) (0.002)

Income above NZ$100,000† 0.673 0.315 0.410
(0.002) (0.002) (0.002)

Current Residence
Number of bedrooms (mean) 3.5 3.4 3.5

(0.003) (0.005) (0.004)

Has mortgage† 0.517 0.251 0.475
(0.002) (0.002) (0.002)

Renter† 0.283 0.675 0.349
(0.001) (0.002) (0.002)

Weekly rent in NZ$ (median) 550 400 490
� � �

Number of Families 98,205 55,926 78,876

Note: The table shows summary statistics for Auckland adults who are parents of dependent children. Statistics are calculated
using responses to the 2018 census. † indicates a mean of an indicator variable. Standard errors are in parenthesis below
each estimated mean. Dollar amounts are in New Zealand dollars (1 NZD = 0.73 USD). Income indicates self-reported total
household income. Weekly rent calculated among renters. In accordance with Stats NZ confidentiality rules, the number of
observations has been randomly rounded to a multiple of 3 (RR3).

58

http://datainfoplus.stats.govt.nz/item/nz.govt.stats/8f35ad6d-9cde-49d9-b839-bfc61c365a99/1/


Table A.6: Summary Statistics of Sample Families

Ethnic Group
White Polynesian Asian

Age and Tenure
Age in 2018 (mean) 45.0 42.9 41.5

(0.024) (0.030) (0.028)
Immigrated during sample period† 0.082 0.033 0.298

(0.001) (0.001) (0.002)
Years in current home as of 2018 (mean) 8.1 8.3 5.4

(0.022) (0.027) (0.020)
House tenure as of 2018 (median) 6 6 3

� � �

Family Composition
Number of children: Mean 1.8 2.0 1.7

(0.002) (0.003) (0.002)
1 child† 0.390 0.404 0.479

(0.001) (0.002) (0.002)
2 children† 0.441 0.330 0.409

(0.001) (0.002) (0.002)
3 children† 0.144 0.177 0.095

(0.001) (0.001) (0.001)
4 or more children† 0.025 0.089 0.018

(0.000) (0.001) (0.000)
Age of youngest child in 2018 (mean) 12.2 12.2 10.4

(0.022) (0.025) (0.027)

House Moves
Number of moves in sample period (mean) 1.4 1.6 1.9

(0.004) (0.006) (0.005)
0 moves† 0.393 0.373 0.198

(0.001) (0.002) (0.001)
1 move† 0.232 0.205 0.263

(0.001) (0.001) (0.001)
2 moves† 0.170 0.154 0.233

(0.001) (0.001) (0.001)
3 moves† 0.103 0.110 0.158

(0.001) (0.001) (0.001)
4 or more moves† 0.102 0.157 0.148

(0.001) (0.001) (0.001)

Observation Counts
Number of families 123,951 89,316 89,241
Number of family-year observations 1,372,260 1,024,974 891,147
Number of observations with house moves 169,350 145,554 168,927

Note: The table shows summary statistics for families in the sample data, which is a panel of families who ever lived in
Auckland between 2008 and 2019. † indicates a mean of an indicator variable. Standard errors are in parenthesis below
each estimated mean. In accordance with Stats NZ confidentiality rules, the number of observations has been randomly
rounded to a multiple of 3 (RR3).
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A.8 Geographic Units

Figure A.16: Geographic Units
(a) Level 1

12,017 units.
2018 population: 73 (mean),

108 (median)

(b) Level 2

496 units.
2018 population: 2,942 (mean),

3,030 (median)

(c) Level 3

42 units.
2018 population: 34,741 (mean),

32,264 (median)

(d) Level 4

25 units.
2018 population: 58,365 (mean),

53,073 (median)

(e) Level 5

14 units.
2018 population: 104,223 (mean),

97,483 (median)

Note: The maps show the geographic area units used in this paper. The units are organized in a hierarchy of increasing size,
where each level’s units are constructed by aggregating the previous level’s units. Level 1 is set as Statistics New Zealand’s
meshblock unit, and Level 2 is set as their Statistical Area 2 (SA2) unit. Levels 3-5 are constructed by the author. The number
of units in the city and average population per unit (as of the 2018 census) are listed below each map.
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B Reduced Form Appendix

B.1 Distance to the Boundary and School

Figure B.1: Boundary Discontinuity Plots

(a) Decile Score

(b) Log Sale Price (c) Log Rent Price

Note: The figures show the mean outcome variable by 50 meter bins of the running variable. The running variable is
defined as distance to the boundary, where positive distances indicate the side of the boundary with the higher average
decile score. Estimates are calculated using a regression with indicators for each running variable bin as well as year
and boundary fixed effects. The distance bin of �500 is the omitted category. 95% confidence intervals are also plotted.

To give a graphical intuition of the BDD identification strategy, I show changes near the boundary in
the style of a regression discontinuity plot (Figure B.1).56 The running variable is the distance to the
boundary. I order the boundary sides so that the side with the higher (lower) average decile has positive
(negative) values on the running variable. I restrict my analysis to a window of 500 meters on either
side of the boundary. In (a), we see that there is a jump in the decile score close to the boundary.57

Subfigures (b) and (c) show that there also jumps in house prices, both in terms of sales and rents. In
56In these plots, I pool boundaries of all school levels into the regression.
57The change in decile score at the boundary is positive by construction. Due to the ordering of the boundary sides, the

higher quality side is on the right-hand side of the graph.
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Figure B.2, I show similar plots for other variables to check for other possible changes at the boundary.
One noticeable factor is a spike of sales on areas closest to the boundary (subfigure (c)). This spike occurs
on both sides of the boundary (and across many subsamples that I test), so it does not appear to threaten
the identification strategy.

Figure B.2: Boundary Discontinuity – Robustness Plots

(a) Land Area (b) Number of Bedrooms

(c) Number of Sales (d) Number of Rentals

Note: See notes under Figure B.1

Using the family panel, I calculate whether ethnic shares change discontinuously at the boundary. Bayer
et al. (2007) find this in their setting (the Bay Area in 1990). Figure B.3 shows that while ethnic shares
are changing, it does not appear to be in discontinuous manner. As New Zealand school zones are not
binding for admissions, this could point to less extreme sorting at the boundary, as compared to the
United States. The school zones will not be explicitly accounted for in the structural model (though they
will implicitly affect the school attendance probabilities). Implementing the zones into the structural
model would require defining locations in the model to be at a very small geographic unit. This would
make the estimation infeasible and/or highly imprecise. Monarrez (2021) finds that 5% of variation in
racial and school segregation in the United States is explained by school attendance boundaries. If this
effect is lower in New Zealand (as this evidence suggests), then it suggests choosing geographic units
larger than school zones can still account for the vast majority of segregation patterns.
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Figure B.3: Boundary Discontinuity – Ethnic Shares

(a) Share Polynesian (b) Share Asian

Note: See notes under Figure B.1

One concern is that the BDD necessarily only looks at a narrow geographic area. Moreover, it is an area
that is the furthest from the school. Therefore, the people who move into these areas may not fully reflect
the general population’s preferences. For example, they may place a lower value on schools. Figure B.4
shows how ethnic shares vary with distance from primary schools. There are also similar patterns of
changing ethnic shares for intermediate (Figure B.5) and high schools (Figure B.6). Areas very close to
low decile schools have a high share of Polynesians, but the white and Asian share increases as distance
to the school increases. In contrast, high decile schools have a lower white share further away from the
school. By focusing on areas that are far from the school, the BDD analyzes neighborhoods that could
differ substantially to the rest of the catchment areas. Therefore, the BDD may have limited external
validity, which is a particular concern when studying residential sorting and segregation.

Figure B.4: Ethnic Share by Distance to School (Primary)

Note: The figure shows a binned scatter plot of the average ethnic share by distance from the school. Ethnic shares are
calculated within each Level 2 area (Figure A.16b) using the individual-responses to the 2018 census. Averages are taken
over each school-area unit for areas that are within 10 kilometers from its respective school.
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Figure B.5: Ethnic Share versus School Distance (Intermediate)

Note: See notes under Figure B.4

Figure B.6: Ethnic Share versus School Distance (High School)

Note: See notes under Figure B.4
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B.2 Boundary Construction

In this section, I describe the construction of the boundary sample for the boundary discontinuity anal-
ysis.

The New Zealand Ministry of Education provided me with shapefiles for each school zone including
historical records to allow for assessing zone changes over time. These files come with the following
caveat: “The polygons representing the home zones do not have a high degree of spatial resolution nor
vertical alignment integrity. This file should not be used to perform spatial queries”.58

Figure B.7: School Zone Conversion Examples

(a) Example 1 (b) Example 2

Note: The maps show the conversion from the school zones reported in government records to a zone that is composed of
meshblocks (the geographic units). In blue, the reported zone is plotted. In orange, the meshblock-based zone is overlaid.
The darker regions represent where the two areas overlap.

In using the files, I observe two patterns. First, that the zones largely align with the boundaries of
meshblocks. These are geographic units defined by Statistics New Zealand and are analogous to U.S.
census blocks (I refer to them as Level 1 units in Figure A.16a). Second, I observe what appears to
be slight errors and irregular patterns near the boundary (e.g. borders that are parallel to, but not
overlapping with, meshblock boundaries). To account for these errors, and for computational efficiency,
I convert each school zone into a zone that is composed of meshblocks. I include a meshblock if more
than 50% of its area is covered by the reported zone.59 Two examples of this process are shown in Figure

58Source: https://www.educationcounts.govt.nz/data-services/school-enrolment-zones
59This majority-area threshold can generate greater inaccuracies the larger the meshblock. However, note that meshblocks
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B.7. While this conversion may cause potential errors in identifying the boundary, it does provide a
standardization to the zones and corrects for existing errors in the shapefiles. Moreover, it allows me
to express the spatial information in the form of a table, which significantly improves computational
efficiency as it minimizes the use of spatial queries.

Figure B.8: Zone Boundary Exclusion Example

Note: The figure shows how I exclude boundaries and select blocks into the preliminary sample. An example
zone is shown in green. The areas to be excluded (“exclusion area”) are plotted in pink. Segments of the zone
boundary that overlap with the exclusion area are plotted as dashed line. The figure then shows for a segment
of the non-excluded boundary (blue segment), the set of blocks that are assigned to it. These are blocks that are
less than 500 meters away and not closer to an excluded boundary segment. These boundary blocks are shaded
in yellow to red according to their distance to the boundary (darker indicates closer).

The next step is identifying potential boundaries for analysis. As is standard in the literature, I exclude
boundaries which may capture changes other than schools. In particular, I exclude any boundaries that
are close to highways, train tracks, major roads, as well as the coastline and limits of the urban area
(“excluded boundaries”).60 Of the remaining boundaries (“included boundaries”), I find meshblocks
whose centroids are less then 500 meters away from the boundary. I remove blocks that are closer to
an excluded boundary segment than they are to an included boundary segment. Figure B.8 shows an

are defined by Statistics New Zealand to have approximately the same number of households in each of them. Therefore,
meshblocks that are larger are, by definition, more sparsely populated. This means they will also be less relevant for the
analysis.

60I exclude a buffer around each of these features. I apply a 50 meter buffer to the transportation exclusions and a 100 meter
buffer to the coastline/urban area border.
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example of this process. Note that I do this for all zones and for all included boundaries.

The final step requires taking into account the uniqueness of the New Zealand system. Typically, catch-
ment areas are mutually exclusive. Therefore a boundary between two catchment areas is easily defined.
New Zealand school zones are more irregular than catchment areas in other regions. Here, zones are
independently set by schools (rather than being set by a centralized school district). This results in zones
that overlap, both within the same level and across school levels (as seen in Figures A.2 and A.3). To
ensure that the identification strategy is still valid, I find areas around a school zone boundary such that
houses on either side of the boundary are in-zone for the same set of schools, except exactly one school
(see Figure B.9). This means that I can attribute the change in house prices to the change of gaining (or
losing) guaranteed admissions to exactly one school. Without this, I could then attribute, for example, a
change in house prices to a change in primary school quality, when high school quality is also changing
across that same boundary. Additionally, these zones can change over time as schools introduce zones
or change their existing boundaries. Therefore, I re-determine the set of valid boundaries for each year
in the sample to account for these changes.61

Figure B.9: Zone Boundary Selection

Case 1: Adjacent Zones

A B

Case 2: Overlapping Zones

A B

Case 3: Additional Zone Overlapping

A B

C

Case 4: Unzoned Area

A B

As school zones can overlap, this can make the definition of a “boundary” less clear. I consider three
possible situations, which I plot as simplified diagrams in Figure B.9. Consider two zoned schools A

and B. If the two zones are adjacent (Case 1), then the boundary is the segment that separates them
(highlighted in red). If the two zones overlap (Case 2), then the boundary is still the same. In the dia-
gram, zone B is located within zone A. This means that families in zone B have guaranteed admissions
to both schools A and B. However, all that matters for the purposes of identification is whether there is
a discontinuous change in expected school quality at the border. The third case is if there is another zone
C that overlaps with the boundary (Case 3); then I exclude the border segment that is overlapping with

61A boundary is defined only for the years in which there are no changes to the zoning status of houses on either side of the
boundary. If the zoning status changes, then I define the boundary as a new boundary with a new fixed effect.
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zone C. In addition, when studying the A-B border, I also exclude the areas in A and B that overlap
with C (hatched areas). This is to ensure that I only focus on boundaries where one change is occurring.
Note that in this diagram it is also possible to study the A-C border and the B-C border separately.

Figure B.10: Comparison of Expected Zone Status

Note: The figure shows the distribution of boundary-side-years based on the proportion living in them who attend
a zoned school. The proportion attending a zoned school is shown on the horizontal axis. The proportion over all
boundary-side-years (the unit of observation) is shown on the vertical axis. I do this separately by boundary-side-years
that are covered by a school zone (“zoned”) and by those which are not covered by a school zone (“unzoned”).

Another possibility unique to New Zealand is a zoned school A that is adjacent to an unzoned school
B (Case 4 in Figure B.9). People living in these unzoned areas can still apply to any school; however,
they do not receive guaranteed admissions to the zoned schools. For my analysis, I exclude boundaries
where one side of the boundary is unzoned due to the potential for selection bias. Using information
about children’s home and school from the family panel, I determine what proportion of students living
in a boundary-side are attending a zoned school. I calculate this statistic for every boundary-side-year
in my sample and plot the distribution in Figure B.10. Unsurprisingly, I find that boundary-sides that
are covered by a school zone tend to have almost all their students attending a zoned school (left panel).
However, I find that unzoned boundary-sides still have a high proportion of their students attending
zoned schools (right panel). This suggests that being unzoned, at least close to the boundary, is typically
not a binding treatment. School attendance patterns in these areas appear to be driven more by parent
preferences than exogenous school assignment policies. This induces a correlation between (selected)
school quality and the error term, which may change discontinuously at the border and would therefore
not be accounted for by the boundary fixed effects. Additionally, the effect of being in a zoned area could
have an additional treatment effect (e.g. if zoning is viewed in of itself as more prestigious), which may
also bias the estimates of school quality valuation. To avoid these issues, I only focus on the analysis
where both sides of the boundary are zoned. This is also makes it more comparable to studies of other
settings, which often have mutually exclusive catchment areas that span the entire city.
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B.3 BDD School Quality Assignment

It is important to note that school zones change the probability of admissions (conditional on applying),
but families in New Zealand always have a choice in which school their child will attend. This raises
the concern that school zones may not be generating a meaningful difference in school attendance. In
other settings, catchment areas are typically binding and therefore the assignment of houses to schools
is relatively straightforward. The New Zealand setting can be considered closer to a fuzzy regression
discontinuity design. The identification strategy still follows as the exogenous variation will be of a
discontinuous change in the expected school quality.

The expected school quality can be calculated as the average decile score, weighted by the probability
of attending each school (in a given boundary-side-year). This can be interpreted as the ex ante school
quality a family would expect to enjoy if they moved into the area. However, this method requires
attendance probabilities to be estimated for all boundary side-years (as zones can change over time,
these probabilities need to be re-calculated for each year). This is empirically challenging as the BDD
requires defining a narrow area around a boundary, which means that these probabilities are estimated
from potentially small samples.

Figure B.11: Comparison of Expected School Quality

Note: The figure shows a comparison between the expected decile score using a simple assignment rule versus expected
decile score using attendance probability weights from the empirical distribution. Each unit is a boundary-side-year,
which have been binned by their predicted (assignment-based) decile score to calculate the mean observed (attendance-
based) decile score.
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To circumvent this, I use an assignment rule instead of weighting by probabilities. I assign each home
to a school using a simple rule: school quality is calculated as the average quality for all schools that the
house is in-zone for; if it is not in-zone for any school, then assign the quality of the nearest unzoned
school.

For areas with large enough samples, I am able to calculate the actual attendance probabilities. There are
areas that have large enough populations on both sides of the boundary. I use this to check whether the
expected school quality using attendance weights matches the expected quality using my assignment
rule. Figure B.11 shows that these align for the most part. One exception is intermediate and high
schools between deciles 2 to 4. It appears in these areas that families are sending their children to much
higher decile scores that one would expect. I find that this is largely driven by the unzoned areas, which
will be dropped for the reasons explained above.

Figure B.12: Changes in Attendance Probability

Note: The figure compares how attendance probabilities for a school vary on each side of a boundary-year. Sides of a
boundary are categorized as “low” and “high” based on whichever has the higher average decile score. The figure plots
a binned scatterplot by binning attendance probabilities on the high boundary side. The mean attendance probability
(for the same school) on the low side is plotted on the vertical axis. The 45� line indicates equal attendance probabilities
on both sides. Points above the 45� line indicate schools that are more likely to be attended on the low side than the high
side. Points below the 45� line indicate schools that are more likely to be attended on the high side than the low side.

Using these probabilities, I also check to see if there is a discontinuous change in the attendance prob-
ability at the the zone boundary. As in the boundary discontinuity plots of Figure B.1, I categorize the
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boundaries side into “high” and “low” according to which side has the higher average decile score. For
each side of the boundary (in each year), I calculate the probability of attending each school. This gives
data at the boundary-side-year-school level. I then compare the probability of attending a school m at
the low side of a boundary-year in comparison to the probability of attending the same school m but on
the high side of the same boundary-year. This is shown as a binned scatterplot in Figure B.12. I overlay
the 45� line, which represents equal attendance probabilities on both sides of the boundary-year. Points
that deviate from the 45� line are interpreted as a discontinuity in the probability of attendance. We see
that while the attendance probability on the two sides are correlated, there appears to be a discontinuity,
especially at the extreme points. In particular, for schools that have a more-likely-than-not probability
(>50%) of attendance on the high side, there is a less than 50% chance of attending these schools on the
low side.

B.4 BDD Robustness Checks and Benchmarking

In Tables B.1 and B.2, I conduct further robustness checks. I check for different restrictions on the dis-
tance from the boundary and find that the results hold even when I limit to houses 250 meters away
from the boundary. Dropping locations very close to the boundary results in larger WTP estimates,
which could be driven by sorting patterns. As schools can change their zones, it is possible that those
who value school quality the least are willing to live near a boundary that could potentially change in
the future.62 Another concern is that boundaries are defined over narrow areas, which could result in
focusing on sparsely populated areas. I restrict to areas with at least 50 families living on both sides of
the boundary (calculated via the family panel) and find the same results.

To put the results into context, other papers in the literature find that a 1 standard deviation increase in
elementary school quality causes a 3-4% increase in house prices (Black and Machin, 2011). For the New
Zealand setting, “a standard deviation increase in school quality” is best thought of as a one standard
deviation increase in the underlying (continuous) measure used to calculate the decile score (Figure A.4).
I calculate that such an increase corresponds to an increase of approximately 3 decile scores. Therefore,
a comparable result is that I find that a one standard deviation increase in elementary school quality
causes a 2.6% increase in house prices. To be clear, this is not a perfect comparison. The decile score
is a relative measure (a ranking), where the interpretation of standard deviation increase is not as clear
as in the case of test scores. However, this does suggest that the valuation of quality (as measured by
a BDD) is similar as compared to other contexts. My results are qualitatively similar to Caetano (2019),
who uses a structural model to estimate that parents most value high school, followed by elementary
schools, and middle school least.63

62Another reason could be due to errors in the geographic boundary information, as discussed in Appendix B.2, that results
in measurement error close to the boundary.

63Caetano (2019) finds a WTP (per child per year) of 37.1%, 21.2%, and 41.2% for a one standard deviation increase in ele-
mentary, middle, and high school quality, respectively. These magnitudes are substantially larger than others in the literature.
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Table B.1: Robustness Checks (Sales)

(1) (2) (3) (4) (5)
Between Between Between Boundary Attendance-
0�250m 50�500m 50�250m Year FE Based Decile

School Quality

High School 0.0336⇤⇤ 0.0458⇤⇤⇤ 0.0477⇤⇤ 0.0548⇤⇤ 0.0709⇤⇤⇤
(0.0147) (0.0133) (0.0178) (0.0220) (0.0258)

Intermediate 0.0006 �0.0103 �0.0063 �0.002 �0.0559⇤
(0.0115) (0.0107) (0.0087) (0.0123) (0.0315)

Primary 0.0091⇤⇤ 0.0069⇤⇤ 0.0084⇤⇤ 0.0082⇤⇤ 0.0060
(0.0039) (0.0031) (0.0037) (0.0034) (0.0058)

House Chars. Yes Yes Yes Yes Yes
Ethnic Shares Yes Yes Yes Yes Yes

N 75,795 111,084 58,233 128,646 105,066
R2 0.822 0.817 0.824 0.825 0.82
Clusters 39 39 39 39 39

(6) (7) (8) (9) (10)
Years Years Populated Level 4 Boundary

2009�2014 2015�2019 Areas Cluster Cluster

School Quality

High School 0.0608⇤⇤ 0.0442⇤⇤ 0.0383⇤⇤ 0.0350⇤⇤⇤ 0.0350⇤⇤⇤
(0.0293) (0.0182) (0.0174) (0.0121) (0.0132)

Intermediate �0.0015 �0.0031 �0.0096 �0.0024 �0.0024
(0.0096) (0.0209) (0.011) (0.0148) (0.0110)

Primary 0.0107⇤⇤⇤ 0.0045 0.0072⇤⇤ 0.0067⇤⇤ 0.0067⇤
(0.0037) (0.0042) (0.0035) (0.0028) (0.0036)

House Chars. Yes Yes Yes Yes Yes
Ethnic Shares Yes Yes Yes Yes Yes

N 69,918 58,728 103,365 128,646 128,646
R2 0.818 0.794 0.818 0.816 0.816
Clusters 37 39 39 23 452

Note: The table shows extensions to the regressions shown in Table 1a (see its notes for further details). Columns (1)-(3) subset
to houses within the specified distance from the boundary (baseline uses a 500m window). Column (4) uses a combined
boundary-year fixed effects. Column (5) uses the decile calculated based on empirical attendance probabilities (if available).
Columns (6)-(7) subset the years. Column (8) subsets to areas with more than 50 families living in each boundary side. Column
(9) uses Level 4 area (Figure A.16d) as the clustering variable (baseline uses Level 3). Column (10) clusters at the boundary level.
Significance stars thresholds: ⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01. In accordance with Statistics New Zealand confidentiality
rules, the number of observations has been randomly rounded to a multiple of 3 (RR3).
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Table B.2: Robustness Checks (Rents)

(1) (2) (3) (4) (5)
Between Between Between Boundary Attendance-
0�250m 50�500m 50�250m Year FE Based Decile

School Quality

High School 0.0224⇤⇤⇤ 0.0377⇤⇤⇤ 0.0338⇤⇤⇤ 0.0353⇤⇤ 0.0238
(0.0068) (0.0130) (0.0111) (0.0151) (0.0200)

Intermediate 0.0060 0.0068 0.0040 0.0068 �0.0115
(0.0050) (0.0074) (0.0059) (0.0076) (0.0310)

Primary 0.0008 0.0028 0.0058⇤ 0.0009 0.0010
(0.0032) (0.0038) (0.0032) (0.0042) (0.0057)

House Chars. Yes Yes Yes Yes Yes
Ethnic Shares Yes Yes Yes Yes Yes

N 178,650 292,284 157,527 313,404 237,456
R2 0.55 0.552 0.551 0.567 0.546
Clusters 39 39 39 39 39

(6) (7) (8) (9) (10)
Years Years Populated Level 4 Boundary

2009�2014 2015�2019 Areas Cluster Cluster

School Quality

High School 0.0514⇤⇤ 0.0239⇤⇤ 0.0388⇤⇤ 0.0281⇤⇤⇤ 0.0281⇤⇤⇤
(0.0210) (0.0114) (0.016) (0.0067) (0.0103)

Intermediate 0.0049 0.0127 0.0062 0.0086 0.0086
(0.0100) (0.0090) (0.007) (0.0082) (0.0067)

Primary 0.0020 �0.0008 0.0003 0.0002 0.0002
(0.0053) (0.0035) (0.0004) (0.0045) (0.0022)

House Chars. Yes Yes Yes Yes Yes
Ethnic Shares Yes Yes Yes Yes Yes

N 157,803 155,601 233,574 313,404 313,404
R2 0.568 0.537 0.542 0.551 0.551
Clusters 38 39 39 23 508

Note: The table shows extensions to the regressions shown in Table 1a (see its notes for further details). Columns (1)-(3) subset
to houses within the specified distance from the boundary (baseline uses a 500m window). Column (4) uses a combined
boundary-year fixed effects. Column (5) uses the decile calculated based on empirical attendance probabilities (if available).
Columns (6)-(7) subset the years. Column (8) subsets to areas with more than 50 families living in each boundary side. Column
(9) uses Level 4 area (Figure A.16d) as the clustering variable (baseline uses Level 3). Column (10) clusters at the boundary level.
Significance stars thresholds: ⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01. In accordance with Statistics New Zealand confidentiality
rules, the number of observations has been randomly rounded to a multiple of 3 (RR3).
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B.5 Additional Moving Profile Analysis

Figure B.13 shows the family’s moving probability relative to the mother’s age. In the moving pro-
file analysis, I always control for mother’s age and normalize the results to be relative to the moving
probability for a family with a 35 year-old mother.

Figure B.13: Moving Probabilities – Mother’s Age

Note: The figure shows the moving probability for the family given the mother’s age. Estimates are from a regression of
a moving indicator on dummies for each age of the mother. 95% confidence intervals are plotted.

In Figure B.14, I show that patterns seen in Figure 4 generalize to families with multiple children. I find
that the intertemporal moving profile differs between the eldest and youngest child. Notably, families
are far less likely to move at the time of youngest child’s birth as compared to the time of the eldest
child’s birth. This suggests that moves when children are born are not simply explained by, for example,
moves to larger houses to accommodate the larger family. It is however, once again, consistent with
dynamic behavior. If parents are forward-looking and account for their future needs when their eldest
child is born, then this lowers the need to re-adjust their location when their other children are born.
This figure also emphasizes that a structural model needs to take into different family sizes and the
children’s birth order when considering the family’s moving choice.

Finally, to show that schools (and not other factors) are driving the effects seen in Figure 4, I leverage
cut-offs in school entry rules to identify plausibly exogenous variation in the child’s grade. Traditionally
in New Zealand, children enroll in primary school close to their 5th birthday. Children who enroll in the
first half of the year are placed in first grade and begin their education at age 5. Children who enroll
in the later half of the year are placed in a “grade zero” cohort that accommodates them until they can
enter first grade at the start of the following year. These children therefore begin first grade at age 6.
As a result, two children born in the same calendar year may be in different school grades due to their
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Figure B.14: Moving Probabilities – Child’s Grade and Birth Order

Note: The figure shows the moving probability given the grade and birth order of the child. I regress a moving indicator
on dummies for each grade of the child (interacted with birth order) and dummies for each age of the mother. Each
point is equal to the grade-order-specific coefficient plus the coefficient for age 35 mother. 95% confidence intervals are
plotted. Middle children are excluded from the regression. Depending on the age they start school, the child’s birth is
represented at either grade �5 or �4. Shaded regions indicate the ranges for each school level: primary (grades 1-6),
intermediate (grades 7-8), and high school (grades 9-13).

month of birth. As Figure B.15 shows, those born in July or later tend to start first grade at age 6, while
those born before March tend to start at age 5.64

I estimate the moving probabilities by age (rather than grade) of the child for families of two cohorts:
children born between January and March (age 5 starters), and children born between July to December
(age 6 starters). Figure B.16 shows that the two cohorts have similar moving profiles before children
start school, which is expected as they are born in the same year.65 However, after they start school, we
see the age 5 starters have a moving profile that is shifted by one period forward as compared to the
age 6 starters. In particular, we see the same spikes as in Figure 4, however, their timing reflects that the
determinant is the grade of the child rather than their age.

64Schools can set their own entry cut-off dates, which tend to range between April and July. Parents can also choose when
their child begins school (until age 6, after which school is compulsory). For my analysis, I exclude those born between April
to June due to potential selection bias.

65For the July-December cohort, one noticeable difference is that their families are more likely to move at age 1. This is likely
explained by the fact that they are born in the later half of the year, while I determine residence at an annual basis based on the
most lived house within each year. Therefore, the effect that a new child has on moving propensity likely would not be fully
captured for this cohort until the year following their birth.
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Figure B.15: Age at First Grade by Month of Birth

Note: The figure shows the mean age at first grade by the month of birth for all children in the sample data. Age is
calculated as year enrolled in first grade minus year of birth. Vertical lines represent the range of dates (1 April to 30
June) where schools typically set their entry cut-offs.

Figure B.16: Moving Probabilities – Child’s Age

Note: The figure shows the moving probability given the age of the child. I regress a moving indicator on dummies for
each age of the child (interacted with a cohort indicator) and dummies for each age of the mother. Each point is equal to
the age-cohort-specific coefficient plus the coefficient for age 35 mother. 95% confidence intervals are plotted. The cohort
indicator represents being in born between January–March or July–December (those born April–June are excluded). The
first cohort begins school at age 5, while the second cohort begins school at age 6. Shaded regions indicate child’s birth
(age 0) and the start of each school level for the respective cohorts.
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C Model Appendix

C.1 Model Details

C.1.1 Children, Entry, and Exit

The model focuses on the choices of families with children. This means I need to specify: (i) the time
periods for which this model represents a family’s decision-making, and (ii) how the family composition
changes as children are born.

On the first point, my goal is to study the family’s choices for the periods where children are most likely
to play an important role. This means I restrict the decision window for each family to be a few years
before a family has their first child up to a few years after their youngest child finishes high school.
This simplification is to keep the focus on the residential choice of families rather than groups such as
childless college students or retirees. These groups may have very different preferences from families,
which would not be well captured by this model.66

On the second point, I simplify the problem by abstracting away from how families decide when to
have children (and how many to children to have). I assume that the total number of children each
family will have is exogenous and fully anticipated by the parents. However, I introduce randomness
by having the timing of each subsequent birth to be drawn from an exogenous distribution. While the
timing of subsequent births is random, I model the parents as fully anticipating the birth of a child
by some number of periods. Figure C.1 illustrates how this process plays out for a family with two
children. In reality, the true decision-making around having children is far more complex; however
these simplifications still capture the main patterns of family composition observed in the data.

Next, I specify the above assumptions using the model notation. Each family i has Ci 2 N+ children. A
child c 2 Ci is born in period T b

ic and therefore is of age aitc = t�T b
ic at time t. Ci is fully anticipated and

exogenous. The probability that child c will be born in period t is based on a distribution B :

Pr(T b
ic = t) = B (Ci, Cit, ait,c�1) (C.1)

where Cit is the number of children in family i at time t, and ait,c�1 is the age of the previous child at
time t. Note that this distribution varies by type  to allow for different family compositions across
types. For a child born in period T b

ic, the family will know b periods prior that the child will be born, i.e.
they know in period T b

ic � b that their child c will be born in period T b
ic.

In a given period, there will be Nt agents in the economy. Families enter the economy under two possible
66As Figure C.6 shows, the spatial distribution of parents can look very different to these (childless) younger and older

groups, suggesting fundamentally different location preferences.
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scenarios. They either enter when their eldest child’s (c = 1) birth is known, which is at period T 0
i =

T b
i1� b. Alternatively, they can enter exogenously through migration (where their children can be of any

age upon entry). When families enter, their initial location will be assigned exogenously. Agents also
exit the model once their youngest child (c = Ci) reaches adulthood, which will be defined as b̄ periods
after birth. This is denoted as T 1

i = T b
i,Ci

+ b̄.

Figure C.1: Child Birth Process

Time t

Time t + 1

Time t + 2

Time t + 3

Time t + 4

Time t + 5

First child born
(Cit = 1)

Second child
known

Second child born
(Ci,t+1 = 2)

No second child

Second child
known

Second child born
(Ci,t+2 = 2)

No second child

Second child
known No second child

Second child
known

Note: The diagram illustrates the family composition transition for a two-child family (Ci = 2) who
has their first child born in period t and do not yet know the timing of their second child’s birth. The
diagram shows the possible options at each stage, with an announcement lag of three periods (b = 3).
After the second child is born, they know with certainty that there will be no more children.
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C.1.2 Intraperiod Timing

In period t, the family chooses their action dt as a function of the state sit = (kit, wt, ⌘t, "it). However,
kit is actually a vector of t � 1 variables, such as home location (hi,t�1) and tenure (⌧i,t�1). These t � 1

variables represent the family’s current living situation at the start of period t and are simply expressed
as kit for notational convenience.

The timing in the model works as follows:

1. Period t starts. kit = ( i, hi,t�1, ⌧i,t�1,mi,t�1, ai,t�1, gi,t�1, Ci,t�1) and !t = (wt, ⌘t) are known at the
start of the period.

2. "it shocks are realized and observed by the agents but not the econometrician.

3. Agents choose their action (dt) based on sit and their expectations of how these variables will
evolve over time.

4. Flow utilities for period t are realized.

5. Period t ends.

6. State transition occurs:

• kit transitions to ki,t+1, e.g. families move into their new locations (hit), children move into
the next grade (git), and the children’s school assignment is realized (mit).

• Market variables transition from !t to !t+1.

7. Period t+ 1 starts. Now, ki,t+1 and !t+1 are known.

C.1.3 Observable Flow Utility Components

Table C.1 provides a summary of the components of ū(j, kit, wt). In this section, I provide the specific
parameterizations of each component to complement the descriptions given in section 4.3.

The school quality (SQ) experienced by the family is:

SQ(ki,t+1, wt) =
⇣
✓Prim
 · {git 2 [1, 6]}+

✓Int · {git 2 [7, 8]}+

✓HS
 · {git 2 [9, 13]}

⌘
⇥ qt(mit) (C.2)

where qt(mit), a component of wt, is the school quality measure of the school mit at time t. The parame-
ters ✓Prim

 , ✓Int , ✓HS
 capture the valuation of quality at the primary, intermediate, and high school level,
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respectively (all of which can differ by type  ). The relevant parameter is used depending on the child’s
current school level.67 Note that per the notation in section 4.2, git and mit are components of ki,t+1.

The school moving cost (SMC) is expressed as:

SMC (ki,t+1,mi,t�1) =
⇣
�Prim
 · {git 2 [2, 6]}+

�Int · {git 2 {8}}+

�HS
 · {git 2 [10, 13]}

⌘
⇥ {mit 6= mi,t�1} (C.3)

As the expression shows, this cost is paid as a child changes schools (mit 6= mi,t�1), but not if the child
begins a new school level (where git = 1, 7, 9 are the starting grades for primary, intermediate, and high
school, respectively). Consistent with the other school variables, there is a separate school moving cost
parameter associated with each school level and family type. We should expect all these parameters
(�Prim
 , �Int , �HS

 ) to be negative.

The distance to school component, represented by DS(ki,t+1), is calculated using the distance between
the home location (hit) and the assigned school (mit). As in Equation (C.2), I include separate coefficients
on distance for each school level and family type.

DS(ki,t+1) =
⇣
Prim
 · {git 2 [1, 6]}+

Int · {git 2 [7, 8]}+

HS
 · {git 2 [9, 13]}

⌘
⇥ dist(hit,mit) (C.4)

For the outside option school, I set the utility from school quality (SQ) and distance (DS) to be zero.
There is still a moving cost associated with changing schools between the outside option and the public
schools. Note that the outside option school is different to the outside option location. Children living
inside the city can attend the outside option school (e.g. a private school). In contrast, the outside
option location has no explicit school payoff associated with it (see Assumption 5). The outside option
component to the school utility, OOS(ki,t+1), has a different (fixed) value by school level and family type
in the same way as Equation (C.2). Let mit = 0 represent attending the outside option school.

OOS(ki,t+1) =
⇣
oPrim
 · {git 2 [1, 6]}+

oInt · {git 2 [7, 8]}+

oHS
 · {git 2 [9, 13]}

⌘
⇥ {mit = 0} (C.5)

67Recall that primary school is grades 1-6, intermediate is grades 7-8, and high school is grades 8-13.
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Finally, there is a moving cost, which is parameterized as:

MC (j, kit) =

8
>>><

>>>:

�F + �D · dist (j, hi,t�1) if j 2 L and hi,t�1 2 L

�O if j = 0 or hi,t�1 = 0

0 if j = stay

(C.6)

where �F is a fixed cost to moving and �D is a per kilometer moving cost. These are paid for moves
within the city. For moves between the city and the outside option, there is a fixed cost of �O . Families
who stay in their current home do not pay a moving cost. If there is a disutility to moving (as we would
expect), then the parameters �F , �

D
 , �

O
 will be negative.

Table C.1: Observable Flow Utility Components

Category Component Symbol Interpretation

School School Quality SQ Measure of school quality experienced
by the family in location l at time t

Distance DS Distance to school from location l

School Moving Cost SMC Cost of a child changing their school
within the same school level

Outside option OOS Value of outside option (non-public)
school

Neighborhood House Prices r Price index for housing for location l at
time t

Type Shares TS' The share of the population in location l
at time t that are of type ' 2  

Moving and
Location

Location Effects � Time-invariant characteristics for
location l

Tenure ⌧ Number of years in current home

Moving Cost MC Cost of moving from current location to
location l
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C.1.4 Child-Related Transition Processes

Recall that the number of children Cit transitions as described in section C.1.1 and Equation (C.1).

For the school variables, I distinguish between the age and the grade of the child, as these do not map
one-to-one. In New Zealand, children born between January and April tend to be age 5 in the first grade,
while those born May to December tend to be age 6 (Figure B.15). Therefore, assuming the month of
birth is exogenous, I express the grade transition as:

gitc =

8
>>><

>>>:

a⇤ � 4 with probability 1/3 if aitc = a⇤

a⇤ � 5 with probability 2/3 if aitc = a⇤

gi,t�1,c + 1 if aitc > a⇤

8c 2 {1, ..., Cit}

At age a⇤, children are assigned randomly to an initial grade cohort.68 After that, their grade also
increases by one each year. There could be a concern that some children may not progress by one
grade each year (e.g. if they are held back or skip a grade). However, I will simply assume this away as
it is empirically infrequent.69

The child’s school assignment, mitc, will be modeled as changing exogenously as a function of the fam-
ily’s location, the child’s grade, and the chosen action. The probability of being assigned to school mitc

is made up of two parts:

1. A new draw from the school assignment distribution, which depends on the child’s grade and the
family’s location. Call this distribution MNew

t (hit, gitc)

2. The probability of re-drawing from the school assignment distribution (I refer to this as the “re-
assignment probability”). This probability is modeled as:

MRA(dit, gitc, hi,t�1) =

8
<

:
⇢ if dit 2 {stay} [R (hi,t�1) and gitc 62 {1, 7, 9}

1 otherwise

where R (hi,t�1) is the set of locations in the local region of hi,t�1.

I model the school assignment in the following way. If family stays in their current location or moves
to a nearby location (as captured by R (hi,t�1)), their child will stay at the same school as before with

68To be clear, the probabilities are assigned as a one third probability of being born between January and April, and two
thirds probability of being born in May to December. The initial grades assigned at age a⇤ are negative purely for notational
convenience, e.g. if a⇤ = 0, then a starting grade of �4 means that the child reaches grade 1 at age 5.

69In the school records, over all child-year observations, I find that children move up by exactly one grade in a subsequent
year in 98.6% of observations.
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probability 1 � ⇢. The one exception is if the child begins a new school level, which occurs at grades 1,
7, and 9. In these cases – if the family moves far from their original home or if their child graduates to a
new school level – then the child will receive a new school assignment draw with probability 1. If a new
draw does occur, then it follows the distribution MNew

t (hit, gitc).

This means that the full school assignment probability is given by:

mitc ⇠ Mt (dit, gitc, hi,t�1) =

8
<

:
MNew

t (hit, gitc) with probability MRA(dit, gitc, hi,t�1)

I {mi,t�1,c} otherwise
(C.7)

where I {mi,t�1,c} is the degenerate distribution for the previous school, mi,t�1,c. The assignment dis-
tribution MNew

t is indexed by t as it is implicitly a function of the school zones and lottery process
(which are all captured by !t). This function can therefore also capture changes over time such as the
introduction of zones and the opening/closing of schools.

These modeling choices are supported by empirical patterns. In Figure C.2, I show that the probability
of a school change among those who stay in their current home is low but non-zero (approximately 3-4%
for most grades). This is evidence that ⇢ > 0.

Figure C.2: Probability of School Changing by Grade (Non-Movers)

Note: The figure shows the proportion of child who attend a different school than the previous year,
calculated by the grade of the child. This proportion is calculated only among families that stayed in
the same home as the previous year. Grades 1, 7, and 9 are excluded as these are the starting grades
for each school level (primary, intermediate, and high school, respectively).
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Relatedly, Figure C.3 shows that the probability of a school change increases with distance, and that this
is especially true for primary school students (likely because the catchment areas tend to be smaller).
This suggests that moves to a nearby location should have a different likelihood of school re-assignment
than moves to a distant location. Finally, note that the school assignment probability Mt does not differ
by type  . Figure C.4 shows that the distribution of distances between home and school looks nearly
identical across the three ethnic groups. This suggests that – conditional on location – their school
attendance patterns are likely to be similar, which is evidence in support of this parameterization.

Figure C.3: Probability of School Changing by Move Distance

Note: The figure shows, among families who moved houses, the proportion of child who attend a
different school than the previous year, relative to the distance of the move. The moving distance is
calculated (in kilometers) as the straight line distance between Level 1 (Figure A.16a) centroids. This
is calculated separately by school level, and only among students who continue to be in the same
school level before and after the move.

As schools are a central part of the research question, it is worthwhile to discuss the caveats of modeling
the school assignment process in this way. In the estimation, the school assignment distribution MNew

t

will be estimated using the empirical school attendance probabilities conditional on where students
live. This means that this distribution will capture a combination of the true admission probabilities
(e.g. arising from school zones and lotteries) as well as parent preferences. In theory, these could be
separately identified. However, doing so would require having additional data about the application
process – for example, the set of schools that each family applied to and which of them they were
admitted into.70

To see the potential issue with my modeling approach, consider the following example. Suppose I
70Due to the decentralized nature of the school system, such data is not collected by the New Zealand Ministry of Education.
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Figure C.4: Distance to School Distribution, by Ethnicity

Note: The figure shows the cumulative distribution of the distance between home and school. Dis-
tance is calculated in kilometers as the straight line distance between the Level 1 (Figure A.16a) cen-
troid of home location and the school coordinates. This is calculated separately by ethnic group.

observe all families living in location A sending their children to school Z. Would it be reasonable to
assume that any family who then moves to location A will also send their child to school Z? This is a
plausible assumption if non-individual factors such as admissions zones or distance largely determine
the choice of school. If it is instead driven by some other parent preferences, then making such an
extrapolation may bias the estimates. This is because families who move to location A in a counterfactual
world may not share the same preferences as those who we observe in the data as living in location A.

Figure C.5 shows that most zoned schools have a high proportion of their students living inside their
zone, and that this is especially true at the highest and lowest deciles. Figure A.10 also shows that chil-
dren tend to attend the schools that are closest to their homes, emphasizing the importance of distance.
As these factors (zoning and distance) appear to play an important role in the school decision process,
it seems that location and observed attendance patterns can reasonably approximate the school choice
process.
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Figure C.5: Fraction of Students Living In-Zone

Note: The figure shows the the proportion of student living inside a school’s zone (vertical axis)
relative to the decile score of the school (horizontal axis). The decile score values receive a small
perturbation to show variation. Each observation represents a school-year for the period 2011 to
2018. The 2011-2014 observations (blue) have decile scores there were assigned in 2008. The 2015-
2018 observations (orange) have decile scores there were assigned in 2015. Box plots are overlaid
for each decile score to show the 25th percentile, median, and 75th percentile across all school-years
within the decile score.
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C.2 Supporting Figures

Figure C.6: Spatial Distribution of Population Subgroups (2018)

(a) Parents (b) No Dependents, Aged Under 45

(c) No Dependents, Aged 45-65 (d) No Dependents, Aged Over 65

Note: The maps show the spatial distribution of groups within the Auckland urban area using the 2018 census. For
each group, I shade each location (Level 2 unit, Figure A.16b) according to the fraction of the group’s total (city-wide)
population that is living in that location. The groups are parents (those living with dependent children) and three groups
of non-parents (over 18 year-olds without dependents). The non-parents are grouped by their age.
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Figure C.7: Moving Probability versus Tenure

Note: The figure shows the mean proportion of families moving given the number of years lived in
their current home. This is calculated separately by ethnic group.

Figure C.8: Moving Distance Distribution

Note: The figure shows the distance between the previous and new home location among households
who move within Auckland city. The moving distance is calculated as the straight line distance
between Level 1 (Figure A.16a) centroids. Each bin represents 2 kilometers.
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Figure C.9: Moving Distance versus Tenure

Note: The figure shows, conditional on moving, the mean moving distance (in kilometers) given
the number of years lived in previous home. The moving distance is calculated as the straight line
distance between Level 1 (Figure A.16a) centroids. This is calculated separately by ethnic group.
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C.3 ECCP Illustration

Consider a family living in location O at the beginning of period t. For period t + 1, suppose they can
choose (dt) between moving to location A or to location B, which is chosen depending on the value
received from each action. The empirical challenge in estimating a dynamic problem is in separating the
flow utility from the continuation value for each action’s payoff.

The ECCP methodology overcomes this challenge. Now, regardless of their chosen dt action, suppose
that the family chooses (dt+1) to move to location C in period t + 2. We can then compare the payoff
of the action tuple (dt, dt+1) = (A,C) to that of (B,C), as illustrated in Figure C.10. The key insight
is that upon arriving in location C, the family’s continuation value is the same regardless of their past
actions. In either case, the family is new to location C, which means they will lose any of their previously
accumulated tenure capital and would have to re-enroll their children in new schools.

Figure C.10: ECCP Example Diagram

O

A

B

t t+ 1 t+ 2

d

d0

C

d00

d00

Note: The diagram illustrates the ECCP methodology for this setting. In period t, the family lives in location O. One
option is to choose action dt = d that leads to living in location A in period t+ 1. Another option is dt = d0, which leads
to living in location B in t + 1. Following this, an action dt+1 = d00 in period t + 1 that leads to living in location C in
period t+ 2 means that the family will end up in the same state regardless of their past choice in period t.

As the value of C at t + 2 is identical regardless of their past behavior, that means that if we compare
the payoff of the action path O ! A ! C versus the path O ! B ! C, then the difference will only be in
terms of payoffs that occur between O and C. All future expected payoffs from t + 2 onwards will get
cancelled out when taking this difference. With this, we can then conclude that the relative likelihood of
observing the action path (O ! A ! C) over (O ! B ! C) can be explained by three components:

Relative

likelihood of

(O ! A ! C)

versus

(O ! B ! C)

=

Difference in

moving cost of

(O! A)

versus

(O! B)

+

Difference in

flow utility

of living in

A versus B

+

Difference in

moving cost of

(A! C)

versus

(B! C)
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C.4 ECCP Derivation

This derivation follows sections 2.1 and 3 in Kalouptsidi et al. (2020). Variables and notation definition
follow those described in section 4.

C.4.1 Setup

The value function of the family’s maximization problem at time t is:

V (sit) = max
d2D

{⇧(d, sit) + �Es [V (si,t+1)| d, sit]}

where ⇧(d, sit) is the per period utility defined in Equation (3).

The ex-ante value function is defined as the expectation of the value function, taken over the idiosyn-
cratic errors "it:

Ṽ (kit,!t) ⌘ E" [V (kit,!t, "it)]

The choice-specific (or conditional) value function of an action d is defined as:

vd(kit,!t) ⌘ u(d, kit,!t) + �E
h
Ṽ (ki,t+1,!t+1)

��� d, kit,!t

i
(C.8)

With Type 1 extreme value errors (Assumption 3), the conditional choice probability of an action d is
given by:

pd(kit,!t) = Pr (dit = d| kit,!t)

=
exp (vd(kit,!t))P

d02D exp (vd0(kit,!t))
(C.9)

And the ex-ante value function can be expressed as:

Ṽ (kit,!t) = log

 
X

d02D
exp vd0(kit,!t)

!
+ � (C.10)

where � is Euler’s constant.

For a fixed action d, (C.9) can be substituted into (C.10) to express the ex-ante value function as:

Ṽ (kit,!t) = vd(kit,!t)� ln pd(kit,!t) + � (C.11)

91



Note that (C.11) holds for any action d 2 D.

Lastly, the expectational error is defined. For a true realization of the market state variables !t+1 2 ⌦,
the expectational error eVd is given by:

eVd (kit,!t) =
X

k02K

h
E!0

h
Ṽ (k0,!0)

���!t

i
� Ṽ (k0,!t+1)

i

| {z }
prediction error for a
realized value of k0

F k
�
k0
�� d, kit, wt

�

= Ek,!

h
Ṽ (ki,t+1,!t+1)

��� d, kit,!t

i
� Ek

h
Ṽ (ki,t+1,!t+1)

��� d, kit
i

(C.12)

where k0 2 K and !0 2 ⌦ denote the possible next period (t + 1) values for kt and wt. The expectation
error is calculated as the corresponding prediction error in ! for a given k0, and then integrating this over
the realizations k0 of the state variable kt+1. In the second line, notice that the first term is an expectation
over k and !, while the second one is only over k.

C.4.2 Flow Utility

Using the definition of choice-specific value function (Equation C.8), we can express the flow utility as
follows:

udt(kit) = vdt(kit)� �Ek,!

h
Ṽt+1(ki,t+1)

��� d, kit,!t

i
(C.13)

where the d and t subscripts are used as a shorthand to eliminate writing d and !t as an input to a
function (similarly, a t+ 1 indicates !t+1 as an input).

The first term of (C.13), the choice specific value function, can be expressed using Equation (C.11):

vdt(kit) = Ṽt(kit)� � + ln pdt(kit) (C.14)

The second term of (C.13), the expected continuation value, is given by re-arranging Equation (C.12):

Ek,!

h
Ṽt+1(ki,t+1)

��� d, kit,!t

i
= Ek

h
Ṽt+1(ki,t+1)

��� d, kit
i
+ eVdt(kit)

=
X

k02K
Ṽt+1(k

0)F k
�
k0
�� d, kit, wt

�
+ eVdt(kit)

= F k
dt(kit)Ṽt+1 + eVdt(kit) (C.15)

where Ṽt+1 =
h
Ṽt+1(k)

i

k2K
is a K ⇥ 1 vector and F k

dt(kit) is a 1⇥K transition vector defined in section

4.5.1.71

71In other words, F k

dt(kit = k⇤) =
⇥
F k (ki,t+1 = k1| d, kit = k⇤, wt) , · · · , F k (ki,t+1 = kK | d, kit = k⇤, wt)

⇤
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Substituting (C.14) and (C.15) into (C.13) gives:

udt(kit) = Ṽt(kit)� � + ln pdt(kit)� �F k
dt(kit)Ṽt+1 � �eVdt(kit)

To further simplify the notation, I omit the kit input for brevity. Throughout the remainder of the deriva-
tion, we should consider kit as fixed to some value k⇤ (as in section 4.5.1). This means the flow utility is
expressed as:

udt = Ṽt � � + ln pdt � �F k
dtṼt+1 � �eVdt (C.16)

C.4.3 ECCP Equations

Starting from the initial point kit = k⇤, using Equation (C.16), consider two different actions d and d0:

udt = Ṽt � � + ln pdt � �F k
dtṼt+1 � �eVdt

ud0t = Ṽt � � + ln pd0t � �F k
d0tṼt+1 � �eVd0t

Taking the difference of the above equations and re-arranging:

udt � ud0t = ln pdt � ln pd0t � �
⇣
F k
dt � F k

d0t

⌘
Ṽt+1 � �

�
eVdt � eVd0t

�

ln
pdt
pd0t

=udt � ud0t + �
⇣
F k
dt � F k

d0t

⌘
Ṽt+1 + �

�
eVdt � eVd0t

�
(C.17)

Next, we find an action d00 that is a renewal action, as defined in section 4.5.1. Formally, a renewal action
d00 (taken at t+ 1) satisfies the following property given the two actions d and d0 (taken at t):72

F k
dtF

k
d00,t+1 = F k

d0tF
k
d00,t+1 (C.18)

where Fk
dt =

⇥
F k
dt(k)

⇤
k2K is the K⇥K transition matrix defined in section 4.5.1. Recall that F k

dt = F k
dt(k

⇤)

as we are implicitly keeping kit fixed at k⇤.

Consider Equation (C.16) iterated forward by one period to t+ 1 and with the chosen action as di,t+1 =

d00:
ud00,t+1 = Ṽt+1 � � + ln pd00,t+1 � �F k

d00,t+1E!|t+1

h
Ṽt+2

i
(C.19)

The continuation value expressed in (C.19) is simply an alternative formulation of the iterated-forward
72Kalouptsidi et al. (2020) define a renewal action as an action that if taken “in period t + 1 leads to the same distribution

of states at the beginning of time period t + 2, regardless of which state the agent was in during period t” (emphasis mine). This
definition does not exactly apply in this situation, given that renewal actions are chosen based on state kit and past actions
(d, d0) to ensure Equation (C.18) holds. However, I will use the term here as it conveys the same intuition as in other cases
where renewal actions are used (Almagro and Domínguez-Iino, 2021; Scott, 2013; Rust, 1987).
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version of (C.15).73

To simplify notation, define the following K ⇥ 1 vectors: ud00,t+1 =
h
ud00,t+1(k)

i

k2K
, � =

h
�
i

k2K
and

lnpd00,t+1 =
h
ln pd00,t+1(k)

i

k2K
. Since Ṽt+1 is a vector of Ṽt+1(k) terms, this means we can use Equation

(C.19) to express it as:

Ṽt+1 =
h
ud00,t+1(k) + � � ln pd00,t+1(k) + �F k

d00,t+1(k)E!|t+1

h
Ṽt+2

ii

k2K

= ud00,t+1 + � � lnpd00,t+1 + �Fk
d00,t+1E!|t+1

h
Ṽt+2

i

Recalling that kit is fixed at k⇤, this means we can derive the following relationship:

⇣
F k
dt � F k

d0t

⌘
Ṽt+1 =

⇣
F k
dt � F k

d0t

⌘ �
ud00,t+1 � lnpd00,t+1

�
(C.20)

This is because by the renewal action property, we have:74

F k
dtF

k
d00,t+1E!|t+1

h
Ṽt+2

i
= F k

d0tF
k
d00,t+1E!|t+1

h
Ṽt+2

i

Plugging Equation (C.20) into Equation (C.17) gives us:

ln
pdt
pd0t

=udt � ud0t + �
⇣
F k
dt � F k

d0t

⌘ �
ud00,t+1 � lnpd00,t+1

�
+ �

�
eVdt � eVd0t

�

ln
pdt
pd0t

+ �
⇣
F k
dt � F k

d0t

⌘
lnpd00,t+1 =ūdt + ⇠dt � ūd0t � ⇠d0t + �

⇣
F k
dt � F k

d0t

⌘
ud00,t+1 + �

�
eVdt � eVd0t

�

Therefore, the regression to estimate is:

ln
pdt
pd0t

+ �
⇣
F k
dt � F k

d0t

⌘
lnpd00,t+1 = ūdt � ūd0t + �

⇣
F k
dt � F k

d0t

⌘
ud00,t+1 + ✏dd0t (C.21)

where the econometric error term is defined as:

✏dd0t = ⇠̃dd0t + ẽVdd0t with ⇠̃dd0t = ⇠dt � ⇠d0t and ẽVdd0t = �
�
eVdt � eVd0t

�

Since d00 is a renewal action, then ud00,t(k) � SMCdt(k) � MCd00(k) is equal for all k 2 K (utility is the
same excluding the moving costs). Call this value ũ. This means that the following holds:75

⇣
F k
dt � F k

d0t

⌘
ud00,t+1 =

⇣
F k
dt � F k

d0t

⌘ h
ũ+ SMCdt(k) +MCd00(k)

i

k2K

= SMCd,d00,t � SMCd,d00,t +MCd,d00 �MCd0,d00

73Specifically, Ek,!

h
Ṽt+2(ki,t+2)

��� d00, ki,t+1,!t+1

i
= F k

d00,t+1

h
E!

h
Ṽt+2(k)

���!t+1

ii

k2K
= F k

d00,t+1E!|t+1

h
Ṽt+2

i

74The � term also goes away since the following holds for any d: F k

dt� = �.
75Footnote 74 gives a similar logic for this step. Footnote 25 defines the terms in the second line.
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D Estimation Appendix

D.1 State Space Choices

To make the state space manageable, I restrict to families who have at most two children: Ci 2 {1, 2}. I
also restrict the maximum gap between the first and second child to be 10 years. I set the age of grade
assignment as a⇤ = 4. This model component is discussed in Appendix C.1.4. The parameter choice is
also motivated by the data. In Figure B.16, I observe the moving probabilities for the two grade cohorts
diverging when they are both age 4. After age 4, it is the grade of the child (and not their age) that affects
the families choice probabilities.

I set b = 3 and b̄ = 25 , which means I look at the period from 3 years prior to the eldest child’s birth
to when the youngest child reaches 25. I set b = 3 as I observe a jump in moving probability at this
point in Figure B.16. As the average mother’s age at the time of a child’s birth is 35, I set b̄ = 25 as this
corresponds to when the average mother reaches age 60. While I use data on each family until their
youngest child turns 25. However, since children past high school are less relevant for my model (and
are fewer in numbers), I additionally simplify the state space by capping age to 22 and grade to 14. All
children with values above these are pooled together for the purposes of estimation.

Given these restrictions, I observe 674 possible child-age-grade combinations.

To set the locations, I need to discretize the city area. I combine geographical units defined by Statistics
New Zealand to create a hierarchy of distinct geographic areas as shown in Figure A.16. Level 1 and 2
units are defined by Statistics New Zealand (referred to as meshblocks and statistical area 2 (SA2) units,
respectively). The remainder are my own creation based on a grouping algorithm that takes into account
population size and local community board boundaries. The key point is that there is a many-to-one
match from each Level A unit to the subsequent Level A+1 unit, i.e. each geographic level is constructed
using the previous level’s units.

Locations are set as the Level 3 areas (Figure A.16c). There are |L| = 42 locations in the city. In 2018,
the population of these locations ranged from 15,867 to 65,130 people, with a median population of
32,264. Regions R(·) are set as Level 5 areas (Figure A.16e), where there are 14 in the city. Each region
has approximately |R(hi)| = 3 locations. The outside option is set as any location outside the Auckland
urban area, including overseas.76 This means that there are |D| = 2 + |L| = 44 possible actions (each
location plus the stay and outside option actions).

76For people who first immigrate to New Zealand, I do not include the years prior to their immigration as part of the
estimation.
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D.2 CCP Estimation Details

D.2.1 CCP Grouping Algorithm

In this section, I describe how I applied the grouping algorithm of Raval et al. (2017) to this setting.

Each observation corresponds to a state sit. I map each state into a set of features. These are partitioned
into two groups: immutable and mutable features.

f(sit) =
⇣

f1 · · · fN
| {z }

Immutable
features

��� f1 · · · fM
| {z }

Mutable
features

⌘

The algorithm aims to group observations with similar features. The requirement is that groups must
meet a minimum group size threshold, which I will call Smin. Observations are grouped in an iterative
process. If a group of observations meets the minimum group size, it is designated as a final group
and removed from the algorithm process. For all remaining observations, I drop their lowest ranked
mutable feature and repeat the process until the mutable features are exhausted. In other words, each
iteration, observations that are not part of large enough groups lose one level of specificity and are re-
pooled with otherwise similar observations in the hopes of making a large enough group. This process
is summarized in Algorithm 1.

Algorithm 1 Grouping Algorithm

Assign each observation their set of features f(sit), with N immutable features and M mutable fea-
tures
for m = 0 to M do

Group remaining observations based on the N immutable features and the first M � m mutable
features, i.e. f1, ..., fM�m. For m == M", use no mutatable features.

Allocate group identifiers to groups that have a size Sg that meet the minimum threshold, i.e.
Sg � Smin

Remove observations with a group identifier
end for
Drop any remaining observations without a group identifier

To implement the above algorithm, I need to set the features and the minimum group size. I use a
threshold of Smin = 25. To allow for more specific groupings, I bin several variables to increase the
number of features to choose from. The feature order I choose, from highest to lowest ranked, is as
follows:
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Grouping Algorithm Features

Immutable Features (1 � N)

1. Non-binned variables:

(a) Type  2  

(b) Number of dependents
⇣PCit

c=1 {aict  22}
⌘
2 {0, 1, 2}

2. Broadly binned variables:

(a) Broadly binned age/grade:†

• aB2 2 {{�3}, [�2, 0], [1, 3], [4,1)}
• gB2 2 {[�8,�2], [�1, 1], [2, 5], [6, 7], [8, 9], [10, 13], [14,1)}

(b) Broadly binned year: tB2 2 {[2008, 2013] , [2014, 2019]}
(c) Broadly binned home: level 4 locations, see Figure A.16d

Mutable Features (1 � M)

1. Binned tenure:⇤ ⌧B 2 {[0, 1] , [2, 3] , [4, 5]}

2. Home: h 2 L [ {0}, level 3 locations, see Figure A.16c

3. Binned year: tB 2 {[2008, 2010] , [2011, 2013] , [2014, 2016] , [2017, 2019]}

4. Binned age/grade of the child:†

• aB 2 {{�3}, [�2,�1], {0}, [1, 2], {3}, [5,1)}
• gB 2 {[�8,�2], {�1}, {0}, {1}, [2, 5], {6}, {7}, [8, 9], [10, 11], [12, 13], [14,1)}

5. Year: t 2 {2008, ..., 2019}

6. Age/grade of the child:† a 2 {�3, ..., 21, [22,1)}, g 2 {�8, ..., 13, [14,1)}

7. Tenure: ⌧ 2 {0, 1, 2, 3, 4, 5}

⇤For the first step CCP estimation
�
pSMO
t

�
, I set the binned tenure ⌧B as an immutable feature.

†Age is the feature until age a⇤ = 4, then grade becomes the feature after that. This is chosen to be
consistent with the estimation. Age is capped at a = 22. Grade is capped at g = 14 for all those who
finish school.

Table D.1 shows how the observations are allocated across the groups
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Table D.1: Grouping Algorithm Outcome

Number of Grouped Observations
First Step CCP Second Step CCP

Iteration Last Dropped Feature White Polynesian Asian White Polynesian Asian

0 None 445,449 273,813 161,715 15,027 4,032 27,438
1 Tenure 52,617 32,931 44,091 3,951 2,166 3,234
2 Age/Grade 219,711 122,916 115,359 6,666 3,942 7,407
3 Year 318,117 226,809 254,169 26,595 22,494 23,838
4 Age/Grade (binned) 96,804 95,649 98,322 12,837 12,939 10,497
5 Year (binned) 65,823 68,457 63,249 26,388 20,277 21,342
6 Home 26,673 32,127 29,766 18,747 15,933 16,761
7 Tenure (binned) � � � 28,272 27,945 30,156

Summary Grouped Observations 1,225,194 852,702 766,671 138,483 109,728 140,673
Ungrouped Observations 147,066 172,272 124,476 30,867 35,826 28,254

Total Observations 1,372,260 1,024,974 891,147 169,350 145,554 168,927
Percent Grouped (%) 89.3 83.2 86.0 81.8 75.4 83.3

Note: The table shows the outcome of the grouping algorithm. Each row in the first panel indicates the number
of observations that were grouped in each iteration. An observation is a family-year observation from the family
panel data. An iteration m is defined by having M �m mutable features, i.e. the (M �m + 1)th feature is the “last
dropped”. Columns represent the CCP step and ethnic group, as each algorithm is applied separately for each of
these. In the first step CCP, binned tenure is treated as an immutable feature. In the second step CCP, observations
are restricted to those where the family moves. Total observations is equal to grouped plus ungrouped observations.
Percent grouped is equal to grouped observations divided by total observations. In accordance with Statistics New
Zealand confidentiality rules, the number of observations have been randomly rounded to a multiple of 3 (RR3).
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D.2.2 CCP Two-Step Estimation

I estimate the CCPs using two steps. Within each of these steps, I apply the grouping algorithm de-
scribed in D.2.1. The two steps are:

1. Estimate the conditional choice probability of observing the actions d 2 {stay,move, outside},
where move indicates moving to any location in the city, l 2 L. This differs to outside, which is
moving to the outside option. Call this probability pSMO

t (d).

2. Among those who move to a location with the city, estimate the conditional choice probability of
moving to each location l 2 L. Call this probability pMt (d) for d 2 L.

With this, the CCPs can be expressed as:77

pdt =

8
>>><

>>>:

pSMO
t (stay) if d = stay

pSMO
t (move)pMt (d) if d 2 L

pSMO
t (outside) if d = 0

For the first step CCPs (pSMO
t ), I calculate the CCP as the relative frequency of each action within each

grouping of states. The scope for bias is much more limited in this step as the number of actions is
reduced to three. Figure D.1 shows the distribution for the pSMO

t CCPs across all the estimated states.
As expected, the most likely action across states is stay, with a wide range of probabilities for move. The
outside option tends to be a low probability action.

For the second step CCPs (pMt ), I now leverage that the action set can be represented as spatial data
(since this step is conditional on moving to a location inside the city). This helps overcome the dual
issues of a smaller number of observations (I am restricting to in-city moves) as well as a large number
of actions (|L| = 32). Within each group, I use the coordinates of the new home location to conduct a
spatial kernel density estimation (KDE). This uses the intuition that we should expect areas that are next
to each other to have similar probabilities of being moved into. Figure D.2 illustrates two examples of
the spatial KDE. To calculate the CCP for a location l, I evaluate the estimated spatial density function
at each Level 1 centroid (Figure A.16a), then sum over all centroids within location l.

In Figure D.3, I compare the estimated CCPs to the move distance (i.e. the probability of choosing a
move location given how far the family would be moving from their current home). This gives the
expected shape wherein moves are (on average) more likely if they are closer to the family’s home
location. Despite the high dimensional problem and the simplifications made in the estimation process,
Figures D.1 and D.3 reassuringly show that the CCPs seem to be reasonably reflecting the data.

77Recall that these values are holding fixed kit = k⇤. Therefore, pSMO

t (d) and pMt (d) are each scalars.
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Figure D.1: Stay-Move-Outside CCP

Note: The figures show the distribution of first step conditional choice probabilities (CCPs), where the choices are stay,
move (to a location inside the city), or move to the outside option. The distribution is taken over the number of states
that fall into each CCP bin. Bins are in 5 percentage point increments.

Figure D.2: Spatial KDE for Internal Move CCPs

(a) Example 1 (internal home) (b) Example 2 (outside home)

Note: The figures show the results of the spatial kernel density estimation (KDE) for two example state variables. In
panel (a), the state has the current home location as the red highlighted area. In panel (b), the state has the current home
location as the outside option. Probabilities are shown as the likelihood of moving to each Level 1 area unit (Figure
A.16a).
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Figure D.3: CCP versus Move Distance

Note: The figure shows the average conditional choice probability (CCP) for a move, given the distance between the
current home location and the new location. Averages are taken over state variable-action units (for actions that are
moves inside the city). I group units using bins of 0.5 kilometer distances.

D.3 State Transition Estimation

Estimation Equation (14) requires knowing the state transition of the individual state variables (F k
dt).

Under the model, many of these variables transition deterministically and require no further estimation.
However, there are two key stochastic processes: the timing of the second child’s birth, and the school
assignment process.

D.3.1 Timing of Second Child

Families enter the model already knowing the timing of their first child’s birth (section 4.1). As I have
restricted the estimation sample to people with at most two children, this means I only need to estimate
the transition process for the second child’s birth. Figure D.4 shows the empirical distribution (sepa-
rately by ethnicity) of the difference in age between the first and second child. Across all ethnic groups,
the modal age difference between the first and second child is two years. Asian and Polynesian fami-
lies are more likely than white families to have an age gap greater than four years. Let the distribution
shown in Figure D.4 be denoted as gap(x, ), where x 2 {0, 1, ..., 10} is the size of the age gap. Then we
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Figure D.4: Age Gap Distribution

Note: The figure shows the distribution of the age gap between the first and second child (in years). I
restrict to families with two children who have an age gap of no more than 10 years. The distribution
is shown separately for each ethnic group.

can use it to fully express Equation (C.1) as:

Pr(T b
ic = t) = B (Ci, Cit, ait,c�1) =

8
>>>>><

>>>>>:

gap (ait,c�1 � t, )0

BB@

10X

x=(ait,c�1�t)

gap (x, )

1

CCA

if Cit < Ci

0 if Cit = Ci

(D.1)

Intuitively, Equation (D.1) is calculating the probability of having a second child x years after the first
child by dividing the probability mass shown in Figure D.4 over the cumulative probability of having
an age gap of x to 10. This is effectively a normalization: when time is x periods after the first child’s
birth, it is no longer possible to have a second child with an age gap of less than x.

D.3.2 School Assignment

For the school distribution, I use the school records and match it with the family location to determine
the probability of a child attending a school, conditional on their grade, home location and the calendar
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year. To ensure that this captures the (new) school assignment distribution, MNew
t (hit, gitc), I estimate

these probabilities only among children who are in the starting grade for each level (1, 7, and 9) or those
who newly moved into the region.

Figure D.5 shows how the assignment probabilities vary on average with distance from home. These
show all the expected patterns (for example, it is similar to the distribution shown in Figure A.10). In
particular, the probability density is highest among schools that are closer to the family’s home location.
This distribution also implies that the expected distance to school is lowest for the primary school level
and highest for high school level.78

Figure D.5: School Probability versus Distance

Note: The figure shows the average of cumulative distributions for each location-year. The vertical axis shows the
probability of attending a school which has a distance from the home location less than or equal to the horizontal
axis value. The probability is calculated separately by school level. The probabilities are then averaged over all
location-years.

To calculate the reassignment probability ⇢, I focus on two groups students: (1) students who stay in
their current home, and (2) students who move to home within the same region as their previous home
and do not start a new school level. According to Equation C.7, the probability of these children staying
in the same school as last period (MSame

t ) is defined as:

MSame
t (hit, gitc) ⌘ (1� ⇢) + ⇢MNew

t (hit, gitc) = 1� ⇢
�
1�MNew

t (hit, gitc)
�

78The probabilities do not reach 1 as the remainder is captured by the outside option school, for which there is no distance
component as discussed in section 4.3.
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MSame
t (hit, gitc) can be estimated in the data as the proportion of these students who stay at the same

school. After estimating MNew
t (hit, gitc) as described in Appendix C.1.4, I can then back out the reas-

signment probability as:

⇢ =
1�MSame

t (hit, gitc)

1�MNew
t (hit, gitc)

I can do this to calculate a ⇢ value for each location, school, and year (I pool all grades within a school
together). To reduce potential noise, I use the Level 4 locations (Figure A.16d), which are larger than the
model locations (Level 3) still smaller than the regions (Level 5). The distribution of imputed reassign-
ment is shown in Figure D.6. I take the median of the distribution as the estimated parameter value.
This gives me ⇢ = 3.69%.

Figure D.6: Reassignment Probability Estimates

Note: The figure shows the distribution of estimated reassignment probabilities. Each unit is a
location-school-year. The vertical line indicates the median value (3.69%) over all estimated values.

D.4 Building the Dataset

The regression equation (14) is at the state-action tuple level (k⇤, t, d, d0, d00). The state is an individual
state k⇤ at a time t, where time captures the market states. The action tuple is a set of actions (d, d0, d00)

with two distinct time t actions (a baseline action dt = d and a counterfactual action dt = d0) and a t+ 1

renewal action dt+1 = d00. Therefore, the data used to estimate this regression should be at the same
level. In fact, the model implies that this equation holds for any state (k⇤, t), any dt pair (d, d0), and
any (appropriately chosen) renewal action d00. However, an estimation that covers all possible state and
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action combinations is not possible due to practical and computational limitations.

Instead, I construct the data in the following way. For each state, I consider two baseline actions d.
These are selected as each state’s two most likely actions (in terms of their CCP). Unsurprisingly, the
stay action always has the highest CCP among all states. The second action is chosen as the most likely
out of L [ {0}. For the counterfactual action d0, I choose all possible actions where d0 6= d.79 Finally, for
the renewal action d00, I choose the action that maximizes the joint probability over all possible renewal
actions:

d00 = argmax
d̃ 2 D\

�
{stay} [R (hit) [R

�
h0it
��

| {z }
Actions that are renewal actions

for both d and d0

n
F k
dt (k

⇤)pd̃,t+1| {z }
Probability of action di,t+1 = d̃

given initial action dit=d

⇥ F k
d0t (k

⇤)pd̃,t+1| {z }
Probability of action di,t+1 = d̃

given initial action dit=d0

o

In other words, d00 is chosen as the most likely renewal action given the state transitions after taking each
action d and d0. This approach keeps the scope of the data to a manageable size, while still evaluating a
broad range of possible actions. In practice, the actual dataset is smaller than this scope as I am not able
to estimate all the CCPs for each state. However, the CCPs that are estimated are also, by definition, the
most empirically relevant ones.

The final step is to determine the values of the regression equation components. The components of
Equation (14) that require data analogues are determined as follows:

• Yd,d0,d00,t is calculated according to Equation (12) using the estimated CCPs, state transitions, and
the assumed discount factor �.

• SQdt is calculated as the weighted average of expected decile scores. The expectations are taken
using the next period school admission transition probabilities, and the weighted according to the
observed current period school attendance distribution. As I discuss in section 5.1, it is infeasible
to include the attended school as a state variable. Therefore, we should interpret the CCPs as
weighted probabilities given the underlying exogenous school distribution.

• DSd is calculated using the average straight-line distance between the school location and the
home location. The average is calculated as the mean distance between the school and each Level
1 centroid, weighted by the the proportion of the location living in each Level 1 unit. Similar to the
school quality, this is then weighted by the school attendance distribution.

• ln rd is calculated using the mean log sales and log rentals in the location-year. I make sales and
rentals into comparable units by calculating the ratio of mean sale prices to mean annual rents in

79For the second baseline action d 6= stay, I also ensure that d0 6= stay to avoid duplicating a symmetrical action pair. Given
|D| = 44, this process looks at 43 + 42 = 85 possible (d, d0) choices for each state.

105



each location-time and adjust the sales value using the corresponding ratio. See Figure D.7 for
a distribution of the estimated ratios and further details. I find the median ratio to be 26.39.80 I
create a single price index by weighting the sale and rent values using their respective number of
transactions in each location-year.

• TS'd is calculated as the proportion of families living in each location-year that are of type '.

• MCd requires knowing the distance between two locations. I calculate this as the population-
weighted pairwise distance of Level 1 units.81

Figure D.7: House Sales to Rents Estimated Ratios

Note: The figure shows the distribution of the ratio between sales and annual rents in each location-year. Ratios
are calculated for each Level 2 area (Figure A.16b) in each year. I use the mean sale price and mean annual rent
(in real dollars) for the calculation. Then I calculate a location-year ratio (where a location is Level 3 unit, Figure
A.16c) by weighting the Level 2 ratios using the number of transactions in the Level 2 area. The vertical line
indicates the median value across all location-year ratios to be 26.39.

80Due to limited data, I only compare average prices without controlling for house characteristics. Bayer et al. (2007) do a
similar adjustment using a hedonic regression to control for these factors. They find an average ratio of 264.1 between sales
and monthly rents. This corresponds to a ratio of 22 in annual terms, which is comparable to my median figure.

81Concretely, for two locations h and j, the distance is calculated as:

dist(j, h) =
X

a2Lv1(h)

X

b2Lv1(j)

$a ·$b · distLv1(a, b)

where a and b are the Level 1 units within h and j, respectively, and $ represents their population weights (which sum to 1
within each location). distLv1(a, b) is the straight-line distance between the centroids of a and b.
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D.5 Identification Strategy Details

D.5.1 School Identification Strategy

Figure D.8: School Parameters Identification Strategy

Note: The figure illustrates the motivation for the identification of the school parameters. I plot the relative likelihood
of two action paths (Yd,d0,d00,t) against the difference in decile score experienced as a result of the two actions (d, d0). I
average the relative likelihood into binned values of the decile score difference. This relationship is plotted for families
with a child in primary school (blue) and for families with a child was not yet started primary school (red).

Figure D.8 gives a graphical illustration of how the school identification strategy works. I compare the
relative likelihood value (Yd,d0,d00,t) against the expected difference in primary school decile score result-
ing after the two actions (d and d0). I plot this for families with children in primary school and for families
with children who have not yet started school. The positive correlation shows that families with school-
aged children are more likely to move to areas with relatively higher decile scores. However, we cannot
attribute all of this to school quality alone as these areas may also have other desirable characteristics.
This is suggested in the figure as families without school-aged children also have a higher likelihood
of moving to a place with higher decile quality, even though they receive no benefit from schools in
the given time period.82 Therefore, by differencing the relative likelihoods across the two groups, I can
isolate the effects of schooling from other neighborhood effects. In other words, we can use the families
without school-aged children to control for the unobserved neighborhood characteristics. The difference

82This is not saying that families do not ever benefit from schools. The ECCP methodology means I am only evaluating the
flow utility received from each location.
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between the two lines in Figure D.8 captures the left hand side of Equation (15). Note that this figure
is showing the relationship only for (primary) school quality, while the estimation of Equation (15) is
simultaneously capturing the effects for the other school variables (distance, moving costs, and outside
options), and for all three school levels.

To make the comparison as best as possible, I compare families who both have one child born. For
families with a primary school child, I compare to families with a child who has not yet started primary
school. For families with a high school child, I compare to families with a child who has already com-
pleted high school. For families with an intermediate school child, I take an average of the previous two
control groups (not yet started primary school and completed high school).

Evaluating Equation (14) for families without school-aged children gives the following likelihood value:

Yd,d0,d00,t{Non-school-aged} =↵r
 (ln rdt � ln rd0t) +

X

'2 
↵' 
�
TS'dt � TS'd0t

�

+
�
� d � � d0

�
+ ↵⌧ (⌧d � ⌧d0)

+ (MCd �MCd0)

+ �
�
MCd,d00 �MCd0,d00

�
+ ✏dd0t (D.2)

D.5.2 Time Differencing

After estimating the parameters of Equation (15), I can create the predicted values using the estimated
coefficients. Let eYd,d0,d00,t represent the residuals after removing the school-related components from
Yd,d0,d00,t:

eYd,d0,d00,t = Yd,d0,d00,t �
⇣
dSQdt �dSQd0t

⌘
�
⇣
dDSd �dDSd0

⌘
�
⇣
\SMCdt � \SMCd0t

⌘

�
⇣
[OOSdt � [OOSd0t

⌘
+ �

⇣
\SMCd,d00,t � \SMCd0,d00,t

⌘

where the hats c· represents the values calculated using the estimated coefficients. This simplifies to:

eYd,d0,d00,t =↵r
 (ln rdt � ln rd0t) +

X

'2 
↵' 
�
TS'dt � TS'd0t

�

+
�
� d � � d0

�
+ ↵⌧ (⌧d � ⌧d0)

+
�
MC(d)�MC(d0)

�
+ �

�
MCd

�
d00
�
�MCd0

�
d00
��

+ ✏dd0t (D.3)

Now I consider a state-action tuple (k⇤, t, d, d0, d00) and another state-action tuple (k⇤, s, d, d0, d00), where
t > s. These units are similar on all dimensions except the calendar year. Their corresponding residuals
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can be expressed as consider eYd,d0,d00,t and eYd,d0,d00,s, respectively. Differencing this over time gives:

�ts
eYd,d0,d00 =eYd,d0,d00,t � eYd,d0,d00,s

=↵r
 ((ln rdt � ln rd0t)� (ln rds � ln rd0s))

+
X

'2 
↵' 
��
TS'dt � TS'd0t

�
�
�
TS'ds � TS'd0s

��

+
��
� d � � d0

�
�
�
� d � � d0

��
+ ↵⌧ ((⌧d � ⌧d0)� (⌧d � ⌧d0))

+
��
MC(d)�MC(d0)

�
�
�
MC(d)�MC(d0)

��

+ �
��
MCd

�
d00
�
�MCd0

�
d00
��

�
�
MCd

�
d00
�
�MCd0

�
d00
���

+ ✏dd0t � ✏dd0s

=↵r
 (�ts ln rd ��ts ln rd0) +

X

'2 
↵' 
�
�tsTS

'
d ��tsTS

'
d0
�
+�ts✏dd0

The interpretation of Equation (14) was to compare the difference in the utility of location A versus
location B. Now that I am differencing over time, I am calculating how that difference in utility has
changed over time and seeing whether that can be explained by how much the neighborhood variables
have themselves changed over time. There may still be omitted variable bias as these prices could be
correlated with other neighborhood amenities that have also changed over time. For this reason, I need
instruments to address this endogeneity.83 I expect the primary source of endogeneity to be the unob-
served neighborhood characteristics (⇠). However, one could also be concerned that the expectational
errors could also bias the estimates. As with the other terms, the expectational error enters as the differ-
ence of two actions (see Equation (C.21) in Appendix C.4). Therefore, the endogeneity concern would
be if expectational errors vary significantly after living in a different location for one year – and that
this effect on expectations is changing over time. This seems unlikely and a second-order concern as
compared to the unobserved neighborhood characteristics.

Using an IV regression in this case requires finding three instruments as there are three endogenous
variables. One of these variables is the difference in house price (�ts ln rd � �ts ln rd0). The other two
are differences in type shares for Polynesians and Asians, (�tsTS

'
d � �tsTS

'
d0), as the ethnic share for

whites is excluded to avoid multicollinearity. When I apply the instruments, I transform them in the
same way as the endogenous variables. This means that they are differenced across locations (capturing
the difference between d and d0) and then differenced across time (capturing the difference between t

and s).
83Note that a similar strategy to identifying the school variable coefficients would not work, as families (within a type) value

prices and type shares in the same way.
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D.5.3 Price Instrument Construction

The chosen instrument for price is the average price in non-neighboring locations. In this context, since
the regression equation is a difference between two locations, I need to ensure that it is non-neighboring
to both locations. If not, then one location’s instrument could be correlated with the other location’s price
variable, which would violate the exclusion restriction. The intuition for constructing this instrument
is shown using two example locations in Figure D.9. There are two locations in the unit of analysis
(locations 1 and 2). I exclude all areas within a 10 kilometer buffer of each of these areas.

To generate variation among the remaining set of locations, I assign each location a weight according to
its inverse distance to the location of interest. This means that prices in areas closer to location 1 should
have a greater effect on location 1 prices than they do on location 2 prices. Generating this variation
is critical. Let r̄�N(j,j0) be the average non-neighboring price for a location pair j and j0. If this were a
simple average over all locations, then r̄�N(j,j0) = r̄�N(j0,j). This means differencing equations across
the two locations will eliminate the price instrument component, which means its coefficient could not
be identified. By using a weighted average (with different weights for each location), this avoids the
issue.

I create each location’s distance-weighted non-neighboring price index and use that as the instrument.
With this approach, I construct a different value of the instrument for each location pair in each year.

D.5.4 Ethnicity Instrument Construction

In 1987, New Zealand changed its immigration policies to eliminate preferences for certain nationalities,
resulting in increased immigration during the 1990s and 2000s from non-traditional countries, especially
east Asia (Grbic et al., 2010). As the Asian and Polynesian populations in Auckland are highly tied to
immigration patterns, these new immigrants were likely to locate themselves in areas with higher shares
of their own group, which motivates the use of the shift-share instrument.

To find the initial shares, I use aggregate statistics from the 1986 census, which is the earliest data that I
could find at the sub-city level (and, importantly, this is prior to the 1987 immigration reform). The city
had a remarkably different ethnic make-up then: in 1986, 76.2% of Auckland’s population was white
and only 2.8% was Asian.

Using the census statistics, I calculate the population of each ethnic group living in each of the city’s
locations as of 1986 (pop j,1986). I divide this by the national population of  in 1986 (natpop 1986) to
calculate the share of the national population of group  that is living in location j as of 1986. This
represents the baseline shares in the past settlement instrument. For each time period t, I scale the
baseline share by the national population of  as of time t (natpop t ). This step (Equation D.4) generates
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Figure D.9: Price Instrument Example

Note: The figure illustrates the price instrument calculation. Given a location pair (i.e. the locations after dt = d or d0),
I find all Level 2 areas (Figure A.16b) that are more than 10 kilometers away from both locations. Among those areas,
their prices are weighted using their average inverse distance to the locations of interest. The left map plots the value of
the weights for location 1 (highlighted with a blue border). The right map plots the value of the weights for location 2
(highlighted with an orange border). Excluded areas with no weight are unshaded.

a simulated population of each ethnic group  in location j at time t.

simpop jt = natpop t ⇥
pop j,1986

natpop 1986| {z }
Share of New Zealand’s  population

living in location j in 1986

(D.4)

The simulated population (simpop jt) represents the expected ethnic population in each location if the
annual national population continued to be distributed according to the 1986 population distribution.
From this, I can then calculate the implied simulated ethnic share as:

simshare jt =
simpop jtP
'2 simpop'jt

(D.5)

By using the 1986 ethnic shares and shifts in the national population, this instrument should capture
changes in the ethnic shares that are independent of the unobservable neighborhood utility ⇠. This is for
two reasons. First, the national population growth should be independent of local time-varying shocks
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occurring in Auckland’s neighborhoods. Second, even if this instrument were correlated with unob-
served neighborhood characteristics, then it would be primarily correlated with neighborhood utility as
of 1986 (but not with neighborhood utility from the sample period of 2008-2019).

A potential threat to the identification strategy is if ⇠ exhibits serial correlation such that unobserved
neighborhood utilities in 2008-2019 are still correlated with their 1986 values. There are historical and
contextual reasons why this is unlikely. First, this is a time span of 22 years, during which there was
rapid development of the city (Friesen, 2009; Auckland Regional Council, 2010).84 Second, the change
in immigration policy resulted in a observably different set of immigrants arriving into New Zealand
as compared to past migrants (Ho, 2015). Therefore, even if the unobserved characteristics remained
the same, the ethnic group’s aggregate preferences towards neighborhood amenities is unlikely to have
matched the preferences of those already living in the city as of 1986. Figure D.10 shows that while the
simulated share is correlated with the actual shares, this correlation appears to be getting weaker over
time. This supports the idea that neighborhood effects in the past are likely to be less of an endogeneity
concern over time.

Figure D.10: Ethnicity Instrument
(a) 2009 (b) 2013 (c) 2018

Note: The figure compares the simulated ethnic share and the observed ethnic share for each location-ethnic group.
The panels represent the calculations of the shares (both simulated and observed) at different years.

Note that, as the regression employs a differencing strategy, I also need to difference the ethnicity in-
strument (Equation D.5) to apply it in the estimation. Figure D.11 shows how this works. In each graph,
I plot for each location and each time the actual ethnic share versus the simulated ethnic share. As al-
ready shown, the simulated and actual shares are highly positively correlated. However, in this context,
I am differencing over time, which may generate a different relationship. In the case for Asian share

84To give a sense of the rapid development, 76% of the population growth in New Zealand between 1991 and 2001 occurred
in Auckland. This population growth affected existing residential areas rather than solely expanding the urban region. In
particular, over this same period (1991-2001), 52% to 62% of annual residential growth in Auckland took place in the existing
urbanized areas (Auckland Regional Council, 2010).
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(Figure D.11a), we can see that – within a location – a positive increase in the simulated share over time
is correlated with a positive increase in actual share. However, in the case of Polynesian share (Figure
D.11b), the relationship is the opposite. As the simulated share increases (within the same location over
time), the observed ethnic share generally decreases.

Figure D.11: Ethnicity Instrument Over Time

(a) Share Asian

(b) Share Polynesian

Notes: The figures show the scatter plot of actual ethnic share versus the simulated ethnic share for each location-year.
Markers for the same location are connected by a line. The hue of each marker represents the year, ranging from 2008 to
2019 (later years are shaded darker).

D.6 Regression Tables

• Table D.2 shows the estimation of the school parameters (section 5.4)

• Table D.3 shows the IV estimation of the neighborhood parameters (section 5.5)

• Table D.4 shows the estimation of the moving and location parameters (section 5.6)
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Table D.2: School Parameter Estimation

(1) (2) (3)
School Level White Polynesian Asian

Decile Score High School 0.273⇤⇤⇤ 0.262⇤⇤⇤ 0.176⇤
(0.0652) (0.0761) (0.101)

Intermediate �0.0255 0.552⇤⇤⇤ 0.382⇤⇤⇤
(0.0980) (0.103) (0.108)

Primary 0.126⇤⇤⇤ 0.394⇤⇤⇤ 0.304⇤⇤⇤
(0.0473) (0.0464) (0.0764)

School Moving Cost High School �2.392⇤⇤⇤ �1.751⇤⇤⇤ �1.990⇤⇤⇤
(0.233) (0.265) (0.323)

Intermediate �2.615⇤⇤⇤ �1.946⇤⇤⇤ �2.306⇤⇤⇤
(0.439) (0.409) (0.449)

Primary �3.822⇤⇤⇤ �2.661⇤⇤⇤ �3.117⇤⇤⇤
(0.293) (0.260) (0.333)

Distance High School �0.677⇤⇤⇤ 0.266 ⇤⇤⇤ 0.374
(km) (0.226) (0.469) (0.424)

Intermediate �1.222⇤ �0.420 �2.302⇤⇤⇤
(0.642) (0.506) (0.554)

Primary �0.264 1.799⇤⇤⇤ �0.440
(0.206) (0.328) (0.449)

Distance Squared High School 0.0557⇤⇤ �0.101 �0.00986�
km2

�
(0.0294) (0.102) (0.0855)

Intermediate �1.222⇤ �0.420 �2.302⇤⇤⇤
(0.642) (0.506) (0.554)

Primary 0.0516⇤⇤⇤ �0.273⇤⇤⇤ 0.178⇤
(0.0191) (0.0611) (0.104)

Outside Option High School �1.076 0.979 1.821
(0.908) (0.816) (1.145)

Intermediate 0.392⇤⇤ 0.505⇤⇤⇤ 0.525⇤⇤⇤
(0.166) (0.148) (0.112)

Primary �1.038 �4.135⇤⇤ �1.060
(1.614) (1.645) (1.774)

N 1,713,570 2,027,559 2,112,000
R2 0.027 0.030 0.027

Note: The table shows the estimates for the school utility parameters, each of which can differ by school level (Equation (15)).
Each column represents the estimation results for the ethnic group listed at the top. The unit of observation is a state sit-action
tuple (d, d0, d00) pairing. The outcome variable is the difference in relative log likelihood of two action paths (�Yd,d0,d00,t),
where the difference is taken between a state representing a family with one child in school and states representing otherwise
similar families with one child not in school. The values of Yd,d0,d00,t corresponding to the non-school-aged child states are
averaged into one value. Standard errors, shown in parentheses, are clustered at the home location level. In accordance with
Stats NZ confidentiality rules, the number of observations have been randomly rounded to a multiple of 3 (RR3). Significance
stars represent the following p-values: ⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01.
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Table D.3: Neighborhood Variables Parameter Estimation
(a) First Stage Estimates

(1) (2) (3)
Price Polynesian Share Asian Share

Non-Neighboring 0.586⇤⇤⇤ �17.86⇤⇤⇤ 56.54⇤⇤⇤
Price (0.0530) (2.099) (6.340)

Simulated �0.00874⇤⇤⇤ �0.636⇤⇤⇤ 1.954⇤⇤⇤
Polynesian Share (0.00155) (0.0482) (0.147)

Simulated 0.00602⇤⇤⇤ �0.119⇤⇤⇤ 0.204⇤⇤⇤
Asian Share (0.000670) (0.0197) (0.0663)

Constant 0.0000336 0.0389⇤⇤ �0.165⇤⇤⇤
(0.000534) (0.0191) (0.0540)

N 77,808 77,808 77,808
R2 0.066 0.102 0.147
F 118.8 74.93 96.84

(b) Second Stage Estimates

(1) (2) (3)
White Polynesian Asian

Log Annual Price �24.86⇤⇤⇤ �37.69⇤⇤ �28.54⇤⇤⇤
(5.647) (17.89) (4.662)

Polynesian Share �1.351 �1.927⇤ �0.825⇤
(%) (1.333) (1.095) (0.462)

Asian Share �0.265 �0.0890 �0.278⇤⇤⇤
(%) (0.422) (0.159) (0.0976)

Constant �0.354⇤⇤⇤ �0.113⇤ �0.444⇤⇤⇤
(0.0549) (0.0657) (0.0534)

N 77,808 72,228 69,114

Note: The table shows the results of estimating Equation (16) by instrumental variables. Prices are the log of the annual
price index. Share variables and their instruments are measured in percentage points (0-100). The unit of observation is a
neighborhood tuple ((ht, jt), (hs, js)) for two locations (h and j) being compared at two points in time (t and s). In the first
stage, each column represents the outcome variable of the regression (the endogenous variable in the second stage regression).
Results shown only for white families. Other ethnicity’s first stage results are similar and available upon request. In the second
stage, the outcome variable is the time-difference in residualized relative log likelihood of two action paths (�ts

eYd,d0,d00)

averaged over states with the location outcomes (h, j) in period t+ 1 and s+ 1. Each column represents a separate regression
by ethnic group. In accordance with Stats NZ confidentiality rules, the number of observations have been randomly rounded
to a multiple of 3 (RR3). Significance stars represent the following p-values: ⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01.
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Table D.4: Moving and Location Variables Parameter Estimation

(1) (2) (3)
White Polynesian Asian

Tenure 0.0756⇤⇤ 0.0949⇤⇤ �0.0126
(0.0343) (0.0389) (0.0292)

Max Tenure Indicator 0.562⇤⇤⇤ 0.297⇤⇤ �0.176⇤
(0.147) (0.111) (0.0913)

Moving Cost: Distance �0.765⇤⇤⇤ �0.662⇤⇤⇤ �0.631⇤⇤⇤
(0.00959) (0.00800) (0.0112)

Moving Cost: Fixed �2.811⇤⇤⇤ �1.479⇤⇤⇤ �3.767⇤⇤⇤
(0.121) (0.129) (0.177)

Moving Cost: Outside �2.546⇤⇤⇤ �2.470⇤⇤⇤ �3.504⇤⇤⇤
(0.162) (0.272) (0.158)

Location Fixed Effects Yes Yes Yes
N 19,003,770 16,216,170 17,524,269
R2 0.983 0.994 0.961

Note: The table shows the parameter estimates for the moving and location variables. The outcome variable is a residualized
relative log likelihood of two action paths. The unit of observation is a state sit-action tuple (d, d0, d00) pairing. The maximum
tenure value is 5 years. The distance moving cost is per kilometer, while the other two are fixed costs. Location fixed effects
are included in each regression. Each column represents a separate regression by ethnic group. In accordance with Stats NZ
confidentiality rules, the number of observations have been randomly rounded to a multiple of 3 (RR3). Significance stars
represent the following p-values: ⇤p < 0.10,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01.
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E Discussion Appendix

E.1 School Quality: Reduced Form Normalization

To make the reduced form estimates into a per-child-per-year valuation (and therefore comparable to
the structural estimates), we would need to account for the family’s children. However, I am unable to
identify the families who generate the house sales/rentals in the BDD analysis.

As an alternative, I use the family panel data and identify households who move into the BDD sample
areas (i.e. the areas close to the boundaries) during the sample years. I cannot distinguish whether these
people are renters or home-owners, but this approach does allow me to generate aggregate statistics
about their children. I calculate each family’s present discounted value of school years for each school
level. For example, consider a family i with Ci children who move into a primary school sample area at
time t⇤i . I calculate their present discounted value (PDV) of primary school years as:

PDV Prim
i =

1X

t=t⇤
i

X

c2Ci

�t�t⇤
i {gitc 2 [1, 6]} (E.1)

The interpretation of Equation (E.1) is that this is the number of years their children will spend in
primary school, summed over all their children and discounted by the discount rate �. I can do an
analogous PDV calculation for intermediate

�
PDV Int

i

�
and high school

�
PDV HS

i

�
. Among the new

movers subpopulation, I find that the mean PDVs for each school level are: PDV Prim = 3.53, PDV Int =

1.09, PDV HS = 2.69.85 These PDVs reflect the “amount” of school quality (within a level) that the fam-
ily expects to experience for the remainder of time. The PDVs being greater than 1 show that the reduced
form estimates are not comparable to the structural model.

I use these figures to rescale the reduced form estimates to generate a per-child-per-year valuation.86

However, this rescaling comes with an assumption that families do not move again after they moved
into the BDD sample area. With this assumption, the PDV therefore captures the total school years the
family expects to enjoy in their new home. I cannot calculate the average number of years families
expect to stay in the house as the future cannot be observed in the data.87 This is a strong assumption –
indeed I find that 26% of the new mover households move again after only one year (which is consistent
with the broader population, as shown in Figure C.7). To make it more plausible, I use the reduced

85These figures represent the mean PDV of a school level v for families who move into areas that are in the analysis sample
for school level v. Note that the mean number of children already born when these families move into the BDD areas is 0.7,
while the mean number of children they will have is 1.8. The average age (at the time of the move) among children who are
born is 8.8. The PDV captures the school needs arising from the currently born children as well as the children that will be
born in the future.

86I divide the reduced form estimate for school level v by the mean PDV value PDV v .
87For example, consider a family who moves into the sample area in 2015 but has not left by 2019 (when my data ends). It

would be incorrect to say that their housing tenure is 4 years, since that is driven by data censoring. Given this information, I
cannot conclude what their full housing tenure will be.
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form estimates from the sales data (column 2 of Table 1a). This is because it is more likely that those
who purchase houses will stay in those locations for a long number of years. This also makes my
benchmarking more relevant to the broader literature, as the vast majority of studies use house sales
data (rather than rentals) when conducting their BDD analysis.

E.2 School Moving Cost: Example

Consider a white family with a first grader who still has 5 years of primary school to complete. Their
WTP for an additional primary school decile score was estimated to be 0.508% per child per year. Their
WTP for the school moving cost at primary level was estimated at –14.25%. Using the discount rate of
� = 0.9, a back-of-the-envelope calculation shows that required increase in decile score (for the remain-
ing primary school years) would have to be:

�Decile =
�School Moving Cost

Discounted Future Value of Additional Decile
=

14.25
P4

t=0 �
t ⇥ 0.508

⇡ 6.85

The family would need to change to a school with a 6.85 higher decile score to compensate for their
school moving cost. This change in decile score can be seen as an increase of more than 2 standard
deviations in the underlying raw measure. Moreover, this calculation is keeping all else equal - in reality
moving from (say) a decile 3 to a decile 10 school would mean moving to a substantially more expensive
neighborhood. Therefore, it appears unlikely that parents can simply offset these school moving costs
with higher school quality.

E.3 Counterfactuals: Simplifications

A limitation of the ECCP methodology is that is requires researchers to impose strong assumptions when
conducting counterfactuals (Kalouptsidi et al., 2020). This is because the approach does not require a full
model to be specified. Moreover, the computational burden associated with solving dynamic models
– much of which were circumvented by using the ECCP estimator – are still present for the model
simulations. For these reasons, I simplify the simulations by transforming the problem into a static
model. As families in my simulations are myopic, this avoids having to forward simulate to calculate
value functions.

To account for the fact that my estimates are from a dynamic model while the simulation is a static
model, I rescale the location fixed effects to match empirical population patterns. For each ethnicity  
and family size (number of born children C), I find a vector of time-varying location scales (⇣ C1t , ..., ⇣ CLt )

to multiply to each location’s estimated fixed effects. For a given period t, I solve for these scales using
simulated method of moments to match the empirical residential distribution of each subgroup (ethnic-
ity and family size cells). Starting at a period t, for a given choice of scales, I simulate the next period
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t+ 1 outcome using the neighborhood characteristics observed in the data and estimated parameters. I
then calculate the proportion of the subgroup living in each location per the model simulation and com-
pare this to the empirical analogs. I solve for the scales using a numerical optimization solver, where
the objective function is to minimize the difference between the simulated and empirical shares. I repeat
this for three periods (2008, 2012, and 2019) and extrapolate using a cubic spline interpolation for the
remaining periods. This rescaling accounts for dynamic forces not captured by a static model, such as
changing family needs as children are born and unobservable time-varying neighborhood character-
istics. It should also account for the fact that the moving costs estimates are experienced in only one
period while the benefits of a move are enjoyed for multiple periods.

After solving for these scales, I simulate the market where each period I solve for prices such that the
total demand of housing units in each location is equal to the available supply of housing units in each
location. I treat supply as exogenous and fixed in this model. I set supply for each location-year equal
to the total number of families observed to be living in that location during that time.

I impose an additional simplification where I only allow a fraction of families to move each period. These
families are randomly chosen at the start of each period (and are simply given the option of changing
their location, though they can choose to stay). The remainder of families must stay in their current
home. I calibrate this fraction to be 25% of families. This approach is a reasonable approximation of
capturing that families do not often change their homes (e.g. it is a similar approach to modeling sticky
prices in Calvo models of price rigidity). I impose this simplification because I find that without it,
families move much more than expected (i.e. relative to the data). This issue is amplified each period
as moving generates a positive feedback loop. As families move, the ethnic composition and prices in
locations change, which results in more families moving the following period.
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E.4 Supporting Figures

Figure E.1: Willingness to Pay for Other Utility Components

Note: The figure shows the willingness to pay estimates for components of location utility. The results use the structural
model estimates (Tables D.3b and D.4) and scale by the ethnic group’s price sensitivity estimate (Table D.3b). 95%
confidence intervals are plotted for each estimate.
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Figure E.2: Change in Home Location’s Polynesian Share Among Polynesian Movers

Note: See notes under Figure 9. This figure shows the equivalent statistic for Polynesian families who move and
the change in the Polynesian share of their home locations.

Figure E.3: Change in Home Location’s Asian Share Among Asian Movers

Note: See notes under Figure 9. This figure shows the equivalent statistic for Asian families who move and the
change in the Asian share of their home locations.
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