Infinite-dimensional linear programming with applications to economics

Chris Ryan (UBC Sauder, visiting scholar HBS)

(joint with Archis Ghate, Clemson IE)

Columbia Economics Department, April 2024

I: Basics

I. Quick review of linear programming (LP)

$$\min_{x} \quad c^{\top} x$$
 subject to $Ax \ge b$

where
$$x \in \mathbb{R}^n$$

$$b \in \mathbb{R}^m$$

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

The mapping view

$$\min_{x} c^{\top} x$$
subject to $Ax \ge b$

$$\mathbb{R}^{n}$$

$$Ax \ge b \iff Ax \in b + \mathbb{R}^{n}_{+}$$

$$\mathbb{R}^{m}$$

variable space

constraint space

 b^{\bullet}

 $b + \mathbb{R}^n$

More generally...

The "polyhedral" view

$$\max_{x} \quad c^{\top} x$$

s.t.
$$Ax \leq b$$

$$Ax \le b \iff a_i^{\top} x \le b_i \quad \forall i = 1, \dots, m$$

Things to like about FDLP

- If the problem is bounded, an optimal solution always exists.
- When an optimal solution exists, at least one solution is an extreme point.
- There exists polynomial time algorithms to find optimal solutions.
- There is a nice duality theory.

Making things infinite

 $\min_x \quad c^{ op} x$

subject to $Ax \succeq_K b$

 $x \succeq_C 0$

<u>Alternatives:</u>

sequences: ℓ^p

functions: $\mathcal{L}^p(\Omega, \lambda)$ $\mathcal{C}(\Omega)$

measures: $\mathcal{M}(\Omega)$

Making sacrifices

Properties of \mathbb{R}^n :

- vector space structure
 - > convexity
 - > extreme points
- "ball" topology
- inner product, projection
- separating hyperplane theory

We can generalize to locally convex topological vector spaces (lctvs)

Paired vector spaces

Vector spaces X and W are <u>paired</u> if there exists a <u>pairing</u>

$$\langle \cdot, \cdot \rangle : X \times W \to \mathbb{R}$$

$$(x, w) \mapsto \langle x, w \rangle$$

such that

(P0)
$$\langle x, w \rangle \in \mathbb{R} \ \forall x \in X, w \in W$$

(P1)
$$\langle \cdot, \cdot \rangle$$
 is bilinear

(P2)
$$\langle x, \bar{w} \rangle = 0 \ \forall x \in X \implies \bar{w} = 0_W$$
 $\langle \bar{x}, w \rangle = 0 \ \forall w \in W \implies \bar{x} = 0_X$

Some examples

$$\begin{array}{ll} \textbf{(i)} \ \ X = W = \mathbb{R}^n \\ \ \ \langle x, w \rangle := x^\top w = \sum_{j=1}^n x_j w_j \end{array} \begin{array}{ll} \text{(P0)} \ \ \langle x, w \rangle \in \mathbb{R} \ \forall x \in X, w \in W \\ \ \ \text{(P1)} \ \ \langle \cdot, \cdot \rangle \ \text{is bilinear} \\ \ \ \ \text{(P2)} \ \ \langle x, \bar{w} \rangle = 0 \ \forall x \in X \implies \bar{w} = 0_W \\ \ \ \ \langle \bar{x}, w \rangle = 0 \ \forall w \in W \implies \bar{x} = 0_X \end{array}$$

(P0)
$$\langle x, w \rangle \in \mathbb{R} \ \forall x \in X, w \in W$$

(ii)
$$X=\mathbb{R}^n, W=\mathbb{R}^m, \text{ with } n < m$$

$$\langle x,w \rangle := x^\top w = \sum_{j=1}^n x_j w_j$$

$$\bar{w} = (0,0,\dots,0,1,0,\dots,0)$$
 (iii) $X=\ell^p, W=\ell^q$
$$\frac{1}{p}+\frac{1}{q}=1 \text{ and } 1 \leq p,q \leq \infty$$

$$\langle x,w \rangle := \sum_{j=1}^\infty x_j w_j \qquad \text{(H\"older's inequality)}$$

Some examples

$$X = \mathcal{L}^p(\Omega, \lambda), W = \mathcal{L}^q(\Omega, \lambda)$$

$$\frac{1}{p} + \frac{1}{q} = 1$$
 and $1 \le p, q \le \infty$

$$\langle x, w \rangle := \int_{\Omega} x(t)w(t)d\lambda(t)$$

(P0)
$$\langle x,w \rangle \in \mathbb{R} \ \forall x \in X, w \in W$$

(P1)
$$\langle \cdot, \cdot \rangle$$
 is bilinear

(P2)
$$\langle x, \bar{w} \rangle = 0 \ \forall x \in X \implies \bar{w} = 0_W$$
 $\langle \bar{x}, w \rangle = 0 \ \forall w \in W \implies \bar{x} = 0_X$

(Hölder's inequality)

(v)
$$X = \mathcal{M}(\Omega), W = \mathcal{C}(\Omega)$$

$$\langle x,w \rangle := \int_{\Omega} w dx$$

(Reisz representation theory)

Geometric interpretation

(iii)
$$X = \ell^p, W = \ell^q$$

$$\langle x, w \rangle := \sum_{j=1}^{\infty} x_j w_j$$

(iv)

$$X = \mathcal{L}^p(\Omega, \lambda), W = \mathcal{L}^q(\Omega, \lambda)$$

$$\langle x, w \rangle := \int_{\Omega} x(t) w(t) d\lambda(t)$$

(v)
$$X = \mathcal{M}(\Omega), W = \mathcal{C}(\Omega)$$

$$\langle x, w \rangle := \int_{\Omega} w dx$$

From pairing to topology, I

By (P1), the pairing $\langle \cdot, \cdot \rangle : X \times W \to \mathbb{R}$ generates linear functionals over X:

<u>Definition (algebraic dual):</u>

$$X' = \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is linear} \}$$

$$(\text{P1}) \Longrightarrow J: W \to X' \qquad (\text{P2}) \Longrightarrow J \text{ is 1:1} \\ w \mapsto \varphi_w \qquad \Longrightarrow J(W) \cong \text{ subspace of } X'$$
 where $\varphi_w: X \to \mathbb{R}$
$$x \mapsto \langle x, w \rangle$$
 Ex. $X = W = \mathbb{R}^n$

From pairing to topology, II

"weak topology":

 $\sigma(X, W) := \{ \text{smallest topology s.t. } \varphi \text{ cts } \forall \varphi \in J(W) \}$

 $\underline{\mathsf{Recall:}}\ \varphi: X \to Y \ \mathsf{cts}\ \mathsf{iff}\ \varphi^{-1}(\mathcal{O}) \in \tau \ \forall \mathcal{O} \in \sigma$

Topological duals

<u>Definition (topological dual):</u>

Let X be a vector space with topology t

$$X_{\tau}^* := \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ linear and } \tau - \text{cts} \}$$

Theorem: Let X and W be paired vector spaces $X_{\sigma(X,W)}^* \cong W$

Ex:
$$(\ell^{\infty})^*_{\tau_{||\cdot||_{\infty}}}\cong \ell_1\oplus pfa$$
 $(\ell^{\infty})^*_{\sigma(\ell^{\infty},\ell^1)}\cong \ell_1$

"Paired" linear program

 $\min_x \quad c^{ op} x$ subject to $Ax \succeq_K b$

 $x \succeq_C 0$

Let (X,W) having pairing $\langle \cdot, \cdot \rangle$:

$$\min_{x \in X} \langle x, c \rangle$$

$$c \in W$$

$$\min_{x \in X} \quad \langle x, c \rangle \qquad \qquad c \in W$$
 (PLP) subject to
$$Ax \succeq_K b \qquad A: X \to Z$$

$$A:X\to Z$$

"conic LP"
$$x \succeq_C 0$$

$$b \in Z$$

K cone in Z C cone in X

EX.
$$Ax = egin{bmatrix} \langle x, a_1
angle \ \langle x, a_2
angle \ dots \ \langle x, a_2
angle \ dots \ \langle x, a_m
angle \end{bmatrix} \qquad a_i \in W \qquad Z = \mathbb{R}^m$$

"Paired" linear program: Mapping view

$$\min_{x \in X} \quad \langle x, c \rangle$$

s.t. $Ax \succeq_K b$ $x \succeq_C 0$

$$c \in W$$

$$A:X\to Z$$

$$b \in Z$$

K cone in Z

C cone in X

Countably infinite LP

$$\min_{x} \quad \sum_{j=1}^{\infty} x_{j}c_{j}$$
 subject to $\sum_{j=1}^{\infty} x_{j}a_{ij} = b_{i} ext{ for } i=1,\ldots,m$ $x_{j} \geq 0 ext{ for } j=1,2,\ldots$

$$X = \ell^p$$
 $W = \ell^q$
 $Z = \mathbb{R}^m$
 $K = \{0\}$
 $C = (\ell^p)_+$

Moment problem

$$\min_{\mu} \quad \int_{\Omega} c d\mu$$
 subject to $\quad \int_{\Omega} a_i d\mu = m_i ext{ for } i=1,2,\ldots,q$ $\quad \mu \geq 0$

$$X = \mathcal{M}(\Omega)$$

$$W=\mathcal{C}(\Omega)$$

$$Z = \mathbb{R}^q$$

$$K = \{0\}$$

$$C=\mathscr{M}(\Omega)_+$$

II: Existence and Extrema

Our problem

subject to $Ax \succeq_K b$

$$x \succeq_C 0$$

When does an optimal solution exist?

When an extreme point?

Weierstrass Theorem

(P)
$$\inf\limits_{x} f(x) \ f:X o\mathbb{R}$$
 subject to $x\in F$ (X, au)

<u>Note:</u>

- inherent tradeoff between continuity and compactness
- weak topologies are often leveraged here
- working from compactness definition is often hopeless

Compactness theorems

Banach-Alaoglu (B-A) Theorem

Let $(X, ||\cdot||_X)$ and $(W, ||\cdot||_W)$ be normed vector spaces with (X, W) paired and $W^*_{\tau_{||\cdot||_W}} \cong X$. Then $U = \{x \in X \mid ||x||_X \leq 1\}$ is $\sigma(X, W)$ -compact. In particular, $(\mathsf{BA1}) \text{ F is } \sigma(X, W)\text{-closed} \\ (\mathsf{BA2}) \text{ F is (norm) bounded} \} \Longrightarrow \mathsf{F is} \\ \sigma(X, W)\text{-compact}$

Note: Reminiscent of Heine-Borel Theorem.

 $\underbrace{\operatorname{Ex:}}_{W} X = \ell^{\infty}$ but the reverse does not work. $W = \ell^{1}$

Arzelà-Ascoli (A-A) Theorem (for problems in $C(\Omega)$)

Each f in F has a common Lipschitz-constant M, i.e.
$$|f(\omega_1) - f(\omega_2)| \leq M |\omega_1 - \omega_2| \Longrightarrow_{\text{equicontinuous}}^{\text{F is}}$$
 equicontinuous

Helly's selection theorem (for problems in $L^p(\Omega)$)

```
Let X=\mathcal{L}^p(\Omega) with its norm topology and F a subset of X. Then:  (\text{H1}) \text{ fin F are } \\ \text{ (H2) fin F are } \\ \text{ uniformly bounded} \\ +||\cdot||_p\text{-closed} \\ \text{ uniformly bounded: } \exists B \text{ s.t. } ||f||_p \leq B \text{ for all } f \in F   \underline{\text{Ex: }} \Omega = [0,1], \ p = \infty, \ \text{F is all CDFs for RV's on } \Omega   (\text{H1}) \text{ CDFs are } \\ \text{ nondecreasing}   (\text{H2}) \text{ cDFs take } \\ \text{ values between } \\ \text{ 0 and } 1
```

Extreme points & Holmes Theorem

<u>Definition (extreme point):</u>

 $x \in F \subseteq X$ is an extreme point of F if $\nexists y,z \in F$ such that

$$x \in (y, z) := \{\alpha y + (1 - \alpha)z : \alpha \in (0, 1)\}$$

Theorem (Holmes):

 (X,τ) is a lctvs.*

F is τ -compact \Longrightarrow F has an extreme point.

^{*} includes both weak and norm topologies 28

Bauer Minimum Theorem (BMT)

(P)
$$\inf_x f(x) \qquad f: X \to \mathbb{R}$$
 subject to $x \in F$

$$\begin{array}{c} \underline{\text{Theorem (Bauer Minimum Theorem):}} \\ (\text{BMT1) f is } \tau\text{-continuous} \\ (\text{BMT2) f is concave} \\ (\text{BMT3) F is } \tau\text{-compact} \\ (\text{BMT4) F is convex} \end{array} \right\} \xrightarrow{\text{optimal extreme point solution}}$$

"Bang-bang" control

$$\min_{x \in \mathcal{L}^{\infty}[0,1]} \quad \int_{0}^{1} x(t)c(t)dt$$
subject to
$$\int_{0}^{1} x(t)a_{i}(t)dt = b_{i}, \quad i = 1..m$$

$$0 \le x(t) \le 1 \text{ for a.a. } t$$

$$c, a_{i} \in \mathcal{L}^{1}[0,1]$$

$$\tau = \sigma(\mathcal{L}^{\infty}[0,1], \mathcal{L}^{1}[0,1])$$
 (BMT1) f is t-continuous (BMT2) f is concave (BMT3) F is t-compact (BMT4) F is convex
$$(\text{BMT4}) \text{ F is convex}$$

• Banach-Alaoglu

$$U = \{x \in X \mid ||x||_X \leq 1\} \text{ is } \sigma(X,W)\text{-compact}$$

B-A

$$\implies \{x \in \mathcal{L}^{\infty}[0,1] \mid 0 \le x(t) \le 1\} \text{ is } \sigma(\mathcal{L}^{\infty}[0,1], \mathcal{L}^{1}[0,1]) - \text{compact}$$

- BMT \Longrightarrow an optimal EP solution exists
- Fact: all extreme points have $x(t) \in \{0,1\} \text{ a.a. } t \text{ "bang bang"}$

III: Optimality of posted price

Set up (Section 2.2 of Börgers)

- single seller, single buyer, single indivisible good
- unknown buyer valuation θ in $[\theta_L, \theta_H]$
- θ ~ F cdf, with bounded, integrable pdf f where f(θ)>0 for all θ in [θ_L , θ_H]
- buyer has quasilinear utility: θ -t
- buyer's outside alternative normalized to 0
- seller selects a (direct) mechanism:
 - > allocation rule, $q:[heta_L, heta_H] o[0,1]$
 - > payment rule, $t: [heta_L, heta_H]
 ightarrow \mathbb{R}$
- seller maximizes her expected payment

Posted price mechanism

<u>Claim:</u> There exists an optimal posted price mechanism.

Problem formulation

$$\begin{aligned} \max_{q,t} & & \int_{\theta_L}^{\theta_H} t(\theta) f(\theta) d\theta \\ \text{s.t.} & & & \theta q(\theta) - t(\theta) \geq \theta q(\theta') - t(\theta') \text{ a.a. } \theta, \theta' \text{ (IC)} \\ & & & & \theta q(\theta) - t(\theta) \geq 0 \text{ a.a. } \theta \\ & & & & 0 \leq q(\theta) \leq 1 \text{ for a.a. } \theta \end{aligned}$$

Some work: • q increasing in $[\theta_L, \theta_H]$

•
$$t(\theta) = \theta q(\theta) - \int_{\theta_L}^{\theta} q(\theta) d\theta$$

$$\max_{q} \int_{\theta_{L}}^{\theta_{H}} \left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) f(\theta) q(\theta) d\theta$$
s.t. q increasing on $[\theta_{L}, \theta_{H}]$

 $0 \le q(\theta) \le 1$ for a.a. θ

How to apply our results?

$$\max_{q} \int_{\theta_{L}}^{\theta_{H}} \left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) f(\theta) q(\theta) d\theta$$

s.t. q increasing on $[\theta_L, \theta_H]$ $0 \le q(\theta) \le 1$ for a.a. θ

(BA1) F is
$$\sigma(X,W)$$
-closed \longrightarrow F is (BA2) F is (norm) bounded \longrightarrow $\sigma(X,W)$ -compact

Let $X = \mathcal{C}(\Omega)$ with sup-norm topology and F a subset of X. Then:

Let $X=\mathcal{L}^p(\Omega)$ with its norm topology and F a subset of X. Then:

$$\begin{array}{c} \text{(H1)} \ \, \text{f in F are} \\ \text{nondecreasing} \\ \text{(H2)} \ \, \text{f in F are} \\ \text{uniformly bounded} \end{array} \end{array} \right\} \Longrightarrow \begin{array}{c} \text{F is} \\ ||\cdot||_p \ \, \text{-compact} \\ ||\cdot||_p \ \, \text{-compact} \\ \end{array}$$

Last insight: extreme points are "bang-bang"

Optimality of posted prices

 $0 \le q(\theta) \le 1$ for a.a. θ

$$\max_{q,t} \quad \int_{\theta_L}^{\theta_H} t(\theta) f(\theta) d\theta$$
s.t. $\theta q(\theta) - t(\theta) \ge \theta q(\theta') - t(\theta')$ a.a. θ, θ' (IC)
$$\theta q(\theta) - t(\theta) \ge 0 \text{ a.a. } \theta$$
 (IR)

Tricks and insights

Knowledge
of what is
possible

Let $X=\mathcal{L}^p(\Omega)$ with its norm topology and F a subset of X. Then:

$$(H1) \begin{array}{l} \text{f in F are} \\ \text{nondecreasing} \\ \text{(H2) f in F are} \\ \text{uniformly bounded} \end{array} \right\} \Longrightarrow \begin{array}{l} \text{F is} \\ \|\cdot\|_p \text{-compact} \end{array}$$

IV: Duality theory

Refresher on FDLP duality

$$(\mathsf{P}) \quad \begin{array}{ll} \min\limits_{x \in \mathbb{R}^n} & c^\top x \\ \text{s.t.} \quad Ax \geq b \\ & x \geq 0 \end{array} \qquad (\mathsf{D}) \quad \begin{array}{ll} \max\limits_{y \in \mathbb{R}^m} & b^\top y \\ \text{s.t.} \quad A^\top y \leq c \\ & y \geq 0 \end{array}$$

<u>Idea</u>: dual "linearly combines" constraints to find the "best" lower bound on (P)'s objective value implied by the constraints:

$$c^{\top}x \ge (A^{\top}y)^{\top}x \ge b^{\top}y$$

- > y is in \mathbb{R}^m since there are m constraints
- > Ax combines columns, A^Ty combines rows
- > y≥0 to keep the inequalities in the right direction
- $> c \ge A^T y$ so that we guarantee lower bounds
- > $b^{\mathsf{T}}y$ is the implication of the aggregated constraint, we want to maximize

Constructing the dual of (PLP)

$$\min_{x \in X} \quad \langle x, c \rangle$$

s.t. $Ax \succeq_K b$

$$x \succeq_C 0$$

 $\max_{y \in \mathbb{R}^m} b^\top y$

s.t. $A^{\top}y \le c$ $y \ge 0$

Idea: dual "linearly
combines" constraints to
find the "best" lower bound
on (P)'s objective value
implied by the constraints

> linearly act on the
constraint space Z
> how to keep the
constraints going in
the right direction?
> how to guarantee valid
lower bounds?

(Y,Z) paired according to pairing $\langle \cdot, \cdot \rangle_Y$

W

(Topological) dual cones

<u>Definition (dual cone):</u>

(Y,Z) paired vector spaces. K is a cone in Z. The dual cone is:

$$K^* := \{ y \in Y \mid \langle y, z \rangle \ge 0 \text{ for all } z \in K \}$$

To keep constraints

$$Ax \succ_K b$$

in right direction we need:

$$y \in K^* \iff y \succeq_{K^*} 0_Y$$

$$\max_{y \in \mathbb{R}^m} b^\top y$$
s.t. $A^\top y \le c$

$$y \ge 0$$

(Topological) adjoint

Definition (adjoint): Let (X,W) and (Y,Z) be paired spaces with pairings $\langle \cdot, \cdot \rangle_X$ and $\langle \cdot, \cdot \rangle_Y$. Let $A: X \to Y$ be $\sigma(X,W) - \sigma(Z,Y)$ continuous.

 $A^*: Y \to W$

exists where

Then the adjoint

$$\langle x, A^*y \rangle_X = \langle y, Ax \rangle_Y$$

$$\max_{y \in \mathbb{R}^m} b^{\top} y$$
s.t. $A^{\top} y \le c$

$$y \ge 0$$

$$A^*y \le_C^* c \iff A^*y \in c - C^*$$

(PLP) duality

Let (X,W) and (Y,Z) be paired spaces with pairings $\langle \cdot, \cdot \rangle_X$ and $\langle \cdot, \cdot \rangle_Y$. Let $A: X \to Y$ be $\sigma(X,W) - \sigma(Z,Y)$ continuous.

$$\begin{array}{ccc} \max_{y \in Y} & \langle y,b \rangle_Y \\ \text{(PLPD)} & \text{s.t.} & A^*y \preceq_{C^*} c \\ & y \succeq_{K^*} 0 \end{array}$$

CILP duality

$$\min_{x} \sum_{j=1}^{\infty} x_{j}c_{j} \qquad X = \ell^{p} \qquad K^{*} = (\ell^{1}) + W = \ell^{q} \qquad C = (\ell^{p}) + W = \ell^{q} \qquad C^{*} = (\ell^{q}) + W = \ell^{q} \qquad C^{*} = \ell^{q} \qquad C^{*}$$

 $\langle x, A^*y \rangle_X = \langle y, Ax \rangle_Y$

$$X = \ell^p$$
 $K^* = (\ell^1)_+$ $W = \ell^q$ $C = (\ell^p)_+$ $Z = \ell^\infty$ $Y = \ell^1$ $C^* = (\ell^q)_+$ $X = \{0\}$ $X = \{0\}$

s.t.
$$\sum_{i=1}^{\infty} y_i a_{ij} \le c_j \text{ for } j = 1, 2, \dots$$
$$y_i \ge 0 \text{ for } i = 1, 2, \dots$$

$$\langle x, A^*y \rangle_X = \langle y, Ax \rangle_Y \ K^* := \{ y \in Y \mid \langle y, z \rangle \geq 0 \text{ for all } z \in K \}$$
 Assuming: $\sup_i \left\{ \sum_{j=1}^{\infty} |a_{ij}| \right\} < \infty$

Duality results

Theorem (weak duality)
val(PLPD) ≤ val(PLP)

Theorem (complementary slackness):

$$\bar{y} \text{ optimal to } (PLP) \\
\bar{y} \text{ optimal to } (PLPD) \\
\langle \bar{x}, c \rangle_X = \langle \bar{y}, b \rangle_Y$$

$$\iff \begin{cases} \langle \bar{x}, c - A^*(\bar{y}) \rangle_X = 0 \\
\langle \bar{y}, A\bar{x} - b \rangle_Y = 0 \end{cases}$$

Workhorse of IDLP story-telling: CS conditions + extreme point structure Unlocked by showing "zero-duality gap"

A summary of zero-duality gap results

- (Anderson and Nash, 1987), (Barvinok, 2002) topology of epigraphical cones
 - > closedness
 - > interior point $\hat{A}(C) := \{(Ax, \langle x, c \rangle_X) \mid x \in C\}$
 - > boundedness $\subseteq Z \times \mathbb{R}$
 - > compactness
- (Shapiro, 2001), (Rockafellar, 1974)

topology of optimal value functional

$$v(z) := \min\{\langle x, c \rangle \mid x \in C, Ax + z \in K\}$$

> subdifferentiability

(Generalized) Slater condition

<u>Theorem (Slater condition):</u> $val(PLP) > -\infty$

$$\exists \bar{x} \in C \text{ s.t. } A\bar{x} - b \in \text{int}_{\sigma(Z,Y)} K \Longleftrightarrow \begin{cases} \bullet \text{ val(PLP) = val(PLPD)} \\ \bullet \text{ (PLPD) has an optimal solution} \end{cases}$$

Road map:

- (i) Apply BMT (using
 a heavy compactness
 result) for primal
 existence and extreme
 points
- (ii) Show zeroduality gap and dual
 existence using
 Slater, or scramble
 for tricks

(iii) Apply CS to further analyze the extremal structure.

V: Linear persuasion

The linear persuasion model

(based on Dizdar and Kováč, GEB, 2020)

- sender influences the beliefs of a receiver through deciding how to reveal information
- ullet state of the world S distributed according to Borel probability measure μ
- Assume supp(μ) in [0,1], including {0,1}
- Sender utility $u:[0,1] \to \mathbb{R}$ depend's only on the mean of the receiver's posterior beliefs τ
- \bullet t is derived by Bayesian updating from prior μ , this updating depends on sender's choice
- Upshot: τ is feasible iff

$$\tau \preceq_{cx} \mu \iff \int_0^1 v d\tau \le \int_0^1 v d\mu \ \forall v : [0, 1] \to \mathbb{R} \text{ cvx, cts}$$

^{*} a new proof of (Dworczak and Martini, JPE, 2019)

Formulation as a (PLPD)!

$$\max_{\tau} \int_{0}^{1} u d\tau$$
s.t. $\tau \leq_{cx} \mu$

$$\tau \succeq 0$$

$$\int_{0}^{1} d\tau = 1$$

$$Y = \mathcal{M}[0,1] \qquad A^*\tau = \tau$$

$$Z = \mathcal{C}[0,1] \qquad Ax = x$$

$$b = u \qquad K^* = \mathcal{M}[0,1]_+$$

$$c = \mu \qquad K = \mathcal{C}[0,1]_+$$

$$W = \mathcal{M}[0,1] \qquad C^* = U[0,1]^*$$

$$X = \mathcal{C}[0,1] \qquad C = U[0,1]$$

$$C = U[0,1]$$

$$C = U[0,1]$$

Definition (dual cone):

(Y,Z) paired vector spaces. K is a cone in Z. The dual cone is:

$$K^* := \{ y \in Y \mid \langle y, z \rangle \ge 0 \text{ for all } z \in K \}$$

$$\tau \preceq_{cx} \mu \iff \int_0^1 v d\tau \le \int_0^1 v d\mu$$

$$U[0,1]: \forall v: [0,1] \to \mathbb{R} \text{ cvx, cts}$$

$$0 \preceq_{cx} \tau \iff 0 \le \int_0^1 v d\tau$$

Formulation as a (PLP)

$$egin{aligned} Y = \mathcal{M}[0,1] & A^* au = au \ Z = \mathcal{C}[0,1] & Ax = x \ b = u & K^* = \mathcal{M}[0,1]_+ \ X = \mathcal{C}[0,1] & K = \mathcal{C}[0,1]_+ \ W = \mathcal{M}[0,1] & C^* = U[0,1]^* \ c = \mu & C = U[0,1] \ U[0,1] : \ orall v : [0,1]
ightarrow \mathbb{R} \ \operatorname{cvx}, \operatorname{cts} \end{aligned} egin{aligned} \min_{\substack{x \in X \\ x \in X \\ \text{s.t.}} & Ax \succeq_K b \\ x \succeq_C 0 \ \end{array} \ \left. \begin{array}{c} \max_{x \in X} & \langle x, c \rangle_X \\ \text{s.t.} & Ax \succeq_K b \\ x \succeq_C 0 \ \end{array} \ \left. \begin{array}{c} \max_{x \in X} & \langle y, b \rangle_X \\ x \succeq_C 0 \ \end{array} \right. \ \end{aligned}$$

$$\min_{\substack{p \in \mathscr{C}[0,1]\\ \textbf{(P)} \text{ s.t. } Ap \succeq_{\mathcal{C}[0,1]_+} u}} \langle p, \mu \rangle$$

$$\begin{array}{ccc}
& \min_{p \in \mathscr{C}[0,1]} \langle p, \mu \rangle & \max_{\tau \in \mathcal{M}[0,1]} \langle u, \tau \rangle \\
\text{(P) s.t. } Ap \succeq_{\mathcal{C}[0,1]_{+}} u & \text{(D) s.t. } A^*\tau \preceq_{U[0,1]_{+}} \mu \\
& p \succeq_{U[0,1]} 0 & \tau \succeq_{\mathcal{M}[0,1]_{+}} 0
\end{array}$$

(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for a heavy compactness Slater or tricks structure result)

Applying BMT to (P)

$$(\mathsf{P}) \begin{tabular}{l} \min_{p \in \mathscr{C}[0,1]} \langle p, \mu \rangle \\ \text{s.t.} \ p \succeq_{\mathcal{C}[0,1]_+} u \\ p \succeq_{U[0,1]} 0 \end{tabular}$$

Idea:

- Without loss of optimality, p should not be much bigger than u.
- p is convex and continuous so p' exists a.e. and must be uniformly bounded
- p is thus uniformly bounded and Lipschitz with same constant, which implies equicts
- norm compact implies weak compact

```
\tau = \sigma(\mathcal{C}[0,1], \mathcal{M}[0,1])
(BMT1) f is \tau-continuous (P) has an optimal extreme point solution (BMT4) F is convex
```

(BA1) F is
$$\sigma(X,W)$$
-closed \Longrightarrow F is (BA2) F is (norm) bounded \Longrightarrow $\sigma(X,W)$ -compact

Let $X=\mathcal{C}(\Omega)$ with sup-norm topology and F a subset of X. Then: (AA1) F is $||\cdot||_{\infty}$ -bounded F is $||\cdot||_{\infty}$ -compact

Let $X = \mathcal{L}^p(\Omega)$ with its norm topology and F a subset of X. Then:

$$\begin{array}{c} \text{(H1)} \ \text{f in F are} \\ \text{nondecreasing} \\ \text{(H2)} \ \text{f in F are} \\ \text{uniformly bounded} \end{array} \right\} \Longrightarrow \begin{matrix} \text{F is} \\ ||\cdot||_p \ \text{-compact} \\ \end{matrix}$$

^{*} This is the approach of Dizdar and Kováč.

Applying BMT to (D)

* This is the approach of Kleiner, Moldovanu, and Strack, ECMA, 2021.

$$(D) \begin{array}{c} \max_{\tau \in \mathcal{M}[0,1]} \langle u, \tau \rangle \\ \text{s.t.} \quad \tau \preceq_{U[0,1]^*} \mu \end{array} \qquad \begin{array}{c} \text{(BMT2) f is concave} \\ \text{(BMT3) f is τ-compact.} \\ \text{(BMT4) f is convex} \end{array}$$

Idea:

- Reformulate the problem in terms of the CDF functions of τ.
- $\mu \sim F$ CDF, and $\tau \sim G$ CDF
- $F,G:[0,1] \rightarrow [0,1],$ nondecreasing, right-cts, in L1

"mean-preserving spread/contraction"

 $\tau = \sigma(\mathcal{M}[0,1], \mathcal{C}[0,1])$

Let $X = \mathcal{C}(\Omega)$ with sup-norm topology and F a subset of X. Then:

Let $X = \mathcal{L}^p(\Omega)$ with its norm topology and F a subset of X. Then:

$$\begin{array}{c} \text{(H1) fin Fare} \\ \text{nondecreasing} \\ \text{(H2) fin Fare} \\ \text{uniformly bounded} \end{array} \right\} \Longrightarrow \begin{matrix} \text{F is} \\ ||\cdot||_p \text{-compact} \\ \end{array}$$

$$\tau \preceq_{cx} \mu \iff G \succ F$$

Reformulated problem

$$(\mathsf{D}) \xrightarrow[\tau \in \mathcal{M}[0,1]]{} \mathsf{max} \quad \langle u,\tau \rangle \qquad \mathsf{max} \quad \int udG$$

$$(\mathsf{D}) \xrightarrow[\mathsf{S}.\mathsf{t}. \quad \tau \preceq U[0,1]^* \quad \mu \qquad \mathsf{s.t.} \quad G \succ F$$

$$\tau \succeq_{\mathcal{M}[0,1]_+} 0 \qquad \mathsf{G} = \mathcal{G}^1[0,1] \qquad \mathsf{S.t.} \quad G \succ F$$

$$\mathcal{G} \text{ nondecreasing} \qquad 0 \leq G(t) \leq 1 \text{ a.a. } t$$

$$(\mathsf{BMT1}) \text{ f is } \tau\text{-compact} \qquad \mathsf{extreme point} \qquad \mathsf{extreme point} \qquad \mathsf{extreme point} \qquad \mathsf{solution}$$

$$(\mathsf{BMT3}) \text{ F is } \tau\text{-compact} \qquad \mathsf{extreme point} \qquad \mathsf{extreme point} \qquad \mathsf{solution}$$

$$\mathsf{BMT4}) \text{ F is convex} \qquad \mathsf{Et} \quad \mathsf{X} = \mathcal{L}^p(\Omega) \text{ with its norm topology and F a subset of X. Then:} \qquad \mathsf{G} : G \succ F \}$$

$$\mathsf{Is closed in the } \mathcal{L}^1 \qquad \mathsf{topology.}$$

Note:

$$G \succ F \quad \text{if} \quad \int_t^1 G(s)ds \geq \int_t^1 F(s)ds$$

$$\int_0^1 G(s)ds = \int_0^1 F(s)ds$$

Structure of extreme points

G is an
"ironing" of F
Implications
for the
structure of
some optimal
information
design
strategies

(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for a heavy compactness Slater or tricks structure result)

Strong duality

$$(\mathsf{P}) \begin{array}{lll} \max_{p \in \mathcal{C}[0,1]} \langle p, \mu \rangle \\ \mathrm{s.t.} & p \succeq_{\mathcal{C}[0,1]_+} u \\ & p \succeq_{U[0,1]} 0 \end{array} \qquad \begin{array}{lll} Y = \mathcal{M}[0,1] & A^*\tau = \tau \\ & Z = \mathcal{C}[0,1] & Ax = x \\ & p \succeq_{U[0,1]} 0 \end{array} \qquad \begin{array}{lll} X = \mathcal{C}[0,1] & Ax = x \\ & b = u & K^* = \mathcal{M}[0,1]_+ \\ & X = \mathcal{C}[0,1] & K = \mathcal{C}[0,1]_+ \\ & W = \mathcal{M}[0,1] & C^* = U[0,1]^* \\ & \text{s.t.} & \tau \preceq_{U[0,1]_+} \mu \\ & \tau \succeq_{\mathcal{M}[0,1]_+} 0 \end{array} \qquad \begin{array}{lll} X = \mathcal{C}[0,1] & A^*\tau = \tau \\ & \lim_{x \in X} \langle x, c \rangle_X \\ & \text{s.t.} & Ax \succeq_K b \\ & x \succeq_C 0 \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X \end{array} \qquad \begin{array}{lll} X \succeq_C 0 \\ & \lim_{x \in X} \langle x, c \rangle_X$$

<u>Theorem (Slater condition):</u> $val(PLP) > -\infty$

$$\exists \bar{x} \in C \text{ s.t. } A\bar{x} - b \in \text{int}_{\sigma(Z,Y)} K \Longleftrightarrow \begin{cases} \bullet \text{ val(PLP) = val(PLPD)} \\ \bullet \text{ (PLPD) has an optimal solution} \end{cases}$$

$$\exists ? \bar{p} \in \mathcal{C}[0,1] \cap U[0,1] \text{ s.t. } p-u \in \text{int} \mathcal{C}[0,1]_+$$

- u is continuous on [0,1] therefore bounded, by say, B
- set p(t) = B + 1 for all t, so, p u is constant fn 1
- that function is in $\mathrm{int}\mathcal{C}[0,1]_+$

Final step

(i) Apply BMT (using (ii) Show ZDG using (iii) Apply CS for a heavy compactness Slater or tricks structure result)

Theorem (complementary slackness):

$$\sqrt[4]{\bar{x}} \text{ optimal to } (PLP) \\
\sqrt[4]{\bar{y}} \text{ optimal to } (PLPD) \\
\sqrt[4]{\bar{x}}, c\rangle_X = \langle \bar{y}, b\rangle_Y$$

$$\langle \hat{p}, \mu - \tau^* \rangle = 0 \\
\langle \tau^*, \hat{p} - u \rangle = 0$$

Dworczak and Martini craft insights based on this and related facts.

Note: they can relax the assumption u is cts.

Thank you for listening!