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Basics



I. Quick review of linear
programming (LP)

min c¢'z

X

subject to Az > b

where € R"

beR™
A:R" - R™



The mapping view

min c¢'z

X

subject to Ax > b

Az > b < Az € b+ R

R™ R™
/\
o Lo A \\\\\ﬂnqu
b+ R"
b.

variable space

constraint space
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More generally..

min c¢'z
T
subject to Ax g b urgv <= uecv+ K
z>c 0
R™ R™
[

Co e A \oAx

C b+ K




The “polyhedral” view

1M ax ch

x

s.t. Az <b as “
Axﬁb(:}ajmgbi Vi=1,....m -

a4
a2




Things to like about FDLP

e If the problem is bounded, an optimal
solution always exists.

e When an optimal solution exists, at least
one solution is an extreme point.

e There exists polynomial time algorithms
to find optimal solutions.

e There is a nice duality theory.



Making things infinite

min ¢z Alternatives:

x

. P
subject to Az >k b sequences: ¢
z>c 0 functions: LP(Q2,A) C(Q)

measures: M(Q)

R R
//—\

C. x./ A \ACE

C b+ K




Making sacrifices

Properties of R":

e vector space structure
> convexity
> extreme points

e “ball” topology

e inner product, projection
e separating hyperplane theory

We can generalize to locally convex
topological vector spaces (lctvs)



Paired vector spaces

Vector spaces X and W are paired if there
exists a pairing

(,): X xW =R

(z,w) — (z,w)
such that

(PO) (z,w)eRVxe X,weW

(P1) (.,-) is bilinear

OVee X = w=0wy

(P2) (z,w)
w OVweW — z=0x

(T, w)
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Some examples

(i) X =W =R" (PO) (z,w) ERVz e X,we W
<.

T n (P1) (-,-) is bilinear
<x7w> =T W= E :mjwj (P2) (z,w)=0Vz € X = w =0y
5w

7=1 (Z,w)=0Vw e W = z=0x

(ii) X =R", W =R™, withn <m

n

(z,w) :=2"w= ijwj
j=1

w = (0,0,...,0,1,0,...,0)
(iii) X = W = ¢4 %+§:1mm1§nqgm

(z,w) := ijwj (Holder’s
j=1 inequality)
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Some examples

(PO) (z,

(
(iv) (P1) {

X = LP(Q,N), W = LYQ,)

w)yeERVze X,weW
is bilinear

")
W) =0Vz € X = =0y
2 wW)y=0YVweW = z=0x

;+g=1land1<p,qg<oo
L (Holder’s
(2, w) = /Q 2w (t)dA(?) I
(V) X =M(Q),W =C(Q)
(Reisz
(m,uﬁ:zzjfzudx representation
Q

theory)
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Geometric interpretation

(111)X:£p7W:€q A:c2b(=>a;~ra:2bi Vi=1,..., n
(x,w) := Za}jwj A o
j=1 \\\\
(iv)
X =LP(QN), W = L£9(Q, \) NG
HE (b)
@ﬂmz/ammmw) !
Q as

(V) X = M(Q), W =C(Q)

(x,w) ::/de:c
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From pairing to topology, I

By (P1), the pairing () : X xW =R

generates linear functionals over X:

Definition (algebraic dual):

X'={p: X - R|pis linear}

(PL)=J: W — X’ (P2) = J is 1:1
W — Py —> J(W) = subspace of X’
where ¢, : X — R Ex. X =W =R"

x — (x,w)
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From pairing to topology, II

X/
W
J J(W)
/\
ﬁf/ \\\‘b

“weak topology”:
(X, W) := {smallest topology s.t. ¢ cts Vi € J(W)}

Recall: p: X =Y cts iff 90_1((’)) cT VO€o

(X,7) (Y,0)
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Topological duals

Definition (topological dual):

Let X be a vector space with topology T

XF:={p: X —- R| plinear and 7 — cts}

Theorem: Let X and W be paired vector spaces

cxw) =W

Ex: (£°°): =/ ®pfa

T oo

(€)5 () = b1
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“Paired” linear program

T

Let (X,W) having paj_r\j_ng <.,.>: subject to f;:}gb
min (x.c
rxeX < ’ > ceW
(PLP) subject to Ax >k b A: X > Z
“conic LP” x=c 0 be Z

K cone in Z
C cone in X
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“Paired” linear program:
Mapping view

X zZ =R"
min (z.c
s.t. Ax =g b C b+ K
z>c 0
0° r*
ceW I< >
A: X -7 )
e ° (x,a)
be Z a (@ a2)
® s Az = : a; €W
K cone in Z . (x;z )
as Sl
C cone in X as  as
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Countably infinite LP

o0
min E ijj
x
Jj=1

o0

subject to Za:jaij =b;fori=1,...,m
J=1
z; >0for j=1,2,...

X =/P
W = /¢4
Z =R™
K = {0}
C= ()4

C b+ K

c, i[él)l{l <.’B, C>

st. Az >k b
z>c0

as ai

aq

as
19



Moment problem

X Z
min / cdu T a4 | Y
H 0 c b+ K
subject to /aiduzmi fort=1,2,...,q .
Q ° ’
c, i[él)l{l <.’B,C>
st. Az >k b
X = M(Q) 20
W
Z = R1?
K ={0) @

C = %(Q)+

20



11:
Existence
and
Extrema



Our problem

X Z
. z L Ax

min (z,c) - 4 |
xeX C b+ K

subject to Ax =g b . b
x>c 0 NO)
as ai )
T W
P When does an optimal

a4
az

solution exist?

l When an extreme point?
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(P)

Weierstrass Theorem

inf  f(z) f:X SR

subject to = € F (X, 7)
Theorem: (W1) f is t-cts (P) has an
(W2) F is t-compact — optimal
P solution

Note:

e inherent tradeoff between continuity
and compactness
e weak topologies are often leveraged

here
e working from compactness definition

is often hopeless .,



Compactness theorems

Category:Compactness theorems 7 5languages v
Category Talk Read Edit View history Tools v
From Wikipedia, the free encyclopedia o Help

In mathematics, specifically in topology and functional analysis, compactness theorems provide necessary or sufficient conditions for the compactness of a set.

Pages in category "Compactness theorems"

The following 19 pages are in this category, out of 19 total. This list may not reflect recent changes.

F M
Erzela—Ascoll theoremj ¢ Frafkova-Helly selection theorem ¢ Mahler's compactness theorem
o Fréchet-Kolmogorov theorem e Mazur's lemma
B ¢ Michael selection theorem
e Banach-Alaoglu theorem G * Montel's theorem
[- Braschke selecion !HeoreJ * Gromov's compactness theorem (topology) « Mumford's compactness theorem
« Bolzano-Weierstrass theorem
H P

c o Heine-Borel theorem « Prokhorov's theorem
« Cantor's intersection theorem |‘ Helly's selection theorem I o )
K won- t

E « Sobolev inequality
« Eberlein-Smulian theorem « Kuratowski's intersection theorem C Ove r‘

this
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Banach-Alaoglu (B-A) Theorem

Let (X,]||-||x) and (W,|| - |lw) be normed vector
spaces with (X,W) paired and MC%HWéEJX.

Then U ={z € X | ||z||x <1} is o(X,W)-compact.
In particular,
(BA1l) F is o(X,W)-closed :
— F 1s
(BA2) F is (norm) bounded o(X,W)-compact

Note: Reminiscent of Heine-Borel Theorem.

Ex: X :gjo but the reverse does not work.
W =1/
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Arzela-Ascoli (A-A) Theorem
(for problems in C(Q))

Let X =C(Q2) with sup-norm topology and F a
subset of X. Then:
(AA1l) F is ||-]|lec-bounded

(AA2) F is equicontinuous
+|| -], -closed

— F 1s
|- [loo- compact

Each f in F has a common
Lipschitz-constant M, i.e. F is

|f(w1) = flw2)] < Mwy — wy| ” equicontinuous
Vf € F and wi,wsy € (2
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Helly’s selection theorem
(for problems in Lr(Q))

Let X = LP(QQ) with its norm topology and F a
subset of X. Then:

(H1)

(H2) ¥ in F are

uniformly bounded .
+|] -] |p—closed

uniformly bounded: 3B s.t. ||f||, < B forall f € F
Ex: Q=[0,1], p=«, F is all CDFs for RV’s on Q

CDFs are CDFs take
(H2) values between
© and 1 27

£ in F are )

nondecreasin F is
; = ||l -compact

(H1)

nondecreasing



Extreme points & Holmes Theorem

Definition (extreme point):

re FFCX is an extreme point of F if
By,z € F such that

€ (y,2) ={ay+(1—a)z:a € (0,1)}

J
X Theorem (Holmes):

X (X,T) is a lctvs.

F is t-compact
— F has an
extreme point.

P

X 1s an extreme point

, L
X 1S nOt >|<includes both weak and norm topologies 28



Bauer Minimum Theorem (BMT)

inf f(x :
- nf - f(z) fiX SR
subject to z € F )

Theorem (Bauer Minimum Theorem):
(BMT1) f is t-continuous )

(P) has an
(BMT2) f is concave optimal

= extreme point
(BMT3) F is T-compact solutionp
(BMT4) F is convex J

29



“Bang-bang” control
= 0o(L£>[0,1], £1[0,1])

1
min / x(t)c(t)dt _ _
z€L>®[0,1] 0 (BMT1) f is t-continuous (P) has an
1 (BMT2) f is concave optimal
] . — b = (BMT3) F is t-compact extreme point
subject to /0 z(t)a;(t)dt = b;, i=1..m (BNT2) © 1o comoe solution
0<z(t) <1lforaa.t
c,a; € L10,1]
B-A
e Banach-Alaoglu U={zeX|llllx <1} is o(X,W)-compact

— {z € L£®[0,1] |0 < z(t) < 1} is 6(L>[0, 1], £1[0, 1]) — compact

BMT —> an optimal EP solution exists

Fact: all extreme points have
z(t) € {0,1} a.a. t “bang bang”

30



I1I11:
Optimality
of posted

price



Set up (Section 2.2 of Borgers)
e single seller, single buyer, single
indivisible good
e unknown buyer valuation 6 in [0O.,04]

e O ~ F cdf, with bounded, integrable pdf f
where f(0)>0 for all 6 in [0.,04]

e buyer has quasilinear utility: 6-t
e buyer’s outside alternative normalized to ©

e seller selects a (direct) mechanism:
> allocation rule, q: |01,0n] — [0,1]
> payment rule, t: |[0r,0pg] =& R

e seller maximizes her expected payment
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Posted price mechanism

if@>p
if 0 <p

qW):={3

Claim: There exists an
mechanism.

if0>p
if 6 <p

t(0) := {Z(;

optimal posted price

33



Problem formulation

s.t. 0q(0) —t(0) > 0q(0') —t(¢) a.a. 0,6 (IC)
0q(0) —t(0) >0 a.a. 0 (IR)
0<¢q(f) <1fora.a. 6

max / " L 0)£(0)d0
0L

Some work: e g increasing in [0.,04]
0

o 1(0) = 0q(0) —[ q(0)do
O,

e [ 01550 o

s.t. ¢ increasing on [0, 0]
0<gq(d) <1 for a.a. 6

34



How to apply our

m [ (0S50

) £(6)q(6)do

s.t. q increasing on [0, 0]
0<¢q(f) <1fora.a. 6

(BA1) F is o(X,W)-closed
(BA2) F is (norm) bounded

F is
o(X,W)-compact

Let X =C(2) with sup-norm topology and F a

subset of X. Then:
(AA1) F is || ||l-bounded

(AA2) F is equicontinuous

F is
| llo- compact

Let X = LP(Q2) with its norm topology and F a

subset of X. Then:

(H1) f in F are
nondecreasing
(H2) f in F are

uniformly bounded

F is

|| Ilp -compact

results?
Cr
o)
c min (z,c)
s.t. Az >k b
z>c0

Theorem (Bauer Minimum Theorem):

(BMT1) f is t-continuous (P) has an

(BMT2) f is concave optimal

(BMT3) F is t-compact EXEPETsnPOInt
(BMT4) F is convex ou

Last insight:
extreme points
are “bang-bang”
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Optimality of posted prices

Powerful modelling

paradigm
max o t(6)f(6)do
q;t or

s.t. 0q(0) —t(0) > 0q(¢') —t(¢') a.a. 6,60’ (IC)

0q(0) —t(6) >0 a.a. 0
0<¢q(d) <1fora.a. b

ffwhy))?
A
]_ @uu—

<1..IIIIIII-

Tricks
and
insights on 0n
max 0q(0)f(0)do — q(6)do
q 0L GL
(IR) . s.t. ¢ increasing on [0r,0y]
0<¢q(d) <1fora.a.f
Knowledge
of what is
possible
. Theorem (Bauer Minimum Theorem):
KnOWIng (BMT1) f is t-continuous (P) has an
your (BMT2) f is concave optimal
target 1) ¢ 1 ccamace [ e e

(BMT4) F is convex

Let X = LP(Q) with its norm topology and F a
subset of X. Then:

f in F are
(HL) nondecreasing F is
(H2) f in F are II1lp -compact

uniformly bounded

ou



IV:
Duality
theory



Refresher on FDLP duality

min o mgx Oy
P xe D )
( ) st. Ax >0 ( ) s.t. 14Ty;§<:
x>0 y=>0

Idea: dual “linearly combines” constraints to find the
“best” lower bound on (P)’s objective value implied by

the constraints:
-
clx>(A"y)'z>b"y
>y is in R™since there are m constraints
> Ax combines columns, ATy combines rows

> y20 to keep the inequalities in the right direction

> c2ATy so that we guarantee lower bounds
> bTy is the implication of the aggregated constraint, we

want to maximize 38



Constructing the dual of (PLP)

min (x,c T

rEX (@,¢) e

s.t. Az > b st ATy<ec
T >=c0 s=t

Idea: dual “linearly
combines” constraints to
find the “best” lower bound
on (P)’s objective value
implied by the constraints

> linearly act on the
constraint space Z

> how to keep the
constraints going in

the right direction?

> how to guarantee valid
lower bounds?

Z

\Ax

b+ K

b.

w

Y

(Y,Z) paired according
to pairing (-, ")y
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(Topological) dual cones

Definition (dual cone): 4
(Y,Z) paired vector spaces. K is T —adAs
a cone in Z. The dual cone is: .
K :={yeY |(y,z) >0 forall ze€ K}
To keep constraints d .
Ax K b L0y
in right direction we need: 3%
y€ K* < y =k Oy \<i/////
max by 0
st. Aly<e Y

’I/ZO 40



(Topological) adjoint

X

Definition (adjoint): el ——F L
Let (X,W) and (Y,Z) be . .
paired spaces with
pairings (,-)x and {,")vy. 0% .
Let A: X — Y be I<'7'>X I<'7'>Y
o(X,W)—o0(Z,Y) continuous. )
Then the adjoint y e

A Y - W A*y\\—A*//
exists where < 0%

(v, A*y)x = {y, Az)y " '
max by o , ,
ys.t‘ e Ay<gc <= A'ycc-C

y=>0



(PLP) duality

Let (X,W) and (Y,Z) be
paired spaces with X

pairings (,-)x and (,-)v. . [—— Az
Let A: X > Y be 7 4 N
o(X,W)—-0(Z,Y) continuous. C b+ K
min (x,¢)x 0% "
(PLP) "*
st. Az =g b Lo L)y
T EC 0 oC K*
C—C* A*
b .4//_\\.y
ey W, bry Ay g
(PLPD) 4 Ay 2o+ ¢ Ox
W Y

Yy =g+ 0
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CILP duality
min iﬂijj X = Jep K* :(61)4‘
~ W=£0 =)
S.t. jz::lxjaij:bi fore=1,2,... Z — goo C* :(gq)_'_

1
. Y =/ 00
x; >0for j=1,2,... .
¥ 2 K ={0} A*y =) yiay
c b+ K maXZy,-bl-
0% b Y=l
I (5)x I )y 0o |
oc K+ s.L. Zyiaij < ¢ for j=1,2,...
c—C* A =1
ay ] B y; >0fori=1,2,...
Ox
w Y .
(z, A*y)x = (y, Az)y Assuming: supq > _lai| p < oo
' g=1 43

K*:={yeY |(y,z) >0forall z€ K}



Duality results

min (z,c)x o

reX 1 e
ot s.t. Az =g b ¢ &5
z>c0 .3 . Theorem (weak duality)
oy T By — " val(PLPD) < val(PLP)
st. A*y<c-c '“(4 e ML
y =g+ 0 - | 0x ' ’

Theorem (complementary slackness):

(T,c— A%(g))x =0

T optimal to (PLP)
y optimal to (PLPD) @{ (5, AT — by =0
(z,¢)x = (7,b)y ST

Workhorse of IDLP story-telling:
CS conditions + extreme point structure

Unlocked by showing “zero-duality gap”
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A summary of zero-duality gap results

e (Anderson and Nash, 1987), (Barvinok,2002)
topology of epigraphical cones
> closedness
> interior point  A(C):= {(4z, (z,¢)x) | z € C}
> boundedness CZxR
> compactness

e (Shapiro, 2001), (Rockafellar, 1974)

topology of optimal value functional
v(z) ;== min{(z,c) |x € C, Az 4+ z € K}

min (z,c)x 2l
z * A4

> subdifferentiability oy

s.t. Az =g b &
x tco

max (y,b)y
(PLPD) YEY ’

s.t. A*y j(y (& ‘ ,(,,4 _— —V
A
yzk- 0 | o ‘
5 Y




(Generalized) Slater condition

Theorem (Slater condition): val(PLP) > —oc

e val(PLP) = val(PLPD)

e (PLPD) has an
optimal solution

dr e Cst. Ax —be intJ(Z,y)K@

Road map: : § Z
min  (z,¢)x e

(i) Apply BMT (using  (ewp) , ' :

a heav s.t. Az =g b ¢ ”"‘

y compactness

result) for primal z>c0 0% i

ex;stence and extreme max (y,b)y I#wy by

p01nts (PLPD) YEY of K*

(ii) Show zero- st. A'y<g.cl 4+ |,

. A%
du§11ty gap énd dual y =g 0 ! | o
exlistence using W y

Slater, or scramble

iii) Appl furth 1
for tricks (iii) Apply CS to further analyze

the extremal structure. a6



V:
Linear
persuasion



The linear persuasion model
(based on Dizdar and Kovac, GEB, 2020)

e sender influences the beliefs of a receiver
through deciding how to reveal information

e state of the world S distributed according
to Borel probability measure p

e Assume supp(p) in [0,1], including {0,1}

e Sender utility w:|[0,1] — R depend’s only on
the mean of the receiver’s posterior beliefs T

e T is derived by Bayesian updating from prior
U, this updating depends on sender’s choice

e Upshot: T is feasible iff
1 1
chx,u<:)>/vd7'§/ vdp Yo i [0,1] = R cvx, cts
0 0

* a new proof of (Dworczak and Martini, JPE, 2019) 48



Formulation

1
max udTt
T 0

st. T =¢x
T>=0

as a (PLPD)!

Definition (dual cone):

(Y,Z) paired vector spaces. K is
a cone in Z. The dual cone is:

K*:={yeY |(y,z) >0forall z € K}

1 1
T jcm M <~ / vdT S / Ud/i
0 0

Ul0,1] : Vo : [0,1] = R cvx, cts

1
0<pe T < OS/ vdT
0

Y =MI[0,1] A'r =7

Z =C|0,1] Ar =z oy T (z,0)x =
b=u K* = M0, 1], e e \ |
c= H K = C[O, ].]_|_ max (y,b)y I‘ ’

W =M|0, 1] c* =U]0, 1] " st Ay sonc & < |0 :
X = C[0,1] C =Ul0,1] vEeo [ ] .



Formulation as a (PLP)

Y =M[0,1] A*'r=r P
Z = Cl[0,1] Ar == (PLP) xsef Az mr b C" ! L
b=u K* =M|[0,1]+ rxc0 i /
X = C[O, 1] K = C[O, 1]+ . i (y,b)y I< -
W =M]I0,1] Cc* =U[0,1]* st Ay ool + [,
cC=pU C =U[0,1] y =i 0 ‘: ay\
U[0,1] : Vv :[0,1] = R cvx, cts
I max (u,T
pen%}%(l)l,l] p: ) ( TEM[O,1]< )
(P) s.t. Ap = clo,1]y U s.t. A*r <Ufoa]* M

P Zujo, 0 T Zmo,1]s 0

(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for
a heavy compactness Slater or tricks structure
result)
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Applying BMT to (P)

T =0o(C[0, 1], M[0,1])

is t-continuous (P) has an
(BMT2) f is concave optimal
(BMT3) F is t-compact extreme point

min ,
peBI0,1] ps1) (BMT1) £

(P) st. p =cl0,1], U

p E:[][O,l] 0 (BMT4) F is convex solution
Idea: (BA1) F is o(X,W)-closed Fis
e Without loss of optimality, (BA2) F is (norm) bounded o(X,W)-compact
p should not be much bigger
than u. Let X =C(Q) with sup-norm topology and F a
e p is convex and subset of X. Then:
continuous so p’ exists (AA1) F is ||-|le-bounded F is
a.e. and must be uniformly (AA2) F is equicontinuous}' Il [lo- compact
bounded

Let X = LP(Q2) with its norm topology and F a

e p is thus uniformly
subset of X. Then:

bounded and Lipschitz with
same constant, which (H1)
implies equicts

f in F are

nondecreasing F is

(H2) f in F are ||, -compact

e norm compact implies weak uniformly bounded
compact * This is the approach of Dizdar and Kovac. 51



Applying BMT to (D)

T = O’(M[O, 1]76[07 1])

* This is the approach of Kleiner, Moldovanu, and Strack, ECMA, 2021.

a
'Téigi1iill<zt77->

(D) s, T 2Uo,)+ M
T =~ mio,1]4 0

Idea:

e Reformulate the problem in
terms of the CDF functions of
T.

e u~F CDF, and t ~ G CDF

® F,G:[@,l] - [eJl]J
nondecreasing, right-cts, in
L1

1 1
/ G(s)ds > / F(s)ds
e G- F 1if Jt t

/0 1 G(s)ds = /O 1 F(s)ds

“mean-preserving spread/contraction”

(BMT1) f is t-continuous (P) has an
(BMT2) f is concave optimal

—
(BMT3) F is t-compact exirETe e
(BMT4) F is convex sotution
(BAl1) F is o(X,W)-closed Fis
(BA2) F is (norm) bounded o(X,W)-compact

Let X =C(Q2) with sup-norm topology and F a
subset of X. Then:

(AA1l) F is ||-|l-bounded F is
(AA2) F is equicontinuous Il llo- compact

Let X = LP(Q) with its norm topology and F a
subset of X. Then:

f in F are
nondecreasing F is
[|-|lp -compact

(H1)
(H2) f in F are

uniformly bounded
e Key observations is:

T Rex b <= G>F
52



Reformulated problem

max (u,T) max /udG
reM][0,1] GeL1[0,1]

(D) st 1 =Ulo,1]* M *s.t. G - F
T Zm0,1], Ol 5 nondecreasing

0<G(t)<laa.t

(BMT1) f is t-continuous (P) has an

(BMT2) f is concave optimal

(BMT3) F is t-compact e"t'"e'!‘e PEATS . .

(BNT2) F 12 comver solution Remains to show:

Let X = LP(Q) with its norm topology and F a {G -G = F}

subset of X. Then: 1
(upy T in F are is closed in the [

nondecreasing F is

(H2) f in F are — Il llp -compact tOpOlogy’

uniformly bounded
Not;e: G P if /¢ G(s)dsz/t F(s)ds
Gn — G and Gn >~ F — G — F /OG(S)ds=/0 F(s)ds
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Structure of extreme points

0 X Y m vy x 1
OF e ol | G is an
0.8} 1 “ironing” of F
o6l | | Implications
0.4 ,"/ | for the
' e | structure of
0.2} Pt | some optimal
00— | information

bO X y m y x l design

strategies

(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for
a heavy compactness Slater or tricks structure

result)
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(P)

(D)

Strong duality

perré?(;fu(p, 1) v - o
s.t. P Zzcp, v Z =¢l0,1]
P =ujo,1 0 b=u
max (u,T) g/:_cm, I
reMo,1]" =M[0, 1]
s.t. T jU[O,l]* 7 C=H
T = Mmio,1]; 0

A'r =T

Az =<

K* =M[0,1]
K = C[0,1]4
c* =U0,1]*
C =Ul0,1]

Ul[0,1] : Vv :[0,1] — R cvx, cts

dz e Cst. Az —b¢€ inta(z,y)K@

miy (z,c)x
PLP
G2 st. Az >gb

z>c0
max (y,b)y
(PLPD) YEY ’

st. A%y <c- ¢
y =g+ 0

Theorem (Slater condition): val(PLP)> —o0
e val(PLP) =

val(PLPD)

e (PLPD) has an
optimal solution

I7p € C[0,1] N U0, 1] s.t. p—u € intC[0, 1]+
e u is continuous on [0,1] therefore bounded, by say, B

B+ 1 for all t, so, p - u is constant fn 1
e that function is in intC[0, 1]y

e set p(t) =
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Final step
(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for
a heavy compactness Slater or tricks structure

result)

Theorem (complementary slackness):

T optimal to (PLP) i . B
y optimal to (PLPD) ¢ < {(IB, c_—Afi (yl))> P : 8
(Z,¢)x = (7, b)y (§, AT — b)y =
<ﬁ7 n— 7'*> — (0
<T*1ﬁ"_lw =0

Dworczak and Martini craft insights based on
this and related facts.

Note: they can relax the assumption u is cts.
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Tricks
and

== | Formulating

Understanding
your tools

insights
Modeling
Insightful -

observations/| knowing

your
target

LP theory
for
structure
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Thank

you for
listening !




